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Abstract

One of the main problems low-resource lan-
guages face in NLP can be pictured as a vi-
cious circle: data is needed to build and test
tools, but the available text is scarce and there
are not powerful tools to collect it. In order
to break this circle for Guarani, we explore if
text automatically generated from a grammar
can work as a Data Augmentation technique to
boost the performance of Guarani-Spanish Ma-
chine Translation (MT) systems. After building
a grammar-based system that generates Span-
ish text and syntactically transfers it to Guarani,
we perform several experiments by pretraining
models using this synthetic text. We find that
the MT systems that are pretrained with syn-
thetic text perform better, even outperforming
previous baselines.

1 Introduction

From an early age, millions of South Americans
grow up and build their reality speaking languages
that were used in their region for hundreds of years
before the first contact with Europeans. Many of
them also have formal schooling in their indige-
nous languages, as a way to encourage them to
forge their identity according to that world vision,
carrying with them the rich culture of their com-
munities and passing it on to the next generations.
Although some of these indigenous languages are
massively spoken, their speakers might not benefit
from the recent advances in language technologies
(e.g. high-performance machine translators, large
language models) due to the lack of data to train
models and other difficulties (Mager et al., 2023;
Ebrahimi et al., 2023). Most of these languages
are considered low-resource languages in NLP re-
search (Joshi et al., 2020).

Low-resource languages suffer from a vicious
circle that is hard to break: there is not enough
data to build tools, but also there are no tools to

massively collect text from the web to train them.
That is the case of Guarani (Avañe’ẽ), an indige-
nous language spoken by nearly 10 million people
mainly in Paraguay, but also in some regions of
Argentina, Bolivia and Brazil. Back in the 17th
century, the Tupi-Guarani language family was so
widespread in the region that it worked as a lin-
gua franca (Boidin, 2020). That legacy remains
to this day, as evidenced by loanwords used in re-
gions where Guarani is not directly spoken, like
Uruguay (Rodríguez, 2015). Many years of con-
tact with Spanish resulted in a considerable number
of varieties, Jopara being the most widely spoken
nowadays, used daily by millions of speakers in
Paraguay (Estigarribia, 2015). Jopara is a vari-
ety that exhibits frequent code-switching between
Guarani and Spanish (the two official languages of
Paraguay), as well as many adapted and unadapted
loanwords and phrases. The resources we use have
a strong prevalence of this variety.

In this work, we present an approach that aims
to break the aforementioned low-resource vicious
circle: through generating synthetic parallel data
based on grammar knowledge, we try to augment
the available data to enhance Guarani-Spanish Ma-
chine Translation (MT). We then train Guarani-
Spanish MT systems using different combinations
of the datasets in a pretraining and fine-tuning strat-
egy, to understand which datasets could contribute
the most to improve the translation and in what
scenarios. All the resources used and developed
for this work are available on GitHub1.

2 Related Work

Although Guarani is still considered a low-resource
language in the NLP community, it is currently
an active area of research and some work has fo-
cused on this language in the past few years. In

1https://github.com/pln-fing-udelar/guarani-grammar-
NAACL2024
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particular, considerable effort has been made to
build Guarani-Spanish parallel corpora. Chiruzzo
et al. (2020) created a parallel corpus based on
Paraguayan news, which was later expanded and
enriched using other parallel data sources (Alvarez,
2019; Góngora et al., 2021; Mager et al., 2021),
resulting in the Jojajovai Guarani-Spanish bench-
marking corpus (Chiruzzo et al., 2022a). Since that
corpus was made up of several subsets, the text rep-
resents different Guarani varieties that show vary-
ing degrees of Guarani-Spanish code-switching,
such as Jopara or Jehe’a. Furthermore, Guarani is
included in Meta’s initiative No Language Left Be-
hind as an available language in the dataset (Costa-
jussà et al., 2022). There is also a small BERT
model trained on the Guarani Wikipedia (Agüero-
Torales et al., 2023).

Previous efforts have been made to specifi-
cally work on Guarani-Spanish MT. Vázquez et al.
(2021) won the AmericasNLP 2021 shared task
(Mager et al., 2021), which included the Guarani-
Spanish pair. Borges et al. (2021) tried to take
advantage of the rich morphology of Guarani, in-
corporating morphological information to the mod-
els. Góngora et al. (2022) performed translation
experiments to evaluate if pretrained static word
embeddings made a difference in MT performance.
Google Translate includes Guarani in the available
languages since June 2022 (Bapna et al., 2022).

In low-resource scenarios, it is usual to explore
strategies to increase the available data by creating
synthetic text or reusing the existing text in clever
ways. This process is known as Data Augmentation
(DA). One of the most used techniques for DA is
back-translation, consisting in translating monolin-
gual data to the target language using an already
available MT system for the considered language
pair (Sennrich et al., 2016). Some works explore
more complex strategies to improve the effect of
back-translation (Burchell et al., 2022; Ebrahimi
et al., 2022). Other works explore completely dif-
ferent approaches for DA, such as obtaining ex-
tra sentence pairs by changing common words for
rare words in some original sentence pairs from
the training set (Fadaee et al., 2017), transforming
sentence pairs by cautiously changing the order of
words or phrases (Sánchez-Cartagena et al., 2021),
generating new data using different statistic-based
algorithms (He et al., 2023), or creating multilin-
gual lexicons and following different strategies to
use them (Jones et al., 2023).

