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Abstract
Previous methods based on Large Language
Models (LLM) perform unsupervised depen-
dency parsing by maximizing bi-lexical depen-
dence scores. However, these previous methods
adopt dependence scores that are difficult to
interpret. Furthermore, these methods cannot
incorporate grammatical constraints that previ-
ous grammar-based parsing research has shown
beneficial to improving parsing performance.
In this work, we apply Conditional Mutual In-
formation (CMI), an interpretable metric, to
measure the bi-lexical dependence and incorpo-
rate grammatical constraints into LLM-based
unsupervised parsing. We incorporate Part-Of-
Speech information as a grammatical constraint
at the CMI estimation stage and integrate two
additional grammatical constraints at the sub-
sequent tree decoding stage. We find that the
CMI score positively correlates with syntac-
tic dependencies and has a stronger correlation
with the syntactic dependency than baseline
scores. Our experiment confirms the effective-
ness and applicability of the proposed gram-
matical constraints across five languages and
eight datasets. The CMI parsing model out-
performs state-of-the-art LLM-based models
and similarly constrained grammar-based mod-
els. Our analysis reveals that the CMI model is
strong in retrieving dependency relations with
rich lexical interactions but is weak in retriev-
ing relations with sparse lexical interactions,
indicating a potential limitation in CMI-based
unsupervised parsing methods.

1 Introduction

Syntactic dependency structures provide important
information to downstream Natural Language Pro-
cessing tasks, such as Information Extraction (Tian
et al., 2021; Gamallo et al., 2012), Machine Trans-
lation (Bugliarello and Okazaki, 2020; Ma et al.,
2020), and Question Answering (Lyu et al., 2021).
However, extracting the dependency structure us-
ing supervised methods requires expensive human-
annotated dependency structures, which are only

Figure 1: Illustration of the correlation between syntac-
tic dependencies and bi-lexical dependence scores using
CMI scores. The upper figure depicts the CMI scores,
while the lower figure shows the dependency structure.
Blue boxes in the figure indicate a syntactic dependency
between the two corresponding words.

available for limited languages and domains. Large
Language Model (LLM) based unsupervised pars-
ing methods (Hoover et al., 2021; Wu et al., 2020;
Zhang and Hashimoto, 2021) circumvent the prob-
lem by directly extracting the dependency structure
from LLMs. These methods estimate bi-lexical
dependence scores from the LLMs and identify the
dependency structure as the tree with maximum
bi-lexical dependence scores.

Figure 1 illustrates the motivation using our pro-
posed bi-lexical dependence score. We can observe
a positive correlation that syntactically dependent
words (i.e., syntactic dependencies) tend to have
a higher-than-average dependence score. With the
positive correlation, we can factor the unsupervised
parsing problem into two subproblems:(1) devising
a dependence score that correlates well with the
syntactic dependency and (2) performing a Maxi-
mum Spanning Tree (MST) decoding. The strength
of the correlation between the dependence score
and the syntactic dependency directly impacts the

We release our code in the github repository.
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unsupervised parsing performance.
However, some LLM-based methods (Wu et al.,

2020; Jian and Reddy, 2023) adopt dependence
scores that lack a statistical interpretation of why
some word pairs are more dependent than others.
Other methods (Hoover et al., 2021; Zhang and
Hashimoto, 2021) suffer from significant estima-
tion issues. Additionally, no LLM-based method
can incorporate grammatical constraints that pre-
vious grammar-based parsing research (Noji et al.,
2016; Naseem et al., 2010; Xu et al., 2021) has
shown beneficial to parsing performance.

In this paper, we apply Conditional Mutual In-
formation (CMI) (Cover and Thomas, 1991), an
interpretable metric, for measuring the bi-lexical
dependence relation. CMI reveals the statistical cor-
relation of two words under a given context, with
a high CMI score indicating a strong correlation.
We apply the Metropolis-Hasting sampling method
(Hastings, 1970) to obtain an unbiased CMI esti-
mate. We incorporate Part-Of-Speech (POS) infor-
mation into the CMI estimation process as the POS
constraint and further integrate two grammatical
constraints (i.e., Adjacent-Connect (AC) constraint
and Function Word UnHeading (FNUH) constraint)
in the dependency tree decoding stage.

Our main contributions are three-fold. (1) We
found a positive correlation that syntactically de-
pendent words tend to have a high CMI (i.e.,
they are more likely to correlate). (2) We found
the grammatical constraints effective in improv-
ing parsing performance and generally applica-
ble across five languages. (3) We found that the
CMI model performs strongly in dependency rela-
tions with rich lexical interactions while perform-
ing weakly in relations with sparse lexical inter-
actions. Our study confirms the benefit of gram-
matical constraints in LLM-based unsupervised
dependency parsing while suggesting a limit of
CMI-based methods in the unsupervised parsing
task.

