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Abstract

Large language models (LLMs) have demon-
strated remarkable capabilities across a wide
range of tasks in various domains. Despite their
impressive performance, they can be unreliable
due to factual errors in their generations. As-
sessing their confidence and calibrating them
across different tasks can help mitigate risks
and enable LLMs to produce better generations.
There has been a lot of recent research aiming
to address this, but there has been no compre-
hensive overview to organize it and to outline
the main lessons learned. The present survey
aims to bridge this gap. In particular, we out-
line the challenges and we summarize recent
technical advancements for LLM confidence
estimation and calibration. We further discuss
their applications and suggest promising direc-
tions for future work.

1 Introduction

Large language models (LLMs) have demonstrated
a wide range of capabilities, such as world knowl-
edge storage, sophisticated reasoning, and in-
context learning (Petroni et al., 2019; Wei et al.,
2022; Brown et al., 2020). However, LLMs do
not achieve good performance on all tasks (Wang
et al., 2023a; Zhang et al., 2023b). Their genera-
tion still includes biases (Zhao et al., 2021; Wang
et al., 2023c) and hallucinations that do not align
with reality (Zhang et al., 2023b). Assessing the
trustworthiness of the generations of these models
remains challenging (Liu et al., 2023c).

Confidence (or uncertainty) estimation is crucial
for tasks such as out-of-distribution detection and
selective prediction (Kendall and Gal, 2017; Lu
et al., 2022), and it has been extensively studied
and applied in various contexts (Lee et al., 2018;
DeVries and Taylor, 2018). A related concept is
that of model calibration, which focuses on align-
ing predictive probabilities (estimated confidence)
to actual accuracy (Guo et al., 2017).

However, applying these methods directly to
LLMs presents several challenges. The output
space of these models is significantly larger than
that of discriminative models. The number of pos-
sible outcomes grows exponentially with the gen-
eration length, making it impossible to access all
potential responses. Additionally, different expres-
sions may convey the same meaning, suggesting
that confidence estimation should consider seman-
tics (Kuhn et al., 2023). Finally, LLMs demon-
strate unique properties, such as expressing con-
fidence in words (Lin et al., 2022; Xiong et al.,
2024) and ability to perform zero-shot or few-shot
learning (Brown et al., 2020). Nonetheless, their
responses can be sensitive to the prompts, e.g., the
examples provided and their order, which can cause
a lot of instability in the results (Min et al., 2022;
Wang et al., 2023b). Given this, confidence esti-
mation and calibration for LLMs is growing as an
emerging area of interest (Jiang et al., 2021; Lin
et al., 2022, 2023; Shrivastava et al., 2023).

While existing surveys mainly focused on issues
such as hallucination and factuality (Zhang et al.,
2023b; Wang et al., 2023a, 2024b), there are no
comprehensive surveys discussing recent advance-
ments in confidence estimation and calibration for
LLMs; here we aim to bridge this gap. We explore
the unique challenges posed by LLMs and examine
the latest studies addressing these issues. In Sec-
tion 2, we first discuss key concepts such as confi-
dence, uncertainty, and calibration in the context of
neural models. We further describe different met-
rics for classification and generation tasks. Then,
we pursue two different directions: one addressing
confidence estimation and calibration techniques
for generation in Section 3, and another one focus-
ing on classification in Section 4. We conclude by
exploring their practical applicability (Section 5)
and looking at potential future research directions
(Section 6). Figure 1 shows the work we explore
in this survey, organized in a taxonomy.
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Metrics
Classification Guo et al. (2017); Nixon et al. (2019); Kull et al. (2019); Bradley (1997)

Generation Kumar and Sarawagi (2019); Lin et al. (2023); Zhu et al. (2023); Huang et al. (2024)

Methods

Generation

Estimation

Logit-based methods Duan et al. (2023); Kuhn et al. (2023)

Internal state-based
methods

Ren et al. (2023); Kadavath et al. (2022); Burns et al. (2023)
Li et al. (2023); Azaria and Mitchell (2023)

Linguistic confidence Mielke et al. (2022); Xiong et al. (2024)

Consistency-based
estimation Manakul et al. (2023b); Lin et al. (2023)

Surrogate models Shrivastava et al. (2023); Touvron et al. (2023b)

Calibration

Improving generation
Kumar and Sarawagi (2019); Wang et al. (2020); Lu et al. (2022)
Xiao and Wang (2021); van der Poel et al. (2022); Zablotskaia et al. (2023)
Zhao et al. (2023b,a)

Improving linguistic
confidence Mielke et al. (2022); Lin et al. (2022); Zhou et al. (2023)

Classification
Estimation Logit-based method Mielke et al. (2022); Lin et al. (2022); Zhou et al. (2023)

Calibration Bias mitigation Zhao et al. (2021); Fei et al. (2023); Nie et al. (2022); Han et al. (2023)

Application

Hallucination Detection
and Mitigation

Manakul et al. (2023a); Zhang et al. (2023a)
Varshney et al. (2023)

Ambiguity detection
and selective generation

Kamath et al. (2020); Zablotskaia et al. (2023)
Cole et al. (2023); Hou et al. (2023)

Uncertainty-guided data
exploitation Yu et al. (2023); SU et al. (2023); Jiang et al. (2023)

Figure 1: The taxonomy of confidence estimation and calibration in LLMs.

