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Abstract

Multilingual machine translation (MMT),
trained on a mixture of parallel and monolin-
gual data, is key for improving translation in
low-resource language pairs. However, the lit-
erature offers conflicting results on the perfor-
mance of different methods of including mono-
lingual data. To resolve this, we examine how
denoising autoencoding (DAE) and backtrans-
lation (BT) impact MMT under different data
conditions and model scales. Unlike prior stud-
ies, we use a realistic dataset of 100 translation
directions and consider many domain combi-
nations of monolingual and test data. We find
that monolingual data generally helps MMT,
but models are surprisingly brittle to domain
mismatches, especially at smaller model scales.
BT is beneficial when the parallel, monolin-
gual, and test data sources are similar but can
be detrimental otherwise, while DAE is less ef-
fective than previously reported. Next, we ana-
lyze the impact of scale (from 90M to 1.6B pa-
rameters) and find it is important for both meth-
ods, particularly DAE. As scale increases, DAE
transitions from underperforming the parallel-
only baseline at 90M to converging with BT
performance at 1.6B, and even surpassing it in
low-resource. These results offer new insights
into how to best use monolingual data in MMT.

1 Introduction

The need for large supervised corpora remains
a major bottleneck in neural machine translation
(NMT) (Bapna et al., 2022). Sufficient bilingual
data is scarce for most languages and limited to
religious texts for the lowest-resource languages.
To compensate for this lack of data, one effective
approach is to leverage related parallel data from
other languages via multilingual machine trans-
lation (MMT) that enables positive transfer from
high-resource to low-resource languages (Aharoni
et al., 2019; Arivazhagan et al., 2019). Additionally,
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we can use monolingual data, either through pre-
training with denoising autoencoding(DAE; Con-
neau and Lample 2019; Liu et al. 2020a), or with
backtranslation (BT; Sennrich et al., 2016). Driven
by the success of these methods, recent works are
converging toward a unified approach, that jointly
trains MMT with monolingual data using auxiliary
DAE objectives (Siddhant et al., 2022; Bapna et al.,
2022; NLLB team et al., 2022) and/or BT.

However, the literature contains contradictory re-
sults about the effectiveness of these methods, par-
ticularly DAE. Early studies indicated combining
MMT with DAE led to improvements across all
settings (Wang et al., 2020; Siddhant et al., 2020).
These studies, however, were limited in scope, as
they only considered moderately-sized models and
used few languages (10 to 15), with training and
test data drawn from similar domains. By contrast,
NLLB team et al. (2022) found that DAE helped
only in very low-resource directions in MMT exper-
iments with 200+ languages, while Xu et al. (2023)
reported that DAE produced mixed results in ex-
periments with (mostly) African languages.

To resolve this conflict, we present a systematic
analysis of different methods that integrate mono-
lingual data into MMT, focusing on BT and two
DAE objectives, MASS (Song et al., 2019) and
BART (Lewis et al., 2020; Liu et al., 2020b). First,
we carefully investigate the role of the domain. To
align with prior work, we focus on the English-
centric setting (i.e., concatenation of English→XX
and XX→English). We use a realistic and diverse
multilingual translation dataset with 100 directions
and run controlled experiments using different
monolingual splits with single- and mixed-domain
data. Then, we evaluate models across four wide-
coverage multilingual test sets from Wikipedia,
news, medical, and mixed domains. Our results
with medium-sized models (370M) show that while
BT outperforms both DAE objectives in most set-
tings, the effectiveness of all methods varies signif-
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icantly, as they are surprisingly brittle to domain
mismatches. BT is more sensitive to the domain
than DAE, and can underperform the parallel-only
baseline when the monolingual and test data are
not similar. However, increasing the diversity of
the monolingual data by mixing different sources
improves domain robustness to some extent. We
also discover that both DAE methods are less effec-
tive than previously reported, and they are mainly
helpful in low-resource and xx→en directions. Of
the two, MASS consistently outperforms BART, al-
though by a narrow margin.

Next, we study the role of model capacity and
discover that it is crucial and can even change the
ranking between methods. We hold all other fac-
tors constant and train models with sizes from 90M
up to 1.6B parameters. When the scale is small,
both BT and DAE yield poor results, especially in
out-of-domain settings. However, as model capac-
ity grows, all methods quickly improve compared
to the parallel-only baseline, and also become more
robust to domain mismatches. Scale affects DAE
the most, which transitions from underperforming
the parallel-only baseline at the 90M scale to be-
coming competitive with BT at 1.6B and even out-
performing it in low-resource.

Our contributions are: (i) We present a large-s-
cale systematic analysis of how the domain and
model scale affect the effectiveness of methods that
incorporate monolingual data into MMT. (ii) We
show that BT and DAE are sensitive to domain
mismatches between the monolingual and test data,
particularly on small scales. BT is best in most set-
tings. Also, prior works have overestimated DAE,
and when comparing the two methods, MASS out-
performs BART. (iii) We discover that model ca-
pacity is key for the effectiveness of both meth-
ods, especially DAE. When the scale is small, DAE
can even harm MMT, but it quickly improves with
scale, and eventually becomes competitive with BT.

2 Related Work

Monolingual Data with Multi-Task Learning
Early works on DAE+MMT report universal gains
in all settings. Siddhant et al. (2020) use WMT
parallel data from 15 languages and large monolin-
gual corpora from many sources, like News Crawl,
Wikipedia, and Common Crawl, with MASS.
Wang et al. (2020) explore BART-like objectives
with a subset of 10 languages from Siddhant et al.
(2020) and News Crawl monolingual data.

However, more recent works that use larger
and/or less uniform datasets, report less favourable
results. To extend MMT to very low-resource lan-
guages, Bapna et al. (2022) show that models learn
to translate from/into languages with only mono-
lingual data if there are sufficient parallel data in
other languages to enable transfer from the DAE
to the MT task. NLLB team et al. (2022) explore a
similar idea, but report that, in supervised transla-
tion, DAE (BART) is effective only for very low-
resource. Xu et al. (2023) compare all aforemen-
tioned DAE methods and find that they often fail
to outperform the parallel-only baseline. Our study
probes confounding factors in these prior works.

Large Language Models Large language mod-
els (LLMs) trained on massive datasets achieve im-
pressive results in many tasks (Brown et al., 2020;
Chowdhery et al., 2022; Zhang et al., 2022b; Tay
et al., 2023). To adapt LLMs to downstream tasks
including translation (Wei et al., 2022; Lin et al.,
2022; Zhang et al., 2023; Vilar et al., 2022; Garcia
et al., 2023; Zhu et al., 2023; Hendy et al., 2023),
the dominant approach is to use prompting, an abil-
ity enabled by model scale (Wei et al., 2022). Our
work, however, is orthogonal and presents an anal-
ysis of methods that integrate monolingual data
into encoder-decoder MMT models trained from
scratch. Also, it is questionable whether these mod-
els are unsupervised with respect to translation, as
recent work suggests that they have consumed par-
allel data during pretraining (Briakou et al., 2023).

Model Scale A growing literature investigates
the scaling laws of different aspects of a model (Ka-
plan et al., 2020). In NMT, Ghorbani et al. (2021)
explore scaling laws related to model capacity, Fer-
nandes et al. (2023) consider MMT, and Gordon
et al. (2021) focus on data scaling. Zhang et al.
(2022a) investigate the scaling laws across architec-
tures, like decoder-only and encoder-decoder. Our
work does not study scaling laws but analyzes how
scale impacts using monolingual data in MMT.

Analysis Huang et al. (2021); Liu et al. (2021) an-
alyze the complementarity of BT and monolingual
pretraining when used in bilingual NMT. By con-
trast, we focus on multilingual NMT and systemat-
ically analyze the joint training with BT and DAE.

3 (Multi-task) Multilingual NMT

We follow the universal MMT training method
of Johnson et al. (2017) and train a single dense
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Figure 1: Illustration of the MASS objective.
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Figure 2: Illustration of the BART objective.

Transformer-based (Vaswani et al., 2017) model on
the concatenation of parallel data from multiple lan-
guage pairs. We prepend a special token ⟨2XX⟩ to
the source sequences, that informs the model about
the translation direction (e.g., ⟨2ES⟩ for Spanish).

3.1 Denoising Autoencoding

We follow the multi-task setting from prior
works (Siddhant et al., 2020; Wang et al., 2020) and
use the regular MT objective on batches with paral-
lel data and a DAE objective on batches with mono-
lingual data. The language token ⟨2XX⟩ informs
the model about the DAE and MT tasks, as it in-
structs it to generate a semantically similar sentence
in the XX language. We explore two DAE methods.

MASS Song et al. (2019) adapt the masked lan-
guage modeling objective (Devlin et al., 2019) to
encoder-decoder models. MASS masks a span in
the input and trains the decoder to predict that span.
However, the unmasked tokens are not included in
the target prefix (Figure 1). Following Siddhant
et al. (2020, 2022), we do not use the architectural
modifications of Song et al. (2019), such as extra
language embeddings or custom initialization.

BART Lewis et al. (2020) propose a DAE objective
similar to MASS, but with two differences. First,
BART uses a slightly different noising strategy that
can corrupt more than one input span in each sen-
tence. Second, and more importantly, while the de-
coder is also trained to reconstruct the source sen-
tence, its input context contains the full prefix, in-
cluding the masked tokens (Figure 2).

3.2 Backtranslation

For BT, to save resources, instead of training sepa-
rate bilingual models, we re-use the baseline MMT
model and generate the new synthetic parallel data

using the monolingual data of each language.

