
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 6487–6508

June 16-21, 2024 ©2024 Association for Computational Linguistics

CoE-SQL: In-Context Learning for Multi-Turn Text-to-SQL with
Chain-of-Editions

Hanchong Zhang1, Ruisheng Cao1, Hongshen Xu1, Lu Chen1,2∗ and Kai Yu1,2*

1X-LANCE Lab, Department of Computer Science and Engineering
MoE Key Lab of Artificial Intelligence, SJTU AI Institute

Shanghai Jiao Tong University, Shanghai, China
2Suzhou Laboratory, Suzhou, China

{zhanghanchong,chenlusz,kai.yu}@sjtu.edu.cn

Abstract

Recently, Large Language Models (LLMs)
have been demonstrated to possess impressive
capabilities in a variety of domains and tasks.
We investigate the issue of prompt design in
the multi-turn text-to-SQL task and attempt to
enhance the LLMs’ reasoning capacity when
generating SQL queries. In the conversational
context, the current SQL query can be modified
from the preceding SQL query with only a few
operations due to the context dependency. We
introduce our method called CoE-SQL1 which
can prompt LLMs to generate the SQL query
based on the previously generated SQL query
with an edition chain. We also conduct exten-
sive ablation studies to determine the optimal
configuration of our approach. Our approach
outperforms different in-context learning base-
lines stably and achieves state-of-the-art perfor-
mances on two benchmarks SParC and CoSQL
using LLMs, which is also competitive to the
SOTA fine-tuned models.

1 Introduction

Text-to-SQL (Zhong et al., 2017; Xu et al., 2017)
is a semantic parsing task that translates the nat-
ural language question into the appropriate SQL
query according to the given database schema. This
technique is critical in building a natural language
interface to relational databases (Androutsopoulos
et al., 1995), which alleviates the burden on pro-
grammers to curate valid and correct annotations.

In this work, we focus on the contextual set-
tings (Yu et al., 2019b,a) where users interact with
the system in multi-turn scenarios. In each turn,
the text-to-SQL parser understands and interprets
the current user question into a SQL query based
on the entire dialogue history. Considering the re-
quirement of context modeling, EditSQL (Zhang

* The corresponding authors are Lu Chen and Kai Yu.
1Our code is publicly available at https://github.com/

X-LANCE/text2sql-multiturn-GPT

et al., 2019) introduces copy mechanism during
the generation of SQL queries to re-use the SQL
spans in history. DELTA (Chen et al., 2021b)
firstly paraphrases the long context into a single
question and transforms the original problem into
single-turn parsing. IGSQL (Cai and Wan, 2020)
and HIESQL (Zheng et al., 2022) both utilize the
concept of cross-turn schema interaction into the
specialized design of graph encoders. STAR (Cai
et al., 2022) and CQR-SQL (Xiao et al., 2022)
inject the capability of context modeling through
self-supervised pre-training tasks. Though remark-
able progress has been achieved, these task-specific
methods rely on complicated model design which
is labor-intensive and training-inefficient.

The advent of LLMs (Ouyang et al., 2022) pro-
vides a promising solution in the text-to-SQL field,
that is in-context learning with few-shot exem-
plars (Brown et al., 2020). In this branch, DIN-
SQL (Pourreza and Rafiei, 2023) adopts the con-
cept of Chain-of-Thought (CoT, Wei et al., 2023)
and establishes a new milestone in single-turn set-
tings. ACT-SQL (Zhang et al., 2023) further elimi-
nates the necessity of mannually crafting CoT ex-
emplars and automatically constructs useful demon-
straions. However, adapting the ICL method into
contextual settings is less investigated. ACT-SQL
attempts to reduce the original problem into single-
turn problems via sentence rewriting. But poor per-
formances are reported on multi-turn benchmarks
due to severe error propagation.

In this work, we propose Chain-of-Edition
framework to tackle the multi-turn text-to-SQL
task (CoE-SQL). Inspired by recent progress in
code edition (Chen et al., 2023b), we attempt
to model the changes in the output SQL pro-
gram across different interaction turns explicitly.
These changes can be serialized into the reasoning
thought, as a specific implementation of CoT, to
track the shift in the user focus and intention. The
underlying mechanism is that, in a coherent and

6487

https://github.com/X-LANCE/text2sql-multiturn-GPT
https://github.com/X-LANCE/text2sql-multiturn-GPT


Turn 1
Q: What are the phone names available in Alberta?
SQL: SELECT T1.Name FROM phone AS T1 JOIN

phone_market AS T2 JOIN market AS T3 ON T1.Phone_ID =

T2.Phone_ID AND T2.Market_ID = T3.Market_ID WHERE

T3.District = "Alberta"

Edit: no edition
Turn 2
Q: Show the district as well.
SQL: SELECT T1.Name, T3.District FROM phone AS

T1 JOIN phone_market AS T2 JOIN market AS T3

ON T1.Phone_ID = T2.Phone_ID AND T2.Market_ID =

T3.Market_ID WHERE T3.District = "Alberta"

Edit: add select column T3.District
Turn 3
Q: Remove the restriction of those in Alberta only,
show all instead.
SQL: SELECT T1.Name, T3.District FROM phone AS

T1 JOIN phone_market AS T2 JOIN market AS T3

ON T1.Phone_ID = T2.Phone_ID AND T2.Market_ID =

T3.Market_ID WHERE T3.District = "Alberta"

Edit: delete where clause T3.District = "Alberta"

Table 1: A multi-turn example from SParC (Yu et al.,
2019b). Each edition is based on the previous turn.

consistent dialogue, the user’s questions often de-
pend on the previous focus, and the latest request
or intent can be obtained by modifying the already
generated semantic representations (SQL program)
through a few simple rules. For example, in Ta-
ble 1, after attaining the raw SQL query in turn one,
the user is too “lazy” to declare the full intention
and only convey the difference. This can be easily
captured by a simple column insertion on the tar-
get SQL query. Similarly, in turn 3, the complete
SQL can be obtained via a simple deletion of the
WHERE clause based on turn 2, instead of gener-
ating the tedious long output. To achieve this, we
thoroughly analyze the entire training set and sum-
marize 14 unit edit rules (3.2). Next, we propose an
abstract syntax tree (AST) comparison algorithm to
automatically extract the chain of edition rules with
the minimum length (3.3). After that, we serialize
and prepend those editions in the prompt before the
output of each turn. Different serialization styles
are analyzed (3.4), including self-defined edit rules,
python code and natural language description. And
we find that the NL description performs the best
on two benchmarks, SParc (Yu et al., 2019b) and
CoSQL (Yu et al., 2019a).

Our contributions can be summarized:

1. We propose CoE-SQL to tackle the complex
multi-turn text-to-SQL, which formalizes the
SQL editions as a specific reasoning process.
This method is more interpretable towards
how LLM deals with context modeling to sim-
ulate human thinking.

2. We provide the checklist of unit edit rules, and
the corresponding tree comparison algorithm
to automatically extract the edition chain by
comparing two abstract syntax trees (ASTs).

3. We conduct comprehensive ablation study
to analyze different CoE configurations and
achieve state-of-the-art results with LLMs on
the validation sets of two benchmarks SParC
and CoSQL. It is also competitive to SOTA
fine-tuned models.

