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Abstract

Parameter-efficient fine-tuning (PEFT) is
widely studied for its effectiveness and effi-
ciency in the era of large language models.
Low-rank adaptation (LoRA) has demonstrated
commendable performance as a popular and
representative method. However, it is imple-
mented with a fixed intrinsic rank that might not
be the ideal setting for the downstream tasks.
Recognizing the need for more flexible down-
stream task adaptation, we extend the methodol-
ogy of LoRA to an innovative approach we call
allocating low-rank adaptation (ALoRA) that
enables dynamic adjustments to the intrinsic
rank during the adaptation process. First, we
propose a novel method, AB-LoRA, that can ef-
fectively estimate the importance score of each
LoRA rank. Second, guided by AB-LoRA, we
gradually prune abundant and negatively im-
pacting LoRA ranks and allocate the pruned
LoRA budgets to important Transformer mod-
ules needing higher ranks. We have conducted
experiments on various tasks, and the exper-
imental results demonstrate that our ALoRA
method can outperform the recent baselines
with comparable tunable parameters.

1 Introduction

Large language models (LLMs) have been
emerging and achieving state-of-the-art (SOTA) re-
sults not only on a variety of natural language pro-
cessing tasks (Qin et al., 2023; Zhu et al., 2023; Zhu
et al., 2023a,b, 2021a; Li et al., 2023b; Zhu et al.,
2023c; Zhang et al., 2023a; Zhu et al., 2023e; Guo
et al., 2021b; Zhu et al., 2021b; Zheng et al., 2023;
Sun et al., 2020; Zhang et al., 2023d,e; Wang et al.,
2023; Zhu et al., 2019a), but also many challeng-
ing evaluation tasks (Huang et al., 2023; Li et al.,
2023a; Cui et al., 2023) like question answering in
special domains, reasoning, math, safety, instruc-
tion following. Despite LLMs becoming general
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task solvers, fine-tuning still plays a vital role in
efficient LLM inference and controlling the style
of the LLMs’ generated contents.1 Fine-tuning
such large models by full parameters is prohibitive
since it requires a large amount of GPU memory
and computations. Thus, parameter-efficient fine-
tuning (PEFT) (Zhang et al., 2023f; Zhao et al.,
2023; Ding et al., 2022) has raised much attention
in the research field since in PEFT, the tunable
parameters are often less than 1% of the LLMs
and the computation costs will be significantly de-
creased.

Many PEFT methods have been validated to be
effective across various models and tasks, often
yielding comparable results with full-parameter
fine-tuning (He et al., 2021; Zhu and Tan, 2023;
Zhang et al., 2023f; Ding et al., 2022). Among
these PEFT methods, the reparameterization-based
method low-rank adaptation (LoRA) (Hu et al.,
2021) is considered one of the most efficient and
effective methods at present. LoRA is especially
popular after open-sourced LLMs become ubiqui-
tous (Dettmers et al., 2023). LoRA assumes that
the change of the model’s parameters for adapta-
tion is intrinsically low-dimensional and performs
adaptation by optimizing the matrix obtained from
low-rank decomposition. Since it is in the form
of weight matrix reparameterization, LoRA param-
eters can be merged with the original LLMs and
cause no forward propagation latency.

Although LoRA is effective and can bring stable
performance with the original setting in Hu et al.
(2021), how to fully exploit its potential for down-
stream tasks still needs to be determined. First,
how to determine the intrinsic rank for each model
weight in the Transformer block is still unclear.
Moreover, is it reasonable to set the same LoRA
rank number for adapting the query, key, and value

1Recently, OpenAI also released the fine-tuning API for
GPT-3.5-turbo. See blog post: https://openai.com/blog/
gpt-3-5-turbo-fine-tuning-and-api-updates.
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Figure 1: Schematic illustration of our ALoRA. Left (a): ALoRA follows LoRA to update the weight matrix W by
fine-tuning the low-rank matrices A and B with intermediate rank k. Matrix G is a diagonal matrix where each
diagonal element is the gate unit αi for each LoRA rank i < k. Each αi is set to 1 at initialization. Right upper (b):
Some abundant LoRA ranks are pruned by setting the corresponding gate αi to zeros. Right lower (c): For weight
matrix W whose LoRA ranks are not pruned, we will assign additional LoRA ranks to enhance reparameterization.

matrix? Second, in practice, the optimal LoRA
rank setting would vary according to multiple fac-
tors, such as the backbone model and the task.

In order to improve the performance of down-
stream task adaptation of LoRA, we now propose
the Allocating LoRA (ALoRA) framework (de-
picted in Figure 1). First, LoRA modules with
equal rank size are initialized at each Transformer
weight, with all rank gates set to one. During fine-
tuning, we re-allocate the LoRA ranks by (a) iden-
tifying which LoRA ranks are abundant or have
negative contributions and prune those ranks by set-
ting the rank gates to 0; (b) adding the pruned rank
budgets to model weights that receive no pruning,
that is, important model weights will be assigned
more LoRA ranks. In order to calculate the con-
tribution score of each LoRA rank efficiently and
accurately, we propose a novel method, AB-LoRA.
Our working procedure does not require re-training
and does not require higher LoRA rank budgets at
initialization or during training.

We conduct extensive experiments on a wide
collection of tasks, including sentiment classifica-
tion, natural language inference, question answer-
ing, natural language generation under constraint,
and instruction tuning, to demonstrate the effective-
ness of our method. Notably, our method can con-
sistently outperform strong PEFT baselines with

comparable tunable parameter budgets, especially
the recent LoRA variants. We also conducted an
analysis showing that (a) our AB-LoRA method
indeed can reflect the contribution of each LoRA
rank; (b) our method can work with different LoRA
rank budgets and different backbone models.

Our contributions are summarized as follows:

• We propose a novel method, AB-LoRA, to
estimate the importance of each LoRA rank.

• Built upon AB-LoRA, we propose our
ALoRA framework, which can allocate LoRA
ranks across different model weights and en-
hance the adaptation process.

• We have conducted extensive experiments and
analysis showing that our ALoRA framework
is practical and outperforms the baselines un-
der comparable parameter budgets.