In this work we follow a different approach: we

try to create a large parallel corpus of synthetic data
from grammar knowledge, and use it to pretrain a
neural translation model. As far as we know, this
is the first time an ad hoc grammar is used as DA
process for a South American indigenous language.

3 Synthetic Text Corpora

In preliminary experiments, we observed that MT
systems for the Guarani-Spanish pair showed low
performance when dealing with short sentences.
A similar observation can be inferred from Koehn
and Knowles (2017), where the BLUE score for
the short-length buckets is lower than those for
the mid and long-length buckets. In our case, this
could be caused by the nature of the used paral-
lel data (Chiruzzo et al., 2020), consisting mainly
of long, complex and somewhat formal sentences
often found in journalistic writing.

Obtaining pairs of short sentences is not always
easy, since they are generally found in social media
(usually very noisy), subtitles (usually not available
for low-resource languages) or in simple texts for
children, which in general have no translation avail-
able, and are often hard to find (as digital text) for a
low-resource language like Guarani. To tackle this
problem, we decided to build a synthetic collection
of short texts with their translations, starting from
a formal grammar based on the official Guarani
grammar (Academia de la Lengua Guaraní, 2018).

Spanish Guarani
Part-of-speech: V (verb)

Type: M (main), A (auxiliary), S
(semi-auxiliary)
Mood: I (indicative), S (subjunctive), M (imperative), P (partici-
ple), G (gerund), N (infinitive)
Tense: P (present), I (past imperfective), F (future), S (past perfect),
C (conditional)

Person: 1 (first), 2 (second), 3 (third)
Number: S (singular), P (plural)

Gender: M (male), F (female), C
(common)

Inclusiveness (only for first-
person plural): I (inclusive), E
(exclusive)
Pronoun position (only for third-
person plural): B (before the
verb), A (after the verb), 0 (not
relevant)

Transitivity: I (intransitive), T (transitive), D (ditransitive)

Spanish Guarani
Part-of-speech: N (noun)

Type: C (common), P (proper)
Gender: M (male), F (female), C
(common)

Gender: 0 (there is no gender for
nouns)

Number: S (singular), P (plural), N (invariable)
Nasalization: N (nasal), O (oral)

Table 1: Tags used for verbs (top) and nouns (bottom),
comparing the ones used for Guarani and Spanish.
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Our technique employs two simple grammars, for
Guarani and Spanish, that can roughly model the
same sentences, and a set of syntactic transfer rules
for going from Spanish to Guarani trees. We first
use the Spanish grammar to generate short sen-
tences together with their parse trees, and then ap-
ply the transfer and morphological generation rules
to create the Guarani translation.

3.1 Guarani-Spanish Lexicon

In order to build the grammars, we needed as many
Guarani-Spanish word pairs as possible. To obtain
them we used a mix of different resources, like
Guarani-Spanish bilingual dictionaries (Chiruzzo
et al., 2023a), and Spanish words with their mor-
phosyntactic information from the Freeling library
(Padró and Stanilovsky, 2012), enriched with an-
notations from the AnCora-Verbs dataset (Apari-
cio et al., 2008). Then, we automatically gener-
ated the annotations for the Guarani words, ac-
cording to the morphological rules explained in the
Guarani grammar (Academia de la Lengua Guaraní,
2018). Table 1 shows the tags used to annotate
verbs and nouns, comparing those needed for Span-
ish, Guarani or both. The final result of this process
is a bilingual lexicon, where both the Guarani and
the Spanish words in the pair are annotated with
the appropriate tags.

3.2 Generation of the Synthetic Parallel
Corpus

We built the grammars using NLTK’s feature gram-
mars (FG) (Bird and Loper, 2004), inspired in
HPSG grammars (Pollard and Sag, 1994) but with
many simplifications2. The use of FGs allows to
indicate the necessary morphological features for
each word in both languages, and also to estab-
lish agreement constraints, which are not always
the same on each side. For example, both lan-
guages have subject-verb agreement on person and
number, but Guarani also includes nasal/oral agree-
ment (a feature related to the pronunciation of some
vowels and consonants), while Spanish includes
determiner-noun gender and number agreement.
We model short sentences with appropriate com-
binations of verbs, nouns, adjectives, pronouns,
determiners3, adpositional phrases and negation.

2For instance, we only percolate the morphosyntactic head
features we need, and also leave out semantic features.

3Determiners in Guarani are modeled using other POS,
but for simplicity we make them correspond to the Spanish
determiners in the bilingual lexicon.

