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Abstract

The proliferation of online toxic speech is a per-
tinent problem posing threats to demographic
groups. While explicit toxic speech contains of-
fensive lexical signals, implicit one consists of
coded or indirect language. Therefore, it is cru-
cial for models not only to detect implicit toxic
speech but also to explain its toxicity. This
draws a unique need for unified frameworks
that can effectively detect and explain implicit
toxic speech. Prior works mainly formulated
the task of toxic speech detection and expla-
nation as a text generation problem. Nonethe-
less, models trained using this strategy can be
prone to suffer from the consequent error prop-
agation problem. Moreover, our experiments
reveal that the detection results of such mod-
els are much lower than those that focus only
on the detection task. To bridge these gaps,
we introduce TOXCL1, a unified framework
for the detection and explanation of implicit
toxic speech. Our model consists of three mod-
ules: a (i) Target Group Generator to generate
the targeted demographic group(s) of a given
post; an (ii) Encoder-Decoder Model in which
the encoder focuses on detecting implicit toxic
speech and is boosted by a (iii) Teacher Classi-
fier via knowledge distillation, and the decoder
generates the necessary explanation. TOXCL
achieves new state-of-the-art effectiveness, and
outperforms baselines significantly.

1 Introduction

Warning: This paper discusses and contains con-
tent that can be offensive or upsetting.
While social media has dramatically expanded
democratic participation in public discourse, they
have also become a widely recognized platform for
the dissemination of toxic speech (Mathew et al.,
2021; ElSherief et al., 2021; Yu et al., 2022). On-
line toxic speech, therefore, is prevalent and can
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Figure 1: A sample input post and its ground truth explana-
tion from the test set of Implicit Hate Corpus (ElSherief
et al., 2021). The input post is fed into both models. The base-
line model, RoBERTa, fails to detect the implicit toxic speech
while our proposed TOXCL model successfully detects it and
generates a toxic explanation that closely matches the ground
truth explanation.

lead the victims to serious consequences (Olteanu
et al., 2018; Farrell et al., 2019). For this reason,
the development of toxic detection tools has re-
ceived growing attention in recent years (Hutto and
Gilbert, 2014; Ribeiro et al., 2018; Balkir et al.,
2022; Jahan and Oussalah, 2023).

Toxic speech can generally be categorized as
either explicit or implicit. Explicit toxic speech
contains direct offensive language targeting indi-
viduals or groups (Nockleyby, 2000) and has been
extensively studied (Schmidt and Wiegand, 2017;
Jahan and Oussalah, 2021). On the other hand,
implicit toxic speech presents a more challenging
detection task as it relies on stereotypes and indi-
rect language (ElSherief et al., 2021) (see Fig. 1)
and has received limited attention. Moreover, given
the absence of explicit offensive words or cues, it
is crucial for AI models not only to detect implicit
toxic speech but also to provide explanations for
its toxic nature (Sridhar and Yang, 2022). The act
of explanation serves practical purposes in various
real-life applications, including improving human-
machine interactions and building trustworthy AI
systems (Ribeiro et al., 2016; Dosilovic et al., 2018;
Bai et al., 2022).

These applications, therefore, pose a need for
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unified systems that can effectively detect implicit
toxic speech and explain its toxicity. However,
previous works have mainly focused on a hybrid
approach that combines detection and explanation
tasks into a single text generation problem. For
example, Sap et al. (2020) proposed concatenating
the toxic speech label and explanation as the tar-
get output, AlKhamissi et al. (2022) and Huang
et al. (2022) extended this approach by incorporat-
ing additional data such as target group(s) or social
norms. Unfortunately, these hybrid approaches can
introduce error propagation problems (Wu et al.,
2018), possibly due to differences in training ob-
jectives (see Sec. 3.2.3). Consequently, models
formulated in this manner tend to have much lower
detection scores compared to models that focus
solely on detection, as evidenced by our experimen-
tation results (Sec. 4). Another simple approach
is building a modular-based system separating the
detection module and the explanation generation
module. However, in reality, this kind of frame-
work is computationally expensive to train, store
and deploy as it has multiple components.