2 Related works

2.1 Parameter-efficient fine-tuning (PEFT)
methods

Parameter-efficient fine-tuning (PEFT) is an ap-
proach of optimizing a small portion of parame-
ters when fine-tuning a large pretrained backbone
model and keeping the backbone model untouched

623



for adaptation (Ding et al., 2022; Zhang et al.,
2023f). A branch of PEFT methods inserts addi-
tional neural modules or parameters into the back-
bone model. Representative works in this direction
are Adapter (Houlsby et al., 2019; Rücklé et al.,
2020; Zhang et al., 2023f), Prefix tuning (Li and
Liang, 2021), Prompt tuning (Lester et al., 2021),
P-tuning V2 (Liu et al., 2022b). Another approach
is to specify the particular parameters to be tunable
or prunable (Ben-Zaken et al., 2021; Guo et al.,
2021a; Zhao et al., 2020). The reparameterization-
based methods have attracted much attention (Hu
et al., 2021). This branch of approaches transforms
the adaptive parameters during optimization into
low-rank and parameter-efficient forms. This type
of PEFT method is closely related to intrinsic di-
mension (Aghajanyan et al., 2021; Li et al., 2018),
that is, full parameter fine-tuning process of pre-
trained models can be reparameterized into opti-
mization within a low-dimensional subspace, i.e.,
fine-tuning has a low intrinsic dimension (Hu et al.,
2021). Intuitively, a well pretrained model does not
need to be altered significantly for downstream task
adaptation. Qin et al. (2021) investigate whether
we can find a common intrinsic subspace shared
by various NLP tasks. LoRA (Hu et al., 2021)
is inspired by (Aghajanyan et al., 2021; Li et al.,
2018) and hypothesizes that the change of weights
during model tuning has a low intrinsic rank and op-
timizes the low-rank decomposition for the change
of original weight matrices. PEFT methods are
widely applied, especially with the popularization
of open-sourced large language models (Zhao et al.,
2023) and instruction tuning with these models for
different application scenarios (Taori et al., 2023;
Dettmers et al., 2023).

2.2 The LoRA method and its variants

LoRA (Hu et al., 2021) is proven to be effec-
tive and yield stable results when applied to both
relatively small pretrained backbones and large lan-
guage models (Dettmers et al., 2023; Zhu et al.,
2023). Despite its tractability and effectiveness,
LoRA still has room for improvements in select-
ing optimal rank rm for each Transformer model
weight m. The rank r takes discrete values; thus,
changing it will directly alter the model structures.
The optimal choices of ranks can vary across back-
bone models, tasks, and even Transformer model
weights. Setting a large rank value for rm can waste
training time and computation resources, while

progressively setting a small rm may degrade the
model performance. These limitations highlight the
importance of upgrading LoRA with an adaptive
strategy.

There are already a few works investigating this
direction. AdaLoRA (Zhang et al., 2023c) ex-
presses the low-rank multiplication of LoRA in the
form of singular value decomposition (SVD), and it
identifies the most important ranks by a sensitivity-
based importance score. SoRA (Ding et al., 2023)
prunes abundant LoRA ranks by imposing a l0
norm and optimizing with proximal gradient de-
scent. SaLoRA (Hu et al., 2023) prunes the LoRA
ranks via the Lagrange multiplier method. Despite
these recent efforts, we believe issues still need to
be investigated for LoRA rank allocation: (a) The
current works initialize a larger value for each rm
and use certain heuristics to prune the number of
ranks to meet a predefined budget. This training
process inevitably requires additional GPU mem-
ory consumption. In addition, the maximum LoRA
rank size for each model weight is limited, which
restricts the solution space for LoRA rank alloca-
tions. (b) The current works depend on heuristic
importance scores, which may not reliably reflect
the contribution of each LoRA rank. Our work
complements the existing literature by addressing
the above issues.

3 Methods

3.1 Preliminaries

Transformer model Currently, most widely
used open-sourced language models and large lan-
guage models adopt the stacked Transformer archi-
tecture (Vaswani et al., 2017). Each Transformer
block is primarily constructed using two key sub-
modules: a multi-head self-attention (MHA) layer
and a fully connected feed-forward (FFN) layer.
The MHA is given as follows:

x
′
= MHA(xWQ, xW k, xW V )WO, (1)

where MHA() denotes the multi-head attention
operation, x ∈ Rl×d is the input tensor, WO ∈
Rd×d is the output projection layer (denoted as
the Output module), and WQ,WK ,W V ∈ Rd×d

(denoted as the Query, Key, and Value modules).
l is the sequence length, d is the hidden dimen-
sion. The FFN module consists of linear transfor-
mations and an activation function g such as ReLU
or GELU (Hendrycks and Gimpel, 2016). Take
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the FFN module in the LlaMA-2 models (Touvron
et al., 2023) as example:

x
′
= (g(xWG) ∗ xWU )WD, (2)

where WG,WU ∈ Rd×d
′

(denoted as Gate and
Up module) and WD ∈ Rd

′×d (denoted as the
Down module), and d

′
is usually larger than d. For

notation convenience, we will refer to the number
of modules in a Transformer block as Nmod. Thus,
in LlaMA-2, Nmod = 7.

Denote the task’s training set as Dtrain =
(xm, ym),m = 1, 2, ...,M , where M represents
the number of samples. In this work, we only con-
sider the case where input xm and target ym are
both text sequences. And we expect the language
modeling head of LLMs to decode ym during in-
ference. That is, no additional linear prediction
heads are considered for predicting categorical or
numerical values.

3.2 Formulation
Our objective is to efficiently fine-tune the LLMs

for a specific downstream task under a given LoRA
parameter budget Rtarget =

∑Nmod
m=1 rtargetm . The

previous literature (Ding et al., 2023; Hu et al.,
2023; Zhang et al., 2023c) usually initialize the
LoRA modules with a pre-defined large maxi-
mum rank rmax, consuming extra GPU memo-
ries. Different from the previous works, we now
initialize each LoRA module with rank rinitm =
Rtarget/Nmod. That is, upon initialization, we have
met the LoRA rank budget. Moreover, we will re-
allocate the LoRA ranks in order to enhance the
fine-tuning performance.

In order to adjust the rank allocation of LoRA
modules, we now inject gate units αi ∈ {0, 1}
(i = 1, 2, ..., rm) to each module m with LoRA
rank rm. Imitating the formulation of SVD, the
forward propagation of ALoRA is given by:

z = xWA
mGmWB

m ,

Gm = diag(αm,1, ..., αm,rm), (3)

where diag() denotes a diagonal matrix, WA
m ∈

Rd×rm , WB
m ∈ Rrm×d. At initialization, the gate

units are all set to 1.
Different from the previous literature (Ding et al.,

2023; Hu et al., 2023; Zhang et al., 2023c), we
take an alternative approach, that is, consider the
problem of LoRA allocation as neural architecture
search (White et al., 2023). We consider the gate

units αi as architecture parameters (denoted as the
set Θ), the network with all the non-zero gate units
as the super-network M , and denote the parameters
in the down-projection and up-projection matrices
as Ω, then the optimization objective is:

min
Θ

L(D2,Ω
∗,Θ),

s.t. Ω∗ = argmin
Ω

L(D1,Ω,Θ), (4)

where D1 and D2 consists of a split of the training
set Dtrain, L() is the loss function. This work
uses the cross-entropy loss as the loss function.
Note that with discrete values of αi, solving the
above optimization problem is challenging due to
non-differentiability. Thus, following the work of
differentiable neural architecture search (DNAS)
(Liu et al., 2019a), αi is relaxed to a continuous
value in between (0, 1) and the equation 3 becomes:

z = WB
mG

′
mWA

mx,

G
′
m = diag(α

′
m,1, ..., α

′
m,rm),

α
′
m,i = 2 ∗ Sigmoid(a

′
m,i), a

′
m,i ∈ R, (5)

where a
′
m,i is initialized with zero value. With this

setting, Equation 4 becomes differentable and can
be optimized by bi-level optimization (Liu et al.,
2019a).