The types of sentences modeled can have a noun
phrase or a pronoun as subject (null subjects are
also possible), a verb phrase, and optionally an ad-
positional phrase. This leaves a total of six basic
sentence rules for Spanish, with each rule having
one or more transfer rules to Guarani, adding up
to twelve. The transfer rules can include more
changes, for example some pronouns in Guarani
(although not all of them) should be written af-
ter the verb, changing them from the natural or-
der in Spanish. One important difference between
Guarani and Spanish that the transfer rules take into
account is that the latter uses prepositional phrases,
while the former uses postpositional phrases. Fur-
thermore, negation is handled differently in both
languages, in Spanish there is a separate adverb
“no”, while in Guarani it is denoted with a circum-
fix around the verb.

Since NLTK does not include a generation al-
gorithm for FGs, we transform it into a Context-
free Grammar (CFG), assigning terminal weights
to the words in the vocabulary according to their
frequency in the Jojajovai corpus, and generate
candidate instances using this CFG4. Then, we use
the FG to discard the sentences generated with the
CFG that are syntactically incorrect. As a result,
we obtain correctly generated sentences, enriched
with their syntax tree.

Finally, we get the Guarani translation by a trans-
fer approach: we apply rules that transform the
Spanish tree into a Guarani tree, following a recur-
sive bottom-up approach, and also inserting inter-
mediate symbols that are solved later at the mor-
phological generation stage (e.g. affix concatena-
tion). Table 2 shows some examples of this process,
while appendix A presents a detailed example of a
transformation from a Spanish noun phrase to its
Guarani counterpart using our process.

We used this process to generate 277,842 sen-
tence pairs, comprising roughly 1M Guarani to-
kens, which make up what we call the Synthetic
Grammar corpus.

3.3 Evaluation of the Synthetic Grammar

A sample of 70 sentence pairs generated by our
system was evaluated by a native Guarani speaker,
fluent both in Spanish and Guarani. For each pair,
the evaluator was asked to answer “Yes” or “No”

4We use Eli Bendersky’s algorithm to gener-
ate random strings from a probabilistic CFG –
https://eli.thegreenplace.net/2010/01/28/generating-random-
sentences-from-a-context-free-grammar
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Spanish Guarani - Raw transfer Guarani - Final English
yo no volvía che ndajevyimi# che ndajevyimi I wasn’t going back
tu adolescente creció ne mitãrusu okakuaakuri # ne mitãrusu

okakuaakuri
your teenager grew
up

nuestra ironía no
encoge de esta pieza

ore ñembohory
nomocha’ı̃ri # ko
kotypy _gua

ore ñembohory
nomocha’ı̃ri ko
kotypygua

our irony doesn’t
shrink from this
room

ellas pasarán #hikuái ojehuta # ojehuta hikuái they will pass

Table 2: Examples for the Guarani-Spanish translation by syntactic transfer. The Raw transfer column shows the
immediate transformation, including the “move pronoun if needed” (#) and the “concatenate” (_) symbols. A
postprocessing step solves those pending symbols, thus generating the sentences shown in the Guarani - Final
column.

to each of the following statements:

• Structural Correctness: The Guarani sen-
tence is structurally correct.

• Known words: Every word in the Guarani
sentence is a known word.

• Same information: The Spanish sentence
and the Guarani sentence convey the same
information.

• Word choice: A Guarani native speaker
would express this information choosing those
same words.

In the Structural correctness category, 87.1%
of the sentence pairs looked syntactically correct.
Given the morphosyntactic complexity of Guarani,
we consider this one of the best aspects of the syn-
thetic text. We have a lower score of 51.4% for
the Known words category, which is also related
to morphological complexity. It seems that some
grammar rules were wrongly applied, or in a dif-
ferent order than expected, so some word affixes or
contractions did not sound natural. The Same in-
formation category got an average score of 45.7%,
mainly because our process has no way to select
a word in context when considering synonyms, so
on many occasions a wrong sense was selected.
Finally, the fluency metric Word choice was the
lowest one with 31.4%. This was expected to be
very low, as the syntactic transfer approaches gen-
erally lack the subtleties of more fluency-oriented
methods like those using language models.

Additionally, the evaluator provided qualitative
comments to address specific linguistic nuances,
with valuable insights into specific areas of im-
provement. Notable comments included sugges-
tions for refining verb endings, selecting more ap-

propriate vocabulary, and addressing minor syntac-
tic issues.

The overall evaluation results show a positive
reception of the synthetic Guarani text, especially
considering we are not using this tool to translate
sentences directly but as a previous step to train
other MT systems, so translations at this stage need
not be perfect.

3.4 Translation of the AnCora corpus

The methodology previously described in section
3.2 does not take into account any semantic prop-
erty of the generated text: it just yields random
combinations of words that preserve the grammar
but do not necessarily have any meaning. As a strat-
egy to make Guarani text that is more grounded
on real examples, we used our grammar to ana-
lyze and translate the Spanish text available in the
AnCora corpus5 (Taulé et al., 2008) to Guarani,
similarly to the approach presented in (Chiruzzo
et al., 2022b). If during the transfer approach no
translation is found for a specific word or phrase,
then the Spanish words are preserved. As a result
we obtained a syntactically correct silver-standard
corpus, named Synthetic AnCora corpus, to use
as extra text to train Guarani-Spanish MT systems.
This corpus consists of 14,120 sentence pairs.