2 Background

2.1 Bi-lexical Dependence Scores and CMI

Previous LLM-based methods (Wu et al., 2020;
Hoover et al., 2021; Zhang and Hashimoto,
2021) use bi-lexical dependence scores as their
basis for parsing. Given a sentence x =
(x1, ..., xn), the bi-lexical dependence score for
(xi, xj) is computed as the distance between two
events: Xj |xi, x−ij and Xj |x−ij where x−ij :=

(x1, ..., xi−1, xi+1, ..., xj−1, xj+1, ..., xn). The
former is the event of generating Xj with xi and
the context x−ij while the latter is the event of
generating Xj with only the context.

Conditional Mutual Information (CMI) mea-
sures the statistical correlation of xi and xj by
one word’s impact on the distribution of the other
word. A high CMI score means changing one word
will drastically change the distribution of the other
word, indicating a strong bi-lexical dependence.
Given a probability measure p, the CMI score is
computed as the Kullback–Leibler divergence (a
statistical distance) between the above two events
(Equation 1).

Icmi
ij := EXiXj |x−ij

[
log

p(xj |xi, x−ij)

p(xj |x−ij)

]
(1)

2.2 MH Sampling from LLMs

Metroplis-Hasting (MH) sampling has been widely
applied to collect random samples from target dis-
tributions where we can evaluate sample probabil-
ity but cannot perform direct sampling (Singh et al.,
2012; Miao et al., 2019). LLM distributions fall
precisely into this category. Goyal et al. (2022) pro-
poses an MH sampler to gather sentential samples
using the LLM estimated sentence probability as
the sample probability. The MH sampler performs
iterative sampling for each token. At each step, the
sampler performs the following procedure:

1. samples a proposal word xki
′ from a proposal

distribution q(Xi|xk−1
−i ) at step k for the i-th

word.

2. accepts the proposed sample by probability

min(1,
q(xk−1

i |xk−1
−i )p(xk

i
′
,xk−1

−i )

q(xk
i
′|xk−1

−i )p(xk−1)
). If accepted,

xki ← xki
′. Otherwise, xki ← xk−1

i .

The relative probability
p(xk

i
′
,xk−1

−i )

p(xk−1)
dictates that

words resulting in higher sentence probability
would be sampled more often than words result-
ing in lower sentence probability. The MH sampler
returns all recorded {(xk1, ..., xkn)}k as random sam-
ples from the sentence distribution.

3 Related Works

Perturbed Masking Score Perturbed Masking
(PM) (Wu et al., 2020) computes the bi-lexical
dependence score as the Euclidean distance be-

tween two representations e
fMASK
j (x)

j (representing
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the event Xj |xi, x−ij) and e
fMASK
ij (x)

j (representing
the event Xj |x−ij) (Equation 2). Here, the function
fMASK
ij (x) is a masking function that sets the i-th

and j-th token to the masked token and exj is the
masked LLM embedding for the j-th token when
given x as input. However, the PM score is difficult
to interpret because what the Euclidean distance
means is unclear. Our CMI-based method provides
higher interpretability, as a high CMI score indi-
cates a strong statistical correlation.

Ipmij := ∥ef
MASK
j (x)

j − e
fMASK
ij (x)

j ∥2 (2)

Other CMI-based Scores Hoover et al. (2021)
and Zhang and Hashimoto (2021) attempted un-
supervised parsing with their own CMI imple-
mentation. Hoover et al. (2021) computes the
CMI score as a point-wise estimate, using the
original words (xi, xj) for estimation and replac-
ing the marginal probability term p(xj |x−ij) with
p(xj |Xi = [MASK], x−ij). The point-wise esti-
mate suffers from high estimation variance, and re-
placing the marginal probability term introduces ad-
ditional biases. The two issues explain the low pars-
ing performance reported. Zhang and Hashimoto
(2021) estimates the CMI score via Gibbs sam-
pling and computes the CMI using their unique for-
mulation. Their CMI formulation is theoretically
ill-founded, as explained in Appendix A.2. The
theoretical issue disqualifies Zhang and Hashimoto
(2021)’s score as a valid dependence score and ex-
plains the low-performance figure shown in Table
7. Our method adheres closely to the CMI defini-
tion and provides a more reliable estimate using a
Multi-Try MH sampler.
Grammar-based Methods Grammar-based unsu-
pervised parsing is a parallel line of research to
the LLM-based parsing method. The grammar-
based methods induce a dependency grammar from
plain text and perform parsing using the gram-
mar. Previous grammar-based methods (Noji et al.,
2016; Yang et al., 2020) achieve high parsing per-
formance that no LLM-based method can match.
However, these grammar-based methods require
grammatical constraints or linguistic priors, such
as locality bias (Smith and Eisner, 2006; Cohen
and Smith, 2009; Klein and Manning, 2004), struc-
tural constraints (Noji et al., 2016), and grammar
bias (Li et al., 2019), to achieve maximum perfor-
mance. For example, Noji et al. (2016) reports a
performance difference as high as 0.16 unlabelled

