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Abstract
Despite the success of multilingual pretrained
language models (mPLMs) for tasks such as
dependency parsing (DEP) or part-of-speech
(POS) tagging, their coverage of 100s of lan-
guages is still limited, as most of the 6500+
languages remains “unseen”. To adapt mPLMs
for including such unseen langs, existing work
has considered transliteration and vocabulary
augmentation. Meanwhile, the consideration
of combining the two has been surprisingly
lacking. To understand why, we identify both
complementary strengths of the two, and the
hurdles to realizing it. Based on this observa-
tion, we propose ScriptMix, combining two
strengths, and overcoming the hurdle. Specif-
ically, ScriptMix a) is trained with dual-script
corpus to combine strengths, but b) with sep-
arate modules to avoid gradient conflict. In
combining modules properly, we also point
out the limitation of the conventional method
AdapterFusion, and propose AdapterFusion+
to overcome it. We empirically show ScriptMix
is effective– ScriptMix improves the POS ac-
curacy by up to 14%, and improves the DEP
LAS score by up to 5.6%. Our code is publicly
available.

1 Introduction

Recently, pretrained language models (PLMs) have
become the de facto standard for solving various
natural language processing tasks, such as depen-
dency parsing and part-of-speech tagging. To sup-
port a wide range of languages, multilingual PLMs
(mPLMs) have been designed with a shared archi-
tecture that incorporates multiple languages, yield-
ing promising results. For example, mBERT (De-
vlin et al., 2019) trains with Wikipedia articles in
104 languages to share a common feature space.

However, considering the availability of 6500+
languages, the majority of languages are still un-
seen by mBERT. Building another mPLM to in-
clude new languages incurs massive retraining
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Figure 1: An illustrative example of Vocabulary Aug-
mentation (VA), and Transliteration (TL). TL can share
a common token (blue) with high-resource language
(HRL), while VA is free from false positives (red).

costs. Even if such cost is afforded, performance is
reportedly low, due to resource imbalance and lim-
ited model capacity (Wu and Dredze, 2020; Con-
neau et al., 2020).

A better alternative is to adapt mPLM by “spe-
cializing”1 it for an unseen language using the fol-
lowing two approaches, as illustrated in Figure 1.
When representing the word A from an unseen lan-
guage, sharing the same semantics with A′ from a
high-resource language (HRL), Vocabulary Aug-
mentation (VA) (Chau et al., 2020) augments low-
resource language (LRL) tokens, by treating UNK
as original LRL script such as ‘Á	KAK.’ in the figure.
Transliteration (TL) (Muller et al., 2021) replaces
UNK with the script of an HRL, e.g., romanize
A, which can generate a common token with A′,
shown as a blue word, ‘lad’.

We first observe complementary aspects of TL
and VA (Figure 1). TL, by sharing a common token,
transfers the semantics from HRLs better, than VA
using the original script that cannot overlap with
HRL. However, this comes with the risk of a “false
positive” transfer. To illustrate, consider two red

1We follow Chau and Smith (2021) to define specialization
as a special case of an adaptation, which prepares a model
exclusively for the target language.
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tokens ‘Á	KAK.’ and ‘
�¼AK.’, sharing the same sound

with different semantics. TL maps them to the same
token ‘bang’, even if the semantics originally differ.
Meanwhile, VA does not suffer from false positives
by preserving original scripts, but cannot increase
token overlaps.

Inspired by the complementary strengths of VA
and TL, we propose a novel method, ScriptMix, that
combines the advantages of both techniques. Script-
Mix, as the name suggests, mixes both scripts to ob-
tain token overlap with HRLs by TL, while resolv-
ing potential false positives by source script from
VA. We implement ScriptMix upon an adapter-
based architecture (Pfeiffer et al., 2020), a state-
of-the-art architecture for specialization at this mo-
ment, which devises language module (LA) and
task module (TA) as in Figure 2a).

The first component of ScriptMix is dual-script
corpus, which mixes the original corpus from VA
and the transliterated corpus from TL ({Ss}, {St}
in Figure 2b). However, we argue this component
by itself does not fully realize complementarity, as
we later attribute to gradient conflict (Figure 3).

We devise our second component to overcome
this hurdle: language module separation. To avoid
gradient conflict from different scripts, we train
separate adapters for each script (LAs and LAt in
Figure 2c) . Then we linearly combine the outputs
from these conflict-free adapters with a dynami-
cally calculated weight vector. To calculate such a
vector, the most natural way has been AdapterFu-
sion (Pfeiffer et al., 2021a).

Despite the benefits of AdapterFusion, we have
found it to have a harmful inductive bias that com-
promises its performance. To overcome this issue,
we propose our third component, AdapterFusion+,
which effectively eliminates the harmful inductive
bias and improves overall performance.

We evaluate ScriptMix on dependency parsing
and part-of-speech tagging– the human-annotated
tasks with more low-resource languages than
other NLP tasks. Combining all three components,
ScriptMix could extract complementary knowledge
from both scripts. To demonstrate the generaliz-
ability of ScriptMix, we also apply it for fusing
UniPELT (Mao et al., 2022), where existing fusion
techniques fail to lead to performance gains. Script-
Mix improves the POS accuracy by up to 14%, and
improves the DEP LAS score by up to 5.6%. Our
contribution can be summarized as follows:

• We observe the potential of complementarity

Figure 2: Comparison between MAD-X (§ 3.1) and ours
(ScriptMix). We propose ➀ dual-script corpus (§ 3.3),
➁ language module separation (§ 3.4) and ➂ Adapter-
Fusion+ (§ 3.5) to achieve complementarity of source
script s from VA and transliterated script t from TL.

between VA and TL, from which, we propose
the first solution to achieving complementar-
ity.