3.3 Our novel AB-LoRA method

Under the DNAS setting, it is natural to consider
the architecture weight α

′
i as the importance score

for LoRA rank i, and one can use these scores to
guide the pruning of abundant LoRA ranks. How-
ever, as pointed out by the literature (Zhang et al.,
2023f; Chen et al., 2019), and as will be demon-
strated in the experiment, the architecture weights
are not reliable indicators for the final LoRA allo-
cation’s performance. This observation motivates
us to propose a simple yet effective modification
to the DNAS-style architecture search. Instead of
relying on the architecture weights’ values to keep
the best LoRA ranks, we propose directly evaluat-
ing the LoRA rank’s superiority by its contribution
or influence on the super-network’s performances.
Since our method mimics conducting ablation stud-
ies of a certain LoRA rank from the super-network,
we refer to our method as the ablation-based LoRA
(AB-LoRA).

We now introduce the core of our AB-LoRA
method: calculating each LoRA rank’s importance
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Algorithm 1: Workflow of ALoRA
Input: A super-network M , with Rtarget

LoRA ranks uniformly distributed in
modules of M ;

Output: A new allocation of Rtarget LoRA
ranks.

Data: Training set Dtrain, a batch of
validation data Bval

1 Train super-network M on the training set
Dtrain for K1 epochs;

2 for n = 0; n < NA do
3 for a single LoRA rank rm,i on M do
4 Calculate the importance score

IS(rm,i) on Bval;

5 Prune n0 LoRA ranks with lowest
importance scores;

6 if there are modules not pruned then
7 Add n0 LoRA ranks to the

un-pruned modules;
8 Further train the Super-network M on

Dtrain for K2 epochs;

score, defined as how much it contributes to the per-
formance of the super-network. Denote the com-
plete super-network as M . Super-network M is
trained till convergence on the training set. We now
consider a modified super-network obtained by ze-
roing out a single LoRA rank r while keeping all
other LoRA ranks. This new super-network is de-
noted as M\r. We also consider another modified
super-network Mr in which only LoRA rank r is
kept while all other LoRA ranks are zeroed out. We
evaluate the three versions of super-networks on
the same batch of validation data Bval. Denote the
metric score as a function of a model M , S(M),
with the validation data fixed. Then, the importance
score of LoRA rank r is given by

IS(r) = S(M)− S(M\r) + S(Mr). (6)

In the above equation, S(M) can be treated as a
constant term. Thus the above equation can be
simplified to CS(o) = −S(M\r) + S(Mr). Intu-
itively, the LoRA rank that results in a significant
performance drop upon zeroing out must play an
important role in the super-network. Similarly, the
one keeping most of the performance when acting
alone contains important task-related knowledge
and should be considered important. In the experi-
ments, different from Chen and Hsieh (2020), we

set S() as the negative of the cross-entropy (CE)
loss since the widely applied metrics like accuracy
or F1: (a) may not vary if the super-network only
masks out a single operation, and (b) is not suitable
for generative language model fine-tuning.

3.4 The complete process of ALoRA

With the guidance of the importance score in
Equation 6, we can now formally define the whole
working process of our ALoRA framework (Fig-
ure 1). Our working flow of allocating the LoRA
ranks builds upon the following intuitions: (a) the
pruning and allocation of LoRA ranks is conducted
gradually to avoid performance degradation. (b)
if the LoRA ranks in a Transformer module re-
ceive relatively high importance scores and are not
pruned, this module is deemed important. It may
need more LoRA ranks for adaptation so that the
LoRA parameters can better learn the task knowl-
edge.

The framework of ALoRA is centered on our
AB-LoRA method, which requires the super-
network to be trained for K1 epochs on the train
set. We freeze the architectural parameters and
train only the model parameters on the train set.
No bi-level optimization is required, thus saving
training time costs. Then, for each LoRA rank, we
evaluate the importance score on a batch of samples
Bval from the development set. Then, nA LoRA
ranks with the lowest scores are pruned by zero-
ing out their corresponding gate units. Moreover,
if some Transformer modules do not have pruned
LoRA ranks, we allocate the parameter budgets to
them to enhance the adaptation further. 23 After
the pruning and adding operations, we tune the al-
tered super-network for K2 > 0 epochs to recover
the lost performance. The above steps are repeated
for NA times. Formally, we summarize the above
process in Algorithm 1.

2Note that increasing the rank size of a LoRA module from
rm to r

′
m for Transformer module m involves concatenating

newly initialized parameters for the matrices, so that WA
m ∈

Rd×rm and WB
m ∈ Rrm×d becomes WA

m ∈ Rd×r
′
m and

WB
m ∈ Rr

′
m×d. And the diagonal matrix Gm is changed

from diag(αm,1, ..., αm,rm) to diag(αm,1, ..., αm,rmm
). The

newly added gate units are initialized with ones.
3If nA is not divided by the number of un-pruned modules,

we allocate the nA ranks as uniformly as possible, with priority
given to modules with higher average importance scores. For
example, if nA = 8, and module m1, m2, m3 are not pruned,
and m1 has the highest average importance score, m2 ranks
the second, m3 receives the lowest average importance score.
Then three ranks are given to m1 and m2, and two ranks are
given to m3.
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4 Experiments

In this section, we conduct a series of experi-
ments to evaluate our ALoRA method.

4.1 Baselines

We compare our ALoRA framework with the
current SOTA PEFT baseline methods.
Adapter-based tuning We consider the follow-
ing adapter tuning baselines: (1) Houlsby-Adapter
(Houlsby et al., 2019); (2) Parallel-Adapter pro-
posed by He et al. (2021); (3) AdapterDrop (Rücklé
et al., 2020); (4) LST (Sung et al., 2022); (5)
Learned-Adapter (Zhang et al., 2023f).
Prompt-based tuning For prompt-based tuning
methods, we compare with (a) P-tuning v2 (Liu
et al., 2021); (b) SPT (Zhu and Tan, 2023).
LoRA and its variants we consider the following
LoRA variants as baselines: (a) LoRA (Hu et al.,
2021); (b) AdaLoRA (Zhang et al., 2023c). (c)
SoRA (Ding et al., 2023); (d) SaLoRA (Hu et al.,
2023).
Other PEFT methods We also compare: (1) SSP
(Hu et al., 2022), which combines different PEFT
methods.