attachment score between models with and without
grammatical constraints. Following the spirit, our
method applies three grammatical constraints and
verifies the benefit of the grammatical constraints
in LLM-based unsupervised dependency parsing.

4 Method

In this section, we propose a grammatically con-
strained CMI-based unsupervised parsing method.
We apply CMI as the bi-lexical dependence metric
and use the sentence distribution derived from a
causal LLM as CMI’s probability measure. We
derive a reliable MH-based CMI estimator incorpo-
rating POS information through the POS constraint.
We implement a Multi-Try MH (MTMH) sampler
(Martino, 2018) to achieve a higher sampling effi-
ciency and a better sample quality. We heuristically
incorporate the AC and the FNUH constraint dur-
ing the MST decoding stage.

4.1 MTMH-based CMI Estimator

First, we introduce an MTMH-based CMI estima-
tor using an LLM-based sentence distribution p.
Given a pair of words (xi, xj), we compute the
CMI value between them as the expected log prob-
ability difference between sentences (xi, xj , x−ij)
where (xi, xj) ∼ Xi, Xj |x−ij and sentences
(x′i, x

′
j , x−ij) where (x′i, x

′
j) ∼ Xi ⊗ Xj |x−ij .

Here, ⊗ refers to the cartesian product of prob-
ability spaces such that p(X ⊗ Y ) = p(X)p(Y )
(i.e., X and Y are independent). We gather sam-
ples {(xki , xkj )}k from Xi, Xj |x−ij by iteratively
performing MTMH sampling for the i-th and the j-
th word while keeping the context x−ij unmodified.
We then create independent samples {(xki

′
, xkj

′
)}k

using the gathered samples by shuffling among the
{xkj }k samples while keeping the {xki }k samples
unmodified. We estimate the CMI score using the
gathered samples and the independent samples, as
shown in Equation 3.

Icmi
ij (x)

= E
(xi,xj)∼Xi,Xj |x−ij

[
log

p(xi|xj , x−ij)p(xj , x−ij)

p(xi|x−ij)p(xj , x−ij)

]

= E
(xi,xj)∼Xi,Xj |x−ij

(x′
i,x

′
j)∼Xi⊗Xj |x−ij

[
log

p(xi, xj , x−ij)

p(x′
i|x−ij)p(x′

j , x−ij)

]

= E
(xi,xj)∼Xi,Xj |x−ij

[log p(xi, xj , x−ij)]

− E
(x′

i,x
′
j)∼Xi⊗Xj |x−ij

[
log p(x′

i, x
′
j , x−ij)

]
(3)
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I drink milk ?

Normal Samping

I drink milk today

I drink milk ?|NN

Conditional Sampling

Figure 2: An illustration of the masking process for the
conditional sampling.

4.2 Incorporating POS Information through
the POS Constraint

We further incorporate POS information into the
MTMH sampler using the POS constraint. The
POS constraint forces the sampled word to have
the same POS as the original word, preventing the
MTMH samples’ dependency structure from devi-
ating from the original sentence’s structure. For
example, an unconstrained MTMH sampler might
return samples such as “I drink milk !” or “I drink
milk .” when sampling for “today” in “I drink milk
today”. The sampled sentences do not share the
same dependency structure as the original sentence.
Consequently, identifying dependency structures
without the POS constraint becomes more difficult
because the CMI score accounts for both the tar-
get dependency structure and all structures that can
arise throughout the sampling process.

The POS-constrained CMI estimator conditions
the CMI on the POS tag (yi, yj) of (xi, xj).
However, no causal LLM provides interfaces to
directly condition its sentence distribution on
POS tags (i.e., we can not trivially sample from
p(Xi, Xj |x−ij , Y (Xi) = yi, Y (Xj) = yj)). To
sample from the conditional distribution, we mod-
ify MTMH’s proposal distribution such that the
probability for illegitimate words is 0 (Figure 2).
We refer to the illegitimate word Xi as words vio-
lating the POS constraint (i.e., Y (Xi) ̸= yi). The
modification excludes all illegitimate words from
being sampled while keeping the relative proba-
bility p(x′)

p(x) unchanged between sentences x and
x′ containing legitimate samples. Because the rel-
ative probability is unchanged, we can implicitly
renormalize the sentence distribution in the MTMH
sampler. As a result, the modification allows for

conditioning the sentence distribution on POS tags
without explicitly modifying the sentence distribu-
tion.