2 Related Work

Multi-turn text-to-SQL models Before LLMs
are applied in the multi-turn text-to-SQL task, re-
searches mainly focus on building and fine-tuning
specialized deep neural networks. (Zhang et al.,
2019) and (Wang et al., 2020) use the previously
generated SQL queries to improve the parsing ac-
curacy. IGSQL (Cai and Wan, 2020) utilizes the
graph neural network to model database schema
items in the conversational scenario. R2SQL (Hui
et al., 2021) and HIE-SQL (Zheng et al., 2022)
present a dynamic schema-linking graph which
incorporates the current utterance, the previous pre-
ceding utterances, the database schema, and the last
most recent SQL query. RASAT (Qi et al., 2022)
is a Transformer (Vaswani et al., 2023) architec-
ture augmented with relation-aware self-attention
that could leverage a variety of relational struc-
tures while effectively inheriting the pre-trained
parameters from the T5 model (Raffel et al., 2023).
RASAT employs the PICARD method (Scholak
et al., 2021) which constrains the auto-regressive
decoder by rejecting invalid tokens.

Despite the impressive results of specialized
models, there are some unavoidable drawbacks.
Creating and labeling a comprehensive text-to-SQL
dataset requires a significant amount of resources
and time. Additionally, training and refining the
model is a laborious process that requires a lot of
computing power.

In-context learning for text-to-SQL Recent
studies have explored the potential of LLMs for
the text-to-SQL task, with Rajkumar et al. (2022)

6488



using the zero-shot and few-shot learning setting to
empirically evaluate the capabilities of LLMs such
as GPT-3 (Brown et al., 2020) and Codex (Chen
et al., 2021a). Nan et al. (2023) focused on the
strategy of exemplar selection, requiring an addi-
tional predictor to assess the difficulty of the SQL.
DIN-SQL (Pourreza and Rafiei, 2023) provides a
more complex approach, decomposing the problem
into several simpler sub-problems.

The above works merely employ LLMs on the
single-turn text-to-SQL task. ACT-SQL (Zhang
et al., 2023) generates the chain-of-thoughts auto-
matically and extends its approach onto the multi-
turn text-to-SQL task. ACT-SQL converts the
multi-turn dataset into the single-turn one by rewrit-
ing and completing questions with context depen-
dencies. However, ACT-SQL performs poorly un-
der the multi-turn setup due to the error propagation
occurring in the process of question rewriting. In
contrast, our proposed CoE-SQL is an edit-based
method which can directly utilize the context de-
pendency instead of rewriting the question.

3 Methodology

In the few-shot in-context learning setting, the
multi-turn text-to-SQL task can be formulated as

Rn = LLM(I,D,Q≤n,R<n, E).

Rn represents the response to the current ques-
tion created by LLMs. I represents the instruc-
tion. D represents the database schema. Q =
[Q1, Q2, · · · , Qn] represents the entire context con-
sisting of n questions. R = [R1, R2, · · · , Rn−1]
represents LLMs’ responses to the previous ques-
tions. E = [E1, E2, · · · , E|E|] is the list of |E|
exemplars used in few-shot learning.

3.1 Overview of CoE
In the real-world scenario, users are more likely
to start the conversation with a relatively simple
question because they are unfamiliar with the de-
tailed structure of the system. With the increasing
the number of conversation turns, the user ques-
tion and the corresponding SQL query will become
more complex. It is more difficult and redundant
for LLMs to generate a complex SQL query from
scratch, since the entire thinking and logical reason-
ing process is generally intricate. On the contrary,
generating the current SQL query by updating the
previous one through a few editions is a better op-
tion.

In Section 3.2, we provide our definition of unit
edit rules that can help edit the SQL query. In
Section 3.3, we explain how to extract the edition
chain by comparing the two ASTs of two SQL
queries. In Section 3.4, we introduce the different
styles of edition chains used in our work. And
finally in Section 3.5, we provide a simple method
to help LLMs better analyze the edition process.

3.2 Definition of Unit Edit Rules
In order to edit a SQL query into another SQL
query, we first define the set of unit edit rules.
According to the different SQL components, we
totally define 14 unit edit rules shown in Table
13. Taking the conversation instance in Table 1
as an example, we can apply the unit edit rule
EditSelectItem(-, market.District) to edit SQL 1
into SQL 2. We can also apply the EditWhereCon-
dition(market.District = “Alberta”, -) unit edit rule
to edit SQL 2 into SQL 3.

3.3 Extraction of Edition Chains
We use the few-shot learning method to activate
LLMs’ ability of utilizing our pre-defined unit edit
rules. Therefore, we need to select exemplars from
the training dataset and then extract the edition
chains in each conversation. Since this work does
not focus on selecting better exemplars, we use
a simple exemplars selection strategy. We first
randomly choose kd database schemas and then
randomly choose ke dataset examples for each
database schema. Thus, total kd×ke exemplars are
put in the prompting text for the few-shot learning.
In the following process, we need to extract the
edition chains from these exemplars.

Assume that the dataset example consists of n
questions [Q1, Q2, · · · , Qn] and n corresponding
SQL queries [S1, S2, · · · , Sn]. Consider the i-th
one as the current turn. Notably, the edition chain
is determined by the difference between the current
SQL query Si and the previous SQL query Sj(j <
i). A reasonable approach to extracting the edition
chain is to compare the two ASTs.

Figure 1 shows an example of a comparison be-
tween two ASTs. Notice that the FROM clause
component is omitted in this figure. We compare
each node pair in the two ASTs. Two nodes are
considered equal iff they represent the same gram-
mar rule and all of their child nodes are equal. The
edition chain can be constructed according to the
unequal part. By recognizing the grammar rules
of the nodes in the unequal part, we can determine

6489



Algorithm 1: Extraction of Edition Chains
Input :Previous tree node told, current

tree node tnew
Output :Edition chain C
C ← {};
for f in get_fields(told) do

sold ← told.get_son(f);
snew ← tnew.get_son(f);
if sold is tree and snew is tree then

Csub ← ExtractCoE(sold, snew);
// recursively call the

function
C.update(Csub);

end
else if sold is None and snew is tree
then
e← get_add_edition(snew, f);
C.add(e);

end
else if sold is tree and snew is None
then
e← get_delete_edition(sold, f);
C.add(e);

end
else if sold ̸= snew then

e←
get_change_edition(sold, snew, f);

C.add(e);
end

end
return C

Figure 1: Comparison between two ASTs.

that the edition chain contains exactly one unit edit
rule, i.e. EditWhereCondition(-, Stu.GPA > 3).
The detailed procedure is outlined in Algorithm 1.
With the method of comparing two ASTs, we can
construct the edition chains for every exemplar au-
tomatically. LLMs can learn the chain-of-editions
method during the few-shot learning process.

In quite a few conversations, the current question
Qi may not inherit from the exactly previous ques-
tion Qi−1 but the more previous one Qj(j < i−1).
Also, the current question may start a new topic ir-
relevant to the original one. To tackle the above two
problems, we enumerate all the previous i− 1 SQL
queries and construct an edition chain CoEi,j for
each SQL pair (Si, Sj) where j = 1, 2, · · · , i− 1.
We eliminate those edition chains with lengths
greater than lc (edition chains consisting of more
than lc unit edit rules) where lc is a threshold. If
the edition chain contains too many unit edit rules,
we believe that the corresponding two questions
are irrelevant. In that case, writing the current SQL
query directly is more efficient than editing from
the previous one. As for the left edition chains, we
select the edition chain with the least number of
tokens as the final edition chain.