2 Preliminaries and Background

2.1 Basic Concepts
In machine learning, confidence and uncertainty
are two facets of a single principle: higher con-
fidence corresponds to lower uncertainty (Xiao
et al., 2022; Chen and Mueller, 2023). Research on
quantifying model confidence has led to the devel-
opment of two key concepts: relative confidence
score and absolute confidence score, offering differ-
ent ways to assess and to interpret confidence lev-
els (Kamath et al., 2020; Vazhentsev et al., 2023a).
Given an input x, a ground truth label y, and a pre-
dicted label ŷ, the model’s predictive confidence is
denoted as conf(x, ŷ). Relative confidence scores
emphasize the ability to rank samples, distinguish-
ing correct predictions from incorrect ones. Ideally,
for every pair (xi, yi) and (xj , yj) and their corre-
sponding predictions ŷi and ŷj , we should have

conf(xi, ŷi) ≤ conf(xj , ŷj)

⇐⇒ P (ŷi = yi|xi) ≤ P (ŷj = yj |xj)
(1)

An absolute confidence score indicates that a
model’s score reflects its true accuracy. For exam-
ple, if a model predicts an event with 70% proba-
bility, that event should actually occur 70% of the
time under similar circumstances.

The equation for this relationship is as follows:

P (ŷ = y | conf(x, ŷ) = q) = q (2)

When the model’s predicted confidence scores con-
sistently align with this principle, the model is con-
sidered to be well-calibrated.

Kendall and Gal (2017) proposed to categorize
the uncertainty in machine learning into aleatoric
and epistemic. Aleatoric or data uncertainty
emerges from the inherent randomness or the vari-
ability of a system or a process. It is an intrinsic
feature of the system and is typically irreducible.
Epistemic uncertainty, in contrast, is known as
model uncertainty or systematic uncertainty. It
arises from the lack of knowledge or information
about the system being modeled and is reducible,
as it can diminish with the acquisition of more
data and improved modeling (Gal and Ghahramani,
2016; Lakshminarayanan et al., 2017).

2.2 Evaluation Measures and Methods
Evaluation measures Due to the continuous na-
ture of confidence scores, it is impossible to ac-
curately calculate the probability as in Eq. 2. Ex-
pected calibration error (ECE; Guo et al. 2017) ap-
proximates it by clustering instances with similar
confidence.
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Study Model Task Calibration Methods

(Desai and Durrett, 2020) BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019)

natural language inference,
paraphrase detection,
commonsense reasoning

TS, LS

(Kim et al., 2023) RoBERTa (Liu et al., 2019) text classification
BL, ERL, MixUp, DeepEnsemble,
MCDropout, MIMO

(Park and Caragea, 2022) BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019)

natural language inference,
paraphrase detection,
commonsense reasoning

TS, LS, MixUp, Manifold-MixUp,
AUM-guided MixUp

(Zhang et al., 2021)
BERT-based Span Extractor
(Zhang et al., 2021)

extractive question answering FBC

(Si et al., 2022)
BERT-based span extractor
(Si et al., 2022)

extractive question answering LS, TS, FBC

Table 1: Studies on discriminative LM calibration. Calibration methods: LS=label smoothing, TS=temperature
scaling, BL=brier loss, ERL=entropy regularization loss, BE=Bayesian Ensemble, SNGP: spectral-normalized
Gaussian process, FBC=feature-based calibrator.

The predicted probabilities are put into bins, and
ECE is calculated as the weighted average of the
discrepancies between the mean predicted proba-
bility and the actual accuracy across all bins Bm

(m = 1, . . . ,M ):

ECE =
M∑

m=1

|Bm|
N

|acc(Bm)− conf(Bm)| (3)

One drawback of ECE is its sensitivity to bucket
width and the variance of the samples within these
buckets. Thus, more sophisticated schemes have
been developed, including static calibration error
(SCE), adaptive calibration error (ACE; Nixon et al.
2019), and classwise ECE (Kull et al., 2019). ECE
can also be visualized as a reliability diagram: it
plots predicted probabilities against observed fre-
quencies, with points above the diagonal indicating
overconfidence. Moreover, F1 score, area under
receiver operating characteristic curve (AUROC;
Bradley 1997) and area under accuracy-rejection
curve (AUARC; Lin et al. 2023), can indicate
whether the confidence score can appropriately dif-
ferentiate between correct and incorrect answers.