4 Experimental Setup

Parallel Data We use ML50 (Tang et al., 2021),
a multilingual translation dataset between English
and 50 other languages. ML50 is more represen-
tative of real-world multilingual datasets as it con-
tains typologically diverse languages, including
high, medium, and (extremely – less than 10k) low
resource pairs, and with data from different do-
mains. It is also more multilingual than the datasets
from Siddhant et al. (2020) and Wang et al. (2020),
that use 15 and 10 languages, respectively. To re-
duce training time, we cap the parallel data at 10M
sentences per language, similar to Wang et al. 2020,
which affects only few high-resource languages.

Monolingual Data We run controlled experi-
ments with single- and mixed-domain monolingual
data. For the single-domain experiments, we use
Wikipedia as it is the only publicly available source
with available data for all languages in ML50, but
exclude the xh and iu languages from the experi-
ments as they lack sufficient monolingual data. We
cap the monolingual data per language to 5M, simi-
lar to Wang et al. (2020), which is still much larger
than the parallel data for most languages. For the
mixed-domain experiments, we use the same num-
ber of sentences per language, but also include
News Crawl1 (Barrault et al., 2020) and Web Crawl
data from CC1002 (Conneau et al., 2020). See the
Appendix for the full data statistics (Table 16).

Evaluation Besides ML50 we also consider three
domain-specific test sets. We use FLORES-200
(Goyal et al., 2022; NLLB team et al., 2022)
with translations of Wikipedia articles, NTREX-
1283 (Federmann et al., 2022) with translations
in 128 languages from the English WMT19 News
test set (Barrault et al., 2019), and TICO-19 with
translations in the medical domain (Anastasopoulos
et al., 2020). FLORES-200 and NTREX-128 cover
all languages in ML50, while TICO-19 covers only
15, but equally distributed across high, medium,
and low resources. At test time, use beam search
with K=5. In the main paper, we report results us-
ing BLEU (Papineni et al., 2002) similar to most
prior works. However, to make our evaluation more
comprehensive, we include in the Appendix the re-

1https://www.statmt.org/wmt20/translation-task.html
2https://data.statmt.org/cc-100/
3https://github.com/MicrosoftTranslator/NTREX. Because

of misalignments, we omit the ur and vi languages.
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Model
en→xx xx→en

Mean
High Med Low High Med Low

parallel 22.5 17.3 20.6 26.9 25.9 25.3 22.9
+BART 22.0 16.9 21.3 27.0 26.6 27.9 23.6
+MASS 22.1 16.9 21.3 27.1 26.5 28.5 23.7
+BT 23.6 17.3 21.6 27.8 26.9 28.9 24.3

Table 1: BLEU scores (↑) on the ML50 test. The models
with BT and both SSL objectives (BART, MASS) use
the single-domain monolingual split with data only from
Wikipedia. The cells in red indicate that a model fails
to improve over the parallel-only baseline.

sults from all experiments using ChrF (Popović,
2015) and COMET4 (Rei et al., 2020), which is a
neural metric. We find that overall, all metrics are
very consistent with each other, with few small dif-
ferences in en→xx (see Appendix). We use Sacre-
BLEU5 (Post, 2018) for ChrF and BLEU.

Data Sampling We use temperature-based data
sampling (Arivazhagan et al., 2019) to balance the
training data. Assuming that pD is the probability
that a sentence belongs to dataset D, we sample
sentences for D with a probability proportional to
p
1/T
D , where T is a temperature parameter. When

using parallel data, D corresponds to the data of a
given language pair. When including monolingual
(i.e., for DAE) or synthetic parallel (i.e., for BT)
data, we first concatenate all the separate datasets to
the same list and then apply temperature sampling.
That is, the real en→fr, synthetic (BT) en′ →fr, and
monolingual fr↔fr, are treated as separate datasets
D. Larger values of T lead to more even sampling
(i.e., upsampling small datasets). We set T = 5
following prior works (Wang et al., 2020; Siddhant
et al., 2020), which also leads to a roughly 1:1 ratio
when using both monolingual and parallel data.

Models Our baseline is an MMT model trained
only on the en→xx and xx→en parallel data. For
both MASS and BART, we mask 50% of input to-
kens following the hyperparameters from Siddhant
et al. (2022, 2020) and NLLB team et al. (2022),
respectively. All models use the same Transformer
architecture (Vaswani et al., 2017). We consider
three different model sizes for our scaling experi-
ments: 1) Transformer-Base with 90M parameters,
2) Transformer-Big with 370M parameters, and 3)
Transformer-XL (not to be confused with Dai et al.
2019), with 1.6B parameters. We include details

4We use v2.0.1 with the wmt22-comet-da model.
5BLEU+case.mixed+lang.S-T+numrefs.1+smooth.exp+tok.13a+v1.5.1

about our models and training in Appendix A.

5 Results

5.1 Single-Domain Monolingual Data (Wiki)

We begin with a series of controlled experiments
that measure the impact of the domain using the
Transformer-Big model scale (370M). We com-
pare across different test sets the parallel-only
model with parallel+BT and parallel+DAE (MASS,
BART) that use the single-domain monolingual
split (see statistics in Table 16). In Table 1 we re-
port the BLEU scores of each model on the ML50
test set averaged by group and translation direction.

On average, BT and both DAE models outper-
form the baseline by +1.4 and +0.7 BLEU points,
respectively. BT consistently achieves the best re-
sults, with the largest gains in low-resource, with
+1 BLEU points on en→xx and +3.6 BLEU points
on xx→en. Both DAE models produce similar re-
sults, but MASS is marginally better. However, in
the en→xx high- and medium-resource languages,
both DAE models fail to outperform the baseline,
although they use the same monolingual data as BT.

Non-aggregated scores reveal mixed results.
To get a more detailed picture of model perfor-
mance we plot the differences in the BLEU scores
(∆-BLEU) between each model and the parallel-
only baseline model across all pairs in Figure 3.
For a simpler presentation, we omit BART which
is similar to MASS. Figure 3 reveals that the re-
sults are more mixed than the aggregated scores
suggest (Table 1). In xx→en, both BT and MASS
are generally better than the baseline and follow a
similar trend. Their gains increase towards the low-
resource languages, with few exceptions, and BT
is better than MASS in most cases. However, in
en→xx, we discover a different picture. BT shows
a surprising behavior as it outperforms the baseline
in high-resource (usually from +2 to +4 BLEU) but
harms BLEU in most medium- to low-resource lan-
guages and is also often worse than MASS. MASS
fluctuates around the baseline and benefits only a
few low-resource languages. These results contra-
dict early works on MMT+DAE that report univer-
sal gains (Siddhant et al., 2020; Wang et al., 2020).

What is the reason for the mixed results? In
our experiments, we used the same model/training
hyperparameters as in previous conflicting stud-
ies (Wang et al., 2020; Siddhant et al., 2020). The
only difference lies in our training and test data.
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Figure 3: BLEU differences between each model and the parallel-only model (red dotted line) on the ML50 test data.

cs de fr ja ru zh es pl lv fi hi lt et ta ro si ps ne ml nl it ar ko he tr km fa vi hr uk th id sv pt af kk ur mk te sl my ka gl mr mn gu az bn

high→ low

0

5

10

15

∆-
B

L
E

U

en→xx
parallel
+MASS (Wiki)
+BT (Wiki)

cs de fr ja ru zh es pl lv fi hi lt et ta ro si ps ne ml nl it ar ko he tr km fa vi hr uk th id sv pt af kk ur mk te sl my ka gl mr mn gu az bn

high→ low

xx→en
parallel
+MASS (Wiki)
+BT (Wiki)

FLORES

cs de fr ja ru zh es pl lv fi hi lt et ta ro si ps ne ml nl it ar ko he tr km fa hr uk th id sv pt af kk mk te sl my ka gl mr mn gu az bn

high→ low

0

5

10

15

20

∆-
B

L
E

U

en→xx
parallel
+MASS (Wiki)
+BT (Wiki)

cs de fr ja ru zh es pl lv fi hi lt et ta ro si ps ne ml nl it ar ko he tr km fa hr uk th id sv pt af kk mk te sl my ka gl mr mn gu az bn

high→ low

xx→en
parallel
+MASS (Wiki)
+BT (Wiki)

NTREX

Figure 4: BLEU differences between each model and the baseline (red dotted line) on FLORES and NTREX.
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FLORES (wiki)
OPUS (mixed)

LOTUS (news)
TED

WAT (news)
WMT (news)

Figure 5: Data sources used for the ML50 test sets.

Those earlier works used 10/15 languages from
WMT and news test sets. By contrast, the ML50
dataset is more challenging, as 1) it has more lan-
guages, 2) contains truly low-resource languages
(24/50 have less than 200K sentences, unlike prior
works), and, more importantly, 3) it has data from
diverse sources (Figure 5). High-resource lan-
guages contain WMT (news) data, whereas other
languages have data from different sources, mainly
from TED talks. Recall that BT is more effective in
high-resource pairs but yields poor results in non-

English non-WMT pairs. Considering this, we hy-
pothesize that previous works reported universal
gains because they considered more favourabe ex-
perimental setups, with fewer languages and paral-
lel, monolingual, and test data in the same domain.

How do results change on other test domains?
To test this hypothesis, we evaluate models on uni-
form test sets, where all languages have data from
the same source. Figure 4 shows the results on the
FLORES (Wikipedia domain) and NTREX (news
domain) test sets. The TICO-19 results follow sim-
ilar trends and include them in the appendix.

The results in both FLORES and NTREX reveal
a more favorable picture for both methods. We see
similar trends as in the ML50 test sets, especially
in xx→en, but the gains are overall larger. This can
be explained by the greater domain similarity of
the test sets with the monolingual data, particularly
FLORES, which shows the biggest improvements.
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Figure 6: BLEU differences (∆-BLEU) of the BT models trained with the mixed-domain split with respect to the
single-domain monolingual data (dotted red line). To plot the bars, we use the mean ∆-BLEU and the standard error.