• We identify gradient conflict as a hurdle, and
overcome it with the proposed language mod-
ule separation.

• We point out the limitation of the conventional
method to combine adapter outputs, and pro-
pose AdapterFusion+ to overcome it.

• ScriptMix is generalizable to different types
of modules, and works both on few-shot train-
ing and the setting with a larger train dataset.

• Our code and dataset are publicly available.2

2 Related Work

Expanding mPLM New languages can be
added during pretraining multilingual models,
though LRL performance is degraded due to re-
source imbalances (Wu and Dredze, 2020).
Specializing mPLM Specializing mPLM is a
more effective alternative to overcome imbalances.
From the data perspective, TL (Muller et al., 2021)
and VA (Wang et al., 2020a; Chau et al., 2020;
Chau and Smith, 2021), compared and contrasted
in Figure 1, are proposed as specialization methods.

From the architecture perspective, one may add
additional modules with few parameters for spe-
cialization. Out of the multilingual domain, mod-
ules such as Adapters (Houlsby et al., 2019), or
UniPELT (Mao et al., 2022) have been proposed.

Among them, adapters have been more broadly
applied for cross-lingual transfer. MAD-X (Pfeiffer
et al., 2020) trains language adapters (LAs) and
task adapters (TAs). Then MAD-X stacks them to
utilize knowledge from both unlabeled and labeled

2https://anonymous.4open.science/r/scriptmix-13D7/
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datasets, achieving a state-of-the-art. We use this
as our baseline architecture, and also generalize to
UniPELT.
Our Distinction Our distinction is observing the
complementarity of VA and TL, for better special-
ization to an unseen language. VA preserves the
original script, and TL increases token overlaps,
with the risk of false positives (Figure 1). Our con-
tribution is achieving the complementarity between
VA and TL, through realizing and resolving the
hurdles for the goal.

The easiest way to integrate knowledge from two
different corpora would be a polyglot corpus (De-
vlin et al., 2019; Conneau et al., 2020). We devise
a dual-script corpus inspired by this approach, but
we argue that training one module with a polyglot
corpus is suboptimal. To overcome, we propose to
train two different adapters and add a component
to fuse the knowledge.

To fuse two adapter outputs, AdapterFu-
sion (Pfeiffer et al., 2021a) devises an attention-
based fusion mechanism. However, we observe that
AdapterFusion is suboptimal in our scenario, and
propose to reduce inductive bias from it.

Existing work on reducing inductive bias in-
cludes MLP-Mixer (Tolstikhin et al., 2021)– it re-
duces inductive bias from convolutional neural net-
works by replacing them with MLPs, which was
effective for our purpose of bias reduction from
AdapterFusion.

3 Proposed Method: ScriptMix

3.1 Preliminaries: MAD-X

Given language l, for each layer in an mPLM,
MAD-X adds two adapters as in Figure 2a); lan-
guage adapter (LAl) and task adapter (TAl).

Let h be the output of a layer from an mPLM.
MAD-X prepares LAl = Wlu ◦ ϕ ◦ Wld, where
Wld ∈ Rdh×db , Wlu ∈ Rdb×dh , and ϕ is ReLU
layer, and prepares TAl = Wτu ◦ ϕ ◦ Wτd simi-
larly. MAD-X first transforms the output as LAl(h),
and updates the parameters of LAl, with unla-
beled data of l. Then, MAD-X alters the output
as TAl ◦ LAl(h), and trains parameters of TAl us-
ing labeled data.

3.2 Motivation: TL vs VA

A key motivation of ScriptMix comes from com-
paring TL and VA. To compare TL and VA, we
build simple baselines upon MAD-X.

transliterated character can be generated from

h ë, h, ¨
n

�¼, 	à
g À,

�¼
k ¼, ¨

Table 1: Collapse of characters from Uyghur to Latin
transliteration, which may cause false positives.

MAD-X-VA/TL Let V and EV denote the vo-
cabulary and the corresponding embedding layer
of the given mPLM. Let us denote the original
script used in VA as the source language s and the
transliterated script t. Given the original corpus
Cs = {S̃s,i} and transliterated corpus Ct = {S̃t,i},
we first train new wordpieces Vn to deal with these
corpora, and add them to V , obtaining V ′ = V ∪Vn.
Next, we introduce new embeddings EVn , and pre-
train them with Cs or Ct, while freezing other pa-
rameters. These embeddings are concatenated to
the original EV , to build EV ′ .

Finally, upon the modified mPLM with EV ′ ,
MAD-X-VA trains LAs, TAs with Cs, and MAD-
X-TL trains LAt, TAt with Ct.
TL vs VA Recall from Figure 1, that TL suffers
from “false positive” transfer, while VA does not,
though VA is not as effective in shared semantics
as TL sharing common tokens.