Table 3 shows the statistics of both the Synthetic
Grammar and the Synthetic AnCora corpora. It is
interesting to observe that using AnCora we pro-
duce very long sentences in comparison to those
generated by the grammar as a standalone system.
While our grammar was designed to generate only
short sentences, the AnCora sentences are con-
siderably longer, since they are taken from real

5Note we did not use the syntactic annotations present
in AnCora, but parsed the sentences with our own simple
grammar.
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Synthetic Synthetic
Grammar AnCora

Sentence pairs 277,842 14,120
Guarani tokens 999,398 334,976

Guarani tokens/sent 3.60 23.72
Guarani vocabulary 41,202 44,869

Spanish tokens 1,215,305 392,921
Spanish tokens/sent 4.37 27.83
Spanish vocabulary 32,758 34,701

Table 3: Statistics of the synthetic corpora.

sources (i.e. news text, similar to the text compris-
ing most of the Jojajovai corpus). Also, the mecha-
nism of keeping the Spanish word if no translation
was found generates mixed Guarani-Spanish text.
Intuitively this can be thought of as an artificial
code-switching, although it is not the same as the
real phenomenon observed in previous works for
the Jopara or Jehe’a varieties (Estigarribia, 2015;
Chiruzzo et al., 2023b).

We did an evaluation of this Synthetic AnCora
set in a way similar to the Synthetic Grammar set,
having a native speaker evaluate 70 samples of the
corpus. The evaluation categories are the same,
with the difference being that the Known words
category now means that all the words translated
by the process are recognizable in Guarani, keeping
in mind that there are many words that were kept in
Spanish. The results of this evaluation are largely
similar to the previous one, for example 91.4% of
the sentences looked Structurally correct, even
considering some parts were untranslated from
Spanish. The Same information category was
slightly better at 48.6%, and the Word choice was
slightly worse at 28.6%. However, the category
that got a significant improvement was Known
words, where 84.3% of the translated words were
deemed as correct Guarani (up from 52.4%). This
is interesting, and might indicate that the words
used in these actual examples could be easier to
translate than words generated randomly. It is pos-
sible that less ambiguous words and more common
verb tenses with less morphological complexity are
used, so the transfer process does a better job at
finding the Guarani correspondence.

However, there were some interesting mistakes
in the process that were spotted during this eval-
uation. For example, in Spanish the prepositions
como and para can also be forms of the verbs comer
(to eat) and parar (to stop) respectively. The pro-

Sentence Guarani Spanish
Dataset Pairs Tokens Tokens

Jojajovai Train 20,213 309,920 459,629
Jojajovai Dev 5,315 73,414 108,604
Jojajovai Test 5,335 73,111 109,806

Synthetic Grammar 277,842 999,398 1,215,305
Synthetic AnCora 14,120 334,976 392,921

Bible 21,979 372,166 497,815
All (G+A+B) 312,690 1,699,886 2,098,350

Table 4: Size of the different corpora used in the neu-
ral translation experiments. All refers to the union of
the Synthetic Grammar, Synthetic AnCora and Bible
datasets.

cess systematically considers these prepositions as
if they were verbs, translating them into Guarani as
ajepy’ajoko (I eat or I take a bite) and ojoko (he/she
stops). This could be easily solved by using POS
information on the Spanish side, but our current
process does not include this.

4 Neural Translation Experiments

Our neural translation experiments were done in
three phases: first we trained simple models with
default parameters using the Jojajovai training data
to establish basic baselines; secondly we performed
a hyperparameter tuning phase where we tried
to find the best possible configurations for both
the transformer and the seq2seq architectures; fi-
nally we experimented with scenarios using sep-
arate pretraining and fine-tuning stages, varying
the pretraining data and the number of pretrain-
ing steps, and then fine-tuning with the Jojajovai
training data. All our experiments were done using
the MarianNMT (Junczys-Dowmunt et al., 2018)
framework, which allows to train neural transla-
tion models based on seq2seq (LSTM or GRU with
attention) and transformer based models. Table 4
shows the size of the corpora we used in these
experiments. All the experiments were run in the
ClusterUY (Nesmachnow and Iturriaga, 2019) clus-
ter environment using P100 GPUs, using up to four
parallel tasks with 60GB RAM, and an estimated
total of 3500 computing hours dedicated to experi-
ments.