The switch to the in-domain test sets has a stronger
effect on BT, especially in en→xx. Notice that in
ML50, BT is harmful in en→xx low-resource with
mostly out-of-domain data, whereas in NTREX
and FLORES, it is consistently helpful. MASS also
performs much better on the in-domain test data.
However, we still fail to observe the universal gains
reported in some works. For instance, in en→xx,
it outperforms the baseline only in low-resource.
We hypothesize that DAE requires more ideal con-
ditions to be helpful in MMT. For instance, Sid-
dhant et al. (2020) used much more monolingual
relative to the parallel data, whereas Wang et al.
(2020) used a similar ratio to this work but with
parallel, monolingual and test data from the same
domain. Overall, the performance gap between test
sets shows that the domain of the monolingual data
is crucial and that both methods are sensitive to
mismatches with the test domain, particularly BT.

5.2 Mixed-domain Monolingual Data
Previously, we examined single-domain monolin-
gual data, removing confounding factors to isolate
domain impact. We now turn to a real-world sce-
nario and use multiple sources of monolingual data
per language. The goal is to evaluate the signifi-
cance of diversity in monolingual data. For each
language, we hold the size of monolingual data con-
stant (§5.1), and only change the data mixture. We
include data from News Crawl and CC100 (web
domain), the only other publicly available data
sources with wide enough coverage to support most
languages in ML50. For languages that do not have
data from all domains, we use only the available
ones. We consider two mixed-domain splits:

1. Unbalanced: This split emulates naively con-
catenating all the monolingual data of a given
language without considering their relative
sizes. The ratio between sources is propor-
tional to the size of their uncapped data.

2. Balanced: This split balances the number of
sentences from each source using the same
temperature-based sampling method applied
to the parallel data, with T=5.

In Figure 6, each bar shows the average BLEU
difference (∆-BLEU) compared to the single-
domain split (Wiki). We include results on the
TICO-19 and with ChrF scores in the appendix.
Diversity largely favours BT with a minor impact
on MASS. This further supports that BT is more
sensitive to the domain. BT displays a contrast
between translation directions. Note that 1) both
BT and DAE use identical target-side monolingual
data, and 2) the MMT model has been exposed to
a large number of diverse (i.e., many domains) En-
glish target-side sentences through the ML50 par-
allel data. Thus, we hypothesize that source-side
diversity causes the xx→en gains of BT.

The highest gains appear in NTREX test sets (up
to +4 BLEU), as mixed splits incorporate monolin-
gual data from the same domain, i.e., news. Inter-
estingly, mixed-domain data proves beneficial for
xx→en in FLORES. Closer examination reveals
that these gains mainly affect low-resource lan-
guages (Table 5). Although the reason isn’t clear,
we speculate it may be due to reduced cross-domain
interference between the parallel and monolingual
data. The re-balancing of monolingual data has
minimal impact, though it does slightly enhance
or mitigate the drawbacks of using less in-domain
data (e.g., FLORES). NTREX does not benefit be-
cause re-balancing leads to using less news data.

5.3 Denoising Autoencoding Objectives
Table 2 compares MASS and BART across all test
sets. We consider their variants trained with the
balanced monolingual data (§5.2), as they work
marginally better (see Appendix §B.2 for more re-
sults). MASS consistently outperforms BART, with
larger gains in xx→en (up to 2 BLEU). However,
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Model
en→xx xx→en

Mean
High Med Low High Med Low

FLORES
BART 23.6 15.2 14.3 27.8 24.4 22.0 20.8
MASS 23.8 15.3 14.5 28.4 25.0 23.4 21.3

NTREX
BART 21.8 13.1 13.7 25.0 23.2 21.0 19.4
MASS 21.9 13.3 13.7 25.7 23.8 22.1 19.8

ML50
BART 22.1 16.8 21.3 26.8 26.1 28.1 23.5
MASS 22.1 16.8 21.5 27.2 26.6 28.8 23.8

TICO-19
BART 31.2 14.0 15.1 31.8 26.0 24.1 23.7
MASS 31.5 14.4 15.2 32.6 27.2 26.4 24.5

Table 2: BLEU scores (↑) of BART and MASS trained
with the balanced mixed-domain monolingual data.

in xx→en, their results are comparable.
Both objectives use similar encoder noising

methods but differ in the decoder. BART’s decoder
conditions on the full target prefix, unlike MASS,
which excludes unmasked tokens. This potentially
makes the MASS decoder rely more on its encoder.
Next, BART computes loss over all tokens, even
unmasked ones, consequently losing part of the use-
ful signal by teaching the model to copy the input.
MASS, however, calculates loss only on unmasked
tokens, targeting the training signal to denoising.
In related work, Baziotis et al. (2021) study NMT
pretraining using BART variants with different in-
put noising methods, such as word replacement or
shuffling, and present evidence that input masking
biases models towards copying the input. We spec-
ulate that the performance gap between MASS and
BART stems from these decoder-side differences.

5.4 Scale

This section examines the role of model scale. We
hold all other factors constant and test three model
sizes that differ by a factor of 4: Transformer-Base
(90M), Transformer-Big (370M), and Transformer-
XL (1.6B). To conserve computational resources,
we consider only one DAE method, MASS, as it
outperformed BART in previous experiments. We
use the (Wiki) single-domain monolingual split to
test for in-domain (FLORES) and out-of-domain
(ML50) effects. Figure 7 shows results and in-
cludes BLEU and COMET6.

6We include COMET here because, whilst in other experi-
ments COMET and BLEU show similar results, in this case,
we discover a small but noteworthy difference (see Appendix
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Figure 7: Mean BLEU and COMET across model scales.
The error bars show the standard error of the mean.

How crucial is model capacity for BT and DAE?
All models improve with scale. However, small
models find monolingual methods less beneficial,
especially in ML50 (top), which is out-of-domain
with respect to the (Wikipedia) monolingual data.
BT shows negligible gains, while MASS even
proves detrimental. As scale increases, both MASS
and BT become more effective, with MASS ben-
efiting the most. Surprisingly, MASS transitions
from underperforming the baseline to outperform-
ing it and becomes competitive with BT at the 1.6B
scale. We also discover that according to COMET
(and chrF), the effects of scale on MASS are even
stronger, as it outperforms BT by a small margin.

In FLORES (bottom), BT and MASS exhibit a
similar trend, but are overall more effective, since
the test and monolingual domains are the same. At
small scale, MASS fails to yield any gains, whereas
BT is more helpful. As scale increases, the gains of
both methods relative to the baseline also increase.
However, according to BLEU, the performance gap
between MASS and BT remains relatively constant,
unlike in ML50, whereas according to COMET,
MASS achieves again comparable performance to
BT. This suggests that DAE becomes more com-
petitive with scale and bridges the gap with BT, in
particular in out-of-domain settings (ML50).

We speculate that learning from monolingual
data proves more challenging for smaller models

for details; Figures 12, 13).
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baseline in the same scale (red dotted line). The error
bars show the standard error of the mean.

because they prioritize learning from parallel data.
This also explains why BT outperforms DAE at
small scales. Translating the synthetic parallel data,
which is more similar to the supervised MT task,
is an easier task compared to denoising. As model
capacity increases, it “unblocks” DAE and progres-
sively enables it to make better use of monolingual
data. This suggests that there is a cross-task inter-
ference that is mitigated by scaling.

How direction and resource-level are affected?
Next, we investigate the scaling patterns of MASS
and BT. Figure 8 shows the relative difference be-
tween the BLEU score of each model and the cor-
responding parallel-only baseline in the same scale
across translation directions. Both methods bene-
fit from scale, with low-resource settings gaining

the most. Notice that for each method, that gap
between scales is small in high-resource (up to 2
BLEU) but large in low-resource directions (up to 3
and 5 BLEU in ML50 and FLORES, respectively).
Scale also generally benefits more xx→en (right
side) compared to en→xx (left side). The plots per
test set also have the same y-axis, which enables us
to directly compare BT with MASS. We discover
that the reason MASS (on average) closes the gap
with BT (see Figure 7) as scale grows is because
of its low-resource performance. In particular, in
ML50 at the 1.6B scale, the gap becomes negligi-
ble, and MASS even marginally outperforms BT
in low-resource xx→en (two top-right plots).

6 Conclusion

This work presents a systematic analysis of widely
used methods that include monolingual data in
MMT, specifically BT, and two DAE objectives.
It does not negate findings from prior works but
rather highlights confounding factors that explain
the mixed results found in the literature. These
factors range from the characteristics of the exper-
imental setup, like the data mixture, to the effec-
tive model capacity. The main takeaway is that one
should not expect gains from DAE or BT in all set-
tings but carefully consider all aspects of the sys-
tem to reach optimal performance.

We compare models across different data con-
ditions and combinations of monolingual and test
data, and discover that all methods are very sensi-
tive to domain mismatches. BT overall yields the
most gains, but it can fail in out-of-domain and low-
resource settings. As for DAE, we conclude that
it can be helpful, particularly in low-resource and
xx→en, but the universal gains reported from early
works can only be achieved in ideal conditions,
where the parallel, monolingual, and test data are
from the same domain. Another key finding is that
model capacity can make or break a method. Larger
models are better able to use monolingual data,
with gains from both BT and DAE increasing as the
model scale grows. We also discover a novel con-
nection between domain robustness and model size.
Scale is more important in out-of-domain settings,
as all methods yield limited to no gains at small
scales. In particular, MASS is harmful to MMT
with the 90M models, but when using 1.6B models,
it becomes comparable or even better to BT.

Based on our findings, we provide some recom-
mendations to practitioners:
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• For in-domain settings, prefer BT, as it yields the
best results across scales and resource levels.

• For out-of-domain settings, the choice depends
on model size. At small scales, prefer BT but ex-
pect small gains. At large scales, both methods
are more effective, and the gap between them di-
minishes. DAE is a viable and computationally
cheaper alternative to BT, which needs to back-
translate monolingual data from many languages.