We run a preliminary experiment to identify such
pros and cons, with Uyghur as an example. In the
Uyghur corpus, we examine which distinct charac-
ters are mapped to the same one by TL (Table 1),
which may cause false positives. We train parsers
following the settings we describe in Section 4.1.
We evaluated all sentences, and checked whether
the head and label prediction for each token with
or without collapsed characters was correct. We
find TL is superior to VA for tokens without such
collapsed characters, but inferior to VA for tokens
with these characters.

Based on this observation, we propose to mix
both scripts. We hypothesize mixing both scripts
would provide synergetic strength, while alleviat-
ing weaknesses.

3.3 Dual-Script Corpus, the Gradient Conflict
First, to leverage both scripts, we design a corpus
for our goal. At every batch, we utilize

[S̃s,k, · · · , S̃s,k+ b
2
, S̃t,k, · · · , S̃t,k+ b

2
] (1)
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to train LA, where b is the batch size. With dual-
script corpus, we expect to obtain a positive transfer
from both TL and VA.

However, we conjecture that full complementary
is yet to be realized, as a dual-script LA would in-
troduce negative interference. Wang et al. (2020b)
similarly observed conflict of gradients from dif-
ferent languages, which interferes with positive
transfer in multilingual language modeling.

Such a negative interference by gradient conflict
can be measured by a similarity score between gra-
dients from each language. Formally, let g1 and g2
be the gradients from two different languages. Then
we can define gradient conflict to be high, when
cos(g1, g2) is low. Wang et al. (2020b) show that
gradient similarity between two batches from two
languages is lower than that from a single language,
which explains negative interference.

Following this convention, we plot the relative
cosine similarity between gradients from training
an LA with a dual-script corpus, compared with
that of a single-script corpus.3 We observe a similar
behavior (color-mixed line in Figure 3): training
an LA with dual-script corpus shows lower cosine
similarity than using single-script. This suggests
a negative interference occurs, which explains the
limited performance gain.

Motivated by this observation, we propose an al-
ternative design, of separating LAs, which avoids a
gradient conflict by design. By separating adapters,
our design would be free from gradient conflict,
making the relative similarity constantly maxi-
mized to 1.4

3.4 Language Module Separation

As motivated by Figure 3, we propose to train sepa-
rate LAs, each for one script, then fuse their knowl-
edge. The figure shows that the relative gradient
similarity is maximized when the LAs are sepa-
rated, resolving the gradient conflict issue. First, we
train LAs with {S̃s,i} and LAt with {S̃t,i}. Since
we utilize only one script in training each LA, LA
is free from such gradient conflict (purple line in
Figure 3). Then, we design to linearly combine the
outputs of these conflict-free LAs, with an adap-
tively calculated weight a.

3To analyze gradient similarity, we collected gradients per
1024 sentences, and exponentially smoothed the gradients by
0.6 to capture the tendency.

4As we need to train LAs and LAt for MAD-X-VA and
MAD-X-TL respectively, we average the gradient similarity
of the two, when dealing with the single-script corpus.

Figure 3: Relative gradient similarity of training with
dual-script corpus, with (purple) and without LA separa-
tion (color-mixed), compared with training with single-
script corpus. LA separation resolves gradient conflict.

With this, by design, we are free from gradient
conflict between different scripts in training LA,
while leveraging dual-script corpus, combining the
strengths of the two.

3.5 AdapterFusion+: Reducing Inductive Bias
To evaluate the weight vector a for fusing these
adapters, the most natural direction is using
AdapterFusion (Pfeiffer et al., 2021a). Formally,
given LAs for the original script and LAt for its
transliteration, we may design M , the ScriptMix,
which updates the output h to M(h) as follows:

al = softmax(hTFq ⊗ LAl(h)
TFk) (2)

zl = LAl(h)
TFv, l ∈ {s, t} (3)

M(h) =
∑

l∈{s,t}
alzl (4)

where ⊗ is the dot product, and Fq, Fk, Fv are
learnable matrices.

However, we observe it is suboptimal in our case
(§ 4.2.2) and attribute the reason to its inductive
bias– The weight al gets higher as the output of LAl

is similar to the input h. It may help focus on suit-
able adapters, but there is a simple counterexample–
an adapter with identity mapping, passing over the
input as output, would get high al.

Therefore we propose AdapterFusion+, to re-
duce the inductive bias from the conventional
AdapterFusion. We design to learn a good weight
vector a, without relying on the inductive bias con-
sidering the similarities between adapter outputs
and inputs. To reduce such inductive bias, we use
MLP instead, inspired by MLP-Mixer (Tolstikhin
et al., 2021). We re-design the Eq. 2 as follows:

(as, at) = softmax(f(LAs(h)
T ;LAt(h)

T )) (5)

where f is an MLP, and ; indicates the concatena-
tion. To realize, we design f as a linear layer, in-
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spired by Ma et al. (2018).5 Such a design is even
using fewer parameters than AdapterFusion; It can
reduce 2-3 times of parameters. This parameter-
efficient fusion method can successfully enable the
mixture of knowledge from two different adapters
(§ 4.2.2).