However, it is also necessary to adapt the
measures to effectively process sequences of to-
kens. A common approach for this is to evalu-
ate whether the next token’ probability is well-
calibrated. Let yi = yi1, · · · , yiT denote the se-
quence of generated tokens (target sentence) and
xi = xi1, · · · , xiS be the sequence of input tokens
(source sentence). Then, the probability of generat-
ing the target sequence is

∏T
t=1 P (yit|xi,yi,<t).

For simplicity, we use Pit(yit) to represent
P (yit|yi,<t,xi) and Cit(y) = δ(yit = y) to de-
note if y matches the correct label yit.

The ECE can be expressed as follows:

1

L

M∑

m=1

|
∑

i,tPit(ŷit)∈Bm

Cit(ŷit)− Pit(ŷit)| (4)

where L =
∑N

i=1|yi| is the number of generated
tokens.

Kumar and Sarawagi (2019) claimed that this
measure focuses solely on the highest score label,
neglecting the entire probability distribution, and
thereby introduced weighted ECE for refined cali-
bration. Another approach analyzes the overall cor-
rectness and the confidence of the answers directly,
especially in tasks like classification and question
answering (Lin et al., 2022; Kadavath et al., 2022).
Huang et al. (2024) treated correctness as a distri-
bution instead of a binary value. They assessed
calibration by measuring the discrepancy between
the model’s confidence and its correctness, using
Pearson correlation and Wasserstein similarity.

Methods in discriminative models Common
methods for confidence estimation are logit-
based (Pearce et al., 2021; Pereyra et al., 2017),
ensemble-based and Bayesian (Lakshminarayanan
et al., 2017; Gal and Ghahramani, 2016), density-
based (Lee et al., 2018), and confidence-learning
methods (DeVries and Taylor, 2018). Model cali-
bration (Guo et al., 2017) can either occur during
the model’s training phase, e.g., by improving loss
functions (Szegedy et al., 2016) or can be applied
after the model has been trained, e.g., with tempera-
ture scaling (TS; Guo et al. 2017) and feature-based
calibrators (FBC; Jiang et al. 2021). Table 1 shows
the significant research in discriminative LMs, with
a list of models, tasks, and calibration methods.
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3 LLMs for Generation Tasks

3.1 Confidence Estimation
In this section, we divide the methods into white-
box and black-box. We first provide a detailed
overview of these methods and then we summarize
their strengths, weaknesses, and connections.

3.1.1 White-Box Methods
White-box methods operate on the premise that the
state at every position of the LLMs is accessible
during inference.

Logit-based methods assess the sentence un-
certainty using token-level probabilities or en-
tropy (Huang et al., 2023b). To ensure that the
evaluation is consistent across sentences of differ-
ent lengths, the length-normalized likelihood prob-
ability is widely used (Murray and Chiang, 2018).
Moreover, alternatives such as the minimum or the
average token probabilities and the average entropy
are also common (Vazhentsev et al., 2023b). Logit-
based methods readily adapt to scenarios involving
multiple samplings (Vazhentsev et al., 2023b) and
ensembles (Malinin and Gales, 2021).

To incorporate semantics, Duan et al. (2023)
introduced the concept of token-level relevance,
which evaluates the relevance of the token by com-
paring the semantic change before and after mov-
ing the token with a semantic similarity metric like
SBERT from Sentence Transformer (Reimers and
Gurevych, 2019). Then, the sentence uncertainty
can be adjusted based on the token’s relevance.
Duan et al. (2023) further proposed sentence-level
relevance in multiple sampling settings, consider-
ing the similarity between the returned sentence
and other sampled ones. Kuhn et al. (2023) pro-
posed semantic uncertainty, which first clusters
semantically equivalent samples based on the bidi-
rectional entailment between samples and then ap-
proximates semantic entropy by summing the prob-
abilities in each cluster. On the down side, these
approaches use external models to access seman-
tics, which adds computational costs, especially for
the token level analysis (Duan et al., 2023).

Kadavath et al. (2022) discovered that LLMs
can self-assess to differentiate between correct and
incorrect answers. They suggested a method called
P(True), where the LLM first generates responses
and then evaluates them as True or False. The
probability the model assigns to the confidence
level for the True label determines the confidence
level.