3.4 Style of Edition Chains
We attempt to use three different styles to put
the edition chain in the prompting text. Ta-
ble 2 shows the detailed formats where the ex-
ample chain-of-edition consists of two unit edit
rules, namely EditSelectItem(*, COUNT(*)) and
EditWhereCondition(-, Stu.GPA > 3).

With the edit rule style, we directly write our unit
edit rules into the prompting text. With the Python
code style, we regard the SQL query as a Python
dict and convert unit edit rules into corresponding
Python codes to update the Python dict. With the
natural language style, unit edit rules are converted
into plain texts which are closer to the corpus used
in the LLMs’ pretraining step.

3.5 Analysis of Differences Between Pre- and
Post-Questions

When preprocessing the exemplar, the edition chain
can be extracted by comparing the different ASTs.
However, when handling the test case, LLMs have
to predict the edition chain by comparing the cur-
rent question and the previous question. Thus we
complete the question analysis for the exemplars.
Given the current question and the previous ques-
tion, we instruct LLMs to generate the difference

6490



Style Prompting Text

Edit Rule

FROM clause:
- no change is needed
SELECT clause:
- EditSelectItem(*, COUNT(*))
WHERE clause:
- EditWhereCondition(-, Stu.GPA > 3)
GROUP BY clause:
- no change is needed
ORDER BY clause:
- no change is needed
LIMIT clause:
- no change is needed
INTERSECT/UNION/EXCEPT:
- no change is needed

Python Code
sql[’select’].remove(’*’)
sql[’select’].append(’COUNT(*)’)
sql[’where’][’conditions’].append(’Stu.GPA > 3’)

Natural Language

FROM clause:
- no change is needed
SELECT clause:
- change * to COUNT(*)
WHERE clause:
- add WHERE condition Stu.GPA > 3
GROUP BY clause:
- no change is needed
ORDER BY clause:
- no change is needed
LIMIT clause:
- no change is needed
INTERSECT/UNION/EXCEPT:
- no change is needed

Table 2: Three styles of serialization for CoE.

between them. The analysis texts of each exem-
plar are also added into the prompting text, which
can motivate LLMs to analyze the difference be-
tween pre- and post-questions. Notice that, this
thought-before-edition trick is an adaptation of the
thought-before-action idea in ReAct (Yao et al.,
2022) framework.

4 Experiments

4.1 Experiment Setup
Models We use the GPT-3.5-turbo-16k model to
evaluate our proposed CoE-SQL. The CoE-SQL
approach is based on self-defined edit operations,
indicating that this method would not perform well
if insufficient exemplars are provided. Only suf-
ficient exemplars can cover most unit edit rules.
Therefore, we expect LLMs to have a long context
window. That’s the reason we choose GPT-3.5-
turbo-16k with a 16,385 tokens context window
instead of GPT-3.5-turbo with a 4,096 tokens con-
text window.

Hyperparameters The temperature in the API of
LLMs is set to 0, meaning that the greedy decoding
strategy is being used. Text-to-SQL tasks require
the model to produce SQL queries that adhere to
strict grammar regulations. If the temperature is

too high, the LLMs are likely to generate SQL
queries that are invalid or not pertinent to the posed
questions. Regarding the exemplars used for the
few-shot learning, we set the number of database
schemas kd to 4 and set the number of examples
from each database schema ke to 4.

Datasets We assess our proposed approach on
SParC (Yu et al., 2019b) and CoSQL (Yu et al.,
2019a). SParC is composed of 4,298 coherent ques-
tion sequences, including more than 12k individual
questions and the related SQL queries. CoSQL
has 10k+ annotated SQL queries. Each dialogue
in CoSQL is designed to mimic a real-world situa-
tion, where a regular user is exploring the database
and an expert is retrieving answers with SQL. They
also provide an evaluation script that divides SQL
queries into four difficulty levels (easy, medium,
hard, and extra).

Evaluation metrics We assess the performance
of our approach using three commonly used evalu-
ation metrics for the text-to-SQL task: exact match
accuracy (EM), execution accuracy (EX), and test-
suite accuracy (TS). EM requires that each com-
ponent of the predicted SQL is the same as the
corresponding component of the gold SQL, disre-
garding the values in the query. EX evaluates the
correctness of the execution result of the predicted
SQL, which is usually more precise than EM. TS
also evaluates the execution result, but requires
the result to be correct across multiple database
instances per database schema2.

Since we are evaluating LLMs’ performances in
the multi-turn text-to-SQL task, question match ac-
curacy (QM) and interaction match accuracy (IM)
need to be considered respectively. QM is 1 if the
predicted SQL query for the single question is cor-
rect, and IM is 1 if all the predicted SQL queries in
the context are correct.

4.2 Main Results
In our main experiments, we choose the natural
language style for the edition chain. We set the
maximum length of the edition chain lc to 4 when
testing on SParC and 3 when testing on CoSQL.
Table 3 and Table 4 show the performance of our
proposed CoE-SQL and other previous works on
the dev sets of SParC and CoSQL respectively.

Notably, when comparing in-context learning
approaches with fine-tuned models, the EM evalua-

2https://github.com/taoyds/
test-suite-sql-eval

6491

https://github.com/taoyds/test-suite-sql-eval
https://github.com/taoyds/test-suite-sql-eval


Fine-tuned Model QM IM
EM ↑ EX ↑ TS ↑ EM ↑ EX ↑ TS ↑

GAZP+BERT (Zhong et al., 2020) 48.9 47.8 - - - -
HIE-SQL+GraPPa (Zheng et al., 2022) 64.7 - - 45.0 - -

RASAT+PICARD (Qi et al., 2022) 67.7 73.3 - 49.1 54.0 -
In-Context Learning Approach

ACT-SQL (Zhang et al., 2023) 51.0 63.8 56.9 24.4 38.9 29.6
Baseline (Ours) 50.0 67.0 59.5 30.8 46.7 37.9

CoE-SQL (Ours) 56.0 70.3 63.3 36.5 50.5 41.9

Table 3: Performances of CoE-SQL and other previous works on SParC dev set.

Fine-tuned Model QM IM
EM ↑ EX ↑ TS ↑ EM ↑ EX ↑ TS ↑

GAZP+BERT (Zhong et al., 2020) 42.0 38.8 - - - -
HIE-SQL+GraPPa (Zheng et al., 2022) 56.4 - - 28.7 - -

RASAT+PICARD (Qi et al., 2022) 58.8 67.0 - 27.0 39.6 -
In-Context Learning Approach

ACT-SQL (Zhang et al., 2023) 46.0 63.7 55.2 13.3 30.7 21.5
Baseline (Ours) 47.8 69.4 58.5 20.1 38.9 27.6

CoE-SQL (Ours) 52.4 69.6 60.6 23.9 39.6 30.4

Table 4: Performances of CoE-SQL and other previous works on CoSQL dev set.

tion metric is not that worthy to be paid attention
to. Fine-tuned models can learn the dataset feature
from the training set. These models are more likely
to generate the SQL query with the same structure
as the gold SQL query and thus can achieve higher
EM scores. On the contrary, LLMs tend to write the
SQL query based on their original knowledge learn-
ing in the pretraining phase. Only a few exemplars
from the training dataset cannot provide sufficient
information about the dataset feature. Therefore,
LLMs are more likely to generate the SQL query
with the accurate semantic and logic and the cor-
rect execution result. In general, we would like to
mainly focus on the EX and TS evaluation metrics
in the following discussion. Most fine-tuned mod-
els only provide their EM scores. We compare our
method with the GAZP and the RASAT methods
because these two models provide their EX scores,
where RASAT is the SOTA one.