The baselines are implemented using their open-
sourced codes. The hyper-parameter settings for
the baselines are detailed in Appendix E.

4.2 Datasets and evaluation metrics

We compare our approach to the baselines
on (a) four benchmark question-answering tasks:
SQUAD (Rajpurkar et al., 2016) and three tasks
from the SuperGLUE benchmark(Wang et al.,
2019) (BoolQ, COPA and ReCoRD). (b) three sen-
tence level tasks from GLUE benchmark (Wang
et al., 2018), SST-2, RTE, QNLI. (d) Alpaca dataset
(Taori et al., 2023) for instruction tuning, and MT-
Bench (Zheng et al., 2023), to evaluate the instruc-
tion tuning quality of LLMs. The dataset introduc-
tions, statistics, and prompt-response templates for
the above tasks are detailed in Appendix B. The
above tasks’ evaluation metrics or protocols are in
Appendix B.5.

4.3 Experiment Settings

Computing infrastures We run all our experi-
ments on NVIDIA A40 (48GB) GPUs.
Pretrained backbones The main experiments
uses most recent open-sourced LLM, LlaMA-2 7B
released by Meta (Touvron et al., 2023) as the pre-
trained backbone model. In the ablation studies,

we will also use GPT2-large model (Radford et al.,
2019), and RoBERTa-large (Liu et al., 2019b).
Prediction heads When fine-tuning LlaMA-2
7B, we only consider the supervised fine-tuning
(SFT) setting (Ouyang et al., 2022), that is, all
the predictions are generated using the language
modeling head (LM head) upon receiving a prompt
or an instruction. For decoding during inference,
we use beam search with beam size 5.
Hyper-parameters for ALoRA In our experi-
ments, unless otherwise specified, we set Rtarget

to 8 ∗ Nmod, and initially all Transformer model
weights are paired with LoRA modules with rank
rinitm = 8. In this setting, ALoRA satisfies the
LoRA rank budget upon initialization, and thus dur-
ing training and inference.4 We set nA to 1 ∗Nmod.
For training with the ALoRA’s workflow, we set the
batch size of Bval to 32, K1 to 1 epoch, K2 to 0.25
epoch, and the LoRA rank allocation procedure is
conducted for at most NA = 8 times.
Reproducibility We run each task under five
different random seeds and report the median per-
formance on the test set of each task.

Due to limited length, other experimental set-
tings for the baseline methods and the training pro-
cedure are put in Appendix E.

4.4 Main results

The experimental results on the three classifica-
tion tasks and 4 question answering tasks are pre-
sented in Table 1. In the second and third columns
of Table 1, we present the initial number of tun-
able parameters and the final ones. Table 1 reveals
that our ALoRA method outperforms the baseline
methods across all seven tasks, with comparable
or fewer tunable parameters throughout the train-
ing and inference processes. In particular, ALoRA
successfully outperforms AdaLoRA, SoRA, and
SaLoRA with comparable initial and final LoRA
parameters. These results demonstrate that our
method can better allocate LoRA parameters for
better downstream task adaptation.

For the E2E benchmark (Novikova et al., 2017),
the results are reported in Table 2. The results
show that on the E2E task, our ALoRA method
successfully outperforms LoRA and SoRA regard-
ing BLEU, ROUGE-L, or METEOR scores.

After the LlaMA-2 7B is fine-tuned on the Al-
paca dataset with our ALoRA and SoRA methods,

4Note that it is possible that the total LoRA ranks after
training is smaller than that at initialization.
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Method Additional Params SST-2 RTE QNLI BoolQ COPA ReCoRD Squad
Initial Final (acc) (acc) (acc) (acc) (acc) (f1-em) (f1-em)

Baselines
P-tuning v2 20.9M 20.9M 93.4 79.6 92.6 84.7 90.3 89.9 87.6

SPT 16.8M 16.8M 93.6 80.3 92.8 85.3 90.6 90.2 88.1
Housbly-Adapter 21.0M 21.0M 93.5 81.3 92.9 85.2 91.0 90.4 88.0
Parallel-Adapters 21.0M 21.0M 93.6 81.2 93.0 85.7 90.8 90.6 88.2

AdapterDrop 21.0M 21.0M 93.2 80.7 92.8 85.1 90.6 90.3 87.9
LST 21.1M 21.1M 93.4 81.6 93.0 86.2 91.0 90.4 87.9

Learned-Adapter 21.2M 21.2M 94.1 82.1 93.1 87.0 91.1 90.7 88.3
LoRA 20.0M 20.0M 94.1 83.3 93.1 87.3 91.3 90.8 88.4

AdaLoRA 40.0M 20.0M 94.1 83.5 93.2 87.1 91.6 91.1 88.3
SoRA 40.0M 20.0M 94.2 83.7 93.3 87.6 91.7 91.0 88.5

SaLoRA 40.0M 20.0M 93.9 83.4 93.2 87.2 91.5 90.9 88.4
SSP 40.0M 20.0M 94.1 83.1 93.1 87.1 91.6 90.6 88.2

Our proposed methods
ALoRA 20.0M 19.6M 95.0 84.6 93.7 88.0 92.1 91.8 89.2

Table 1: The Overall comparison of the three GLUE tasks and four question-answering tasks. The backbone model
is LlaMA-2 7B. We report the median performance over five random seeds. Bold and Underline indicate the best
and the second-best results. The metric for each task is explained in Appendix B.5.

(a) BoolQ (b) E2E

Figure 2: Performances under different LoRA rank budgets. The x-axis represents the number of tunable parameters,
and the y-axis represents the performance score.

Method BLEU ROUGE-L METEOR
Learned-Adapter 68.9 70.9 45.8

LoRA 68.9 71.2 46.1
SoRA 70.0 71.1 46.3

ALoRA 70.6 71.8 47.1

Table 2: Results for different PEFT methods on the
E2E benchmark. The backbone LM is LlaMA-2 7B.
The metrics are explained in Appendix B.5.