We compute the POS-constrained CMI as
Equation 4, given samples (xi, xj) ∼ Pj :=
Xi, Xj |x−ij , Y (Xi) = yi, Y (Xj) = yj and sam-
ples (x′i, x

′
j) ∼ Pm := Xi ⊗ Xj |x−ij , Y (Xi) =

yi, Y (Xj) = yj . We show in Appendix A.1 that
the computation would yield the conditional CMI
score, assuming that POS is unambiguous given
the entire sentence. The assumption holds for the
vast majority of natural language sentences.

Icmi
ij (x|yi, yj) = E

(xi,xj)∼Pj

[log p(xi, xj , x−ij)]

− E
(x′

i,x
′
j)∼Pm

[
log p(x′

i, x
′
j , x−ij)

]
(4)

4.3 Decoding Dependencies with the AC and
the FNUH Constraint

We heuristically apply two grammatical constraints
(the Adjacent-Connect (AC) constraint and the
Function Word UnHeading (FNUH) constraint)
and apply Prim’s algorithm during the decoding
stage. The AC constraint injects a locality bias by
forcing a word to connect with its right neighbor
when the word has a low CMI score with the rest
of the sentence. The constraint comes into effect
when the cumulative CMI of the word is smaller
than a preset threshold (i.e.,

∑
j I

cmi
ij (x) < τ ). The

FNUH constraint injects a structural bias by pre-
venting function words from being a syntactic head
in the predicted dependency tree. This constraint
exploits the structural bias that Universal Depen-
dencies rarely use function words as a head and was
applied in previous research (Noji et al., 2016). In
undirected dependency parsing, being a headword
means the word has a degree larger than one in
the decoded dependency structure. We enforce the
constraint by gradually discounting the CMI score
related to the function word that violates the con-
straint. The FNUH constraint can only suppress
high CMI scores assigned in wrong dependency
structures (type I error) but is unable to uncover
dependencies that are not detected by CMI (type II
error).

5 Experiments and Results

5.1 Experiment Setup
We conduct experiments using the Universal De-
pendency (UD) (Nivre et al., 2020) datasets in
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five languages (i.e., English (EN), German (DE),
French (FR), Spanish (ES), and Russian (RU)) for
analysis. We use the EWT (Bies, Ann et al., 2012)
section for English and the GSD section (Nivre
et al., 2020) for the other four languages. We carry
out the evaluation over 10-word subsets of the re-
spective datasets, which contain sentences with at
most ten words without punctuations. This set-
ting is common in previous unsupervised parsing
research (Klein and Manning, 2004; Cohen and
Smith, 2009). We additionally include the WSJ10
dataset and the full English Parallel Universal De-
pendency (PUD) dataset for comparison with state-
of-the-art methods, as done in Wu et al. (2020).

We apply the unbiased Cohen’s d metric
(Hedges, 1981), an effect size metric, to measure
the correlation strength between dependence scores
and syntactic dependencies. A higher d value in-
dicates a stronger correlation (Gibson, 2015). We
adopt the Unlabelled Undirected Attachment Score
(UUAS) (Hewitt and Manning, 2019) for evaluat-
ing the parsing performance. UUAS is our primary
evaluation metric because the CMI score is sym-
metric in definition. Consequently, the CMI model
cannot recover directed dependencies. We mea-
sure only for dependencies connecting actual words
(i.e., we exclude the root dependency and any de-
pendencies connecting to punctuations). This set-
ting aligns with the evaluation principle in previous
works (Klein and Manning, 2004; Noji et al., 2016)
where all punctuations are removed.

For the CMI estimation, we use the multilingual
BERT model (Devlin et al., 2018) for the MTMH
sampler’s proposal distribution and the multilin-
gual GPT model (Shliazhko et al., 2022) for the
sampler’s target distribution. We use the Perturbed-
Masking method (Wu et al., 2020) (PM) as the
baseline method 1. We apply the same multilingual
BERT model to the CMI and PM methods. We also
include results for PM(bbu), a PM variant using the
monolingual bert-base-uncased model (Devlin
et al., 2018), to align with previous evaluation set-
tings. We refer to the CMI variant using the POS
constraint as CMI, as the constraint is an integral
part of the CMI score estimation process.

5.2 CMI-Syntactic Dependency Correlation
Figure 3 compares the CMI score between syn-
tactic dependencies and non-dependencies for de-

1We removed a buggy softmax implementation in decoding
because we found that parsing with the raw PM score yields a
better performance.