To bridge these gaps in detecting and explaining
implicit toxic speech, we propose a unified frame-
work TOXCL consisting of three modules (Fig. 2).
Our approach is motivated by the findings that mod-
eling the minority target groups associated with
toxic speech can potentially improve the perfor-
mance of both implicit toxic detection and explana-
tion tasks (ElSherief et al., 2018; AlKhamissi et al.,
2022; Huang et al., 2022). To achieve this, we build
a Target Group Generator as our first module to
generate the target minority group(s) based on the
input post. The generated target group(s) and the
post are then input into an Encoder-Decoder Model
whose encoder detects the speech, and the decoder
outputs the necessary toxic explanation. To en-
hance the detection performance of our encoder, we
incorporate a strong Teacher Classifier that utilizes
the teacher forcing technique during training to dis-
till knowledge to our encoder classifier. Finally,
we introduce a Conditional Decoding Constraint
to enhance the explanation ability of the decoder
during inference. Our model achieves state-of-the-
art performance on the Implicit Hate Corpus
(IHC) (ElSherief et al., 2021) and Social Bias
Inference Corpus (SBIC) (Sap et al., 2020) in
the task of implicit hate speech detection and expla-
nation, outperforming baselines. Our contributions
are as follows:

(i) We present a unified framework for the detec-

tion and explanation of implicit toxic speech. To
the best of our knowledge, our work represents a
pioneering effort in integrating both tasks into an
encoder-decoder model to avoid the error propa-
gation problem while maintaining the competitive
performance on both tasks parameter-efficiently.

(ii) We propose to generate target groups for
the toxic speech detection and explanation model
through the utilization of an encoder-decoder
model, thereby distinguishing our approach from
previous methods (see Sec. 3.2.1). We also in-
troduce several techniques to enhance the perfor-
mance of our model: (1) joint training among the
tasks to make the detection and explanation model
end-to-end; (2) using teacher forcing to train the
encoder; (3) a simple Conditional Decoding Con-
straint during the inference to avoid generating un-
necessary explanation.

(iii) We set up new strong state-of-the-art results
in the task of implicit toxic speech detection and
explanation tasks in two widely used benchmarks
Implicit Hate Corpus (IHC) and Social Bias
Inference Corpus (SBIC).

(iv) We conduct a thorough analysis to demon-
strate the effectiveness of our architectural design.
We will open-source our model to inspire and facil-
itate future research.

2 Related Work

2.1 Toxic Speech Detection & Explanation

Early studies on identifying toxic speech relied on
linguistic rule-based approaches (Chen et al., 2012;
Hutto and Gilbert, 2014; Gitari et al., 2015; Wie-
gand et al., 2018). However, these methods, which
use predetermined lexical and syntactic rules, strug-
gle to detect implicit toxic speech without explicit
vulgarities (Breitfeller et al., 2019; MacAvaney
et al., 2019). Recent frameworks based on trans-
former architecture (Vaswani et al., 2017) have
made progress in detecting toxic speech (Basile
et al., 2019; Tran et al., 2020; Kennedy et al., 2020).
However, detecting implicit toxic speech remains
challenging despite attempts to improve perfor-
mance on this task (Vidgen et al., 2019; Caselli
et al., 2020, 2021; Kim et al., 2022). The issue of
explaining why a text is toxic has received even
more limited attention, with some studies focusing
solely on explaining implicit toxic speech (ElSh-
erief et al., 2021; Sridhar and Yang, 2022). An-
other few studies have addressed both implicit toxic
speech detection and explanation (Sap et al., 2020;
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Figure 2: An overview of our proposed TOXCL. It consists of three modules: a (i) Target Group Generator generates the target
group(s) of the input post; an (ii) Encoder-Decoder Model whose encoder focuses on implicit toxic speech detection whilst its
decoder aims to generate necessary toxic explanation; a (iii) Teacher Classifier to distil the knowledge to the classifier encoder.

AlKhamissi et al., 2022; Huang et al., 2022), often
formulating them as text generation tasks, possibly
leading to error propagation and lower detection
scores compared to detection-only models.

2.2 Knowledge Distillation

Knowledge distillation (Hinton et al., 2015) is a
technique that enables a smaller student model
to learn from a larger teacher model by transfer-
ring knowledge. It has proven effective in im-
proving performance, reducing computational re-
quirements, and increasing efficiency in the field
of Computer Vision (Gou et al., 2021). Recently,
researchers have explored applying knowledge dis-
tillation in Natural Language Processing. For exam-
ple, Fu et al. (2020) used a contrastive approach to
align the intermediate layer outputs of the teacher
and student models. Turc et al. (2019) extensively
studied the interaction between pre-training, dis-
tillation, and fine-tuning, demonstrating the effec-
tiveness of pre-trained distillation in tasks like sen-
timent analysis. Additionally, Clark et al. (2019)
trained a multitasking network by ensembling mul-
tiple single-task teachers. In our work, we dis-
till the knowledge from a teacher classifier to our
model’s classifier (the student classifier), optimiz-
ing the Kullback-Leibler distance (Csiszár, 1975)
between soft labels.

3 Methodology

3.1 Problem Formulation

The task of implicit toxic speech detection can
be formulated as a binary classification problem
while the explanation generation task can be re-
garded as a text generation problem. Each data
instance ⟨IP, Y,E⟩ consists of an input post IP , a
binary class label Y (1 for toxic speech, 0 for non-

toxic speech), and a corresponding explanation E
([None] for non-toxic speech). The models then
take IP as the input and learn to output Y and E.