3.6 Generalizing ScriptMix for UniPELT
In addition to our proposed method, we aim to
demonstrate the generalizability of our approach
by applying it to UniPELT, a technique known to
be more robust than adapters in low-resource set-
tings (Mao et al., 2022). UniPELT combines sev-
eral techniques, such as LoRA (Hu et al., 2022) and
prefix-tuning (Li and Liang, 2021), with adapters
to improve the self-attention mechanism. Unlike
AdapterFusion, fusing UniPELT has not been stud-
ied yet, and we found applying conventional tech-
niques fails to achieve gains, while our proposed
fusion allows them.

First, we describe how UniPELT differs from
adapters, then establish UniPELT-based ScriptMix.

3.6.1 Preliminaries: UniPELT
In addition to adapters, UniPELT (Mao et al., 2022)
adds two more techniques, LoRA (Hu et al., 2022)
and prefix-tuning (Li and Liang, 2021). These three
are combined by gating mechanism as follows.

Formally, the traditional self-attention layer ma-
nipulates input hidden representation hi as follows:

Q = Wq(hi),K = Wk(hi), V = Wv(hi) (6)

ha = softmax(QKT /c)V (7)

where Wq,Wk,Wv are learnable matrices, and c is
some constant.

UniPELT first adds LoRA (Hu et al., 2022) to
Wq and Wk. The key idea of LoRA is restricting
matrix updates to a low-rank matrix. Adding LoRA
to Wk changes K to K ′ as follows:

W ′
k = Wk + αkWkuWkd (8)

K ′ = W ′
k(hi) (9)

where Wkd ∈ Rdh×dm and Wku ∈ Rdm×dh . Simi-
larly, it alters Q into Q′.

UniPELT then adds prefix-tuning (Li and Liang,
2021) to K ′ and V . The gist of prefix-tuning is
learning an extra prefix vector for the given repre-
sentation. With prefix-tuning, K ′ is manipulated to
K ′

p as follows:
5We also tried a 2-layer MLP, but the gain was similar.

K ′
p = Pk;K

′ (10)

where ; denotes the concatenation, and Pk is a learn-
able vector, typically modeled as an MLP. Similarly,
it alters V into Vp. These Q′,K ′

p, Vp are used to cal-
culate the new self-attention output. Finally, they
design a gating mechanism to balance each com-
ponent. For details, please refer to their original
paper (Mao et al., 2022).

3.6.2 UniPELT-based MAD-X and ScriptMix
Since ScriptMix is based on MAD-X, we first
build UniPELT-based MAD-X. Then we design
UniPELTFusion and UniPELTFusion+, to extend
ScriptMix to UniPELT with AdapterFusion and
AdapterFusion+ respectively. These will be com-
pared in § 4.2.3, showing UniPELTFusion+ can
only establish complementarity.
UniPELT-based MAD-X We allow language
and task components of LoRA and prefix-tuning.
Eq. 8-10 is modified as follows:

W ′
lk = Wk + αlkWlkuWlkd (11)

W ′
k = W ′

lk + ατkWτk (12)

K ′ = W ′
k(hi) (13)

K ′
lp = Plk;K

′ (14)

K ′
p = Pτk;K

′
lp (15)

where l, τ indicates the components of language
UniPELT, and task UniPELT, respectively.
UniPELT-based ScriptMix We need to fuse
LoRAs and prefixes from different scripts. First,
we fuse LoRAs from each script similarly to Eq.
3,4 –Eq. 11 is changed as follows:

z′l = (Wk + αlkWlk)F
′
v, l ∈ {s, t} (16)

W ′
lk =

∑
a′lz

′
l (17)

Likewise, replacing the language prefix of single
script changes Eq. 14 as follows:

zlp = Fvp(Plk;K
′), l ∈ {s, t} (18)

K ′
lp =

∑
alpzlp (19)

Finally, we design a′l, alp. We may design them
similarly to AdapterFusion (Eq. 2) as follows:

a′l = softmax(hTi F
′
q ⊗ (Wk + αlkWlk)(hi)

TF ′
k)

alp = softmax(hTi Fqp ⊗ (Plk;K
′)TFkp)
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which we name as UniPELTFusion.6 However, as
we will discuss in § 4.2.2, it cannot achieve com-
plementarity.

Alternatively, we design a′l, alp similarly to
AdapterFusion+ (Eq. 5) as follows:

(a′s, a
′
t) = softmax(f ′((Wk + αskWsk)(hi)

T ;

(Wk + αtkWtk)(hi)
T ))

(asp, atp) = softmax(fp((Psk;K
′)T ; (Ptk;K

′)T ))

which we name as UniPELTFusion+.
The whole process is applied similarly to Q′, Vp.

4 Experiments

We mainly evaluate our method on few-shot train-
ing, which assumes a more low-resource scenario.
We also validate that ScriptMix is effective when
more train data is allowed.

4.1 Experimental Settings

We use mBERT as the representative mPLM, to
be consistent with previous works for TL (Muller
et al., 2021) and VA (Chau et al., 2020).
Tasks and Datasets Identifying tasks support-
ing low-resource languages not covered by mPLMs
is challenging (Ahuja et al., 2022). We evaluate
part-of-speech tagging (POS) and dependency pars-
ing (DEP), which are human-annotated datasets
with more low-resource languages than other NLP
tasks (Chau et al., 2020). As the labeled dataset,
we utilize the treebanks from Universal Dependen-
cies (Nivre et al., 2020), version 2.7 (Zeman et al.,
2020). For the few-shot evaluation, we randomly
sample 32 and 16 examples from the train dataset
and dev dataset. We utilize Wikipedia articles ex-
tracted with WIKIEXTRACTOR,7 as the unlabeled
data.
Language selection Among unseen languages
not covered by mBERT, we aim to exhaustively
cover all languages, with transliterator to Latin
script, and a sufficient amount of treebanks for eval-
uation. We allow languages lacking train data, by
performing 8-fold cross-validation using test data
only.8 This results in five languages to probe with:
ug, cu, bxr, myv, and am (Table 2).