4.1 Default and Tuned models
We trained seq2seq and transformer based models
using the MarianNMT framework. We first trained
baseline models in both directions using Marian-
NMT’s default configuration, and then performed
a hyperparameter tuning phase to find the best pos-
sible configuration. During this second phase, we
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Direction Model Epoch lr ml depth vocab BLEU ChrF
es→gn Default s2s 240 1.00e-4 50 (1,1) 16000 5.51 25.70

Tuned s2s 240 1.60e-3 187 (6,6) 6000 25.37 47.32
Default tr. 920 1.00e-4 50 (6,6) 16000 3.01 18.70
Tuned tr. 920 5.77e-5 198 (2,2) 2000 15.73 40.35

gn→es Default s2s 190 1.00e-4 50 (1,1) 16000 5.83 30.31
Tuned s2s 190 1.30e-4 153 (3,3) 6000 23.32 46.20
Default tr. 800 1.00e-4 50 (6,6) 16000 5.58 26.24
Tuned tr. 800 3.95e-5 182 (3,3) 2000 15.88 39.72

Table 5: Results of the baseline models trained with the default configuration (Default), and the best models found
during the hyperparameter tuning phase (Tuned), evaluated over the Jojajovai dev split.

did a random search varying the following hyperpa-
rameters: learning rate (lr), max sentence length
(ml), encoder and decoder depth, and vocabulary
size (vocab). More details about the baseline and
hyperparameter tuning phase can be seen in ap-
pendix B.

Table 5 shows the results over the Jojajovai dev
split, according to the ChrF (Popović, 2015) and
BLEU (Papineni et al., 2002) (calculated with the
sacreBLEU library6 (Post, 2018)) metrics, of the
default and tuned models, showing the hyperparam-
eter values for each configuration. As can be seen
in the table, the transformer based models underper-
formed in general compared to the seq2seq models.
This can also be seen in Fig. 1, which shows the
evolution of ChrF performance over the dev set dur-
ing training for some experimental configurations
of the random search. One possible explanation for
this could be the lower learning rates we needed to
use in order to keep the transformers training stable
(see appendix B).

4.2 Pretraining and fine-tuning

Once we finished the previous phase, we obtained
sets of hyperparameters that got promising results
for the development set, on top of the default param-
eters that were used for the baseline experiments.
This means we have two architectures (seq2seq and
transformer), with two hyperparameter configura-
tions each (default or tuned), for each of the two
translation directions: a total of eight experimental
configurations.

For each of these configurations, we tried a pre-
training and fine-tuning strategy: first pretrain us-
ing a combination of datasets (all of them larger
than Jojajovai but of different nature), and then fine-
tune using the Jojajovai training data. The datasets

6https://github.com/mjpost/sacrebleu

(a) es→gn

(b) gn→es

Figure 1: Performance of some models over the dev split
during training. The transformer models generally took
much longer to train, so we cropped the last epochs to
fit the graph. They only showed marginal improvements
in the remaining epochs.

we considered for pretraining are the Synthetic
Grammar and Synthetic AnCora sets described in
section 3, and the Bible dataset, widely used in low-
resource MT and also used in the Jojajovai bench-
mark experiments. We also performed pretraining
experiments using the union of all sets, which as
shown in Table 4 has around 1.7M Guarani tokens
and 2.1M Spanish tokens.

Besides the selection of pretraining data to use
in each experiment, another important variable is
how many pretraining epochs are used. In our
experiments, we tried a grid combination of the
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Hyperp. Model Epochs Synthetic Grammar Synthetic AnCora Bible All
es→gn 0 1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64

Default s2s 18.49 29.45 31.62 28.08 20.79 18.17 18.53 29.35 35.01 18.44 18.95 18.77 17.46 30.38 33.88 34.78 30.24
Default tr. 22.22 22.40 21.43 19.64 17.72 21.77 22.37 22.42 21.71 20.96 20.87 18.71 18.38 22.44 23.75 21.00 18.61
Tuned s2s 46.20 43.64 45.79 45.64 44.98 43.83 44.52 46.44 47.77 42.75 43.28 44.96 45.56 43.93 46.09 48.16 49.07
Tuned tr. 40.35 34.01 34.99 38.41 39.02 34.34 34.88 37.69 41.69 34.55 34.30 35.32 35.73 34.32 35.61 40.14 43.80

gn→es 0 1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64
Default s2s 22.77 32.77 30.26 28.16 24.66 21.00 21.15 23.78 36.70 22.80 20.86 21.38 20.09 28.42 32.48 33.15 27.05
Default tr. 25.40 25.95 24.91 22.59 20.18 26.30 27.14 26.66 27.37 25.58 25.39 23.29 22.19 26.96 27.66 25.31 22.91
Tuned s2s 47.32 47.38 46.63 43.16 41.39 45.92 47.03 47.78 48.14 45.17 46.38 47.82 46.25 47.14 48.33 47.28 44.94
Tuned tr. 39.72 35.54 36.90 38.47 38.43 35.39 35.38 36.58 40.88 35.61 36.05 36.37 36.99 36.10 37.27 39.80 43.49

Table 6: ChrF performance of the pretraining and fine-tuning experiments over the dev split. We show the results for
each model (seq2seq or transformers) with or wihtout tuned hyperparameters. The results for 0 epochs mean there
is no pretraining, then we show the results when pretraining during 1, 4, 16 or 64 epochs with the four combinations
of pretraining corpora.

pretraining datasets and number of epochs between
0, 1, 4, 16, and 64. When pretraining 0 epochs, it
means using no pretraining at all, which would be
analogous to the experiments in the previous phase.