Compared with fine-tuned models, our proposed
CoE-SQL approach achieves a 70.3% EX(QM)
score and a 50.5% EX(IM) score on SParC dev
set, which has surpassed the GAZP + BERT
model (Zhong et al., 2020) a lot and has been
comparable to the RASAT + PICARD model (Qi
et al., 2022). CoE-SQL even achieves the highest
EX(QM) score on CoSQL dev set. The experiment

result proves that LLMs have possessed the strong
ability for handling the complex multi-turn text-to-
SQL task. Using the GPT-3.5-turbo-16k LLM, the
CoE-SQL approach can perform almost as well as
the previous best fine-tuned model (with EX score).
We believe that our CoE-SQL can achieve a bet-
ter performance if larger LLMs (e.g. GPT-4) are
applied.

Furthermore, the CoE-SQL approach achieves
the highest EM, EX, and TS scores among the
existing in-context learning methods. The ACT-
SQL method converts the multi-turn dataset into
the single-turn one by rewriting and completing
the questions with context dependencies. Compar-
ing our simple baseline method and the ACT-SQL
method, we can conclude that paraphrasing the
multi-turn dataset with LLMs is not a good choice.
It performs even worse than the baseline method.
Based on the edit operations, CoE-SQL performs
much better than the baseline method which merely
takes the original database schema and questions as
the LLMs’ input. This indicates that editing SQL
queries is an effective method in the multi-turn
text-to-SQL task.

We also complete the experiments on SParC and
CoSQL test sets. The results of the experiment are
shown in Table 5. Under the EX metric, our CoE-

6492



Fine-tuned Model SParC CoSQL
EX (QM) ↑ EX (IM) ↑ EX (QM) ↑ EX (IM) ↑

GAZP+BERT (Zhong et al., 2020) 44.6 19.7 35.9 8.4
RASAT+PICARD (Qi et al., 2022) 74.0 52.6 66.3 37.4
In-Context Learning Approach

CoE-SQL (Ours) 74.1 51.9 71.1 42.9

Table 5: Performances of CoE-SQL and other previous works on SParC and CoSQL test sets.

SQL approach keeps the good performance and
even surpasses the SOTA fine-tuned model on the
test sets. This also reveals that in-context learning
approaches would not suffer the performance gap
between the dev set and the test set.

Case study Table 6 shows an instance from the
SParC dev set. The condition “employees under
age 30” is mentioned in the first question. The
baseline method successfully keeps this condition
in the second query but forgets it in the final query.
However, due to the chain-of-edition mechanism,
the CoE-SQL method retains this condition from
the beginning to the end. More detailed case studies
can be found in Appendix B.

Turn 1
Question: Find all employees who are under age
30.
Baseline: SELECT * FROM employee WHERE
age < 30 ✓
CoE-SQL: SELECT * FROM employee WHERE
age < 30 ✓
Turn 2
Question: Which cities did they come from?
Baseline: SELECT DISTINCT city FROM em-
ployee WHERE age < 30 ✓
CoE-SQL: SELECT City FROM employee
WHERE age < 30 ✓
Turn 3
Question: Show the cities from which more than
one employee originated.
Baseline: SELECT city FROM employee GROUP
BY city HAVING count(*) > 1 $
CoE-SQL: SELECT City FROM employee
WHERE age < 30 GROUP BY City HAVING
COUNT(*) > 1 ✓

Table 6: Case study from the SParC dev set.

4.3 Ablation Study

In this section, we show the experiment results of
the ablation study to find out the best setting of

CoE-SQL. We only report the TS score since it is
most suitable for the in-context learning method.

Simple CoT baseline Besides the most trivial
baseline method, we attempt an advanced approach
based on the simple CoT method. We manually
label the few-shot exemplars using the question ex-
planation mentioned in (Chen et al., 2023a). Table
7 shows the result, which proves that the simple
CoT method can be beneficial for LLMs compared
with the most trivial baseline. It is also significant
that our CoE-based approach is more suitable for
the multi-turn text-to-SQL task.

Approach TS(QM) ↑ TS(IM) ↑
Baseline 59.5 37.9

Simple CoT 61.8 39.8
CoE-SQL 63.3 41.9

Table 7: Performances of CoE-SQL and baseline meth-
ods on SParC dev set.

Style of edition chains Table 8 shows the perfor-
mance of CoE-SQL on SParC dev set influenced by
three styles of prompting text for chain-of-editions
mentioned in Section 3.4. The experiment result
proves that the natural language style is the most
suitable one. This is because LLMs like GPT mod-
els are mostly trained with natural language cor-
puses. The chain-of-editions style with the edit
rule performs relatively poor, since our unit edit
rules are self-designed and very unlikely to appear
in the pretraining corpus. Although LLMs must
have seen many Python codes during pretraining,
the Python-code style still receives bad scores. We
believe that this is because the Python codes gener-
ated by LLMs are used to update the Python dict
that represents the SQL query. The structure of this
Python dict is complex and unfamiliar for LLMs,
though we have provided the structure in the in-
struction and exemplars.

When using the Python-code style, the prompt-
ing text mainly consists of three parts, i.e. the

6493



Style TS(QM) ↑ TS(IM) ↑
Edit Rule 61.2 40.5

Python Code 58.6 37.9
Natural Language 63.3 41.9

Table 8: CoE-SQL performance on SParC dev set in-
fluenced by three styles of prompting text for chain-of-
editions.

Python code that represents the edit rule, the
Python dict that represents the SQL components,
and the current SQL query. Thus we complete more
ablation studies about these LLMs-generated parts.
Table 9 shows the result. First, we change the order
of the Python dict and the SQL query in the ex-
emplar. Second, we complete the post-processing
according to different parts which are marked with
“*” symbols in the table. When post-processing
with the code, we run the LLM-generated code to
update the dict and get the SQL by parsing the up-
dated dict. When post-processing with the dict, we
directly get the SQL by parsing the dict generated
by LLMs. The experiment shows that appending
the dict after the SQL is generally a better choice.
The Python codes generated by LLMs are not that
reliable. It is better to directly use the Python dict
or the SQL itself.

Python-Code Style TS(QM) ↑ TS(IM) ↑
code*+dict+SQL 51.8 28.7
code+dict*+SQL 57.2 34.8
code+dict+SQL* 58.3 36.3
code*+SQL+dict 52.5 29.1
code+SQL+dict* 58.6 37.9
code+SQL*+dict 56.9 36.0

Table 9: CoE-SQL performance on SParC dev set in-
fluenced by different Python-code styles of prompting
text for chain-of-editions. Different python-code styles
indicate that the three components code, dict, and SQL
are put in the prompting text in different orders. The
“*” mark means that we use this specific component to
complete the post-processing procedure.

When using the natural language style, we add
“no change is needed” in the prompt if the clause
is not edited as shown in Table 2. The experiment
result in Table 10 proves that this prompting text
is necessary. Through adding this special sentence,
the CoE prompting text in the exemplars can be reg-
ular and normalized, since all the components and
clauses can be mentioned in the context. LLMs are
generally better at receiving and handling regular

and normalized contexts.