3.2 TOXCL Framework

Figure 2 shows an overview of our proposed
TOXCL, consisting of three modules: (i) Target
Group Generator; (ii) Encoder-Decoder Model;
(iii) Teacher Classifier. The details of each module
are presented below.

3.2.1 Target Group Generator (TG)

Current toxic speech detection systems often over-
look the nuances of toxic speech, which can be
better addressed by modeling the minority target
groups associated with it (ElSherief et al., 2018).
Incorporating target group information has the po-
tential to improve the accuracy of toxic speech
detection and enable the generation of high-quality
hate speech explanations (Huang et al., 2022).
Therefore, we propose using a transformer-based
encoder-decoder model (Raffel et al., 2020) to gen-
erate target minority groups for given posts, treat-
ing the task as a text generation problem rather than
a multi-label classification task. This approach pro-
vides two advantages over classification models.
Firstly, it leverages powerful pre-trained encoder-
decoder models, enhancing the model’s capabilities.
Secondly, text generation models are more general-
izable, as they are not restricted to a fixed number
of target groups, allowing for greater flexibility in
handling diverse scenarios.

After generating target groups G based on an
input post IP , G and IP are concatenated as
"Target:{G} Post:{IP}" and serve as the input
for our TOXCL. The experimental details of the
TG module are presented in Section 4.1.
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3.2.2 Encoder-Decoder Model
Toxic speech detection and toxicity explanation
are two tasks that have received increasing atten-
tion, and while researchers have made significant
progress in separately solving each problem, ad-
dressing them together has received limited atten-
tion (Sap et al., 2020; AlKhamissi et al., 2022;
Huang et al., 2022). However, these two tasks
are strongly correlated, and the explanation of the
post can potentially help the systems to detect
toxic speech (AlKhamissi et al., 2022). Conversely,
the toxicity explanation is sometimes only neces-
sary when the post is detected as toxic. Typically,
AlKhamissi et al. (2022); Huang et al. (2022) for-
mulate both tasks as a single text generation task,
which has some critical shortcomings as discussed
in Section 1. Therefore, in this work, we propose a
novel architectural design on top of a pre-trained
encoder-decoder model. The encoder addresses
the toxic speech detection task, while the decoder
generates a toxicity explanation if the post is de-
tected as toxic. The details of both the encoder and
decoder components are introduced below.

• Encoder Classifier (CL) To enable the implicit
toxicity detection capability, we build a binary clas-
sifier head on top of the encoder of a pre-trained
encoder-decoder model. This head includes a linear
layer that takes the average of token embeddings
from the encoder’s last hidden state as input, fol-
lowed by a softmax layer (Goodfellow et al., 2016).
To optimize the performance, both the encoder and
the newly added classifier head are trained together
using a binary cross-entropy loss:

Lcls = − 1

N

∑

i

∑

j∈{0,1}
yij log(pij) (1)

in which yi0, yi1 ∈ {0, 1}, pi0, pi1 ∈ [0, 1] and
pi0 + pi1 = 1.

• Explanation Decoder (ToX) Recognizing the
importance of generating explanations for implicit
toxic speech and its potential impact on various ap-
plications, we utilize the decoder of our pre-trained
encoder-decoder model to generate the explanation.
To optimize its performance, the decoder is fine-
tuned using a Causal Language Modeling (CLM)
loss:

Lclm =
∑

i

log(P (ei|ei−k, ..., ei−1; θ)) (2)

in which E = {e1, e2, ..., en} is the set of tokens
of the explanation, and k is the size of the window.

Finally, we train the encoder-decoder model for
the task of toxic speech detection and explanation
by joining the two losses:

Lxcl = αLcls + βLclm (3)

in which α, β are the contribution weights.

3.2.3 Teacher Classifier (TC)
Since the open-sourced encoder-decoder models
are commonly pre-trained on a diverse range of
tasks and these tasks might not solely focus on
learning strong representations from their encoders,
these encoders may not exhibit the same strength
as pre-trained encoder-based models such as BERT
(Devlin et al., 2019) or RoBERTa (Liu et al., 2019)
for classification tasks. Motivated by Hinton et al.
(2015), we propose to use knowledge distillation
to transfer knowledge from a strong encoder-based
model (Teacher Classifier) to the Flan-T5 encoder
(Student Classifier). Specifically, we leverage the
outputs ŷtc and ŷsc from the Teacher Classifier
and Student Classifier, respectively, and employ the
Kullback-Leibler divergence loss (Csiszár, 1975)
as the teacher forcing loss to minimize the discrep-
ancy between ŷtc and ŷsc:

Ltf = DKL(ŷsc)||ŷtc)) (4)

Our final loss L is the weighted sum of Lxcl,Ltf :

L = λLxcl + γLtf (5)

in which λ, γ are the contribution weights.