Method Avg GPT-4 score (↑) ROUGE-L (↑)
SoRA 7.16 53.2

ALoRA 7.47 54.3

Table 3: The performance of instruction tuning using
the SoRA and ALoRA methods. The backbone model
is LlaMA-2 7B. ↑ means the metric is higher the better.

we utilize the 80 instructions in the MT-Bench as
the test set. We follow the current standard practice

of utilizing GPT-4 as an unbiased reviewer (Zheng
et al., 2023). The protocol of utilizing GPT-4 as
the reviewer and scorer is specified in Appendix
B.5. The average score provided by GPT-4 is pre-
sented in Table 3, along with the ROUGE-L scores
calculated by considering the GPT-4’s answers as
ground truth. Consistent with the previous exper-
iments (Table 1 and 2), our ALoRA method out-
performs the SoRA method in terms of the GPT-4
evaluation scores and ROUGE-L, demonstrating
that ALoRA can enhance the instruction tuning
quality of large language models. A case study
of answers generated by different methods is pre-
sented in Table 9, showcasing that ALoRA leads to
better instruction-tuned LLMs.
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Method Memory cost (GB) Speed (it/s) Time cost (h)
LoRA 17.6 5.01 2.68
SoRA 18.8 4.96 3.63

ALoRA 18.1 5.01 3.81

Table 4: The memory, speed and time cost for fine-
tuning LlaMA-2 7B on the E2E task with different PEFT
methods.

4.5 Ablation studies and analysis

Analysis of Training Efficiency So far, we have
demonstrated that our ALoRA can outperform
LoRA and SoRA on a wide collection of tasks.
One might suspect this advantage is achieved with
significant time or memory costs. We compare the
max training GPU memory, training speed, and
training time costs of ALoRA, SoRA, and LoRA
when fine-tuning LlaMA-2 7B with the E2E bench-
mark. From Table 4, one can see that ALoRA
requires less memory costs during training than
SoRA since it does not initialize with a larger LoRA
rank. Moreover, under early stopping, the total
training time cost of ALoRA remains comparable
with SoRA and LoRA.
Ablation study of ALoRA framework We now
consider the following variants of ALoRA: (a) in-
stead of utilizing our novel AB-LoRA method, we
follow the optimization procedure of Equation 4,
and use the architectural weights α

′
m,i as the impor-

tance scores. This variant is denoted as ALoRA-
DNAS. (b) Use the sensitivity-based metric in
Zhang et al. (2023c) as the importance measure-
ment. (denoted as ALoRA-Sensi). The experimen-
tal results on the BoolQ, ReCoRD, and SQUAD
tasks are reported in Table 6 of Appendix F. The
results show that ALoRA outperforms the two vari-
ants, demonstrating that our AB-LoRA method can
provide better guidance in allocating LoRA ranks.
Visualization of the final rank allocations In
this section, we visualize the final rank allocations
of ALoRA after the training process on the E2E
task in Figure 3. We also compare the LoRA rank
allocations by the SoRA method in Figure 4 of
Appendix H. We can see from Figure 3 that (a)
More LoRA rank budgets are put to adapt the query
and key modules, while the value and output mod-
ules in the self-attention are less emphasized. (b)
The feed-forward layer in the Transformer block
requires fewer LoRA ranks, indicating that this
layer stores general language knowledge, while the
attention module will contain more task-specific
knowledge after ALoRA fine-tuning. Compared

Figure 3: The final rank allocations of ALoRA after
fine-tuning the LlaMA-2 7B model on the E2E task.

with ALoRA’s allocation, SoRA results in a more
unbalanced allocation, putting more rank budgets
to the Down module than our ALoRA method.
Comparisons under different LoRA rank bud-
gets Note that in the main experiments, we set the
targeted LoRA rank budget as Rtarget = 8 ∗Nmod.
Now we vary this budget to any multiplier in 1,
2, 4, 8, 16, 32, 64, 128 times Nmod, and see how
ALoRA, SoRA, and LoRA perform on the BoolQ
and E2E tasks. The experimental results are pre-
sented in Figure 2(a) and 2(b). From the results, we
can see that under different LoRA rank budgets, our
ALoRA method can consistently outperform LoRA
and SoRA by effectively allocating different LoRA
ranks properly to different Transformer modules,
thus enhancing the performance of fine-tuning.
Ablation on the pretrained backbones Our
main experiments are conducted on the LlaMA-
2 7B model. To demonstrate the wide applicability
of our method, we now conduct experiments on
RoBERTa-large and GPT2-large. The results are
reported in Table 7 and 8. We can see that on these
two backbones, our method can also outperform
the baseline methods.

5 Conclusion

This work presents the Allocating Low-Rank
Adaptation (ALoRA), an innovative method for
parameter-efficient fine-tuning large language mod-
els. Upon the hypothesis that the adaptation for
different Transformer modules could be of differ-
ent tanks, we introduce a novel workflow for al-
locating LoRA ranks in the fine-tuning process.
First, we propose a novel method, AB-DNAS, to
accurately evaluate the importance scores of LoRA
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ranks. Second, guided by the AB-DNAS method,
our workflow allows the pruning of ranks at spe-
cific modules and considers allocating more ranks
to essential modules. Thus, our method does not
require to set a more significant initial rank. Our
method is convenient to implement and off-the-
shelf. Experiments on various tasks demonstrate
that our ALoRA method outperforms the baseline
methods.
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Limitations

We showed that our proposed method can greatly
improve the performance of parameter-efficient tun-
ing on diverse tasks and different pretrained mod-
els (i.e., LlaMA-2 7B, RoBERTa-large and GPT2-
large). However, we acknowledge the following
limitations: (a) the more super-sized open-sourced
LLMs, such as LlaMA-2 13B and 70B, are not ex-
perimented due to limited computation resources.
(b) Other tasks in natural language processing, like
information extraction, were also not considered.
But our framework can be easily transferred to
other backbone architectures and different types of
tasks. It would be of interest to investigate if the su-
periority of our method holds for other large-scaled
backbone models and other types of tasks. And we
will explore it in future work.

Ethics Statement

The finding and proposed method aims to im-
prove the low-rank adaptation (LoRA) based tun-
ing in terms of better rank allocations and per-
formances. The used datasets are widely used
in previous work and, to our knowledge, do not
have any attached privacy or ethical issues. In this
work, we have experimented with LlaMA-2 7B, a
modern large language model. As with all LLMs,
LlaMA-2’s potential outputs cannot be predicted
in advance, and the model may in some instances

produce inaccurate, biased or other objectionable
responses to user prompts. However, this work’s in-
tent is to conduct research on different fine-tuning
methods for LLMs, not building applications to
general users. In the future, we would like to con-
duct further testing to see how our method affects
the safety aspects of LLMs.
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A Additional related works