Natural Language Style TS(QM) ↑ TS(IM) ↑
Natural Language 63.3 41.9

w/o “no change is needed” 62.8 41.0

Table 10: CoE-SQL performance on SParC dev set
influenced by the “no change is needed” prompting text.

Analysis of differences between pre- and post-
Questions Table 11 proves that the question anal-
ysis mentioned in Section 3.5 is effective in our
approach. The analysis of differences between the
current question and the previous one is beneficial
for LLMs to think more about the possible edit
rules. Without the analysis, the TS(QM) score and
the TS(IM) score both drop about 2%.

Method TS(QM) ↑ TS(IM) ↑
CoE-SQL 63.3 41.9

w/o analysis 61.3 39.8

Table 11: CoE-SQL performance on SParC dev set
influenced by the question analysis.

Coverage of edition chain As mentioned in Sec-
tion 3.3, if an edition chain is too long, LLMs
would generate the SQL query directly instead
of using the edit-based method. We can control
the coverage of the edition chain on the training
dataset by changing the maximum length of the
edition chain lc. Figure 2 shows the performances
on SParC dev set influenced by lc. According to
the experiment result, we set lc to 4 in our main ex-
periment. If lc is too small, LLMs would be more
likely to directly generate the SQL query without
using the edit-based method. If lc is too large,
LLMs would always edit the SQL query although
the CoE-SQL approach may not be suitable for the
current testing case.

Figure 2: CoE-SQL performance on SParC dev set in-
fluenced by the maximum length of the edition chain.

6494



We also try another way to control the chain-
of-edition coverage in the training dataset. We
remove the relatively complex unit edit rules and
only retain the commonly used ones. Therefore,
LLMs would not be forced to edit the SQL query
if the SQL query contains complex clauses. Table
12 shows the experiment results with the different
definitions of unit edit rules. In the first row, we
only keep the unit edit rules involving the SELECT
clause and the WHERE clause. In the second row,
we add the unit edit rules that are relative to the
FROM clause. In the third row, we do not set any
limitations. The experiment result indicates that
this method is not that effective. With the change
of the unit edit rules, the LLMs’ performance does
not change a lot. This explains why we use the
maximum length of the edition chain to limit the
edit-based approach.

Unit Edit Rules (Coverage) TS(QM) ↑ TS(IM) ↑
S + W (48.1%) 60.0 38.9

F + S + W (65.9%) 60.3 38.2
- (100.0%) 59.9 38.4

Table 12: CoE-SQL performance on SParC dev set in-
fluenced by the definition of unit edit rules. F represents
the unit edit rules about the FROM clause. S represents
the unit edit rules about the SELECT clause. W repre-
sents the unit edit rules about the WHERE clause.

4.4 Discussion

We discuss the effectiveness of our CoE-SQL
method under the SParC dev set. There are to-
tally 422 interactions and 1,203 SQL queries in
the SParC dev set. Among all 1,203 SQL results
written by LLMs, 484 SQL queries are generated
directly without using edit rules. Moreover, the
first SQL in each interaction is always generated
directly. Ignoring the first SQL in each interac-
tion, the probability of generating SQL directly is
merely 484−422

1203−422 × 100% = 7.9%. This indicates
that LLMs effectively utilize our CoE-based ap-
proach to handle most complex testing cases. The
CoE-based approach takes a significant role in the
prediction process.

5 Conclusion

We propose our CoE-SQL approach for the multi-
turn text-to-SQL task based on editing the previous
SQL query to the current SQL query. We explore
the definition and the style of our unit edit rules.
We also provide the method to extract the edition

chain by comparing two ASTs of two different SQL
queries. Furthermore, our proposed CoE frame-
work follows the human thinking process. The
experiment results demonstrate that our approach
achieves the best performances on the SParC and
CoSQL dev set among existing in-context learning
approaches and is also comparable to the SOTA
fine-tuned model. We complete some ablation stud-
ies and prove the effectiveness of various compo-
nents in CoE-SQL.

Limitations

There are some limitations in our work. First, we
mainly concentrate on investigating the effective-
ness of the edition chain. We do not explore any-
thing about the exemplar selection strategy which
can influence LLMs’ performances a lot. Second,
we cannot ensure that we have thoroughly opti-
mized the CoE-SQL approach. There still may
exist some methods for the optimization. Third,
our approach does not surpass the previous SOTA
fine-tuned model on the SParC and CoSQL dev sets
under some evaluation metrics. These are all dif-
ficult tasks that need to be addressed in the future
work.

Acknowledgements

This work is funded by the China NSFC Projects
(62106142, U23B2057 and 62120106006) and
Shanghai Municipal Science and Technology Ma-
jor Project (2021SHZDZX0102).

References
Ion Androutsopoulos, Graeme D Ritchie, and Pe-

ter Thanisch. 1995. Natural language interfaces
to databases-an introduction. arXiv preprint cmp-
lg/9503016.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Yitao Cai and Xiaojun Wan. 2020. IGSQL: Database
schema interaction graph based neural model for
context-dependent text-to-SQL generation. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),

6495

http://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/2020.emnlp-main.560
https://doi.org/10.18653/v1/2020.emnlp-main.560
https://doi.org/10.18653/v1/2020.emnlp-main.560


pages 6903–6912, Online. Association for Computa-
tional Linguistics.

Zefeng Cai, Xiangyu Li, Binyuan Hui, Min Yang,
Bowen Li, Binhua Li, Zheng Cao, Weijie Li, Fei
Huang, Luo Si, et al. 2022. Star: Sql guided pre-
training for context-dependent text-to-sql parsing. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2022, pages 1235–1247.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023a. Teaching large language models
to self-debug.

Zhi Chen, Lu Chen, Hanqi Li, Ruisheng Cao, Da Ma,
Mengyue Wu, and Kai Yu. 2021b. Decoupled dia-
logue modeling and semantic parsing for multi-turn
text-to-sql. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3063–3074.

Ziru Chen, Shijie Chen, Michael White, Raymond
Mooney, Ali Payani, Jayanth Srinivasa, Yu Su, and
Huan Sun. 2023b. Text-to-sql error correction with
language models of code. In Proceedings of the
61th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), Toronto,
Canada. Association for Computational Linguistics.

Binyuan Hui, Ruiying Geng, Qiyu Ren, Binhua Li,
Yongbin Li, Jian Sun, Fei Huang, Luo Si, Pengfei
Zhu, and Xiaodan Zhu. 2021. Dynamic hybrid re-
lation network for cross-domain context-dependent
semantic parsing.

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu
Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and
Dragomir Radev. 2023. Enhancing few-shot text-to-
sql capabilities of large language models: A study on
prompt design strategies.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John

Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quanshi
Zhang, and Zhouhan Lin. 2022. RASAT: Integrating
relational structures into pretrained Seq2Seq model
for text-to-SQL. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3215–3229, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the text-to-sql capabilities
of large language models.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all
you need.

Run-Ze Wang, Zhen-Hua Ling, Jing-Bo Zhou, and
Yu Hu. 2020. Tracking interaction states for multi-
turn text-to-sql semantic parsing.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Dongling Xiao, LinZheng Chai, Qian-Wen Zhang, Zhao
Yan, Zhoujun Li, and Yunbo Cao. 2022. Cqr-
sql: Conversational question reformulation enhanced
context-dependent text-to-sql parsers. In Findings
of the Association for Computational Linguistics:
EMNLP 2022, pages 2055–2068.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sql-
net: Generating structured queries from natural lan-
guage without reinforcement learning. arXiv preprint
arXiv:1711.04436.