3.2.4 Conditional Decoding Constraint (CD)
One of the main challenges with unified frame-
works for toxic speech detection and explanation
is the lack of synchronization between the classi-
fier’s output label and the generated explanation.
For instance, when the classifier outputs a label
of 0, indicating non-toxic speech, the explanation
generation module still generates an explanation,
even though it is unnecessary in this case. To ad-
dress this, we propose the Conditional Decoding
Constraint, a simple yet effective algorithm. This
constraint controls the decoder’s generation process
by generating a [None] token for non-toxic speech
and a toxic explanation for toxic speech. By in-
corporating this constraint, our framework ensures
coherence and alignment between the generated
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explanations and classifier outputs, enhancing its
overall performance.

4 Experimentation

4.1 Target Group Generator Experiment

• Dataset To address the problem of free-text
target group labelling in IHC and SBIC datasets,
we utilized the HateXplain dataset (Mathew et al.,
2021), which provides 19 fine-grained categories
for toxic speech. We fine-tune a T5 model (Raf-
fel et al., 2020) as our TG model, and treat it as
a text generation problem. To ensure our frame-
work can predict specific target group(s) associated
with posts from IHC and SBIC datasets, we con-
ducted an analysis to identify any overlapping data
between the HateXplain and IHC, SBIC datasets.
We found only one instance of overlap, which we
removed before training our TG model.

• Baselines We compare the performance of our
TG model with three baseline models: (1) BERT
(Devlin et al., 2019), an encoder-based model;
(2) GPT-2 (Radford et al., 2019), a decoder-only
model, (3) and BART (Lewis et al., 2020), an
encoder-decoder model. BERT is widely used for
multi-label classification tasks while both GPT-2
and BART have demonstrated remarkable perfor-
mance in text

• Implementation Details We concatenate the
annotated target group(s) in alphabetical order to
construct the target label for each input post. All
baselines and our TG model are initialized with pre-
trained checkpoints from Huggingface (Wolf et al.,
2020) and fine-tuned on a single Google CoLab
P40 GPU with a window size of 256, a learning
rate of 1e−5, and AdamW (Loshchilov and Hutter,
2019) as the optimizer. The BERT model is fine-
tuned for 10 epochs, while the GPT-2 and BART
models are fine-tuned for 20k iterations. We use a
beam search strategy with a beam size of 4 for our
generation decoding strategy.

• Automatic Evaluation Our TG model is evalu-
ated using F1 (%) for multi-label classification and
ROUGE-L (%) (Lin, 2004). The results in Table
1 indicate that our model achieved an F1 score of
69.79 and a ROUGE-L score of 70.95, outperform-
ing the competing baselines in identifying target
groups in toxic posts.

Model F1 ROUGE-L

BERT 68.35 70.44
GPT-2 53.98 56.86
BART 63.41 70.48

T5 69.79 70.95

Table 1: Target Group Generator experiments.

IHC SBIC

Model Size Acc. (%) F1 (%) Acc. (%) F1 (%)

RoBERTa-Large 354M 80.68 77.33 90.12 90.11

Teacher Classifier 354M 82.52 79.49 91.19 91.19

Table 2: Performance of Teacher Classifier, which is the
RoBERTa-Large + TG.

4.2 Teacher Classifier Experiment

For our Teacher Classifier, a RoBERTa-Large
model (Liu et al., 2019) is fine-tuned using the
generated target group(s) (TG in Section 3). The
model achieved an F1 score of 79.49 on IHC and
91.19 on SBIC, indicating the effectiveness of gen-
erated target group(s) in classifying toxic speech.
Detailed results can be found in Table 2.

4.3 TOXCL Experiment

• Dataset We conduct our experiments on two
datasets: IHC (ElSherief et al., 2021) and SBIC
(Sap et al., 2020). These datasets are collected
from popular social media platforms such as Twit-
ter and Gab, providing comprehensive coverage of
the most prevalent toxic groups. Prior to training,
we pre-process the data as detailed in Appendix A.

• Baselines We compare TOXCL with three
groups of baselines: (G1) implicit toxic speech
detection, (G2) implicit toxic speech explanation,
and (G3) implicit toxic speech detection and expla-
nation.

For baselines in group G1, we use BERT (De-
vlin et al., 2019), HateBERT (Caselli et al., 2021),
RoBERTa (Liu et al., 2019) and ELECTRA (Clark
et al., 2020) as our baselines. They are widely
employed in prior toxic speech detection works.