• For MMT+DAE, prefer MASS instead of BART.

• Aim to increase the diversity of the monolingual
data by mixing different sources and re-balance
them to ensure a more even distribution.

• If in-domain or diverse monolingual data is not
available, consider the trade-offs between collect-
ing extra data or scaling up the model. If neither
is possible, avoid using monolingual data with
BT or DAE in en→xx low-resource directions.

Limitations

We used only one dataset with roughly 200M sen-
tences and 100 translation directions. The dataset
is more diverse, with more languages than many
prior works, however, it is unclear how the results
will generalize to datasets with other characteristics,
such as more languages or more/less typologically
diverse languages. The same holds for the combi-
nations of monolingual and test data. We consider
three main sources of publicly available monolin-
gual data that also have wide coverage across many
languages. Using more domains for the monolin-
gual and test data would be better, but we could not
find other monolingual sources with wide coverage.

This work focuses only on the English-centric
setting (i.e., concatenation of English→XX and
XX→English), which is the most commonly stud-
ied in MMT and is what the relevant prior works
use. We considered this setting to make our study
directly comparable to those earlier works and be-
cause it was easier to construct all the different data
splits to run both controlled experiments and with
wide language coverage. However, it is possible
that our conclusions do not generalize to other set-
tings, such as fully many-to-many MMT or pivot-
based MMT.

This work presents results on three model sizes:
90M, 370M, and 1.6B. Our results reveal clear
trends emerging across scales, but these trends can
potentially change in much larger scales depending
on the setting. One question that is left unanswered

is whether DAE would outperform BT if we scaled
models to over 1.6B parameters. We leave this to
future work, as running those experiments would
require significantly more resources than we had
available. On a related note to scale, note that the
scale of LLMs is not comparable to MMT models,
and even models like GPT4 fail to outperform or-
ders of magnitude smaller MMT models like NLLB
( with “only” 1.3B) in most languages, particularly
medium- to low-resource (Zhu et al., 2023). Unlike
others, we systematically train models with differ-
ent methods from-scratch, and our larger variant
even exceeds the size of models like NLLB.

Lastly, in this work, we considered the three
most widely adopted methods for integrating mono-
lingual data into MMT, namely BT and DAE with
MASS/BART. However, there are other methods,
such as those using contrastive losses (Pan et al.,
2021). We leave these comparisons for future work.
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A Experimental Setup

A.1 Training
Our baseline is an MMT model trained only on
the parallel data (en→xx and xx→en). For BT, we
use the baseline model to generate the synthetic
translations using beam search with beam size 4,
following NLLB team et al. (2022). For MASS,
we use the hyperparameters from Siddhant et al.
(2020, 2022) and mask 50% of input tokens. For
BART, we use the hyperparameters7 from NLLB
team et al. (2022), that also mask 50% of input
tokens. We implement all our models using the
fairseq toolkit (Ott et al., 2019), and for BART we
use the original implementation in fairseq, whereas
for MASS develop our own re-implementation.

All models use the same Transformer architec-
ture (Vaswani et al., 2017) with shared encoder-
decoder embeddings and decoder output projection
layers (Press and Wolf, 2017; Inan et al., 2017) as in
NLLB team et al. (2022). We optimize our models
with Adam (Kingma and Ba, 2015) with β1 = 0.9,
β2 = 0.98, and ϵ = 10−6, with a learning rate of
0.001 using a linear warm-up of 8k steps, followed
by inverted squared decay. We also regularize the
models with label smoothing (Szegedy et al., 2016)
of 0.1 and weight decay of 0.01.

We consider three different model sizes: 1)
Transformer-Base with 90M parameters configured
as in the original paper, 2) Transformer-Big with
370M parameters, similar to the original but with
an 8192-sized feed-forward layer as in Wang et al.
(2020); Siddhant et al. (2020), and 3) Transformer-
XL (not to be confused with Dai et al. (2019)), with
1.6B parameters, 12 encoder/decoder layers, feed-
forward layers of 8192, 2048-sized embeddings,
and 32 attention heads. We train all models with
mixed precision (FP16) and use gradient accumula-
tion to reach the desired batch size for each model
size. Specifically, we train the Transformer-Base
on 4 A100 GPUs for 440K steps with an effective
batch size of 280K token batches, the Transformer-
Big on 8 A100 GPUs for 360K steps with 320K to-
ken batches, and the Transformer-XL on 12 A100
GPUs for 120K steps with 860K token batches. We
evaluate models every 40K (10k for Transformer-
XL) steps and select the checkpoint with the best av-
erage translation loss (i.e., negative log-likelihood)
across all language pairs in the ML50 validation
set.

7Fairseq arguments: “–mask 0.5 –mask-random 0.1
–mask-length span-poisson –poisson-lambda 3.5“

Base Big XL

Parameters (Size) 90M 370M 1.6B
Layers 6 6 12
Embedding 512 1024 2048
FeedForward 2048 8192 8192
Heads 8 16 32
Effective batch size 280K 320K 860K
Training Steps 440K 360K 120K
Dropout 0.1 0.3 0.3
GPU Configuration 4×A100 8×A100 12×A100

Table 3: Hyperparameters used for the Transformer
models of various sizes in the study.

B Additional Results

In the main paper, for brevity, we discuss results
using only BLEU and for selected experiments that
highlight our most important findings. For com-
pleteness, we also re-evaluate the outputs from all
of our experiments and across all test sets with two
additional evaluation metrics, following the recom-
mendations of Kocmi et al. (2021):

chrF: this is another surface-level (i.e., string-
based) metric, like BLEU, but achieves better corre-
lation with human judgment. It compares character
n-grams that make it better for languages with rich
morphology and is also tokenization independent.

COMET: this is a neural-based metric that uses a
pretrained model to estimate the translation quality.
Unlike BLEU and chrF, it also takes into account
the source sentence. However, we point out that
it is not clear how reliable (the current version of)
COMET is for low-resource languages or test data
across different domains, as Kocmi et al. (2021) in
their analysis considered only high-resource lan-
guages and two test domains (news, discussions).

We find that overall, the ranking of the models
is very consistent across metrics. We observe only
two instances where metrics do not fully agree
with each other, mainly in en→xx and low-resource
languages (see §B.1.1, §B.3). However, the main
findings and patterns discussed in the main body of
the paper still hold across metrics.

B.1 Main Experiments

First, we report the results of the experiments that
investigate the role of data. This includes the
results from all models trained with the single-
domain (Wikipedia) and mixed-domain (unbalance-
vs-balanced) monolingual data in Section 5.1 and
Section 5.2, respectively. Recall that ML50 con-
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tains parallel data from many different sources,
which are mostly out-of-domain data with respect
to the Wikipedia domain. The same holds for the
ML50 test data.

We include the full results for all methods across
all monolingual splits in Table 4 (ML50), Table 5
(FLORES), Table 6 (NTREX) and Table 7 (TICO-
19). Next, we also include the line charts with the
score differences of all models with all metrics in
Figure 8, which are the counterparts of the Fig-
ures 3, 4 in the main body of the paper.

B.1.1 Mixed-Domain Monolingual Data
Besides the table view of the results, which do in-
clude the scores per monolingual split, here we
also report the corresponding bar plots, similar to
those in Section 5.2, with all methods, test sets,
and metrics. This is one of the few cases where
we discover a small discrepancy between metrics.
Specifically, we see that the ChrF and COMET
results suggest that using mixed-domain monolin-
gual data is even more helpful for BT, than what the
BLEU scores suggest. In particular, Figure 9 shows
gains in BLEU (top) only in the xx→en direction,
whereas the ChrF (middle row) and COMET (bot-
tom row) scores reveal consistent improvements
even in the en→xx direction. We also see that fur-
ther re-balancing (green bar) the monolingual data
yields small gains in most settings. Besides these
differences, the overall trends are the same across
metrics (i.e., BT is more sensitive to diversity than
MASS, with larger gains in xx→en).
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Model
en→xx xx→en

MeanHigh Med Low High Med Low

parallel 22.5 17.3 20.6 26.9 25.9 25.3 22.9

Wiki
+BART 22.0 16.9 21.3 27.0 26.6 27.9 23.6
+MASS 22.1 16.9 21.3 27.1 26.5 28.5 23.7
+BT 23.6 17.3 21.6 27.8 26.9 28.9 24.3

Mix
+BART 21.8 16.7 21.4 27.1 26.3 28.4 23.6
+MASS 22.0 16.8 21.5 27.4 26.5 28.9 23.8
+BT 24.0 17.5 21.3 28.3 26.9 29.4 24.5

Mix+bal
+BART 22.1 16.8 21.3 26.8 26.1 28.1 23.5
+MASS 22.1 16.8 21.5 27.2 26.6 28.8 23.8
+BT 24.1 17.5 21.4 28.5 27.2 29.6 24.6

(a) BLEU scores (↑)

Model
en→xx xx→en

MeanHigh Med Low High Med Low

parallel 48.6 45.0 46.3 55.3 49.3 47.0 48.3

Wiki
+BART 47.9 44.6 47.4 55.1 50.5 50.4 49.1
+MASS 48.1 44.5 47.5 55.2 50.6 50.9 49.3
+BT 49.7 45.4 47.2 56.4 51.6 51.7 50.1

Mix
+BART 47.7 44.0 47.4 55.3 50.4 50.8 49.1
+MASS 47.9 44.4 47.5 55.3 50.4 51.2 49.3
+BT 49.8 46.1 48.0 56.3 51.6 52.4 50.5

Mix+bal
+BART 47.9 44.1 47.4 55.1 50.4 50.6 49.1
+MASS 48.0 44.4 47.6 55.2 50.6 51.2 49.3
+BT 50.0 45.7 47.8 56.5 51.7 52.5 50.5

(b) chrF scores (↑)

Model
en→xx xx→en

MeanHigh Med Low High Med Low

parallel 80.9 80.5 77.0 80.8 78.0 75.6 78.6

Wiki
+BART 80.4 80.2 78.4 80.9 79.1 78.9 79.5
+MASS 80.7 79.9 78.6 81.0 79.4 79.4 79.7
+BT 81.8 80.9 78.3 81.3 79.4 78.9 80.0

Mix
+BART 80.0 79.2 78.7 80.9 79.0 79.3 79.4
+MASS 80.5 79.9 78.8 81.2 79.3 79.8 79.8
+BT 82.2 81.6 78.7 81.4 79.4 79.6 80.3

Mix+bal
+BART 80.2 79.5 78.3 80.8 78.9 79.0 79.4
+MASS 80.6 79.7 78.8 81.2 79.3 79.8 79.8
+BT 82.3 81.2 78.8 81.6 79.6 79.8 80.4

(c) COMET scores (↑)

Table 4: Results of the Transformer-Big models evaluated on the ML50 (mixed-domain) test set and grouped by the
monolingual split that has been used for training BT and DAE.