Figure 3: CMI scores for syntactic dependencies and
non-dependencies binned by dependency lengths. The
score is estimated over the 10-word English EWT
dataset.

EN DE FR RU ES
d

CMI 1.03 1.31 1.26 1.24 1.24
PM 1.05 1.13 1.25 1.18 1.24
PM(bbu) 1.17 - - - -

d̄
CMI 0.81 1.21 0.8 0.82 1.03
PM 0.74 0.97 0.73 0.55 0.64
PM(bbu) 0.81 - - - -

Table 1: d and d̄ metrics computed for the CMI and PM
scores. - indicates that the model can not run on the
corresponding dataset.

pendencies with lengths up to 6. The dependency
length is the number of words between the two
words connected by the dependency. We observe
a positive correlation: the CMI score tends to be
higher for the syntactic dependency than for the
non-dependency. This result highlights the CMI
score’s ability to separate the two types of depen-
dencies. However, the CMI score’s magnitude de-
creases monotonically with the dependency length
such that the CMI score for the long syntactic de-
pendency is, on average, lower than the CMI score
for the short non-dependency. This result indicates
a weaker statistical correlation for words connected
by the long syntactic dependency.

5.3 Effect Size

Table 1 compares the correlation strength of the
CMI score with the strength of the PM score using
two effect size metrics (d and d̄). The d metric
computes the Cohen’s d value for all dependencies
as a single group, whereas the d̄ metric computes
the average Cohen’s d value for equal-length de-
pendencies. The table suggests that the CMI score
generally exhibits a stronger correlation across lan-
guages than the PM score, as evidenced by the
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Models EN DE FR RU ES Mean
AC 0.497 0.480 0.513 0.579 0.530 0.519
CMI w/o GR 0.591 0.605 0.595 0.603 0.594 0.597
CMI w/o GR POS 0.556 0.563 0.565 0.575 0.569 0.565
PM w/o GR 0.540 0.563 0.548 0.576 0.603 0.566
PM(bbu)w/o GR 0.576 - - - - -

Table 2: UUAS of the CMI model and the PM model in 5 languages. GR and POS indicate the use of gold-root and
Part-Of-Speech information, respectively. - indicates that the model can not run on the respective dataset. The mean
column shows the average UUAS across all languages.

significantly higher d̄ values. Both the CMI and
the PM score appear to have a weaker correlation
than the monolingual PM(bbu) score in English.
As we will see in the next section, the CMI and the
PM(bbu) models have higher parsing performance
than the PM model, as the effect size metrics pre-
dicted. However, the CMI model outperforms the
PM(bbu) model in parsing performance despite
the seemingly stronger correlation of the PM(bbu)
score.

5.4 Parsing Performance Against Baselines

5.4.1 UUAS Comparison

Table 2 compares the CMI parsing model without
grammatical constraints applied in the decoding
stage and the PM model without the gold-root (GR)
information injection. We include an Adjacent-
Connect (AC) baseline, which forms a dependency
tree by connecting adjacent words. The AC base-
line is the undirected variant of the trivial right-
branching baseline (Klein and Manning, 2004)
that performs strongly in unsupervised dependency
parsing. We convert the directed dependency out-
put from the PM model to undirected ones when
evaluating the UUAS for the PM model.

As shown in the table, the CMI model outper-
forms the baseline PM model and the CMI w/o
POS model by an average of 0.031 UUAS and
0.032 UUAS, respectively. In Spanish, where the
CMI model underperforms the PM model, the per-
formance gap is less significant than in other lan-
guages, where the CMI model outperforms the PM
model. The CMI model also outperforms the mono-
lingual PM(bbu) model by 0.015 UUAS in the En-
glish dataset. This result demonstrates the effec-
tiveness of the POS constraint and establishes the
CMI model as a strong LLM-based unsupervised
dependency parser.

Relations EN DE FR RU ES Mean
nsubj 0.092 0.004 0.130 0.162 0.110 0.100
obj 0.063 0.143 0.119 0.180 -0.060 0.089
iobj - -0.077 - 0.091 -0.234 -0.073
ccomp 0.162 -0.083 - - - 0.039
xcomp 0.278 0.067 -0.143 0.048 -0.188 0.012

Table 3: UUAS difference between the CMI w/o GR
model and the PM w/o GR model for core relations.
The table only shows relations with more than ten occur-
rences in the dataset. csubj is excluded because none
of the datasets contains more than ten occurrences.