6Following AdapterFusion, we calculate the weight a per
token. However in prefix-tuning, the sequence length differs,
thus we calculate a per sequence, using the average of repre-
sentations over tokens.

7https://github.com/attardi/wikiextractor
8Since Russia Buriat has only 19 training examples, we

also perform 8-fold cross-validation for it.

language (iso code) script # train # dev # test # wiki

Old Church Slavonic (cu) Cyrs 4214 1073 1141 1136
Uyghur (ug) ug-Arab 1656 900 900 5255

Russia Buriat (bxr) Cyrl 19 0 908 2763
Erzya (myv) Cyrl 0 0 1550 7499

Amharic (am) Ethi 0 0 1074 15002

Table 2: Unseen languages used for the experiments in
this paper. We report the size of the unlabeled dataset (#
wiki articles), and the train/dev/test split.

Transliterators For Uyghur, we use the translit-
erator used by Muller et al. (2021). We utilize WIK-
TRA (Batsuren et al., 2019) for the other languages.
Implementation Details We train new word-
pieces with a size of 5K and select subwords that
reduce unknown tokens at most, following Chau
et al. (2020). We add 1K new subwords for ug,
500 and 99 for cu and its transliteration, 99 for bxr
transliteration, 99 and 99 for myv and its transliter-
ation, 3K and 99 for am and its transliteration.9

To train language adapters, we use similar set-
tings to Pfeiffer et al. (2020). We perform MLM
with db = 384, batch size of 64, learning rate of
1e-4, for 50K steps,10 with sequence length of 512.
We conduct MLM on TPUv2-8 or TPUv3-8, taking
less than 4 hours.

To fine-tune for dependency parsing, we follow
the setting from Rust et al. (2021). We use a single-
layer multi-class classifier for POS tagging, and
the transformer-based variant (Glavaš and Vulić,
2021) of the deep bi-affine attention dependency
parser (Dozat and Manning, 2017) for dependency
parsing. We fine-tune with db = 48, batch size of
32, learning rate of 5e-4, sequence length of 256,
for 30 epochs. Fq, Fk, Fv in Eq. 2 or f in Eq. 5 is
added in this stage and jointly trained with the task
adapters, with language adapters frozen.

For experiments with UniPELT, we let db as 48,
dm as 8, and the length of Pk as 10 for the task
module, following the default setting from Mao
et al. (2022). For the language module, we scale
these numbers by 8 times, following Pfeiffer et al.
(2020). Settings for training are the same as the
experiments with adapters.

We report the LAS score for dependency parsing,
and accuracy for POS tagging. We evaluate with

9We chose the least number of subwords among {99, 300,
500, 1000, 3000} to make the UNK ratio lower than 1%.
Since naïve TL sometimes increases UNK overlaps, we add
new subwords for TL also, to increase more useful overlaps.

10Low-resource language adapters are trained for 50K steps
(https://adapterhub.ml/explore/qu/wiki/).
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POS (acc %)
32-shot 16-shot

ug cu bxr myv am avg ug cu bxr myv am avg
MAD-X-VA 72.15 49.94 63.04 65.22 65.09 63.09 68.33 43.99 56.51 61.84 60.86 58.31
MAD-X-TL 71.65 52.61 63.11 65.74 68.07 64.23 68.04 44.58 58.05 60.39 65.25 59.26
max(MAD-X-VA/TL + UniPELT) 76.84 62.17 70.55 74.08 78.24 72.38 71.08 54.12 63.78 65.29 73.27 65.51
ScriptMix (UniPELTFusion) 77.32 65.81 69.84 69.90 80.45 72.67 70.44 57.90 61.78 58.96 74.43 64.70
ScriptMix (UniPELTFusion+) 77.40 67.91 71.61 73.70 82.27 74.58 72.61 58.49 65.64 63.89 76.57 67.44
ScriptMix (AdapterFusion) 78.58 63.62 71.09 76.31 80.17 73.95 74.89 54.47 65.31 70.50 73.90 67.81
ScriptMix (AdapterFusion+) 79.85 66.80 73.63 78.55 82.45 76.26 75.79 56.59 67.36 71.51 77.15 69.68