Adapter-based tuning. One of the most impor-
tant research lines of PEFT is adapter-based tuning.
Adapter (Houlsby et al., 2019) inserts adapter mod-
ules with bottleneck architecture between every
consecutive Transformer (Vaswani et al., 2017) sub-
layers. AdapterFusion (Pfeiffer et al., 2021) only
inserts sequential adapters after the feed-forward
module. Adapter-based tuning methods have com-
parable results with model tuning when only tun-
ing a fraction of the backbone model’s parame-
ter number. Due to their strong performance, a
branch of literature has investigated the architec-
ture of adapters in search of further improvements.
He et al. (2021) analyze a wide range of PETun-
ing methods and show that they are essentially
equivalent. They also propose the general archi-
tecture of PEFT, and derive the Parallel Adapter
which connects the adapter modules in parallel to
the self-attention and MLP modules in the Trans-
former block. AdapterDrop (Rücklé et al., 2020)
investigates the efficiency of removing adapters
from lower layers. Adaptive adapters (Moosavi
et al., 2022) investigate the activation functions of
adapters and propose to learn the activation func-
tions of adapters via optimizing the parameters of
rational functions as a part of the model parameters.
Compacter (Mahabadi et al., 2021) uses low-rank
parameterized hypercomplex multiplication (Le
et al., 2021) to compress adapters’ tunable parame-
ters. LST (Sung et al., 2022) improves the memory
efficiency by forming the adapters as a ladder along
stacked Transformer blocks, and it enhances the
adapter module by adding a self-attention module

to its bottleneck architecture. (Sung et al., 2022;
Jie and Deng, 2022) try to add different encoding
operations, like self-attention operations and convo-
lutions between the bottleneck structure of adapters,
and achieve better performances. Learned-Adapter
(Zhang et al., 2023f) builds upon the above adapter-
based methods and enhance the performance of
adapter tuning by automatically learning better ar-
chitectures for adapters.
Prompt tuning methods Prompt tuning (Lester
et al., 2021) and P-tuning (Liu et al., 2022b) insert
a soft prompt to word embeddings only, and can
achieve competitive results when applied to super-
sized PTMs. Prefix-tuning (Li and Liang, 2021)
and P-tuning v2 (Liu et al., 2021) insert prompts
to every hidden layer of PTM. IDPG (Wu et al.,
2022) uses the prompt generator with parameter-
ized hypercomplex multiplication (Le et al., 2021)
to generate a soft prompt for every instance. LPT
(Liu et al., 2022a) improves upon IDPG by select-
ing an intermediate layer to start inserting prompts.
SPT (Zhu and Tan, 2023) designs a mechanism
to automatically decide which layers to insert new
instance-aware soft prompts.
LoRA methods Since LoRA is the most pop-
ular PEFT method in the era of large language
models, there are many works that are orthogo-
nal to AdaLoRA, SoRA and our work that are
devoted to improve LoRA on many different as-
pects. QLoRA (Dettmers et al., 2023) proposes
a novel quantization method that can significantly
reduce the memory consumptions of LLMs dur-
ing LoRA fine-tuning. LoRA-FA (Zhang et al.,
2023b) freezes parts of the randomly initialized
LoRA matrices. (d) VERA (Kopiczko et al., 2023)
investigate whether one could froze the randomly
initialized LoRA matrices and only learns a set of
scaling vectors. Tying LoRA matrices across layers
are also investigated by VERA.

B Appendix for the datsets and evaluation
metrics

B.1 Datasets from GLUE and SuperGLUE

We experiment on three tasks from the GLUE
(Wang et al., 2018) benchmark: (a) (a) a senti-
ment classification task, SST-2. (b) two benchmark
natural language inference tasks, RTE and QNLI.
We also experiment with three question-answering
tasks: (a) two question answering tasks in the for-
mat of binary choices, COPA and BoolQ. (b) A
Squad (Rajpurkar et al., 2016) style question an-
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Datasets #train #dev #test |Y| Type Labels Metrics
SuperGLUE tasks

BoolQ 9.4k 1.6k 1.6k 2 Question Answering True, False acc
COPA 0.4k 0.05k 0.05k 2 Question Answering choice1, choice2 acc

ReCoRD 101k 1k 7.4k - Question Answering - f1-em
GLUE tasks

SST-2 66k 1k 0.8k 2 sentiment classification positive, negative acc
RTE 2.5k 0.1k 0.1k 2 NLI entailment, not entailment acc

QNLI 104k 1k 5.4k 2 NLI entailment, not entailment acc
Other tasks

Squad 87k 1k 5.9k - Question Answering - f1-em
E2E 42k 4.6k 4.6k - NLG - BLEU/ROUGE-L/METEOR

Alpaca 52k - - - Instruction tuning - -
MT-Bench - - 80 - Instruction tuning - GPT-4 scores

Table 5: The dataset statistics of the GLUE and SuperGLUE benchmark tasks evaluated in this work. |Y| is the
number of classes for a classification task.

swering task, ReCoRD.
Since the original test sets are not publicly avail-

able for these tasks, we follow Zhang et al. (2020);
Mahabadi et al. (2021); Zhu et al. (2023d); Gao
et al. (2023); Zhu (2021d,c); Zhang et al. (2022);
Zuo et al. (2022); Sun et al. (2022); Zhu et al.
(2021d); Zhu (2021a); Zhu et al. (2021c); Li et al.
(2019); Zhu et al. (2019b); Zhu (2021b); Zhang
et al. (2021); Wang et al. (2020) to construct the
train/dev/test splits as follows to ensure a fiar com-
parison: (a) for datasets with fewer than 10k sam-
ples (RTE, COPA, BoolQ), we divide the original
validation set in half, using one half for validation
and the other for testing. (b) for larger datasets, we
split 1k samples from the training set as the devel-
opment set, and use the original development set
as the test set. The detailed statistics of the GLUE
and SuperGLUE benchmark tasks is presented in
Table 5.

B.2 The Squad task

Stanford Question Answering Dataset (SQuAD)
(Rajpurkar et al., 2016) is a reading comprehension
dataset, consisting of questions posed by crowd-
workers on a set of Wikipedia articles, where the
answer to every question is a segment of text, or
span, from the corresponding reading passage, or
the question might be unanswerable. This task is
one of the most widely studied question answering
task in the field.

In this work, we use the v1.1 version of SQUAD.
Since the original test sets are not publicly avail-
able for these tasks, we follow Zhang et al. (2020);
Mahabadi et al. (2021) and split 1k samples from
the training set as the development set, and use
the original development set as the test set. The

detailed statistics of this task is presented in Table
5.

B.3 Datasets: E2E benchmark

The E2E benchmark dataset for training end-to-
end, data-driven natural language generation sys-
tems in the restaurant domain. It asks a model to
generate natural utterances based on a set of given
key contents. This dataset has a 42061/4672/4693
train/dev/test split.