6496

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2304.05128
http://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2305.13073
https://arxiv.org/abs/2305.13073
http://arxiv.org/abs/2101.01686
http://arxiv.org/abs/2101.01686
http://arxiv.org/abs/2101.01686
http://arxiv.org/abs/2305.12586
http://arxiv.org/abs/2305.12586
http://arxiv.org/abs/2305.12586
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2304.11015
http://arxiv.org/abs/2304.11015
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://doi.org/10.18653/v1/2022.emnlp-main.211
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2204.00498
http://arxiv.org/abs/2204.00498
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2012.04995
http://arxiv.org/abs/2012.04995
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903


Shunyu Yao, Jeffrey Zhao, Dian Yu, Izhak Shafran,
Karthik R Narasimhan, and Yuan Cao. 2022. React:
Synergizing reasoning and acting in language models.
In NeurIPS 2022 Foundation Models for Decision
Making Workshop.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019a. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962–
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019b. SParC: Cross-domain se-
mantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4511–4523, Florence, Italy.
Association for Computational Linguistics.

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen
Xu, and Kai Yu. 2023. Act-sql: In-context learning
for text-to-sql with automatically-generated chain-of-
thought.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim, Eric
Xue, Xi Victoria Lin, Tianze Shi, Caiming Xiong,
Richard Socher, and Dragomir Radev. 2019. Editing-
based SQL query generation for cross-domain
context-dependent questions. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5338–5349, Hong Kong,
China. Association for Computational Linguistics.

Yanzhao Zheng, Haibin Wang, Baohua Dong, Xingjun
Wang, and Changshan Li. 2022. HIE-SQL: History
information enhanced network for context-dependent
text-to-SQL semantic parsing. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 2997–3007, Dublin, Ireland. Association for
Computational Linguistics.

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6869–
6882, Online. Association for Computational Lin-
guistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

6497

https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
http://arxiv.org/abs/2310.17342
http://arxiv.org/abs/2310.17342
http://arxiv.org/abs/2310.17342
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/2022.findings-acl.236
https://doi.org/10.18653/v1/2022.findings-acl.236
https://doi.org/10.18653/v1/2022.findings-acl.236
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558


A Unit Edit Rules

Unit Edit Rule Explanation

EditSelectItem(oldItem, newItem)
Replace oldItem with newItem in the SELECT clause.
Add newItem into the SELECT clause if oldItem is “-”.

Delete oldItem from the SELECT clause if newItem is “-”.

EditFromTable(oldTable, newTable)
Replace oldTable with newTable in the FROM clause.

Add newTable into the FROM clause if oldTable is “-”.
Delete oldTable from the FROM clause if newTable is “-”.

EditNestedFromClause(SQL)
Edit the nested FROM clause with SQL.

Delete the nested FROM clause if SQL is “-”.

EditJoinCondition(oldCondition, newCondition)
Replace oldCondition with newCondition in the ON clause.
Add newCondition into the ON clause if oldCondition is “-”.

Delete oldCondition from the ON clause if newCondition is “-”.
EditJoinLogicalOperator(and/or) Edit the logical operator in the ON clause.

EditWhereCondition(oldCondition, newCondition)
Replace oldCondition with newCondition in the WHERE clause.
Add newCondition into the WHERE clause if oldCondition is “-”.

Delete oldCondition from the WHERE clause if newCondition is “-”.
EditWhereLogicalOperator(and/or) Edit the logical operator in the WHERE clause.

EditGroupByColumn(oldColumn, newColumn)
Replace oldColumn with newColumn in the GROUP BY clause.
Add newColumn into the GROUP BY clause if oldColumn is “-”.

Delete oldColumn from the GROUP BY clause if newColumn is “-”.

EditHavingCondition(oldCondition, newCondition)
Replace oldCondition with newCondition in the HAVING clause.
Add newCondition into the HAVING clause if oldCondition is “-”.

Delete oldCondition from the HAVING clause if newCondition is “-”.
EditHavingLogicalOperator(and/or) Edit the logical operator in the HAVING clause.

EditOrderByItem(oldItem, newItem)
Replace oldItem with newItem in the ORDER BY clause.
Add newItem into the ORDER BY clause if oldItem is “-”.

Delete oldItem from the ORDER BY clause if newItem is “-”.
EditOrder(asc/desc) Edit the order in the ORDER BY clause.

EditLimit(oldLimit, newLimit)
Replace oldLimit with newLimit in the LIMIT clause.
Add newLimit into the LIMIT clause if oldLimit is “-”.

Delete oldLimit from the LIMIT clause if newLimit is “-”.

EditIUE(intersect/union/except, left/right, SQL)
Append SQL to the left/right side of the previous SQL with intersect/union/except keyword.

Delete the left/right side of the previous SQL with intersect/union/except keyword if SQL is “-”.

Table 13: All 14 defined unit edit rules.

B Detailed Experiment Results

Table 14 and Table 15 show the detailed performances of ACT-SQL (Zhang et al., 2023), our baseline,
and our CoE-SQL on the SParC and CoSQL dev sets respectively. All the results in these two tables are
TS scores. The results prove that the CoE-SQL approach performs better than the previous methods with
different difficulty levels and numbers of conversational turns.

Approach TS(QM) TS(IM) Easy Medium Hard Extra Turn 1 Turn 2 Turn 3 Turn 4 Turn > 4
ACT-SQL (Zhang et al., 2023) 56.9 29.6 77.2 51.9 40.0 17.9 72.5 55.7 41.5 34.1 100.0

Baseline (Ours) 59.5 37.9 77.6 58.5 42.8 15.7 69.2 59.5 49.6 43.2 100.0
CoE-SQL (Ours) 63.3 41.9 81.8 59.9 46.2 26.9 76.1 60.0 53.3 48.9 100.0

Table 14: Detailed performances on the SParC dev set.

Approach TS(QM) TS(IM) Easy Medium Hard Extra Turn 1 Turn 2 Turn 3 Turn 4 Turn > 4
ACT-SQL (Zhang et al., 2023) 55.2 21.5 76.5 46.6 42.3 17.8 65.2 54.7 50.8 48.2 42.3

Baseline (Ours) 58.5 27.6 79.9 48.7 46.6 22.4 66.6 58.2 55.3 56.1 40.8
CoE-SQL (Ours) 60.6 30.4 79.1 54.7 50.3 21.5 67.2 61.8 57.0 56.1 47.9

Table 15: Detailed performances on the CoSQL dev set.

Table 16 shows two testing cases from the SParC dev set. The complete LLMs’ responses are shown in
the table. In the first case, CoE-SQL successfully retains the WHERE condition while the trivial baseline
method forgets this key information during the conversation. The second case demonstrates that the
CoE-SQL approach can also assist LLMs to handle complex logical reasoning processes such as the JOIN
operation for multi-tables and the GROUP BY operation in this case.