We select GPT-2 (Radford et al., 2019), BART
(Lewis et al., 2020), T5 (Raffel et al., 2020),
and Flan-T5 (Chung et al., 2022) as our base-
lines G2 and G3. GPT-2 represents the group of
decoder-only models, while BART, T5, and Flan-
T5 have the encoder-decoder architecture. Specif-
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ically for group G2, we fine-tune them to gen-
erate [None] token or the explanations’ tokens.
For group G3, we concatenate the classification
label [Toxic]/[Non-toxic] and the explanation
of each sample as the output, and fine-tune the
models with the post as input. Furthermore, to
align with recent advancements in Large Language
Models (LLMs), we further include ChatGPT 2 (a
state-of-the-art closed-source LLM) and Mistral-
7B-Instruct-v0.2 (a state-of-the-art open-source
LLM) in group G3. Both models are evaluated
under the zero-shot setting.

• Implementation Details We initialize all the
models with the pre-trained checkpoints from Hug-
gingface (Wolf et al., 2020). We then fine-tune
them on a single Google CoLab P40 GPU with a
window size of 256, and a learning rate of 1e− 5
and use AdamW (Loshchilov and Hutter, 2019) as
our optimizer. The classification baselines in group
G1 are fine-tuned on 10 epochs while the gener-
ation ones in G2 and G3 are fine-tuned on 20k
iterations. Beam search strategy with a beam size
of 4 is utilized as our generation decoding strategy.

• Automatic Evaluation We adopt Accuracy and
Macro F1 as our classification metrics, following
prior works (Mathew et al., 2021; ElSherief et al.,
2021). For the generation of explanations, we uti-
lize BLEU-4 (Papineni et al., 2002), ROUGE-L
(Lin, 2004) and METEOR (Banerjee and Lavie,
2005) as our n-gram metrics. We further utilize
BERTScore (Zhang et al., 2020) to measure the
similarity between the generated toxic explanation
and the ground truth one based on deep-contextual
embeddings. To ensure that unnecessary explana-
tions are not generated for non-toxic posts and pe-
nalize unnecessary explanations, we develop a new
evaluation algorithm for the explanation generation
task. Its pseudo-code is presented in Algorithm 1.
In this algorithm, we assign a score of 100 if both
the generated explanation and the ground truth ex-
planation are [None] indicating that no explanation
is needed. If both the generated explanation and
the ground truth explanation are not [None] we
compute a score based on the quality of the gener-
ated explanation. For any other mismatched pairs,
we assign a score of 0 to penalize the unneces-
sary explanations for non-toxic speech. It is worth
noting that our evaluation algorithm is different
from Sridhar and Yang (2022) which only evalu-

2Version: gpt-3.5-turbo-0613

ates the quality of the generation within implicit
toxic cases.

• Human Evaluation To gain deeper insights
into the generation performance and challenges
that our TOXCL faces compared to the compet-
ing baseline, we conduct human evaluations using
a randomly selected set of 150 samples that re-
quire explanations from each examined benchmark.
Specifically, we collect the generated explanations
from both the TOXCL and Flan-T5 models in
two different settings, G2 and G3. To ensure high-
quality evaluations, five native English speakers
are hired to rate the generated explanations on a
1-3 scale (with 3 being the highest) based on three
criteria: (i) Correctness, evaluating the accuracy
of the explanation in correctly explaining the mean-
ing of toxic speech; (ii) Fluency, assessing the
fluency and coherence of the generated explana-
tion in terms of language use; and (iii) Toxicity,
gauging the level of harmfulness and judgmental
tone exhibited in the generated explanation. The
annotator agreement is measured using Krippen-
dorff’s alpha (Krippendorff, 2011), which provides
a measure of inter-annotator reliability.

4.4 TOXCL Performance

• Automatic Evaluation Our experimental re-
sults in Table 3 reveal three main observations.
Firstly, TOXCL outperforms all baselines on both
benchmarks, demonstrating the effectiveness of our
encoder-decoder model in addressing both implicit
toxic detection and explanation tasks simultane-
ously without conflicts. Secondly, our model sur-
passes detection models in group G1, indicating
the strong capability of our encoder in detecting
implicit toxic speech. It is worth noting that despite
having fewer parameters than the RoBERTa-Base
model (124M), our encoder (Flan-T5’s) classifier
(109M) achieves better performance while main-
taining computational efficiency. Lastly, our model
significantly outperforms its backbone, Flan-T5,
highlighting the effectiveness of our architectural
designs in jointly training the tasks in an end-to-
end manner for implicit toxic speech detection and
explanation problems.