Model
en→xx xx→en

MeanHigh Med Low High Med Low

parallel 24.8 15.3 13.2 28.6 22.4 16.0 19.4

Wiki
+BART 24.0 15.6 14.7 28.3 24.9 22.5 21.2
+MASS 24.3 15.5 14.9 28.6 25.2 23.0 21.5
+BT 26.0 18.8 17.7 30.8 28.4 24.9 24.1

Mix
+BART 23.4 15.0 14.2 27.9 24.7 22.6 20.9
+MASS 23.5 15.2 14.1 28.5 24.8 23.0 21.1
+BT 25.6 17.6 17.6 30.8 28.6 26.9 24.2

Mix+bal
+BART 23.6 15.2 14.3 27.8 24.4 22.0 20.8
+MASS 23.8 15.3 14.5 28.4 25.0 23.4 21.3
+BT 25.5 18.3 18.0 31.1 29.1 27.2 24.6

(a) BLEU scores (↑)

Model
en→xx xx→en

MeanHigh Med Low High Med Low

parallel 50.6 46.1 45.0 57.1 50.4 42.6 48.2

Wiki
+BART 49.9 46.2 47.1 56.9 53.1 50.6 50.4
+MASS 50.2 46.1 47.3 57.0 53.4 51.3 50.6
+BT 52.1 49.3 47.6 59.2 57.1 52.2 52.7

Mix
+BART 49.5 45.1 46.4 56.5 52.9 50.6 49.9
+MASS 49.4 45.7 46.4 56.7 53.0 51.2 50.1
+BT 51.6 49.2 49.3 59.1 57.0 55.1 53.4

Mix+bal
+BART 49.4 45.3 46.5 56.4 52.9 50.4 49.9
+MASS 49.7 45.8 46.8 56.8 53.3 51.6 50.4
+BT 51.7 49.2 49.3 59.3 57.3 55.2 53.5

(b) chrF scores (↑)

Model
en→xx xx→en

MeanHigh Med Low High Med Low

parallel 83.0 80.5 71.4 84.0 79.3 69.9 77.4

Wiki
+BART 82.5 80.5 74.4 83.9 81.5 78.9 80.0
+MASS 82.8 80.3 74.6 83.9 81.7 79.6 80.2
+BT 84.1 82.7 77.5 84.8 82.9 77.2 81.2

Mix
+BART 81.8 79.1 73.5 83.4 81.1 78.6 79.3
+MASS 82.0 80.0 73.7 83.7 81.3 79.3 79.7
+BT 84.1 83.0 78.1 84.6 82.7 80.1 81.9

Mix+bal
+BART 81.9 79.5 73.4 83.3 81.0 78.5 79.3
+MASS 82.3 80.0 74.0 83.7 81.6 79.7 79.9
+BT 84.2 82.9 78.6 84.8 83.0 80.4 82.1

(c) COMET scores (↑)

Table 5: Results of the Transformer-Big models on the FLORES (Wikipedia) test set and grouped by the monolin-
gual split that has been used for training BT and DAE. Cells in red indicate worse scores than the baseline.

Model
en→xx xx→en

MeanHigh Med Low High Med Low

parallel 22.4 13.2 12.4 25.1 21.1 15.1 17.8

Wiki
+BART 21.9 13.2 13.4 25.5 23.3 20.8 19.4
+MASS 22.1 13.2 13.8 25.5 23.3 21.2 19.5
+BT 23.3 15.5 16.0 27.4 25.1 21.8 21.2

Mix
+BART 21.6 13.0 13.6 25.4 23.4 21.5 19.5
+MASS 21.7 13.1 13.7 26.0 23.9 22.1 19.8
+BT 22.8 14.9 16.4 30.9 28.6 27.1 23.2

Mix+bal
+BART 21.8 13.1 13.7 25.0 23.2 21.0 19.4
+MASS 21.9 13.3 13.7 25.7 23.8 22.1 19.8
+BT 22.9 15.4 16.6 30.4 28.5 27.0 23.2

(a) BLEU scores (↑)

Model
en→xx xx→en

MeanHigh Med Low High Med Low

parallel 48.3 43.3 42.2 54.5 49.3 40.8 46.0

Wiki
+BART 47.6 43.2 44.0 54.5 51.7 47.9 47.9
+MASS 47.9 43.0 44.2 54.6 51.9 48.5 48.1
+BT 49.2 45.7 44.2 56.7 54.6 48.3 49.5

Mix
+BART 47.4 42.8 43.9 54.5 51.7 48.4 47.9
+MASS 47.5 43.2 44.1 54.7 52.0 49.1 48.2
+BT 48.8 46.2 46.2 58.7 56.6 53.1 51.4

Mix+bal
+BART 47.4 42.9 44.1 54.4 51.8 48.2 47.9
+MASS 47.6 43.3 44.3 54.6 52.1 49.3 48.3
+BT 49.1 46.3 46.2 58.4 56.5 52.8 51.4

(b) chrF scores (↑)

Model
en→xx xx→en

MeanHigh Med Low High Med Low

parallel 79.0 76.9 69.4 82.1 78.7 67.6 75.2

Wiki
+BART 78.3 76.7 72.0 82.1 80.6 75.5 77.3
+MASS 78.8 76.4 72.3 82.3 80.8 76.3 77.6
+BT 79.7 78.7 74.4 83.0 81.6 73.4 78.2

Mix
+BART 78.0 76.0 72.0 81.9 80.5 76.2 77.2
+MASS 78.5 76.9 72.3 82.3 81.0 76.9 77.8
+BT 80.1 79.6 76.2 83.8 82.6 77.6 79.8

Mix+bal
+BART 78.2 76.3 71.9 81.8 80.5 75.9 77.2
+MASS 78.6 76.8 72.3 82.2 81.0 77.2 77.8
+BT 80.2 79.7 76.3 83.8 82.7 77.6 79.9

(c) COMET scores (↑)

Table 6: Results of the Transformer-Big models on the NTREX (News) test set and grouped by the monolingual
split that has been used for training BT and DAE. Cells in red indicate worse scores than the baseline.
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Model
en→xx xx→en

MeanHigh Med Low High Med Low

parallel 32.3 14.3 14.4 32.4 24.2 17.4 22.3

Wiki
+BART 31.9 14.9 15.1 32.9 26.3 24.2 24.2
+MASS 31.9 14.0 15.4 32.9 27.0 24.6 24.3
+BT 34.5 18.4 19.8 36.8 32.2 28.7 28.3

Mix
+BART 30.5 13.9 14.9 32.5 26.6 24.2 23.7
+MASS 31.1 14.3 15.2 33.0 26.9 25.6 24.3
+BT 33.2 16.5 19.2 36.9 32.5 30.6 28.2

Mix+bal
+BART 31.2 14.0 15.1 31.8 26.0 24.1 23.7
+MASS 31.5 14.4 15.2 32.6 27.2 26.4 24.5
+BT 34.3 17.7 20.2 37.4 33.0 30.9 28.9

(a) BLEU scores (↑)

Model
en→xx xx→en

MeanHigh Med Low High Med Low

parallel 53.3 45.5 46.8 61.0 52.4 45.4 50.6

Wiki
+BART 52.8 46.2 47.9 61.0 54.6 53.3 52.6
+MASS 52.8 44.8 48.0 61.0 55.2 53.3 52.5
+BT 55.4 49.7 48.6 64.2 60.7 57.0 55.8

Mix
+BART 51.7 44.5 47.6 60.8 54.8 52.8 52.1
+MASS 51.9 45.4 47.6 61.0 54.9 54.2 52.5
+BT 54.4 47.4 50.0 64.2 60.8 59.0 56.0

Mix+bal
+BART 52.1 44.6 47.9 60.4 54.6 53.2 52.2
+MASS 52.5 45.3 47.9 60.6 55.6 54.9 52.9
+BT 55.2 48.8 50.5 64.5 61.0 58.9 56.5

(b) chrF scores (↑)

Model
en→xx xx→en

MeanHigh Med Low High Med Low

parallel 80.3 76.4 69.9 83.4 79.2 73.1 76.7

Wiki
+BART 79.8 76.6 70.9 83.6 81.2 80.2 78.5
+MASS 79.9 75.6 70.9 83.6 81.4 80.5 78.5
+BT 81.1 80.2 75.8 84.7 83.0 80.5 80.7

Mix
+BART 78.9 75.3 70.5 83.4 81.2 80.0 78.1
+MASS 79.2 76.3 70.8 83.6 81.3 81.0 78.5
+BT 81.3 79.3 76.9 84.9 83.5 82.2 81.2