5.4.2 Comparing Core Dependency
Extractions

Table 3 shows the UUAS difference between the
CMI w/o GR model and the PM w/o GR model on
five core dependency relations. The CMI model
performs strongly in retrieving core dependencies,
outperforming the PM model by 0.033 mean UUAS
on average across the five relations. The CMI
model performs exceptionally well on dependen-
cies of the nsubj and obj relations. The two core
relations typically connect words with richer lexical
interactions than the other three core relations. We
denote a dependency relation as lexical-interaction-
rich if the words connected by the dependency tend
to have a strong correlation pattern and a relation as
lexical-interaction-sparse if the words have a weak
correlation pattern. For example, relations such as
obj and compound would have richer lexical inter-
actions than relations such as cop. Beyond the core
relations, we found the CMI model performing
strongly on lexical-interaction-rich relations such
as nmod (avg. 0.09 difference) and compound (avg.
0.12 difference). This analysis indicates the CMI
model’s strength in retrieving lexical-interaction-
rich relations.

5.5 CMI’s Problem in Parsing

Figure 4 illustrates at least two problems of the
CMI model. Firstly, the CMI model performs
weakly in capturing dependencies that involve
sparse lexical interactions. This weakness is ev-
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Figure 4: A negative example where the CMI model
fails to capture many syntactic dependencies.

EN DE FR RU ES
Lexical-Interaction-Sparse Relations

cop 0.322 0.348 0.333 - 0.515
case 0.556 0.533 0.547 0.696 0.435
mark 0.363 0.370 0.250 - 0.500

Lexical-Interaction-Rich Relations
obj 0.695 0.619 0.644 0.620 0.640
nsubj 0.538 0.565 0.580 0.619 0.524
nmod 0.500 0.566 0.620 0.581 0.628
Model UUAS 0.591 0.605 0.595 0.603 0.594

Table 4: UUAS of the CMI model for lexical-interaction-
rich relations (nmod, obj, and nsubj) and lexical-
interaction-sparse relations (cop, case, and mark). Only
UUAS for relations with more than ten occurrences are
shown. The “Model UUAS” entry shows the UUAS for
all dependencies.

idenced by the low CMI score for dependencies
with sparse lexical interactions. Table 4 compares
the UUAS of the CMI model between the lexical-
interaction-rich and the lexical-interaction-sparse
relations. The CMI model tends to produce higher
than overall UUAS for the lexical-interaction-rich
relations (obj, nsubj, and nmod) and produce
lower UUAS for the lexical-interaction-sparse re-
lations (cop, case, and mark). Other lexical-
interaction rich relations, such as amod, can reach a
mean UUAS up to 0.802 across the five languages.
Secondly, the CMI model reacts to words with sim-
ilar meanings (e.g., the pair “nicest” and “good”
in Figure 4 gets a high CMI), yet the words are
syntactically unrelated. The two problems indicate
a limitation in CMI-based methods in solving the
unsupervised dependency parsing problem.

5.6 Effect of the AC and the FNUH
Constraint

Table 5 compares the UUAS of the CMI model
with different levels of grammatical constraints

Models EN DE FR RU ES
CMI w/ AC FNUH 0.645 0.662 0.668 0.644 0.679
CMI w/ AC 0.615 0.62 0.625 0.637 0.627
CMI 0.591 0.605 0.595 0.603 0.594

Table 5: UUAS of the CMI model with different levels
of grammatical constraints.

EN DE FR RU ES
Lexical-Interaction-Sparse Relations

cop -0.181 -0.030 0.056 - 0.000
case -0.134 0.033 -0.035 -0.070 -0.031
mark -0.069 0.000 0.000 - 0.000

Lexical-Interaction-Rich Relations
obj 0.049 0.076 0.085 0.020 0.100
nsubj 0.143 0.117 0.099 0.000 0.061
nmod 0.277 0.133 0.167 0.035 0.198

Table 6: UUAS difference between the CMI w/ FNUH
AC model and CMI w/ AC model on three lexical-
interaction-sparse relations and three lexical-interaction-
rich relations. The table shows only relations with ≥ 10
occurrences.

applied at the decoding stage. Both the AC and
the FNUH constraint contribute positively towards
the parsing performance. The two constraints, to-
gether, result in 0.062 UUAS improvement on aver-
age. The FNUH is the more influential constraint,
resulting in 0.034 UUAS improvements on aver-
age. Further analysis (Table 6) shows FNUH’s
benefit in recovering relations with rich lexical in-
teractions. The obj, nsubj, and nmod relations
obtain on average 0.104 and up to 0.277 UUAS im-
provement by applying the FNUH constraint. This
result indicates that the FNUH can effectively re-
veal lexical-interaction-rich dependencies detected
by CMI. Nonetheless, there are drawbacks in ap-
plying the FNUH constraint, namely, UUAS loss
in relations with sparse lexical interactions (cop,
case, and mark). The drawback is expected be-
cause those relations connect to a function word
and can be a victim of the FNUH constraint. In
conclusion, the two grammatical constraints are ef-
fective in recovering more syntactic dependencies
and are generally applicable to many languages.