• Human Evaluation Our human evaluation re-
sults in Table 4 indicate that TOXCL outperforms
its backbone model, Flan-T5, from groups G2 and
G3, in terms of both explanation accuracy and tex-
tual fluency. This improved performance is also
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IHC Detection IHC Explanation SBIC Detection SBIC Explanation

Model Group Acc. Macro F1 BLEU-4 ROUGE-L METEOR BERTScore Acc. Macro F1 BLEU-4 ROUGE-L METEOR BERTScore

HateBERT 78.67 75.93 89.32 89.31
BERT G1 78.98 76.16 89.83 89.83
ELECTRA 79.90 76.87 89.06 89.04
RoBERTa 80.06 77.23 89.98 89.97

GPT-2 67.60 70.19 69.69 73.15 47.62 65.50 63.74 74.74
BART G2 53.67 59.18 57.40 68.14 45.22 67.73 67.25 83.98
T5 50.19 56.01 54.36 66.60 45.37 68.03 67.59 84.68
Flan-T5 47.33 53.78 51.95 65.14 45.83 68.37 67.98 85.04

GPT-2 77.57 76.36 67.81 70.19 69.88 73.47 73.62 57.09 48.29 65.24 63.53 74.61
BART 70.40 64.11 55.92 60.48 58.87 68.74 88.25 88.20 45.65 68.08 67.81 84.35
T5 G3 70.71 62.95 58.24 62.42 61.18 69.30 87.55 87.48 45.92 68.37 67.82 84.78
Flan-T5 71.52 65.56 56.58 61.75 60.20 69.84 88.40 88.37 45.98 68.81 67.99 85.07
ChatGPT 55.83 18.62 27.30 29.15 31.16 51.40 78.59 31.38 0.36 4.32 3.36 48.7
Mistral-7B 67.36 26.31 0.29 2.31 3.39 27.11 78.36 52.03 0.58 8.21 2.19 79.88

GPT-2 + TG 74.00 58.12 67.86 70.38 69.71 73.11 78.87 77.93 48.56 65.48 63.65 75.80
BART + TG 74.28 58.88 67.75 68.17 69.68 73.67 88.55 88.52 45.70 68.41 67.81 85.03
T5 + TG 76.48 64.86 67.07 70.98 70.24 73.68 87.78 87.71 46.52 68.67 67.98 85.08
Flan-T5 + TG 78.47 70.13 65.77 70.03 69.98 75.18 88.73 88.72 47.05 68.75 68.05 85.25

Flan-T5 + CLH 77.16 73.67 62.15 64.36 62.21 63.94 89.19 89.19 45.88 67.24 67.63 84.96
Flan-T5 + CLH + TG 78.68 75.77 64.99 67.87 66.24 72.11 89.6 89.6 47.24 67.94 67.80 85.34
Flan-T5 + CLH + TG + TF 81.53† 78.19† 66.49 69.11 67.52 72.14 90.09† 90.08† 47.85 68.93 68.16 85.58
TOXCL 81.53† 78.19† 68.11† 71.21† 70.27† 77.38† 90.09† 90.08† 49.03† 69.93† 68.85† 86.09†

Table 3: Main experimental results. CLH stands for joint training with a classification head on top of the Flan-T5 Encoder. Our
model, TOXCL is equivalent to Flan-T5 + CL Head + TG + TF + CD (all are described in Section 3.2). † denotes our model
significantly outperforms implicit toxic speech detection & explanation baselines with p-value < 0.05 under t-test.

Model Cor.↑ Flu.↑ Tox.↓
Flan-T5 (G2) 2.21 2.02 2.03
Flan-T5 (G3) 2.35 2.46 2.07

TOXCL 2.56 2.63 1.97

Kripp.’s alpha 0.81 0.84 0.78

Table 4: Human evaluation results.

reflected in the detection task, resulting in more
reliable explanations with fewer harmful outputs
compared to the baselines. Our human annotators
exhibit strong agreement with Krippendorff’s alpha
scores consistently measuring at least 0.78 among
the three scores. It is worth noting that the average
toxicity score of around 2 for both our TOXCL
and baseline models aligns with expectations, given
that the training datasets contain offensive words
in the ground truth explanations (see Tab. 5).

5 Discussion

5.1 Case Study: Effectiveness of TOXCL

We compare the performance of TOXCL with the
two best-performing baselines in group G3, namely
GPT-2 on IHC and Flan-T5 on SBIC (Sec. 4). We
present the cases discussed in Table 5. In cases (1),
(3), (4), (7), (9), and (10) we observe that both GPT-
2 and Flan-T5 fail to capture the intended meaning
of the input posts, resulting in wrong detection or
harmful explanations. In contrast, our TOXCL ef-
fectively captures the meaning of the posts, leading

to accurate explanations that align closely with the
ground truth ones. Notably, when comparing to
the ground truth explanation, the explanation gen-
erated by TOXCL exhibits a more polite attitude
(cases 2, 4, 8, 9) or even more accurate (case 3).