Table 6 shows the results of these experiments.
To simplify, we are showing only ChrF values in
this table, but the BLEU measures were largely cor-
related. We can see that in all scenarios, the models
with tuned hyperparameters beat the default mod-
els, which was expected. Also, the seq2seq models
achieved better performance than the transformer
based models in all scenarios with tuned parame-
ters, but not always when using default parameters.

As for the use of pretraining data, we can see
that when using default parameters, any combina-
tion of pretraining data was enough to improve
the performance. This was not the case, however,
when using tuned parameters, in these cases only
pretraining with the Synthetic AnCora corpus and
the union of all corpora gave consistent improve-
ments. The best models in both directions were
seq2seq models that used all corpora as pretraining,
during 64 epochs for the es→gn direction, and 4
epochs for the gn→es direction. It is interesting
to see that the union of all corpora gave better re-
sults, which could be explained in part by the size
of the corpus, but perhaps also due to the combina-
tion of contents: large noisy but syntax-preserving
data, artificially code-switched data, and archaic
but correctly translated data.

5 Results

Section 4 presented the results of our experiments
against the dev split of Jojajovai. In this section,
we evaluate the models over the test split and com-
pare it to the results found on the original Jojajovai
benchmark experiments (Chiruzzo et al., 2022a).
We also ran the test data on the Google Translate

es→gn gn→es
Model BLEU ChrF BLEU ChrF
s2s - No pretraining 24.40 47.96 25.53 47.24
s2s - Synthetic Grammar 23.48 46.71 25.63 47.44
s2s - Synthetic AnCora 26.17 49.65 26.83 49.11
s2s - Bible 24.12 47.40 25.97 47.87
s2s - All 26.64 50.34 26.20 49.09
tr. - No pretraining 15.96 40.65 4.08 18.50
tr. - Synthetic Grammar 15.00 40.07 14.78 39.36
tr. - Synthetic AnCora 17.70 43.28 17.24 42.44
tr. - Bible 12.08 36.83 14.11 37.96
tr. - All 19.81 45.26 20.37 45.38
Google Translate 19.31 48.92 26.96 50.95
Jojajovai Base 16.10 29.41 19.06 31.84
Jojajovai Bible 20.77 35.28 19.98 33.31

Table 7: Results of our models and external baselines
over the Jojajovai test split. In each column, bold values
indicate the best result, and italic values indicate the
second best result.

API on October 15, 2023. As of this date, Google
Translate is the only available translation platform
that includes the Guarani-Spanish pair. Table 7
shows the test results.

First of all, our best models (pretrained over
all the corpora) beat the previous Jojajovai bench-
mark baselines, and also beat the Google Translate
baseline for the es→gn direction. For the opposite
direction, our models are very close to the Google
baseline, but note that when translating into Span-
ish, Google is very likely to have a much larger
language model that would yield much better re-
sults (Bapna et al., 2022), i.e. our models were
probably trained on a fraction of that data, and still
have almost as good results.

We also notice that the models pretrained only
using the Synthetic AnCora set, come in a very
close second position for all metrics. This is very
interesting, as this dataset is not very large but
seemingly still manages to obtain great results, per-
haps because it could leverage the linguistically in-
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Dir Metric Model abc anlp blogs hackathon libro_gn libro_td seminario spl
es→gn s2s - All 58.76 24.58 32.30 34.69 30.16 39.38 28.88 48.50

s2s - AnCora 58.34 23.59 31.55 31.65 28.93 37.00 29.71 46.99
ChrF Google Translate 56.61 37.05 39.38 41.71 28.82 28.15 35.94 49.49

Jojajovai Base 37.44 14.10 21.35 20.02 16.98 24.10 19.83 37.49
Jojajovai Bible 46.14 18.67 25.45 23.39 19.15 28.25 22.32 39.63

s2s - All 31.45 3.01 16.10 5.47 7.72 10.49 7.78 29.58
s2s - AnCora 31.16 2.66 15.34 3.67 10.86 8.63 8.76 28.38

BLEU Google Translate 23.56 6.01 16.27 5.75 8.30 3.09 9.00 30.01
Jojajovai Base 18.24 0.75 7.73 3.09 3.44 5.15 3.02 20.73
Jojajovai Bible 24.48 1.76 11.26 3.06 7.46 3.38 5.15 23.51

gn→es s2s - All 56.17 21.48 34.54 31.09 28.56 36.02 30.15 48.61
s2s - AnCora 56.31 21.17 33.37 30.34 30.36 37.69 30.64 48.58