6498



Turn 1
Question: Find all employees who are under age 30.
Baseline: SELECT * FROM employee WHERE age < 30 ✓
CoE-SQL:
Let’s think step by step.
SQL 17-1 can be written directly instead of being edited from previous SQL.
So SQL 17-1 is:
SELECT * FROM employee WHERE age < 30 ✓
Turn 2
Question: Which cities did they come from?
Baseline: SELECT DISTINCT city FROM employee WHERE age < 30 ✓
CoE-SQL:
Let’s think step by step.
SQL 17-2 can be edited from SQL 17-1.
The previous question asked for all employees who are under the age of 30, while the current question
asks for the cities they come from.
Therefore, following edit operations are used:
FROM clause:
- no change is needed
SELECT clause:
- change * to employee.City
WHERE clause:
- no change is needed
GROUP BY clause:
- no change is needed
ORDER BY clause:
- no change is needed
LIMIT clause:
- no change is needed
INTERSECT/UNION/EXCEPT:
- no change is needed
So SQL 17-2 is:
SELECT City FROM employee WHERE age < 30 ✓
Turn 3
Question: Show the cities from which more than one employee originated.
Baseline: SELECT city FROM employee GROUP BY city HAVING count(*) > 1 $
CoE-SQL:
Let’s think step by step.
SQL 17-3 can be edited from SQL 17-2.
The previous question asked for the cities from which the employees originated, while the current question
asks for the cities from which more than one employee originated.
Therefore, following edit operations are used:
FROM clause:
- no change is needed
SELECT clause:
- no change is needed
WHERE clause:
- no change is needed
GROUP BY clause:
- add HAVING condition COUNT(*) > 1

6499



ORDER BY clause:
- no change is needed
LIMIT clause:
- no change is needed
INTERSECT/UNION/EXCEPT:
- no change is needed
So SQL 17-3 is:
SELECT City FROM employee WHERE age < 30 GROUP BY City HAVING COUNT(*) > 1 ✓
Turn 1
Question: What are all the airlines?
Baseline: SELECT Airline FROM airlines ✓
CoE-SQL:
Let’s think step by step.
SQL 17-1 can be written directly instead of being edited from previous SQL.
So SQL 17-1 is:
SELECT Airline FROM airlines ✓
Turn 2
Question: Which ones have more than 10 flights?
Baseline: SELECT Airline FROM flights GROUP BY Airline HAVING count(*) > 10 $
CoE-SQL:
Let’s think step by step.
SQL 17-2 can be edited from SQL 17-1.
The previous question asked for all the airlines, while the current question asks for the airlines that have
more than 10 flights.
Therefore, following edit operations are used:
FROM clause:
- add table flights
- add JOIN condition airlines.uid = flights.Airline
SELECT clause:
- no change is needed
WHERE clause:
- add WHERE condition COUNT(*) > 10
GROUP BY clause:
- add column airlines.Airline
ORDER BY clause:
- no change is needed
LIMIT clause:
- no change is needed
INTERSECT/UNION/EXCEPT:
- no change is needed
So SQL 17-2 is:
SELECT airlines.Airline FROM airlines JOIN flights ON airlines.uid = flights.Airline GROUP BY
airlines.Airline HAVING COUNT(*) > 10 ✓

Table 16: Detailed case studies from the SParC dev set.

C Experiment Results with Open-Source LLM

We attempt to complete the experiment using the open-source LLM on the SParC dev set. Table 17 shows
the result. We use the Vicuna LLM in our experiment. We find that open-source LLM’s few-shot learning
abilities are far inferior than GPT-series LLMs.

6500



Approach QM IM
EM ↑ EX ↑ TS ↑ EM ↑ EX ↑ TS ↑

CoE-SQL + lmsys/vicuna-7b-v1.5-16k 23.7 36.0 29.9 11.4 19.4 14.5
CoE-SQL + lmsys/vicuna-13b-v1.5-16k 21.1 35.5 30.4 6.4 14.7 11.1

Table 17: Performances of CoE-SQL with open-source LLM on SParC dev set.

D Prompts

In this section, we show our prompt engineering with an example from the SParC train set.

D.1 Baseline

role: system
content:
Given the database schema, you need to translate the question into the SQL query.

role: user
content:
Database schema:
create table party (

Party_ID number,
Party_Theme text,
Location text,
First_year text,
Last_year text,
Number_of_hosts number,
primary key (Party_ID)

)
/*
3 example rows from table party:
Party_ID Party_Theme Location First_year Last_year Number_of_hosts
1 Spring Hemkade 48 Zaandam 2000 2001 5
2 Club Q-BASE Hemkade 48 Zaandam 2002 2002 23
3 Hardcore Resurrection Various locations 2000 2003 4
**/
create table host (

Host_ID number,
Name text,
Nationality text,
Age text,
primary key (Host_ID)

)
/*
3 example rows from table host:
Host_ID Name Nationality Age
1 Austin Daye United States 43
2 Lloyd Daniels United States 37
3 Kornel David Hungary 31
**/
create table party_host (

Party_ID number,
Host_ID number,

6501



Is_Main_in_Charge others,
primary key (Party_ID),
foreign key (Party_ID) references party(Party_ID),
foreign key (Host_ID) references host(Host_ID)

)
/*
3 example rows from table party_host:
Party_ID Host_ID Is_Main_in_Charge
1 1 T
8 7 T
6 10 F
**/
Question: What are all the parties?

role: assistant
content:
SELECT * FROM party

role: user
content:
Question: Order them by the number of hosts.

role: assistant
content:
SELECT * FROM party ORDER BY Number_of_hosts ASC

D.2 Self-Defined Edit Rule Style

role: system
content:
Given the database schema, you need to translate the question into the SQL query.
You can use following operations to edit SQL:
1. EditIUE(intersect/union/except, left/right, SQL): Append SQL to the left/right side of the previous
SQL with intersect/union/except keyword. Delete the left/right side of the previous SQL with
intersect/union/except keyword if SQL is "-".
2. EditFromTable(oldTable, newTable): Replace oldTable with newTable in the FROM clause. Add
newTable into the FROM clause if oldTable is "-". Delete oldTable from the FROM clause if newTable is
"-".
3. EditJoinCondition(oldCondition, newCondition): Replace oldCondition with newCondition in the ON
clause. Add newCondition into the ON clause if oldCondition is "-". Delete oldCondition from the ON
clause if newCondition is "-".
4. EditJoinLogicalOperator(and/or): Edit the logical operator in the ON clause.
5. EditNestedFromClause(SQL): Edit the nested FROM clause with SQL. Delete the nested FROM
clause if SQL is "-".
6. EditSelectItem(oldItem, newItem): Replace oldItem with newItem in the SELECT clause. Add
newItem into the SELECT clause if oldItem is "-". Delete oldItem from the SELECT clause if newItem is
"-".
7. EditWhereCondition(oldCondition, newCondition): Replace oldCondition with newCondition in the
WHERE clause. Add newCondition into the WHERE clause if oldCondition is "-". Delete oldCondition
from the WHERE clause if newCondition is "-".
8. EditWhereLogicalOperator(and/or): Edit the logical operator in the WHERE clause.
9. EditGroupByColumn(oldColumn, newColumn): Replace oldColumn with newColumn in the GROUP
BY clause. Add newColumn into the GROUP BY clause if oldColumn is "-". Delete oldColumn from the