DEP (LAS %)
32-shot 16-shot

ug cu bxr myv am avg ug cu bxr myv am avg
MAD-X-VA 26.81 19.70 23.17 27.63 37.24 26.91 22.71 16.47 16.83 21.74 28.54 21.26
MAD-X-TL 26.67 21.16 23.85 26.17 38.22 27.21 21.54 17.63 17.86 19.60 30.45 21.42
max(MAD-X-VA/TL + UniPELT) 28.83 20.97 26.33 32.90 38.51 29.51 23.18 18.98 20.29 25.49 30.34 23.66
ScriptMix (UniPELTFusion) 31.18 23.70 27.59 28.11 40.47 30.21 23.79 19.22 20.45 22.44 30.41 23.26
ScriptMix (UniPELTFusion+) 31.48 24.96 28.06 28.90 40.73 30.82 24.87 19.39 20.51 24.29 29.94 23.80
ScriptMix (AdapterFusion) 30.15 23.01 26.73 31.84 41.54 30.65 23.18 18.58 19.91 25.92 30.93 23.70
ScriptMix (AdapterFusion+) 29.58 24.21 26.28 32.27 40.06 30.48 24.46 20.25 20.14 25.90 32.21 24.59

Table 3: Averaged scores of ScriptMix and the baselines on POS and DEP.

original or transliterated treebanks, and choose the
best model based on the validation score. We re-
port the average score over 5 runs, except for 8-fold
cross-validation experiments, where we run once
per fold and take the average. Fine-tuning is con-
ducted on RTX 3090, taking less than an hour.

4.2 Experimental Results and Analysis

4.2.1 Effectiveness of ScriptMix
To discuss, we compare ScriptMix with the fol-
lowing baselines– 1) MAD-X-VA: MAD-X trained
with vocabulary augmented data of each language,
2) MAD-X-TL: MAD-X trained with transliterated
data of each language.

ScriptMix outperforms these baselines by a large
margin (last line in Table 3). For example, on POS,
ScriptMix improves by more than 14% accuracy
in Old Church Slavonic (cu), or Amharic (am). On
DEP, ScriptMix improves 3-4% LAS scores on
average. This implies that ScriptMix successfully
combines the strengths of both scripts: obtaining
the benefit of TL, while alleviating its downside
with the knowledge from the original script.

4.2.2 Effectiveness of New Fusion Method
We empirically show that the conventional fusion
method from AdapterFusion (Pfeiffer et al., 2021a)
is suboptimal as we described in section 3.5, and
how our solution overcomes it. For example, in the
16-shot POS experiment, we observe that UniPELT-
Fusion, combining the knowledge with the conven-
tional fusion approach, loses the performance on

average (red in Table 3). Besides, combining the
knowledge with our solution resolves it; UniPELT-
Fusion+ improves the performance by 2.7% on
average compared to UniPELTFusion.

We observe that AdapterFusion+ and UniPELT-
Fusion+ outperform AdapterFusion and UniPELT-
Fusion most cases (35/40). These show that the
existing fusion method by AdapterFusion is subop-
timal for ScriptMix, and our solution alleviates it
successfully.

4.2.3 Generalizability of ScriptMix

Table 3 shows that ScriptMix can be applied
to UniPELT also. On average, ScriptMix with
UniPELT improves the baselines with UniPELT
up to 3% for POS, and 2% for DEP (third vs fifth
line in Table 3). We re-emphasize that This is not
possible without our proposed UniPELTFusion+
(red in Table 3).

4.2.4 Adapter vs UniPELT for ScriptMix

We evaluate whether introducing UniPELT is
needed for ScriptMix. UniPELT is expected to per-
form better on our few-shot scenarios, since it is
known to be more robust (Mao et al., 2022). This
is true for the baselines (third lines of Table 3).

However surprisingly, for ScriptMix, using
adapters only is sufficient; On average, Script-
Mix using adapters is on par or even better than
ScriptMix with UniPELT (fifth vs last line in Ta-
ble 3). This leads to a more parameter-efficient
result, as we will discuss in § 4.2.6.
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DEP POS
ug cu bxr myv am avg ug cu bxr myv am avg

max(MAD-X-VA, MAD-X-TL) 66.63 74.33 49.78 66.15 67.59 64.90 89.65 94.40 89.01 92.49 92.60 91.63
ScriptMix (AdapterFusion) 67.98 76.94 54.32 70.07 69.88 67.84 89.78 94.65 89.07 93.04 92.72 91.85
ScriptMix (AdapterFusion+) 68.23 78.59 55.41 70.83 70.15 68.64 89.89 94.81 90.04 93.20 92.69 92.13

Table 4: Results on POS and DEP, when using full training datasets.

w/ Adapters w/ UniPELT
dual-script lang module sep POS DEP POS DEP

61.83 24.81 68.94 26.58
✓ 64.88 27.09 67.57 25.05
✓ ✓ 72.97 27.54 71.01 27.31

Table 5: Ablation study of each component.

params(M) POS
ScriptMix (UniPELTFusion+) 28.49 71.01
ScriptMix (AdapterFusion) 21.11 70.88
ScriptMix (AdapterFusion+) 7.64 72.97

Table 6: The number of parameters used for fine-tuning.

4.2.5 Language Module Separation Is Needed

To investigate whether separating language mod-
ules is essential, we train a single language module
using the dual-script corpus. We even allow the
module to have 2x of parameters, since it has to
model both of original corpus and the translitera-
tion. We report the averaged score over 32-shot and
16-shot experiments in varying languages.

We observe a clear deficit of ScriptMix with-
out language module separation (Table 5). In the
UniPELT-based architecture, we even observe per-
formance degradation when we train a single mod-
ule. This indicates that the language module suf-
fered negative interference, while our language
module separation alleviated it successfully.