Mix+bal
+BART 79.3 75.4 70.6 83.1 81.0 80.2 78.1
+MASS 79.5 76.3 70.7 83.4 81.8 81.5 78.7
+BT 81.6 80.1 77.3 85.1 83.6 82.4 81.6

(c) COMET scores (↑)

Table 7: Results of the Transformer-Big models on the TICO-19 (Medical) test set and grouped by the monolingual
split that has been used for training BT and DAE. Cells in red indicate worse scores than the baseline.
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(b) Results on FLORES (wiki) test sets.

cs de fr ja ru zh es pl lv fi hi lt et ta ro si ps ne ml nl it ar ko he tr km fa hr uk th id sv pt af kk mk te sl my ka gl mr mn gu az bn

high→ low

0

5

10

15

20

∆-
B

L
E

U

en→xx
parallel
+MASS (Wiki)
+BT (Wiki)

cs de fr ja ru zh es pl lv fi hi lt et ta ro si ps ne ml nl it ar ko he tr km fa hr uk th id sv pt af kk mk te sl my ka gl mr mn gu az bn

high→ low

xx→en
parallel
+MASS (Wiki)
+BT (Wiki)

NTREX

cs de fr ja ru zh es pl lv fi hi lt et ta ro si ps ne ml nl it ar ko he tr km fa hr uk th id sv pt af kk mk te sl my ka gl mr mn gu az bn

high→ low

0

10

20

∆-
C

H
R

F

en→xx
parallel
+MASS (Wiki)
+BT (Wiki)

cs de fr ja ru zh es pl lv fi hi lt et ta ro si ps ne ml nl it ar ko he tr km fa hr uk th id sv pt af kk mk te sl my ka gl mr mn gu az bn

high→ low

xx→en
parallel
+MASS (Wiki)
+BT (Wiki)

NTREX

cs de fr ja ru zh es pl lv fi hi lt et ta ro si ps ne ml nl it ar ko he tr km fa hr uk th id sv pt af kk mk te sl my ka gl mr mn gu az bn

high→ low

0

10

20

30

∆-
C

O
M

E
T

en→xx
parallel
+MASS (Wiki)
+BT (Wiki)

cs de fr ja ru zh es pl lv fi hi lt et ta ro si ps ne ml nl it ar ko he tr km fa hr uk th id sv pt af kk mk te sl my ka gl mr mn gu az bn

high→ low

xx→en
parallel
+MASS (Wiki)
+BT (Wiki)

NTREX

(c) Results on NTREX (news) test sets.

fr ru zh es hi ps ne ar fa id pt ur my mr bn

high→ low

0

5

10

∆-
B

L
E

U

en→xx
parallel
+MASS (Wiki)
+BT (Wiki)

fr ru zh es hi ps ne ar fa id pt ur my mr bn

high→ low

xx→en

parallel
+MASS (Wiki)
+BT (Wiki)

TICO-19

fr ru zh es hi ps ne ar fa id pt ur my mr bn

high→ low

−5

0

5

10

15

∆-
C

H
R

F

en→xx
parallel
+MASS (Wiki)
+BT (Wiki)

fr ru zh es hi ps ne ar fa id pt ur my mr bn

high→ low

xx→en
parallel
+MASS (Wiki)
+BT (Wiki)

TICO-19

fr ru zh es hi ps ne ar fa id pt ur my mr bn

high→ low

0

5

10

15

∆-
C

O
M

E
T

en→xx
parallel
+MASS (Wiki)
+BT (Wiki)

fr ru zh es hi ps ne ar fa id pt ur my mr bn

high→ low

xx→en
parallel
+MASS (Wiki)
+BT (Wiki)

TICO-19

(d) Results on TICO-19 (medical) test sets.

Table 8: Score (BLEU, chrF, COMET) differences between each model and the parallel-only baseline (red dotted
line) across test sets, for models with the Transformer-Big architecture (370M).
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Figure 9: Score differences (∆-X) of the BT models
trained with the mixed-domain split with respect to the
single-domain monolingual data (dotted red line). The
top plot shows the ∆-BLEU scores, whereas the bottom
shows the ∆-ChrF scores. To plot the bars, we use the
mean ∆-X and the standard error.
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Figure 10: Score differences (∆-X) of the MASS
(DAE) models trained with the mixed-domain split
with respect to the single-domain monolingual data (dot-
ted red line). The top plot shows the ∆-BLEU scores,
whereas the bottom shows the ∆-ChrF scores. To plot
the bars, we use the mean ∆-X and the standard error.
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B.2 Denoising Autoencoding Objectives
In this section, we extend the comparison of the two
DAE objectives that is presented in Section 5.3 by
including the results across all metrics and mono-
lingual splits. Specifically, Table 9 shows the re-
sults with the balanced mixed-domain monolingual
split, Table 10 with the unbalanced mixed-domain
monolingual split, and Table 11 with the single-
domain (Wikipedia) monolingual split. We observe
that the differences are very small between models,
but MASS outperforms BART by a small margin
in most settings, similar to what is discussed in the
main paper.
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Model
en→xx xx→en

Mean
High Med Low High Med Low

FLORES
+BART 23.6 15.2 14.3 27.8 24.4 22.0 20.8
+MASS 23.8 15.3 14.5 28.4 25.0 23.4 21.3

NTREX
+BART 21.8 13.1 13.7 25.0 23.2 21.0 19.4
+MASS 21.9 13.3 13.7 25.7 23.8 22.1 19.8

ML50
+BART 22.1 16.8 21.3 26.8 26.1 28.1 23.5
+MASS 22.1 16.8 21.5 27.2 26.6 28.8 23.8

TICO-19
+BART 31.2 14.0 15.1 31.8 26.0 24.1 23.7
+MASS 31.5 14.4 15.2 32.6 27.2 26.4 24.5

(a) BLEU scores (↑)

Model
en→xx xx→en

Mean
High Med Low High Med Low

FLORES
+BART 49.4 45.3 46.5 56.4 52.9 50.4 49.9
+MASS 49.7 45.8 46.8 56.8 53.3 51.6 50.4

NTREX
+BART 47.4 42.9 44.1 54.4 51.8 48.2 47.9
+MASS 47.6 43.3 44.3 54.6 52.1 49.3 48.3

ML50
+BART 47.9 44.1 47.4 55.1 50.4 50.6 49.1
+MASS 48.0 44.4 47.6 55.2 50.6 51.2 49.3

TICO-19
+BART 52.1 44.6 47.9 60.4 54.6 53.2 52.2
+MASS 52.5 45.3 47.9 60.6 55.6 54.9 52.9

(b) chrF scores (↑)

Model
en→xx xx→en

Mean
High Med Low High Med Low

FLORES
+BART 81.9 79.5 73.4 83.3 81.0 78.5 79.3
+MASS 82.3 80.0 74.0 83.7 81.6 79.7 79.9

NTREX
+BART 78.2 76.3 71.9 81.8 80.5 75.9 77.2
+MASS 78.6 76.8 72.3 82.2 81.0 77.2 77.8

ML50
+BART 80.2 79.5 78.3 80.8 78.9 79.0 79.4
+MASS 80.6 79.7 78.8 81.2 79.3 79.8 79.8

TICO-19
+BART 79.3 75.4 70.6 83.1 81.0 80.2 78.1
+MASS 79.5 76.3 70.7 83.4 81.8 81.5 78.7

(c) COMET scores (↑)

Table 9: Comparison of the DAE objectives with models trained on the balanced mixed-domain.

Model
en→xx xx→en

Mean
High Med Low High Med Low

FLORES
+BART 23.4 15.0 14.2 27.9 24.7 22.6 20.9
+MASS 23.5 15.2 14.1 28.5 24.8 23.0 21.1

NTREX
+BART 21.6 13.0 13.6 25.4 23.4 21.5 19.5
+MASS 21.7 13.1 13.7 26.0 23.9 22.1 19.8

ML50
+BART 21.8 16.7 21.4 27.1 26.3 28.4 23.6
+MASS 22.0 16.8 21.5 27.4 26.5 28.9 23.8

TICO-19
+BART 30.5 13.9 14.9 32.5 26.6 24.2 23.7
+MASS 31.1 14.3 15.2 33.0 26.9 25.6 24.3

(a) BLEU scores (↑)

Model
en→xx xx→en

Mean
High Med Low High Med Low

FLORES
+BART 49.5 45.1 46.4 56.5 52.9 50.6 49.9
+MASS 49.4 45.7 46.4 56.7 53.0 51.2 50.1

NTREX
+BART 47.4 42.8 43.9 54.5 51.7 48.4 47.9
+MASS 47.5 43.2 44.1 54.7 52.0 49.1 48.2

ML50
+BART 47.7 44.0 47.4 55.3 50.4 50.8 49.1
+MASS 47.9 44.4 47.5 55.3 50.4 51.2 49.3

TICO-19
+BART 51.7 44.5 47.6 60.8 54.8 52.8 52.1
+MASS 51.9 45.4 47.6 61.0 54.9 54.2 52.5

(b) chrF scores (↑)

Model
en→xx xx→en

Mean
High Med Low High Med Low

FLORES
+BART 81.8 79.1 73.5 83.4 81.1 78.6 79.3
+MASS 82.0 80.0 73.7 83.7 81.3 79.3 79.7

NTREX
+BART 78.0 76.0 72.0 81.9 80.5 76.2 77.2
+MASS 78.5 76.9 72.3 82.3 81.0 76.9 77.8

ML50
+BART 80.0 79.2 78.7 80.9 79.0 79.3 79.4
+MASS 80.5 79.9 78.8 81.2 79.3 79.8 79.8

TICO-19
+BART 78.9 75.3 70.5 83.4 81.2 80.0 78.1
+MASS 79.2 76.3 70.8 83.6 81.3 81.0 78.5

(c) COMET scores (↑)

Table 10: Comparison of the DAE objectives with models trained on the unbalanced mixed-domain.