B.4 Dataset: Instruction tuning

Instruction tuning is an important method to im-
prove the general capabilities of large language
models (Ouyang et al., 2022). With the rise of
large language models in the scale of 10B param-
eters or more, like GPT-3, T5, PaLM, researchers
have actively explored the few-shot or zero-shot
capabilities of these models. (Mishra et al., 2021)
find that fine-tuning these LLMs on a large scale
datasets containing hundreds of NLP tasks signif-
icantly improves the zero-shot performances on
unseen tasks, establishing the scaling law of task
numbers. The previous works like (Wei et al., 2021)
and T0 (Sanh et al., 2021) establishes the instruc-
tion tuning datasets by transforming the traditional
NLP tasks into a unified prompt format. Instruct-
GPT (Ouyang et al., 2022) conducts instruction
tuning using the dataset constructed based the user
queries from the OpenAI API users. Note that this
work is also a seminal work for human feedback
learning with reinforcement learning. However, the
complete instruction tuning dataset from (Ouyang
et al., 2022) remains closed. With the launch of
ChatGPT, (Taori et al., 2023) (Alpaca) constructs
an instruction tuning dataset with diverse topics
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using the self-instruct techniques.
For our experiment, we employ the Alpaca

dataset (Taori et al., 2023) for instruction tuning.
Specifically, we employs its cleaned version5. This
dataset comprises 51K instructions and demonstra-
tions, and is suitable for instruction tuning. The
cleaned version corrects multiple issues such as
hallucinations, merged instructions, and empty out-
puts.

B.5 Evaluation metrics/protocols

For the three GLUE tasks we experiment on, we
report accuracy (denoted as acc). For ReCoRD, we
report the average of the F1 score and the exact
match score (denoted as f1-em). For the BoolQ
and COPA tasks, we report accuracy. The above
choices of evaluation metrics strictly follow (Wang
et al., 2018) and (Wang et al., 2019).

For the SQUAD dataset, we also report the av-
erage of the F1 score and the exact match score
(denoted as f1-em).

Following (Novikova et al., 2017), we report
three different metrics on the E2E task: (a) BLEU;
(b) ROUGE-L; (c) METEOR. We rely on the Hug-
gingFace Evaluate package6 for computing these
metrics.

For evaluating the quality of instruction tuned
LlaMA-2 7B, we follow the current common prac-
tice of utilizing GPT-4 as a unbiased reviewer
(Zheng et al., 2023). 80 instructions from the MT-
Bench is set as a test set. We generate model re-
sponses from a fine-tuned model with beam size 5
with the generation function in Huggingface Trans-
formers (Wolf et al., 2020a). Then we compare
SoRA and ALoRA’s answers with GPT-4. For each
instruction in MT-Bench, GPT-4 (OpenAI, 2023)
is asked to write a review for both answers from
the two methods, and assigns a quantitative score
on a scale of 10 to each response. The prompts
of instructing GPT-4 for evaluation is presented in
Appendix D. ROUGE-L scores computed by con-
sidering the answers generated by GPT-4 as the
ground truth.

C Prompt templates for fine-tuning
LlaMA-2 7B

Since we fine-tune LlaMA-2 7B without intro-
ducing task-specific prediction heads, we need to

5https://huggingface.co/datasets/yahma/
alpaca-cleaned.

6https://huggingface.co/docs/evaluate/index

transform all the tasks into a prompt-response for-
mat. Now we present the prompt-response template
for each task.
Templates for RTE and QNLI Since these two
tasks are NLI tasks, the samples in them consists
of two input text, [sentence1] and [sentence1], and
a label [label_name] (entailment or not entailment).
Thus, we use the following templates:

Template for prompt:

sentence 1: [sentence1]
sentence 2: [sentence1]
Are sentence 1 and sentence 2 have
entailment relation or not?

Template for response:

[label_name]

Templates for SST-2 The samples in this task con-
sists of one input text, [sentence], and a label [la-
bel_name] (positive or negative).

Template for prompt:

[sentence]
The sentiment of the given sentence is:

Template for response:

[label_name]

Templates for BoolQ The samples in this task
consists of a reference document, [doc], a query,
[query], and a label [label_name] (yes or no).

Template for prompt:

Reference document:
[doc]
Question:
[query]

Template for response:

[label_name]

Templates for COPA The samples in this task con-
sists of a premise, [premise], two choices, [choice1]
and [choice2], a query, [query], and a label [la-
bel_name] (1 or 2, indicating which choice is con-
sistent with the premise).

Template for prompt:

Premise:
[premise]
Choice 1: [choice1]
Choice 2: [choice2]
Question:
[query]

Template for response:

[label_name]
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Templates for ReCoRD and SQUAD The sam-
ples in these two tasks consist of a context docu-
ment, [context], a question, [query], and a answer-
ing span, [answer].

Template for prompt:

Context:
[context]
Question:
[query]

Template for response:

[answer]

Templates for E2E The samples in this task con-
sists of a reference [ref], consisting required infor-
mation, and a targeted response, [target], which is
a customer review written according to the refer-
ence’s contents.

Template for prompt:

Reference:
[ref]
Generate a customer review following the
given reference.

Template for response:

[target]

D Prompt templates for GPT-4
evaluations

In this work, we utilize the powerful LLM GPT-4
(OpenAI, 2023) as the evaluator for comparing the
instruction tuning quality. As a reviewer, GPT-4
will receive a query [query], two responses, [re-
sponse1] and [response2], from two assistants. We
will ask GPT-4 to write a review for each response,
assessing the quality of the response, and then ask
GPT-4 to assign a score on a scale of 10 to each
response.

Template for prompt:

Task Introduction
you will be given a query, and two responses
from two assistants,
could you compare the two responses,
and do the following:
(1) write a concise review for each
assistant's response, on how well the
response answers the query, and whether
it will be helpful to humans users, and any
issues in the response;
(2) assigns a quantitative score on a scale
of 10 to each response, reflecting
your assessment of the two responses

Query:
[query]
Response 1 from assistant 1:
[response1]
Response 2 from assistant 2:
[response2]

E Appendix for Experimental settings

Here, we provide more details for experimental
settings.
Hyper-parameters for the baseline PEFT meth-
ods For P-tuning V2, the number of prompt to-
kens at each layer is set to 160. For SPT, the bot-
tleneck dimension is set to 256, and the number
of prompt layers is set to 8. For adapter-based
methods, the bottleneck dimension is set to 40, and
the adapter modules are added on the self-attention
and feed-forward module. For LoRA and ALoRA,
the initial rank at each module is set to 8. For
AdaLoRA, SoRA, and SaLoRA, the initial rank
at each module is set to 16, and half of the rank
budget is pruned during fine-tuning. We adjust the
sparsity for SSP so that the number of tunable pa-
rameters is comparable with ALoRA and the other
baselines.
Training settings for PEFT methods We use
the HugginFace Transformers (Wolf et al., 2020b)
and PEFT (Mangrulkar et al., 2022) for implement-
ing all the methods, and for training and making
predictions. For fine-tuning LlaMA-2 7B model,
the maximum sequence length is set to 2048. The
maximum training epoch is set to 10. The batch
size is set between 16 for task with less than 10k
training set, and 128 otherwise. We use AdamW
as the optimizer with a linear learning rate decay
schedule and 6% of the training steps for warm-up.
The learning rate is set to 1e-4. The other hyper-
parameters are kept the same with (Wolf et al.,
2020b). In every 200 steps, the model is evaluated
on the dev set. Patience is set to 10, that is, if
the model does not achieve a lower development
set loss for 10 evaluation runs, the training stops.
The best checkpoint on the dev set is used to run
predictions on the test set.