4.2.6 Parameter Efficiency of ScriptMix

To investigate whether the gain of ScriptMix sim-
ply comes from the newly introduced parameters
for fusion, we describe the number of parameters
needed for fine-tuning POS tagging, in Table 6. We
also report the averaged score over 32-shot and
16-shot POS experiments.

Table 6 shows that the increase in parameters
does not guarantee a performance increase. This
implies that the gain of ScriptMix with Adapter-
Fusion+ does not simply come from parameter in-
crease. We also highlight that AdapterFusion+ is
more parameter-efficient than AdapterFusion: It
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Figure 4: Heatmap of weights a of LAs and LAt, when
inferencing with transliterated Uyghur POS examples. x
and y axes refer to token and layer indices respectively.

achieves better performance with about 3 times
lower parameters.

4.2.7 Experiments on Full-Data Setting

We also argue that ScriptMix with AdapterFusion+
is effective even if we remove the extremely low-
resource assumption. We conduct experiments al-
lowing full train datasets, and report the averaged
score in Table 4.

We observe that ScriptMix with AdapterFusion+
improves the performance over baselines. On DEP,
we improve the LAS score by up to 5.6%. On POS,
the gain is smaller, as the room for improvement
smaller. Again, AdapterFusion is working inferior
to AdapterFusion+.

4.3 Analysis: Complementarity Visualization

We argued that fusing the outputs of two adapters
LAs and LAt benefits complementarily. To sup-
port this, we visualize the weight vector as, at of
transliterated Uyghur as a representative. Visual-
ization for other languages can be found in the
Appendix.

Figure 5 shows that ScriptMix complementarily
uses two adapters from different scripts. For exam-
ple, for layer 4 and 10, LAs contributes more, while
LAt is utilized more for layer 0 and 11. This reveals
that using one adapter trained from a single script
is insufficient; ScriptMix leverages complementary
benefits from two.
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5 Conclusion and Discussion

We studied how to specialize mPLM to unseen
languages and introduced ScriptMix, the comple-
mentary approach to merge the benefits of TL and
VA. We verified our effectiveness across a compre-
hensive array of languages. While our focus was to
show the feasibility of script-mixing, future work
could explore combining TL with improved VA
methods, such as Pfeiffer et al. (2021b).

6 Limitation

In this work, we studied a limited set of tasks
and languages to evaluate the proposed method.
We believe we exhaustively evaluated our method
on available low-resource human-annotated task
datasets to apply ScriptMix. We leave the evalua-
tion on more tasks if public datasets become avail-
able.

We also focused on only one mPLM, mBERT.
However, we are following previous works to claim
their effectiveness only on mBERT (Muller et al.,
2021; Chau and Smith, 2021; Pfeiffer et al., 2021b).
We leave extending the evaluation to more recent
mPLMs, such as XLM-R (Conneau et al., 2020) as
a future work.
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POS (acc %)
32-shot 16-shot

ug cu bxr myv am ug cu bxr myv am

VA

MAD-X 75.60 50.00 61.13 65.28 64.74 70.88 42.16 53.59 62.70 58.78
ScriptMix (AdapterFusion) 82.47 63.06 70.63 76.27 82.73 77.19 54.90 64.11 74.07 76.43
ScriptMix (AdapterFusion+) 83.40 66.94 72.11 80.01 83.79 78.83 55.69 66.95 74.43 77.24
MAD-X + UniPELT 80.13 61.21 67.20 73.64 77.66 77.89 54.51 62.19 69.66 74.69
ScriptMix (UniPELTFusion) 80.13 65.56 68.00 65.13 81.10 77.54 57.25 60.34 63.23 77.35
ScriptMix (UniPELTFusion+) 81.33 69.60 71.19 72.18 83.08 79.06 58.63 63.68 66.67 78.06

TL

MAD-X 75.33 52.18 59.94 62.72 66.62 71.11 39.80 54.30 55.55 66.22
ScriptMix (AdapterFusion) 83.53 59.68 70.51 74.48 81.86 81.64 53.53 64.11 68.02 76.53
ScriptMix (AdapterFusion+) 84.60 61.37 72.55 76.78 84.50 83.16 53.14 66.31 71.14 80.82
MAD-X + UniPELT 82.40 60.73 69.31 72.48 75.23 79.77 47.84 64.46 62.51 72.24
ScriptMix (UniPELTFusion) 82.07 65.08 70.23 68.53 79.89 78.71 51.18 63.18 59.03 73.67
ScriptMix (UniPELTFusion+) 82.33 67.50 71.87 73.05 80.70 81.29 55.49 67.02 64.18 76.94

DEP (LAS %)
32-shot 16-shot

ug cu bxr myv am ug cu bxr myv am

VA

MAD-X 31.33 23.31 20.03 23.66 32.17 25.85 24.90 15.07 23.28 26.33
ScriptMix (AdapterFusion) 32.73 26.69 24.46 26.73 40.48 27.37 26.27 19.83 28.57 31.43
ScriptMix (AdapterFusion+) 32.53 29.19 23.50 26.13 38.25 28.77 27.84 19.12 29.28 32.14
MAD-X + UniPELT 32.80 24.68 23.54 26.92 35.36 27.02 26.08 18.98 28.13 28.16
ScriptMix (UniPELTFusion) 34.40 25.00 24.62 23.25 37.84 27.95 26.47 20.61 22.66 29.29
ScriptMix (UniPELTFusion+) 34.67 27.98 26.38 25.91 38.60 27.84 27.45 20.68 26.19 30.20