Model
en→xx xx→en

Mean
High Med Low High Med Low

FLORES
+BART 24.0 15.6 14.7 28.3 24.9 22.5 21.2
+MASS 24.3 15.5 14.9 28.6 25.2 23.0 21.5

NTREX
+BART 21.9 13.2 13.4 25.5 23.3 20.8 19.4
+MASS 22.1 13.2 13.8 25.5 23.3 21.2 19.5

ML50
+BART 22.0 16.9 21.3 27.0 26.6 27.9 23.6
+MASS 22.1 16.9 21.3 27.1 26.5 28.5 23.7

TICO-19
+BART 31.9 14.9 15.1 32.9 26.3 24.2 24.2
+MASS 31.9 14.0 15.4 32.9 27.0 24.6 24.3

(a) BLEU scores (↑)

Model
en→xx xx→en

Mean
High Med Low High Med Low

FLORES
+BART 49.9 46.2 47.1 56.9 53.1 50.6 50.4
+MASS 50.2 46.1 47.3 57.0 53.4 51.3 50.6

NTREX
+BART 47.6 43.2 44.0 54.5 51.7 47.9 47.9
+MASS 47.9 43.0 44.2 54.6 51.9 48.5 48.1

ML50
+BART 47.9 44.6 47.4 55.1 50.5 50.4 49.1
+MASS 48.1 44.5 47.5 55.2 50.6 50.9 49.3

TICO-19
+BART 52.8 46.2 47.9 61.0 54.6 53.3 52.6
+MASS 52.8 44.8 48.0 61.0 55.2 53.3 52.5

(b) chrF scores (↑)

Model
en→xx xx→en

Mean
High Med Low High Med Low

FLORES
+BART 82.5 80.5 74.4 83.9 81.5 78.9 80.0
+MASS 82.8 80.3 74.6 83.9 81.7 79.6 80.2

NTREX
+BART 78.3 76.7 72.0 82.1 80.6 75.5 77.3
+MASS 78.8 76.4 72.3 82.3 80.8 76.3 77.6

ML50
+BART 80.4 80.2 78.4 80.9 79.1 78.9 79.5
+MASS 80.7 79.9 78.6 81.0 79.4 79.4 79.7

TICO-19
+BART 79.8 76.6 70.9 83.6 81.2 80.2 78.5
+MASS 79.9 75.6 70.9 83.6 81.4 80.5 78.5

(c) COMET scores (↑)

Table 11: Comparison of the DAE objectives with models trained on the (Wikipedia) single-domain.
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B.3 Scaling
In this section, we report all of our results for the
model scale analysis (§5.4). Tables 12, 13, 14, 15
show the results on the ML50, FLORES, NTREX
and TICO19 test sets, respectively. For each test
set, we report side-by-side the results from each
evaluation metric.

Model Averages per Scale As it is not easy to
extract meaningful patterns from the results in ta-
ble format, we also plot the corresponding line
plots with the average score of each method per
model scale across metrics, in Figure 11 (BLEU),
Figure 12 (chrF), and Figure 13 (COMET). We ob-
serve that the trends are overall the same across
both metrics. All metrics agree that at small scales,
MASS fails to outperform the baseline but becomes
much more effective, compared to the baseline, as
the scale increases. This further supports the find-
ings discussed in the main paper.

However, we discover that metrics disagree with
each other about the degree that scale benefits
DAE/MASS. Specifically, we see that according to
BLEU, DAE at the 1.6B scale is competitive with
BT only on the ML50 test set, whereas chrF (mid-
dle column) and COMET (right column) suggest
that DAE becomes much stronger with scale. In
particular, according to COMET, at the 1.6B scale,
MASS matches or outperforms BT on most test
sets.

Model Averages per Resource-Level For com-
pleteness, we also include the plots with the scaling
patterns of each model across resource levels and
translation directions, in Figure 14 (BLEU; left col-
umn), Figure 15 (chrF; middle column), Figure 16
(COMET; right column). Overall, the results are
consistent across metrics and test sets and the dis-
cussion in the main paper still holds.

However, we do discover one interesting discrep-
ancy, which potentially relates to the observations
of the previous paragraph. Specifically, in the chrF
plots we see that BT in en→xx low-resource set-
tings (bottom-left plot per test set) tends to become
less effective than the parallel baseline in all test
sets except for ML50. Recall that ML50 is the
most distant test set with respect to the (Wikipedia)
monolingual data. We do not have a reliable expla-
nation for this observation.
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Model
en→xx xx→en

MeanHigh Med Low High Med Low

Base
parallel 18.8 14.8 18.3 23.7 23.2 24.9 20.6
+MASS 18.0 13.9 17.4 23.0 22.3 24.7 19.9
+BT 19.7 14.9 17.7 24.3 23.0 25.5 20.8

Big
parallel 22.5 17.3 20.6 26.9 25.9 25.3 22.9
+MASS 22.1 16.9 21.3 27.1 26.5 28.5 23.7
+BT 23.6 17.3 21.6 27.8 26.9 28.9 24.3

XL
parallel 25.2 18.4 21.4 30.1 29.7 28.4 25.4
+MASS 25.7 19.0 23.1 31.1 30.8 31.1 26.7
+BT 26.5 19.3 23.2 31.0 30.6 30.7 26.7

(a) BLEU scores (↑)

Model
en→xx xx→en

MeanHigh Med Low High Med Low

Base
parallel 44.9 41.3 43.3 52.3 47.4 47.0 45.8
+MASS 43.9 39.9 42.1 51.3 46.3 46.9 44.9
+BT 46.0 42.3 43.4 53.2 48.1 48.6 46.7

Big
parallel 48.6 45.0 46.3 55.3 49.3 47.0 48.3
+MASS 48.1 44.5 47.5 55.2 50.6 50.9 49.3
+BT 49.7 45.4 47.2 56.4 51.6 51.7 50.1

XL
parallel 50.9 46.2 46.7 57.8 52.1 49.7 50.2
+MASS 51.2 46.9 49.3 58.6 53.4 52.9 51.8
+BT 52.3 47.3 48.2 58.8 54.0 53.0 52.0

(b) chrF scores (↑)

Model
en→xx xx→en

MeanHigh Med Low High Med Low

Base
parallel 75.0 75.4 73.1 76.9 75.3 74.3 74.9
+MASS 73.2 73.2 71.9 76.0 74.4 74.8 73.9
+BT 75.6 76.2 72.9 77.3 75.4 75.7 75.4

Big
parallel 80.9 80.5 77.0 80.8 78.0 75.6 78.6
+MASS 80.7 79.9 78.6 81.0 79.4 79.4 79.7
+BT 81.8 80.9 78.3 81.3 79.4 78.9 80.0

XL
parallel 83.7 82.2 77.7 83.4 79.8 77.1 80.3
+MASS 84.0 82.9 81.1 84.1 81.1 81.0 82.2
+BT 84.6 83.0 79.6 83.8 81.5 80.1 81.9

(c) COMET scores (↑)

Table 12: Results of all methods across different model scales evaluated on the ML50 (mixed-domain) test set. The
BT and DAE models have used the (Wikipedia) single-domain monolingual split.

Model
en→xx xx→en

MeanHigh Med Low High Med Low

Base
parallel 20.0 12.3 10.8 24.1 20.2 16.0 16.8
+MASS 19.0 11.7 11.3 23.5 19.6 17.9 16.8
+BT 21.1 15.3 14.9 26.4 23.6 21.1 20.1

Big
parallel 24.8 15.3 13.2 28.6 22.4 16.0 19.4
+MASS 24.3 15.5 14.9 28.6 25.2 23.0 21.5
+BT 26.0 18.8 17.7 30.8 28.4 24.9 24.1

XL
parallel 27.6 17.1 13.8 32.3 23.1 17.0 21.0
+MASS 28.3 18.4 16.2 33.5 25.6 23.5 23.7
+BT 29.6 21.1 19.2 34.4 32.3 27.5 26.9

(a) BLEU scores (↑)

Model
en→xx xx→en

MeanHigh Med Low High Med Low

Base
parallel 46.2 41.1 40.9 53.5 48.8 42.6 45.1
+MASS 45.1 39.4 40.2 52.6 48.0 45.9 44.9
+BT 47.9 45.2 44.5 55.8 53.0 48.8 48.9

Big
parallel 50.6 46.1 45.0 57.1 50.4 42.6 48.2
+MASS 50.2 46.1 47.3 57.0 53.4 51.3 50.6
+BT 52.1 49.3 47.6 59.2 57.1 52.2 52.7

XL
parallel 53.0 47.9 45.6 60.0 51.4 44.9 49.9
+MASS 53.5 49.5 49.5 60.8 54.1 52.6 53.0
+BT 54.8 51.5 47.2 62.0 60.2 54.4 54.6

(b) chrF scores (↑)

Model
en→xx xx→en

MeanHigh Med Low High Med Low

Base
parallel 76.9 73.1 64.9 79.7 75.7 67.1 72.4
+MASS 74.9 70.0 64.2 78.9 75.2 72.1 72.1
+BT 78.4 76.9 71.4 81.1 78.3 72.8 76.1

Big
parallel 83.0 80.5 71.4 84.0 79.3 69.9 77.4
+MASS 82.8 80.3 74.6 83.9 81.7 79.6 80.2
+BT 84.1 82.7 77.5 84.8 82.9 77.2 81.2

XL
parallel 85.6 83.1 72.7 86.3 81.0 73.2 79.7
+MASS 86.1 84.4 78.1 86.9 83.4 82.5 83.3
+BT 86.7 84.8 78.4 86.9 85.6 79.4 83.3

(c) COMET scores (↑)

Table 13: Results of all methods across different model scales evaluated on the FLORES (Wikipedia) test set. The
BT and DAE models have used the (Wikipedia) single-domain monolingual split.