6502



GROUP BY clause if newColumn is "-".
10. EditHavingCondition(oldCondition, newCondition): Replace oldCondition with newCondition in the
HAVING clause. Add newCondition into the HAVING clause if oldCondition is "-". Delete oldCondition
from the HAVING clause if newCondition is "-".
11. EditHavingLogicalOperator(and/or): Edit the logical operator in the HAVING clause.
12. EditOrderByItem(oldItem, newItem): Replace oldItem with newItem in the ORDER BY clause. Add
newItem into the ORDER BY clause if oldItem is "-". Delete oldItem from the ORDER BY clause if
newItem is "-".
13. EditOrder(asc/desc): Edit the order in the ORDER BY clause.
14. EditLimit(oldLimit, newLimit): Replace oldLimit with newLimit in the LIMIT clause. Add newLimit
into the LIMIT clause if oldLimit is "-". Delete oldLimit from the LIMIT clause if newLimit is "-".

role: user
content:
Database schema:
create table party (

Party_ID number,
Party_Theme text,
Location text,
First_year text,
Last_year text,
Number_of_hosts number,
primary key (Party_ID)

)
/*
3 example rows from table party:
Party_ID Party_Theme Location First_year Last_year Number_of_hosts
1 Spring Hemkade 48 Zaandam 2000 2001 5
2 Club Q-BASE Hemkade 48 Zaandam 2002 2002 23
3 Hardcore Resurrection Various locations 2000 2003 4
**/
create table host (

Host_ID number,
Name text,
Nationality text,
Age text,
primary key (Host_ID)

)
/*
3 example rows from table host:
Host_ID Name Nationality Age
1 Austin Daye United States 43
2 Lloyd Daniels United States 37
3 Kornel David Hungary 31
**/
create table party_host (

Party_ID number,
Host_ID number,
Is_Main_in_Charge others,
primary key (Party_ID),
foreign key (Party_ID) references party(Party_ID),
foreign key (Host_ID) references host(Host_ID)

6503



)
/*
3 example rows from table party_host:
Party_ID Host_ID Is_Main_in_Charge
1 1 T
8 7 T
6 10 F
**/
Question 1-1: What are all the parties?

role: assistant:
content:
Let’s think step by step.
SQL 1-1 can be written directly instead of being edited from previous SQL.
So SQL 1-1 is:
SELECT * FROM party

role: user:
content:
Question 1-2: Order them by the number of hosts.

role: assistant
content:
Let’s think step by step.
SQL 1-2 can be edited from SQL 1-1.
The previous question asked for a list of all the parties, while the current question asks for the parties to
be ordered by the number of hosts they have.
Therefore, following edit operations are used:
FROM clause:
- no change is needed
SELECT clause:
- no change is needed
WHERE clause:
- no change is needed
GROUP BY clause:
- no change is needed
ORDER BY clause:
- EditOrderByItem(-, party.Number_of_hosts)
- EditOrder(asc)
LIMIT clause:
- no change is needed
INTERSECT/UNION/EXCEPT:
- no change is needed
So SQL 1-2 is:
SELECT * FROM party ORDER BY Number_of_hosts ASC

D.3 Python Code Style

role: system
content:
Given the database schema, you need to translate the question into the SQL query.

role: user

6504



content:
Database schema:
create table party (

Party_ID number,
Party_Theme text,
Location text,
First_year text,
Last_year text,
Number_of_hosts number,
primary key (Party_ID)

)
/*
3 example rows from table party:
Party_ID Party_Theme Location First_year Last_year Number_of_hosts
1 Spring Hemkade 48 Zaandam 2000 2001 5
2 Club Q-BASE Hemkade 48 Zaandam 2002 2002 23
3 Hardcore Resurrection Various locations 2000 2003 4
**/
create table host (

Host_ID number,
Name text,
Nationality text,
Age text,
primary key (Host_ID)

)
/*
3 example rows from table host:
Host_ID Name Nationality Age
1 Austin Daye United States 43
2 Lloyd Daniels United States 37
3 Kornel David Hungary 31
**/
create table party_host (

Party_ID number,
Host_ID number,
Is_Main_in_Charge others,
primary key (Party_ID),
foreign key (Party_ID) references party(Party_ID),
foreign key (Host_ID) references host(Host_ID)

)
/*
3 example rows from table party_host:
Party_ID Host_ID Is_Main_in_Charge
1 1 T
8 7 T
6 10 F
**/
Question 1-1: What are all the parties?

role: assistant:
content:
Let’s think step by step.

6505



SQL 1-1 can be written directly instead of being edited from previous SQL.
So SQL 1-1 is:
SELECT * FROM party
So SQL dict 1-1 is:
{

"from": {
"tables": [

"party"
]

},
"select": [

"*"
]

}

role: user:
content:
Question 1-2: Order them by the number of hosts.

role: assistant
content:
Let’s think step by step.
SQL 1-2 can be edited from SQL 1-1.
The previous question asked for a list of all the parties, while the current question asks for the parties to
be ordered by the number of hosts they have.
Therefore, following edit operations are used:
sql[’order_by’][’columns’].append(’party.Number_of_hosts’)
sql[’order_by’][’order’] = ’ASC’
So SQL 1-2 is:
SELECT * FROM party ORDER BY Number_of_hosts ASC
So SQL dict 1-2 is:
{

"from": {
"tables": [

"party"
]

},
"select": [

"*"
],
"order_by": {

"columns": [
"party.Number_of_hosts"

],
"order": "ASC"

}
}

D.4 Natural Language Style

role: system
content:
Given the database schema, you need to translate the question into the SQL query.

6506



role: user
content:
Database schema:
create table party (

Party_ID number,
Party_Theme text,
Location text,
First_year text,
Last_year text,
Number_of_hosts number,
primary key (Party_ID)

)
/*
3 example rows from table party:
Party_ID Party_Theme Location First_year Last_year Number_of_hosts
1 Spring Hemkade 48 Zaandam 2000 2001 5
2 Club Q-BASE Hemkade 48 Zaandam 2002 2002 23
3 Hardcore Resurrection Various locations 2000 2003 4
**/
create table host (

Host_ID number,
Name text,
Nationality text,
Age text,
primary key (Host_ID)

)
/*
3 example rows from table host:
Host_ID Name Nationality Age
1 Austin Daye United States 43
2 Lloyd Daniels United States 37
3 Kornel David Hungary 31
**/
create table party_host (

Party_ID number,
Host_ID number,
Is_Main_in_Charge others,
primary key (Party_ID),
foreign key (Party_ID) references party(Party_ID),
foreign key (Host_ID) references host(Host_ID)

)
/*
3 example rows from table party_host:
Party_ID Host_ID Is_Main_in_Charge
1 1 T
8 7 T
6 10 F
**/
Question 1-1: What are all the parties?

role: assistant:

6507



content:
Let’s think step by step.
SQL 1-1 can be written directly instead of being edited from previous SQL.
So SQL 1-1 is:
SELECT * FROM party

role: user:
content:
Question 1-2: Order them by the number of hosts.

role: assistant
content:
Let’s think step by step.
SQL 1-2 can be edited from SQL 1-1.
The previous question asked for a list of all the parties, while the current question asks for the parties to
be ordered by the number of hosts they have.
Therefore, following edit operations are used:
FROM clause:
- no change is needed
SELECT clause:
- no change is needed
WHERE clause:
- no change is needed
GROUP BY clause:
- no change is needed
ORDER BY clause:
- add party.Number_of_hosts
- change order to ASC
LIMIT clause:
- no change is needed
INTERSECT/UNION/EXCEPT:
- no change is needed
So SQL 1-2 is:
SELECT * FROM party ORDER BY Number_of_hosts ASC

6508