5.2 Ablation Studies
• Target Group Generator (TG) When adding
the this module (i.e., + TG in Table 3), we observe
that all baselines considered in our experiments
achieve significant improvements compared to
training them without the generated target groups.
In addition, our Teacher Classifier also outperforms
its variant trained on solely the input posts. These
improvements emphasize the crucial role of the
target group(s) in enhancing their ability to detect
and explain implicit toxic speech. These results
also consolidate our motivation for using generated
target groups in guiding the models for solving the
two tasks.

• Teacher Forcing (TF) By comparing the per-
formance of Flan-T5 + CLH + TG before and after
using teacher forcing (+ TF in Table 3), we ob-
serve that incorporating this technique improves the
performance of the encoder of TOXCL. This im-
provement demonstrates that providing additional
guidance to the encoder of TOXCL results in more
accurate predictions and achieves a performance
close to that of the Teacher Classifier.

• Conditional Decoding Constraint (CD) Fi-
nally, the impact of integrating the Conditional
Decoding Constraint designed to avoid necessary
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Index Input Post Ground Truth Explanation(s) GPT-2 (IHC) Flan-T5 (SBIC) TOXCL
(1) approx half muslms today result of inbreeding,

perhaps this why they are ""hell bent"" on de-
stroying christian based west? inbreed = low iq.

Muslims are result of inbreed-
ing

Muslims are de-
structive

Muslims are in-
bred.

(2) you hate like a jew. you are fixatd on hating
white christians like a jew.

Jewish people have hate toward
other groups

Jews hate white
people

Jews don’t like
white poeple

(3) funny how you never hear about white men rap-
ing women in black" neighborhoods. i know 2
white women who ’

Blacks rape whites. Blacks are infe-
rior

White men are
rapists.

(4) she’s another low iq hollywood liberal . islam
is submission and btw if they ran america

Liberals are stupid. None Liberals are low
IQ people.

(5) rt. : " voters on obamas #immigration plans :
drop dead " " #noamnesty "

Immigrants ruin society None None

(6) bruh i love white people too how do i join Minorities are lesser races. None None

(7) An Asian woman just gave me a handjob while
fingering my ass Which isnt what i meant when
i asked her to give me a ’Hand Roll and Pork
Intestines. That’s the problem with having the
Chinese Massage place right next to the Chinese
takeout place

[’chinese women are sex work-
ers.’, "chinese women don’t un-
derstand english."]

asians eat pork asian women
only care about
sex

(8) you see, i am a doctor. today i had to save a
black guy’s life i told his family: i did every-
thing i could, but unfortunately he survived.

[’black people are useless’,
’black people need to be killed’]

black people are
worthless

black people
aren’t as good
as whites

(9) @BlakkHoodie_562 yeah that niggah played
good, lowkey i wanted brazil to win

[’black people are the n word’] None niggah is a slang
term

(10) A bf and gf; are suppose to laugh; at these hoes;
together;. A guy should never have these hoes;
laughing; at his girl;

[’degrades women by calling
them names’, ’women are
called hoes’, ’women are hoes’]

None women are hoes

Table 5: The qualitative explanation performance of GPT-2, Flan-T5, and TOXCL was evaluated on samples from the valid set
of IHC and SBIC datasets.

explanation, is evaluated in Table 3. Compared
with Flan-T5 + CLH + TG + TF, our TOXCL
is improved significantly on the toxic explanation
generation task. This confirms the effectiveness
of Conditional Decoding Constraint in helping the
outputs of our model to synchronize implicit toxic
speech detection labels and toxic explanations.

5.3 Error Analysis

We present additional qualitative samples from
both benchmarks in Table 5 to highlight key chal-
lenges faced by existing models in detecting im-
plicit toxic speech and generating explanations.
While our model performs well overall, there are
still areas for improvement, as discussed below.

• Coded Toxic Symbols Our model, along with
the baselines, struggles with detecting implicit
toxic speech that contains abbreviated or coded to-
kens, such as "#noamnesty" in case (5). This error
has also been observed and discussed by previous
work (ElSherief et al., 2021).

• Misunderstood Sarcasm and Irony Our
model may face challenges in accurately detect-
ing toxic sentences that contain indirect words. For

example, case (6) involves the phrase "bruh i love
white people too how do i join", which uses indi-
rect words such as "bruh" and "love" to express
irony. The speaker sarcastically expresses a desire
to join a racial group while implying that joining
such a group is based on a belief in the superiority
of white people or that minorities are lesser races.