Model
en→xx xx→en

MeanHigh Med Low High Med Low

Base
parallel 18.5 10.7 10.5 21.5 18.7 15.0 15.5
+MASS 17.8 10.2 10.8 20.9 18.2 16.7 15.5
+BT 19.5 12.7 13.6 23.2 20.9 18.6 17.9

Big
parallel 22.4 13.2 12.4 25.1 21.1 15.1 17.8
+MASS 22.1 13.2 13.8 25.5 23.3 21.2 19.5
+BT 23.3 15.5 16.0 27.4 25.1 21.8 21.2

XL
parallel 24.6 14.4 13.0 29.2 22.2 16.1 19.4
+MASS 25.1 15.6 15.0 29.9 24.5 21.7 21.6
+BT 26.0 17.5 17.0 31.1 28.8 24.3 23.8

(a) BLEU scores (↑)

Model
en→xx xx→en

MeanHigh Med Low High Med Low

Base
parallel 44.4 38.9 38.5 51.6 47.5 40.6 43.2
+MASS 43.5 37.4 37.8 50.7 46.8 43.6 43.0
+BT 45.7 41.9 41.5 53.5 50.9 45.3 46.2

Big
parallel 48.3 43.3 42.2 54.5 49.3 40.8 46.0
+MASS 47.9 43.0 44.2 54.6 51.9 48.5 48.1
+BT 49.2 45.7 44.2 56.7 54.6 48.3 49.5

XL
parallel 50.3 44.7 42.8 57.5 50.7 43.0 47.7
+MASS 50.6 46.1 46.4 58.0 52.9 49.8 50.4
+BT 51.7 47.7 43.1 59.4 57.5 50.2 51.2

(b) chrF scores (↑)

Model
en→xx xx→en

MeanHigh Med Low High Med Low

Base
parallel 72.6 69.8 63.2 78.2 75.1 65.0 70.2
+MASS 70.8 67.0 62.6 77.3 74.6 69.5 70.0
+BT 73.2 72.4 68.3 79.2 77.2 69.5 73.0

Big
parallel 79.0 76.9 69.4 82.1 78.7 67.6 75.2
+MASS 78.8 76.4 72.3 82.3 80.8 76.3 77.6
+BT 79.7 78.7 74.4 83.0 81.6 73.4 78.2

XL
parallel 81.9 79.4 71.0 84.5 80.4 70.2 77.4
+MASS 82.4 81.0 76.2 85.1 82.6 79.0 80.8
+BT 83.0 81.4 75.4 85.2 84.3 75.2 80.4

(c) COMET scores (↑)

Table 14: Results of all methods across different model scales evaluated on the NTREX (News) test set. The BT
and DAE models have used the (Wikipedia) single-domain monolingual split.
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Model
en→xx xx→en

MeanHigh Med Low High Med Low

Base
parallel 27.5 11.6 12.4 28.4 21.6 17.3 19.7
+MASS 26.7 11.1 12.5 27.5 21.3 20.0 19.9
+BT 30.2 14.9 17.2 32.3 26.5 24.0 24.2

Big
parallel 32.3 14.3 14.4 32.4 24.2 17.4 22.3
+MASS 31.9 14.0 15.4 32.9 27.0 24.6 24.3
+BT 34.5 18.4 19.8 36.8 32.2 28.7 28.3

XL
parallel 34.8 14.7 14.9 36.8 25.9 18.7 24.1
+MASS 35.2 16.1 16.1 38.0 28.1 25.2 26.4
+BT 38.0 20.7 21.5 41.0 36.8 32.9 31.7

(a) BLEU scores (↑)

Model
en→xx xx→en

MeanHigh Med Low High Med Low

Base
parallel 49.4 41.2 42.9 57.8 50.2 45.1 47.7
+MASS 48.6 39.7 41.4 56.6 49.5 48.1 47.3
+BT 52.1 44.8 46.1 60.7 55.7 52.8 52.0

Big
parallel 53.3 45.5 46.8 61.0 52.4 45.4 50.6
+MASS 52.8 44.8 48.0 61.0 55.2 53.3 52.5
+BT 55.4 49.7 48.6 64.2 60.7 57.0 55.8

XL
parallel 55.1 45.5 47.4 64.2 53.7 47.2 52.1
+MASS 55.1 47.2 49.5 64.7 56.1 55.2 54.7
+BT 58.0 50.7 46.7 67.0 64.1 60.5 57.6

(b) chrF scores (↑)

Model
en→xx xx→en

MeanHigh Med Low High Med Low

Base
parallel 75.6 70.8 65.7 80.5 76.0 70.5 72.9
+MASS 74.0 68.8 64.1 79.7 75.6 74.2 72.6
+BT 77.0 75.0 71.0 82.2 78.6 76.0 76.4

Big
parallel 80.3 76.4 69.9 83.4 79.2 73.1 76.7
+MASS 79.9 75.6 70.9 83.6 81.4 80.5 78.5
+BT 81.1 80.2 75.8 84.7 83.0 80.5 80.7

XL
parallel 82.4 76.8 70.4 85.5 80.9 75.7 78.3
+MASS 82.7 78.3 72.7 85.9 83.2 83.2 80.8
+BT 83.2 81.3 75.6 86.2 85.4 83.7 82.4

(c) COMET scores (↑)

Table 15: Results of all methods across different model scales evaluated on the TICO-19 (Medical) test set. The BT
and DAE models have used the (Wikipedia) single-domain monolingual split.
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Figure 11: Average BLEU scores
across model scales.
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Figure 12: Average ChrF scores
across model scales.
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across model scales.
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Figure 14: Mean BLEU differ-
ences (and standard error of the
mean) per model with respect to
the parallel-only baseline in the
same scale (red dotted line).
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Figure 15: Mean chrF differences
(and standard error of the mean)
per model with respect to the
parallel-only baseline in the same
scale (red dotted line).
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Figure 16: Mean COMET differ-
ences (and standard error of the
mean) per model with respect to
the parallel-only baseline in the
same scale (red dotted line).
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C Additional Tables and Figures
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Group Lang. Parallel Parallel + cap (10M) wiki + cap (10M) cc100 + cap (10M) news + cap (10M)

cs 51,517,074 10,000,000 5,000,000 5,000,000 5,000,000
de 45,992,835 10,000,000 5,000,000 5,000,000 5,000,000
fr 38,507,539 10,000,000 5,000,000 5,000,000 5,000,000
ja 17,203,227 10,000,000 5,000,000 5,000,000 5,000,000
ru 13,599,766 10,000,000 5,000,000 5,000,000 5,000,000
zh 11,173,646 10,000,000 5,000,000 5,000,000 5,000,000
es 10,531,168 10,000,000 5,000,000 5,000,000 5,000,000
pl 10,312,571 10,000,000 169,333 5,000,000 5,000,000
lv 2,468,386 2,468,386 1,261,660 5,000,000 5,000,000
fi 2,441,863 2,441,863 1,153,179 5,000,000 5,000,000
hi 1,450,114 1,450,114 1,856,414 5,000,000 5,000,000
lt 1,402,892 1,402,892 1,947,248 5,000,000 5,000,000
iu 1,109,076 1,109,076 *1,892 0 0

high

et 1,064,974 1,064,974 2,585,642 5,000,000 5,000,000

ta 612,747 612,747 2,119,411 5,000,000 2,861,282
ro 600,019 600,019 3,604,671 5,000,000 5,000,000
si 594,438 594,438 443,711 5,000,000 0
ps 573,218 573,218 391,604 2,000,879 1,096,628
ne 504,085 504,085 328,219 5,000,000 0
ml 343,668 343,668 1,481,937 5,000,000 1,423,835
nl 232,038 232,038 5,000,000 5,000,000 2,967,745
it 226,385 226,385 5,000,000 5,000,000 5,000,000
ar 225,678 225,678 5,000,000 5,000,000 5,000,000
ko 223,750 223,750 5,000,000 5,000,000 5,000,000
he 204,468 204,468 5,000,000 5,000,000 0
tr 203,702 203,702 5,000,000 5,000,000 5,000,000

km 183,934 183,934 256,007 3,398,559 0
fa 142,128 142,128 5,000,000 5,000,000 5,000,000
vi 127,117 127,117 5,000,000 5,000,000 0
hr 116,866 116,866 2,556,084 5,000,000 5,000,000

medium

uk 104,021 104,021 5,000,000 5,000,000 2,222,071

th 91,245 91,245 514,270 5,000,000 0
id 83,932 83,932 5,000,000 5,000,000 2,378,340
sv 53,580 53,580 5,000,000 5,000,000 0
pt 49,431 49,431 5,000,000 5,000,000 5,000,000
af 41,268 41,268 1,260,811 5,000,000 428,151
xh 37,900 37,900 *14,985 437,761 0
kk 27,618 27,618 1,674,930 5,000,000 3,869,280
ur 25,188 25,188 1,133,339 5,000,000 0
mk 24,022 24,022 1,953,775 5,000,000 863,917
te 21,513 21,513 1,568,018 5,000,000 3,461,218
sl 18,714 18,714 2,340,732 5,000,000 0

my 17,980 17,980 943,634 1,229,875 0
ka 12,292 12,292 264,710 5,000,000 0
gl 9,491 9,491 2,358,124 5,000,000 0
mr 9,203 9,203 644,383 5,000,000 827,586
mn 7,145 7,145 332,251 5,000,000 0
gu 6,535 6,535 340,779 4,767,339 3,042,472
az 5,652 5,652 2,355,880 5,000,000 0

low

bn 4,338 4,338 2,699,357 5,000,000 5,000,000

Table 16: The statistics of the parallel and training data we use for each language. The red-highlighted rows show
the languages that we remove from our experiments.
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