F Ablation on the ALoRA framework

We consider two variants of ALoRA: (a) use the
architectural weights α

′
m,i as the importance scores

during bi-level optimization (Liu et al., 2019a).
This variant is denoted as ALoRA-DNAS. (b)
Use the sensitivity-based metric in Zhang et al.

638



Method BoolQ ReCoRD Squad
(acc) (f1-em) (f1-em)

ALoRA-DNAS 87.6 91.2 88.7
ALoRA-Sensi 87.5 91.3 88.6

ALoRA 88.0 91.8 89.2

Table 6: The comparison of ALoRA’s variants on
the BoolQ, ReCoRD, and Squad tasks. The backbone
model is LlaMA-2 7B.

(2023c) as the importance measurement. (denoted
as ALoRA-Sensi). The experiments on the BoolQ
and E2E methods are provided in 6

G Ablation on the pretrained backbones

Our main experiments are conducted on the
LlaMA-2 7B model. To demonstrate that our
method works well regardless of the backbone mod-
els, we now conduct experiments on the RoBERTa-
large. In this experiment, since the language mod-
eling capabilities of these RoBERTa-large can not
match LlaMA-2 7B model, we change the follow-
ing setting for the prediction head: (a) we use a
linear layer as the prediction head for classification
tasks. (b) for the ReCoRD task, we use two linear
layers to predict the starting and ending positions
of a entity span. The other experimental settings
are kept the same with the main experiments (Table
1).

We conduct experiments on the BoolQ, ReCoRD
and Squad tasks. The results are reported in Table
7. We can see that on the RoBERTa-large back-
bone, our method can also outperform the baseline
methods.

We also run GPT2-large on the E2E task, and the
results are reported in Table 8. The results demon-
strate that when the GPT2-large is the backbone
model, our ALoRA method also outperforms the
baselines.

H Visualization of the final rank
allocations of SoRA

In the main contents, we visualize the final rank
allocations of ALoRA after the training process on
the E2E task in Figure 3. As comparison, we now
present the LoRA rank allocations by the SoRA
method in Figure 4.

I Case studies of Instruction tuning

In the Section 4.4 of the main content, we present
the overall performance of ALoRA and SoRA on
the MT-Bench, after fine-tuning LlaMA-2 7B on

Figure 4: The final rank allocations of SoRA after fine-
tuning the LlaMA-2 7B model on the E2E task.

the Alpaca dataset. Now we present concrete ex-
amples in Table 9 to showcase the Superiority of
ALoRA.
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Method Additional Params BoolQ ReCoRD Squad
Initial Final (acc) (f1-em) (f1-em)

Results for RoBERTa-large
Learned-Adapter 366M 354M 86.8 90.2 88.7

LoRA 3.54M 3.54M 86.9 90.0 88.6
SoRA 708M 3.53M 87.2 90.1 88.7

ALoRA 3.54M 3.42M 87.6 90.7 89.4

Table 7: The comparison on the BoolQ, ReCoRD, and Squad tasks, when the backbone model is RoBERTa-large.
We report the median performance over 5 random seeds. Bold and Underline indicate the best and the second best
results. The metric for each task is explained in Appendix B.5.

Method BLEU ROUGE-L METEOR
Learned-Adapter 68.6 69.6 45.2

LoRA 68.7 69.8 45.3
SoRA 68.9 69.9 45.4

ALoRA 69.3 70.4 46.0

Table 8: Results for different PEFT methods on the
E2E benchmark. The backbone LM is GPT2-large. The
metrics are explained in Appendix B.5.
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Query

Edit the following paragraph to correct any grammatical errors:
She didn’t remembre where is her purse, so I thinks its in the car but he’s say
it’s on kitchen table but he are not sure, and then they asked me to looking for
it, she’s say, "Can you?", and I responds with, "Maybe, but ain’t no sure," and
he not heard me, and, "What?", he asks, "Did you found it?".

ALoRA’s response

Responses

She didn’t remember where her purse was, so I thought it was in the car, but he
said it was on the kitchen table, but he wasn’t sure, and then they asked me to
look for it, she said, "Can you?" and I responded with, "Maybe, but I’m not
sure," and he didn’t hear me, and then he asked, "Did you find it?"

GPT-4’s
comments

Assistant 1’s response effectively corrects all the grammatical errors in the
original paragraph. The assistant has correctly changed "remembre" to
"remember," rearranged the clause order from "where is her purse" to "where
her purse was," and adjusted verb forms for proper agreement (e.g., changing
"thinks" to "thought"). Quotation marks and commas are properly used, making
direct speech clear and punctuated correctly. The conjunctions are better placed,
contributing to a more natural flow of sentences. Additionally, all instances of
colloquial or incorrect language such as “ain’t no sure” have been revised into
standard English ("I’m not sure"). Overall, this response would be very helpful
to human users as it provides a grammatically sound version of the original text.

GPT-4 score 9
SoRA’s response

Responses

She didn’t remember where her purse was, so I thought it was in the car, but he
said it was on the kitchen table, but he wasn’t sure. They asked me to look for it,
and she said, "Can you?" I responded with, "Maybe, but I’m not sure." He didn’t
hear me, and he asked, "What?" I said, "Did you find it?"

GPT-4’s
comments

Assistant 2 also does an excellent job correcting grammatical mistakes from the
initial query. This assistant similarly fixes issues with verb tense consistency and
subject-verb agreement (e.g., “he’s say” corrected to “he said”). However, there
is a slight deviation at the end where Assistant 2 writes: “I said, ’Did you find
it?’”. This seems like an attempt by Assistant 2 to make sense of a confusing
part of dialogue in which speaker roles were unclear but results in altering the
meaning slightly because it suggests that ‘I’ am asking if ‘he’ found it rather
than him asking ‘me’. This could be misleading or confusing without additional
context indicating who is speaking at that moment. Nevertheless, punctuation
around quotations is accurate which aids readability.

GPT-4 score 8

Table 9: An example showcasing that the fine-tuning quality of ALoRA is higher than SoRA.
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