ChrF Google Translate 56.73 42.04 45.25 46.32 31.88 29.62 36.73 44.49
Jojajovai Base 40.25 14.77 24.71 19.35 17.15 24.02 23.15 41.68
Jojajovai Bible 42.03 17.19 25.40 23.58 19.08 26.45 23.05 41.24

s2s - All 30.06 4.33 18.44 14.69 9.70 15.69 9.95 30.59
s2s - AnCora 30.83 4.04 18.13 10.86 10.50 18.41 10.10 31.21

BLEU Google Translate 30.81 19.80 24.45 18.44 11.29 9.02 13.16 23.58
Jojajovai Base 20.84 1.55 11.89 6.45 5.40 10.25 6.37 25.93
Jojajovai Bible 22.14 2.52 12.50 6.48 7.80 8.56 6.80 25.83

Table 8: Test results broken down by subset, showing our two best models compared to the external baselines. For
each subset and translation direction, the best results are shown in bold, both for BLEU and ChrF.

Figure 2: Comparison of BLEU (blue, top) and ChrF (red, bottom) metrics for all samples (X axis) in the test split
for our best model (left) and Google Translate (right) in the es→gn direction.

spired syntactic-transfer information with the real-
world AnCora text, creating a kind of artificial code-
switched data that was very suitable for this dataset.
In order to understand better if this is the case, we
performed an analysis of performance broken down
by subsets in Jojajovai, as shown in Table 8.

Our models beat the Google Translate baseline
on the abc, libro_gn and libro_td subsets, and have
almost the same performance on the spl subset.
The abc and spl subsets are by far the largest of
the corpus, and also abc is composed of news text
that has frequent code-switching between Guarani
and Spanish. We think that our dataset, especially
the Synthetic AnCora, would be able to emulate
data that is similar to this code-switched data (e.g.
sentences with Guarani structure but where named
entities and other non-frequent words are kept in

Spanish) which could explain the performance gain
in this type of text. On the other hand, the dataset
for which we have the lowest performance is anlp,
from the AmericasNLP (Mager et al., 2021) shared
task, which is very different in nature and was built
with the intention of having as little interference
from Spanish words as possible. Fig. 2 shows
a graphical comparison of the Spanish→Guarani
translations over the test split for our model and
Google’s, where we can clearly see the perfor-
mance differences across the subsets.

6 Conclusions

In this work we presented two main contributions.
First, we built grammars for Guarani and Spanish
that model roughly the same sets of simple sen-
tences, and transfer rules between the languages,
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with a strong inspiration in the HPSG formalism.
The grammar can be transformed into a probabilis-
tic CFG, with subsequent FG filtering and syntactic
transfer, that allows to generate Guarani-Spanish
sentence pairs. Additionally, this grammar-based
system was applied to the Spanish AnCora corpus
to obtain a silver standard Guarani-Spanish parallel
corpus.

Second, we evaluate if the generated text
has enough quality to boost the performance of
Guarani-Spanish MT systems when used as pre-
training data, i.e. if grammar-based text generation
is a suitable alternative as a DA methodology. We
find that the seq2seq model pretrained on all the
synthetic text plus the contents of the Bible, and
later fine-tuned on the Jojajovai corpus, outper-
formed the previous Jojajovai baselines in both di-
rections. Our results also outperformed the Google
Translate translations for the es→gn setting, while
showing competitive performance for the gn→es
case.

Even if the sentences in the synthetic corpus
sometimes did not sound completely natural to a
native speaker, there is no doubt that their content
had a positive impact on the models. Therefore,
we think this approach can benefit other languages
with a well-documented grammar, and also that it
can be combined with other strategies, such as back-
translation. Unlike back-translation, this synthetic
text generation strategy does not need previously
trained models or even digitized text to train them.
We hope this work can inspire researchers work-
ing in low-resource settings, showing that research
on grammars for MT could still be very relevant,
especially as a way to alleviate data scarcity.

7 Limitations

As evidenced by the evaluation of the synthetic
text, the linguistic quality of the synthetic grammar
is far from perfect, even having some words that
are not recognised by a native speaker. Although
we suppose that improving the grammars would
improve the text and hence provide a boost during
pretraining, we did not test that hypothesis (i.e. we
did our best effort to build a single version of the
grammar, without testing other versions). Addition-
ally, we did not try alternatives to the decision of
keeping the Spanish word if no Guarani translation
was found (during the translation of the AnCora
sentences using our syntactic transfer approach), so
we cannot make observations about that. Therefore,

further work would be needed to check if greater
effort on a larger grammar is worth it or if it just
does not make a difference during pretraining.