5.7 Parsing Performance Against SOTA

Table 7 compares the parsing performance of the
CMI model with the AC and FNUH constraint with
the performance of three LLM-based and three
grammar-based models. The comparison is carried
out over the test set of the respective datasets. We
apply the gold-root information to the PM model
and apply the FNUH constraint to the DMV and
LCDMV model, following Wu et al. (2020) and
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EN DE FR RU ES EN-PUD WSJ10(S) WSJ10(C) Mean
Multilingual LLM-Based Methods

CMI w/ AC FNUH 0.634 0.563 0.681 0.637 0.726 0.541 0.589 0.548 0.615
PM (Wu et al., 2020) 0.568 0.582 0.582 0.591 0.606 0.506 0.592 0.462 0.575
MB (Zhang and Hashimoto, 2021) 0.521 0.480 0.544 0.536 0.570 0.473 0.552 0.576 0.525

Grammar-Based Methods
DMV (Klein and Manning, 2004) 0.612 0.604 0.592 0.678 0.705 0.484 0.597 0.555 0.603
LCDMV (Noji et al., 2016) 0.658 0.626 0.642 0.731 0.608 0.554 0.614 0.578 0.626
Joint (Yang et al., 2020) 0.650 0.564 0.738 0.420 0.662 0.556 0.704 0.792 0.636

Monolingual LLM-based Methods
PM(bbu) 0.602 - - - - 0.511 0.603 0.53 -
MB(bbc) 0.352 - - - - 0.495 0.586 0.561 -
SSUD (Jian and Reddy, 2023)* - - - - - 0.464 0.576 - -

Table 7: Model UUAS on the 10-word test sets, the English PUD dataset, and the WSJ10 dataset. - indicates that the
model cannot run on the corresponding dataset. WSJ10(S) and WSJ10(C) refer to the WSJ10 corpus annotated in
the Stanford dependency (de Marneffe et al., 2006) and the Collins dependency (Collins, 2003) format, respectively.
* indicates results from the original paper. MB(bbc) refers to the MB model using the bert-base-cased model.
The mean column shows the average UUAS across the eight datasets.

Noji et al. (2016) respectively. We initialize the
Joint model using the LCDMV model’s predic-
tion on the universal dependency treebanks and
the HDP-DEP (Naseem et al., 2010) model’s pre-
diction on the WSJ10 datasets.

The table shows that the CMI model outperforms
the PM and the MB models by 0.04 UUAS and
0.09 UUAS across the eight datasets. The CMI
model outperforms the monolingual PM and MB
models in three out of four datasets. Compared
to grammar-based models, the CMI model outper-
forms the similarly constrained DMV model but
underperforms the LCDMV and the Joint model.
However, the LCDMV and the Joint model are
more strongly constrained than the CMI model.
The LCDMV model applies a maximum depth con-
straint to center-embedding structures in addition
to the FNUH constraint. The Joint model inherits
the depth constraint from the LCDMV model or
dependency rule constraints from the HDP-DEP
model during its parameter initialization process.
This result, on the one hand, establishes the CMI
model as a strong LLM-based unsupervised de-
pendency parsing model. On the other hand, the
result underscores the significance of grammatical
constraints in LLM-based unsupervised parsing,
as supported by prior research on grammar-based
unsupervised dependency parsing.

6 Discussion

In Section 5, we saw grammar-based models out-
performing the CMI model after applying all three
grammatical constraints. Nonetheless, we believe
the grammar-based models are not superior substi-
tutes for the CMI-based models. The two models
are on opposite ends of a spectrum. Our experi-

ments have pointed out the strong performance of
the CMI model in retrieving dependency relations
with rich lexical interactions, which is in line with
Yuret (1998)’s finding. Although grammar-based
models can benefit from lexical information (Han
et al., 2017), they struggle to utilize the rich lexical
interaction encoded in LLMs (Han et al., 2020).
The CMI-based models and the grammar-based
models are complementary. We believe that com-
bining the strength of the CMI and grammar-based
models can lead to a more robust unsupervised
parsing method.