TL

MAD-X 29.27 25.65 21.31 23.37 37.18 21.87 25.88 16.99 15.37 34.08
ScriptMix (AdapterFusion) 34.00 25.32 22.27 25.56 39.92 26.08 27.65 18.48 16.68 35.20
ScriptMix (AdapterFusion+) 36.07 27.50 22.11 26.08 41.24 26.90 29.61 17.56 18.20 35.41
MAD-X + UniPELT 33.73 24.35 24.46 25.90 35.82 29.01 26.47 19.62 17.55 33.78
ScriptMix (UniPELTFusion) 35.80 24.84 25.26 26.16 35.82 27.72 26.67 18.19 14.58 33.78
ScriptMix (UniPELTFusion+) 35.20 25.73 25.30 26.95 35.41 28.30 25.49 20.11 15.95 33.06

Table 7: Validation results of comparisons on few-shot setting

A Appendix

A.1 Results on Validation Split
We reveal the validation results of comparisons in
Table 7, 8.

A.2 Standard Deviations of Experiments
We provide the standard deviations of experiments
in Table 9, 10.

A.3 Visualizing the Complementarity
Figure 5 shows the visualization of weight vec-
tors of all languages. As we described in section
4.3, ScriptMix benefits from both of two adapters,
leveraging complementarity.

6442



DEP POS
ug cu bxr myv am ug cu bxr myv am

VA
MAD-X 67.58 73.88 42.55 55.28 69.27 91.10 94.99 86.18 90.26 92.86
ScriptMix (AdapterFusion) 68.85 76.47 47.11 61.17 71.00 91.27 95.08 88.11 91.10 92.87
ScriptMix (AdapterFusion+) 69.00 78.40 52.14 72.12 72.82 91.37 95.25 90.32 93.41 93.44

TL
MAD-X 67.62 74.30 40.64 56.12 66.92 91.12 95.14 85.28 90.91 92.33
ScriptMix (AdapterFusion) 69.18 77.25 44.19 60.83 68.98 91.17 95.29 87.48 91.44 92.54
ScriptMix (AdapterFusion+) 69.24 78.46 51.33 72.39 72.84 91.47 95.52 90.22 93.36 93.48

Table 8: Validation results of comparisons on setting with full train data

pos
32shot 16shot

ug cu bxr myv am ug cu bxr myv am
MAD-X-VA 1.67 1.43 1.29 2.05 1.15 1.25 2.66 1.70 1.64 1.63
MAD-X-TL 0.61 1.41 1.90 2.19 1.25 0.66 2.36 2.26 1.07 1.78
max(MAD-X-VA/TL + UniPELT) 1.36 1.48 1.17 3.68 1.64 2.31 2.01 2.72 4.39 1.98
ScriptMix (UniPELTFusion) 1.57 1.53 2.14 3.03 1.53 1.36 0.71 3.42 5.11 2.74
ScriptMix (UniPELTFusion+) 2.50 0.82 2.11 3.35 1.30 1.38 1.21 2.65 4.45 2.31
ScriptMix (AdapterFusion) 0.88 0.78 0.83 2.19 2.04 0.75 3.82 1.69 2.49 2.05
ScriptMix (AdapterFusion+) 0.45 2.28 1.23 1.90 2.35 0.74 3.67 2.34 1.80 2.34

dep
32shot 16shot

ug cu bxr myv am ug cu bxr myv am
MAD-X-VA 0.78 0.37 1.27 1.51 1.21 1.25 0.82 1.11 1.42 3.06
MAD-X-TL 0.65 0.22 1.29 1.21 1.76 0.74 0.70 1.52 1.37 1.85
max(MAD-X-VA/TL + UniPELT) 0.95 0.55 1.70 1.68 0.80 0.99 1.57 1.67 2.29 1.94
ScriptMix (UniPELTFusion) 0.79 0.91 3.12 0.94 1.73 2.20 1.45 2.16 2.65 2.86
ScriptMix (UniPELTFusion+) 0.68 0.89 2.25 1.79 2.31 0.68 1.60 1.71 2.52 3.13
ScriptMix (AdapterFusion) 0.85 1.30 1.94 2.54 2.19 0.82 1.24 1.98 3.01 2.61
ScriptMix (AdapterFusion+) 1.00 0.53 1.98 2.50 1.37 1.04 1.34 1.36 1.43 2.31

Table 9: Standard deviations of few-shot experiments.

DEP POS
ug cu bxr myv am ug cu bxr myv am

max(MAD-X-VA, MAD-X-TL) 0.29 0.18 1.63 2.40 1.36 0.24 0.04 0.91 0.94 0.83
ScriptMix (AdapterFusion) 0.16 0.85 2.62 0.84 1.46 0.06 0.04 1.19 0.60 0.92
ScriptMix (AdapterFusion+) 0.41 0.40 1.31 1.71 1.00 0.12 0.12 1.47 0.75 0.76

Table 10: Standard deviations of experiments with full dataset.
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Figure 5: Heatmap of weights a of LAs and LAt varying different languages. Left: we inference with original POS
examples. Right: We inference with transliterated POS examples.
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