• Variant Explanations In all cases except cases
(5), (6), and (10), our TOXCL accurately identifies
implicit toxic speech but generates linguistically
different explanations from the ground truth(s).
However, these generated explanations convey the
same semantic meaning as the ground truth, indi-
cating the model’s ability to comprehend correctly
the implicit meanings. This, along with discus-
sions by Huang et al. (2022), demonstrates that
instances of implicit toxic speech can have mul-
tiple correct explanations, highlighting the limita-
tions of commonly-used n-gram evaluation metrics
like BLEU-4 (Papineni et al., 2002) and ROUGE-L
(Lin, 2004) scores.
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6 Conclusion

We present TOXCL, a unified framework for
implicit toxic speech detection and explanation
(Sec. 3.2). It consists of three components: a Target
Group Generator, an Encoder-Decoder model, and
a Teacher Classifier. Our findings show that the
Target Group Generator effectively identifies target
groups, improving both accuracy and F1 scores for
detecting implicit toxic speech. The novel encoder-
decoder architecture successfully performs both
tasks of detection and explanation without harming
each other. The integration of the Teacher Classifier
and the Conditional Decoding Constraint further
enhances the performance of TOXCL, achieving
state-of-the-art results in the task of toxic speech de-
tection and explanation on two widely-used bench-
marks. In the future, we will focus on addressing
several limitations faced by our framework and
baselines as specified in Section 5.3 to further en-
hance the performance of our model.

Limitations

Although our model has demonstrated strong per-
formance, our error analysis (Sec. 5.3) has iden-
tified several challenges that still need to be ad-
dressed. One such challenge is the presence of
coded toxic symbols, abbreviated words, or im-
plicit phrases in the input posts, which may require
external sources of knowledge for accurate inter-
pretation. To address this, future work can focus
on enhancing the models by incorporating addi-
tional reasoning capabilities and leveraging exter-
nal knowledge. Additionally, existing evaluation
metrics for the implicit toxic speech explanation
task is also another limitation since this can be a
one-to-many relationship problem in which there
may have multiple non-overlapping but correct ex-
planations for an implicit hate speech.

Ethical Considerations

While our method for implicit toxic speech has
shown promise in identifying target groups, detect-
ing implicit toxic speech, and generating explana-
tions, it is crucial to consider the potential risks
involved.

Firstly, there is a concern that the generated ex-
planations may contain toxic words, depending on
the training data (Sec. 5). This raises the possibility
of the model spreading machine-generated toxic
speech if it is misused. It is essential to address this

toxicity to protect marginalized groups and shift
power dynamics to the targets of oppression.

Secondly, there is a risk of reinforcing biases or
amplifying harmful messages by providing expla-
nations only for detected implicit toxic speech. If
the model fails to detect implicit toxic speech, the
absence of an explanation may imply acceptability
or harmlessness. Considering explanations for all
posts, regardless of detection, could be an approach
to mitigate this risk, although our datasets do not
provide explanations for non-toxic speech.

In conclusion, while having complete control
over the TOXCL’s usage in real-world scenarios
may not be feasible, it is essential to recognize
and address potential risks. By doing so, our work
offers an opportunity to combat harm directed at
minority groups and empower targets of oppression.
Therefore, addressing the quality of explanations in
the training data is a critical step toward achieving
our ultimate goal.
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A Data Pre-process

To facilitate our problem, we exclude instances of
implicit toxic speech that lack an explanation, re-
sulting in the removal of 844 samples from IHC
and 8,220 samples from SBIC. Since the original
IHC dataset does not include a designated test set,
we create our own by randomly selecting 20% of
the implicit toxic speech and non-toxic speech in-
stances. The final statistics of both datasets are
shown in Table 6.

Split # toxic # non-toxic # samples

IHC Train 5,002 10,633 15,635
IHC Valid 1,254 2,658 3,912

SBIC Train 12,098 16,698 28,796
SBIC Dev 1,806 2,054 3,860
SBIC Test 1,924 1,981 3,905

Table 6: Statistics of Implicit Hate Corpus and
Social Bias Inference Corpus after pre-processing.

B Evaluation Algorithm

We present our evaluation metrics to evaluate the
explanation generation capability of the models.
To penalize unnecessary explanations for non-toxic
speech, we add 100 to every score when the label is
"None" and the model generation output is "None".
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Algorithm 1: Computations of Explanation
Generation Metrics

1 Input: b_gen_labels, b_gen_expls
2 Initialize:
3 N = len(b_gen_labels)
4 s_bleu = s_rouge = s_meteor =

s_bertscore = 0
5 for idx in range(N ) do
6 label = b_gen_labels[idx]
7 expl = b_gen_expls[idx]
8 if label == "None" and expl ==

"None" then
9 add 100 to s_bleu, s_rouge,

s_meteor, s_bertscore
10 end
11 else if label ̸= "None" and expl ̸=

"None" then
12 s_bleu += bleu(label, expl)
13 s_rouge += rouge(label, expl)
14 s_meteor += meteor(label, expl)
15 s_bertscore += bertscore(label,

expl)
16 end
17 end
18 return s_bleu/N , s_rouge/N ,

s_meteor/N , s_bertscore/N
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