All our neural machine translation experiments
were done using MarianNMT. However, the Joja-
jovai benchmark baselines (that we used to guide
the development of our models) were trained using
OpenNMT (Klein et al., 2017). If we had addition-
ally tried that framework, we could have compared
the results as in an ablation process, to check the
actual impact of using synthetic text during pre-
training.
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A Grammar Transfer Example

As seen in section 3.2, the synthetic corpus gener-
ation first creates randomized Spanish sentences
and uses the grammar and the transfer rules to cre-
ate their Guarani counterparts. For example, sup-
pose the generator created the Spanish noun phrase

“nuestra amistad” (“our friendship”) and we want to
generate the Guarani version to include the pair in
the corpus. Our method would first parse the Span-
ish phrase using the appropriate grammar rule:

NP[NUM=?n,GEN=?g] →

D[NUM=?n,GEN=?g] N[NUM=?n,GEN=?g]

This includes the agreement features, which in
the Spanish case would include the gender and
number features. Then the process will look for a
Guarani rule associated to this grammar rule. No-
tice in this case the gender agreement is no longer
required but there is a new nasal/oral agreement:

NP[NUM=?n,NASAL=?na] →

D[NUM=?n,NASAL=?na] N[NUM=?n,NASAL=?na]

Table 9 shows how the method proceeds to find
the translation for words and apply the rules to
form the noun phrases. In this table, the left side
is Spanish while the right side is Guarani. First
of all, the bilingual lexicon is used to obtain the
word translations. In the first row the Spanish deter-
miner nuestra is transformed into its corresponding
Guarani words ore, ñande, and ñane, which are pos-
sible translations that differ in terms of the nasal-
ity and the inclusiveness features. In the second
row, the Spanish noun amistad is transformed into
the Guarani alternatives joayhu (oral) and ñoirũ
(nasal)7. These words are combined to form noun
phrases, so on the Spanish side we form “nuestra
amistad” and on the Guarani side we form, respect-
ing nasality constraints, “ore joayhy”, “ore ñoirũ”,

“ñande joayhy”, and “ñane ñoirũ”. The process
preserves all valid translations, while discarding
the ones that do not respect agreement rules. In the
table we only show the valid combinations.

7There is a third valid alternative in Guarani, tekoayhu,
which also translates as friendship, but it was not present on
our bilingual lexicons so it is not covered by the method.

B Hyperparameter Tuning

As baseline experiments, we trained seq2seq and
transformer based models using the MarianNMT
framework in its default configuration, in both
translation directions. The rows marked as ‘De-
fault’ in Table 5 show the result of these baselines
over the Jojajovai dev split. The first thing we no-
ticed is that these baseline results are much lower
than the results obtained in the Jojajovai bench-
mark experiments (Chiruzzo et al., 2022a), espe-
cially for the BLEU metric, where they originally
report 19.06 in the gn→es and 16.10 in the es→gn,
although we must take into account that their eval-
uation is over the test split, and in this phase our
evaluation is over the dev split. One difference to
point out is that work uses the OpenNMT (Klein
et al., 2017) framework instead of MarianNMT.

In order to improve these results, we carried on a
hyperparameter tuning phase. First we did a series
of experiments to gauge which hyperparameters
would be more useful and what value ranges we
should use for them. In this case, we varied only
one hyperparameter at a time, keeping the rest in
their default values. We tried varying the encoder
and decoder depths, the type of cell for the seq2seq
models, the vocabulary size, and the maximum
sentence length before cropping. After this stage,
we decided to keep only the GRU units for seq2seq
models, as the difference with using LSTM units
was very small.

Once this was over, we performed a random
search for both translation directions and both ar-
chitectures, training several instances in order to
find the hyperparameter combinations that would
yield the best performance in each scenario. In
these experiments, we varied the following param-
eters, based on recommendations by (Bergstra and
Bengio, 2012) and taking into consideration earlier
experiments:

• learning rate (lr): between 10−4 and 100

for seq2seq, and between 10−5 and 10−4 for
transformers.

• max sentence length (ml): normal distribu-
tion with mean 200, which was the best value
found in the earlier experiments.

• encoder and decoder depth: up to 6.

• vocabulary size (vocab): between 2000 and
12000, using SentencePiece unigram tokeniza-
tion.
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↓ ↓ ↓ ↓ ↓




np
NUM s
GEN f
PER 3







np
NUM s
NASAL o
PER 3







np
NUM s
NASAL n
PER 3







np
NUM s
NASAL o
PER 3







np
NUM s
NASAL n
PER 3




nuestra amistad ore joayhu ore ñoirũ ñande joayhu ñane ñoirũ

Table 9: Example of translation of a Spanish noun phrase into Guarani using the grammar method.

We also used other techniques to prevent overfit
and the vanishing and exploding gradient problems,
such as dropout, gradient clipping, and sharing
embedding weights at the input and output layers.
Notice we used much lower learning rates for trans-
formers, as higher values often resulted in unsta-
ble training performance. This resulted in slower
training for transformer models, and also possibly
obtaining suboptimal local minima.

The random search comprised 20 iterations for
each architecture and each translation direction,
with a total of 80 experiments. The rows marked as
‘Tuned’ in Table 5 show the results for the best mod-
els found after this phase, and the hyperparameter
values used for those configurations. In this case,
the best performing seq2seq models already seem
to beat the Jojajovai benchmark baselines both in
terms of BLEU and ChrF and, as seen in section 4.2,
after the fine-tuning phase these resulted in the best
performing models.
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