7 Conclusion

In this paper, we applied CMI, an interpretable
bi-lexical dependence metric, to unsupervised de-
pendency parsing and proposed a reliable MTMH-
based CMI estimator. We incorporated POS infor-
mation into the CMI estimation process through
the POS constraint and further integrated the AC
and FNUH constraints at the decoding stage. The
correlation analysis suggests that the CMI score
positively correlates with the syntactic dependency
and has a stronger correlation with the syntactic
dependency than baseline scores. The comparison
with the baseline models and the ablation analysis
confirmed the effectiveness and applicability of the
three grammatical constraints in LLM-based unsu-
pervised dependency parsing across five languages.
Analysis by dependency relations indicates that the
CMI model performs strongly on relations involv-
ing rich lexical interactions but performs poorly on
relations involving sparse lexical interactions. The
weakness in retrieving lexical-interaction-sparse
relations suggests a limitation in CMI-based unsu-
pervised parsing methods. The comparison with
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state-of-the-art models establishes the CMI model
as a strong LLM-based model, which outperforms
LLM-based and similarly constrained grammar-
based models but underperforms the more strongly
constrained model.

8 Limitations

One issue with the CMI method is the amount of
computation needed to estimate the CMI score.
For example, we need 40 GPU hours on A100
GPU to evaluate all CMI scores for a 10-word UD
dataset. The computation complexity arises from
two sources: the MTMH sampling process and
O(n2) complexity for computing the CMI score for
all word pairs. The MTMH algorithm iteratively
performs sampling over xi and xj . At step k, the al-
gorithm needs to evaluate the proposal distribution
q(Xi|xk−1

−i ) and compute the sentence probability
for p(xki

′
, xk−1

−i ). Although the current implementa-
tion can evaluate the above two in O(1) time, each
evaluation is expensive due to the large number of
parameters in causal LLMs. This complexity is fur-
ther compounded by the need for many iterations
between samples to minimize autocorrelation.
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A Appendix

A.1 Conditional CMI computation
Proposition 1. Icmi

ij (x|yi, yj) can be computed as
Equation 4 assuming the unambiguity of POS given
the full sentence.

Proof. We first look at the definition of CMI. Let
c = (x−ij , yi, yj).

I
cmi
ij (x|x−ij , yi, yj)

:= EXiXj |c

[
log

p(xi, xj , x−ij |yi, yj)

p(xi|x−ij , yi, yj)p(xj , x−ij |yi, yj)

]
(5)

= E (xi,xj)∼XiXj |c
(x′

i,x
′
j)∼Xi⊗Xj |c

[
log

p(xi, xj , x−ij |yi, yj)

p(x′
i, x

′
j , x−ij |yi, yj)

]
(6)

= E (xi,xj)∼XiXj |c
(x′

i,x
′
j)∼Xi⊗Xj |c


log

p(xi, xj , x−ij)1Y (xi,xj)=yi,yj

p(x′
i, x

′
j , x−ij)1Y (x′

i
,x′

j
)=yi,yj




(7)

= E (xi,xj)∼XiXj |c
(x′

i,x
′
j)∼Xi⊗Xj |c

[
log

p(xi, xj , x−ij)

p(x′
i, x

′
j , x−ij)

]
(8)

We apply the unambiguous POS assumption in
Equation 6, converting the conditional probability
to the product of an indicator function and the sen-
tence probability. Because the indicator function is
satisfied by the condition c, the indicator function
will always be 1.

A.2 Theoretical Issues of Zhang and
Hashimoto (2021)

They proposed a formulation of “conditional mu-
tual information” (Equation 9)

IZH
ij (x) = E

XiXj |x−ij

[
log p(xi|xj , x−ij)

− log E
Xj |xi,x−ij

p(xi|xj , x−ij)

]
(9)

We prove the following propositions
Proposition 2. The upper bound of IZH

ij is 0.

Proof.

(9) = E
Xi|x−ij

[
E

Xj |xi,x−ij

log p(xi|xj , x−ij)

− log E
Xj |xi,x−ij

p(xi|xj , x−ij)

]
(10)

≤ E
Xi|x−ij

[
E

Xj |xi,x−ij

[
log p(xi|xj , x−ij)

− E
Xj |xi,x−ij

log p(xi|xj , x−ij)

]]
(11)

= 0 (12)

Proposition 3. Two statistically independent ran-
dom variables can reach the maximum value of 0
under IZH

ij .

Proof. Let the two random variables be defined
over a two-value set Xi, Xj = {0, 1}. Each value
has a probability of 0.5. Consequently, we have the
joint and the marginal probability, as shown in the
following table.

Xi 0 1
Xj Prob 0.5 0.5
0 0.5 0.25 0.25
1 0.5 0.25 0.25

IZH(Xi;Xj) = (2 ∗ 0.5)
[
(0.5 ∗ 2) log 0.5 (13)

− log(0.5 ∗ 2 ∗ 0.5)
]

(14)

= 0 (15)
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