Internal state-based methods Ren et al. (2023)
introduced a technique for out-of-distribution detec-
tion and selective generation. The method starts by
computing embeddings for both inputs and outputs
in the training data, fitting them to a Gaussian dis-
tribution. It then assesses the model’s confidence
in its generated data by calculating the relative Ma-
halanobis distance of the evaluated data pair from
this Gaussian distribution.

Recent studies have posited the existence of a
direction in the activation space that effectively
separates true and false inputs (Kadavath et al.,
2022; Burns et al., 2023; Li et al., 2023; Azaria
and Mitchell, 2023). Kadavath et al. (2022) pro-
posed training a classifier (the probe), named P(IK),
on the activations of the neural network to predict
whether an LLM knows the answer. They sampled
multiple answers for each question at a consistent
temperature, labeled the correctness of each an-
swer, and then used the question-correctness pair
as training data. Similarly, Li et al. (2023) and
Azaria and Mitchell (2023) used linear probes to
examine whether attention heads in various layers
can differentiate between correct and incorrect an-
swers. Their empirical findings indicated that cer-
tain middle layers and a few attention heads exhibit
strong performance in this task, although the layer
positions vary across models. Burns et al. (2023)
introduced an unsupervised approach to map hid-
den states to probabilities. It entails responding to
questions with Yes and No, extracting and convert-
ing model activations into truth probabilities, and
optimizing unsupervised loss for consistency. It
ultimately gauges the model’s confidence by esti-
mating the likelihood of a Yes response.

Summary White-box methods, as illustrated in
Figure 2a, primarily use logits, internal states, and
semantics as sources of information. Logit-based
approaches are easy to implement, but they face a
limitation in that low logit probabilities may reflect
various properties of language. Methods focusing
on internal states (Kadavath et al., 2022; Li et al.,
2023; Azaria and Mitchell, 2023) provide insights
into the model’s linguistic understanding, though
they typically require supervised training on spe-
cially annotated data. Levinstein and Herrmann
(2024) highlighted the limitations of the probing
method in generalizing to unseen examples with
negations. Semantics is often used to complement
other methods, providing them with interpretabil-
ity (Kuhn et al., 2023; Duan et al., 2023).
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Figure 2: Venn diagram of the taxonomy of infor-
mation sources for white-box (Left) and black-box
(Right) confidence estimation methods. White-box
methods rely on logit, internal state, or semantics, while
black-box ones use consistency, linguistic confidence,
or surrogate model, respectively. The intersections of
these methods are located in Zones 1–4.

To leverage the strengths of different methods,
current advanced methods tend to combine differ-
ent dimensions during confidence estimation. Re-
cent work (Kuhn et al., 2023; Duan et al., 2023)
achieved outstanding performance on uncertainty
estimation for open-domain question answering
by combining logit-based approaches with seman-
tics, using bi-directional entailment or sentence
encoders, aligning with Zone 2. Rephrasing and
round-trip translation can also be considered as us-
ing semantics to augment the remaining two meth-
ods (Jiang et al., 2021; Zhao et al., 2023c), corre-
sponding to Zones 2 and 3. P(True) leverages the
self-evaluation capability of large language mod-
els (Kadavath et al., 2022). While it primarily uses
logit probability, it is clear that this probability is in-
fluenced by internal states and semantics, related to
Zone 4. Anticipated advancements in collaborative
information utilization will heighten computational
demands, especially for nuanced semantic analy-
sis (Duan et al., 2023). This underscores the need
for a careful balance between performance and re-
source efficiency.

3.1.2 Black-Box Methods
Black-box methods assume access to the genera-
tions only, but no access to internal model activa-
tions or parameters.

Linguistic confidence (verbalized method)
refers to prompting language models to express un-
certainty in human language. This involves discern-
ing different levels of uncertainty from the model’s
responses, such as “I don’t know,” “most probably,”
or “obviously” (Mielke et al., 2022).

This also includes prompting the model to out-
put various verbalized words (e.g., lowest, low,
medium, high, highest) or numbers (e.g., 85%).
Xiong et al. (2024) demonstrated that prompting
strategies such as CoT (Wei et al., 2022), top-
k (Tian et al., 2023), and their proposed multi-step
method can improve the calibration of linguistic
confidence.

Consistency-based estimation assumes that a
model’s lack of confidence correlates with various
responses, often leading to hallucinatory outputs.
SelfCheckGPT (Manakul et al., 2023b) proposed
a simple sampling-based approach that uses con-
sistency among generations to find potential hal-
lucinations. Five variants are utilized to measure
the consistency: BERTScore (Zhang et al., 2020b),
question-answering, n-gram, natural language in-
ference (NLI) model (He et al., 2023), and LLM
prompting. Lin et al. (2023) proposed to calculate
the similarity matrix between generations and then
estimate the uncertainty based on the analysis of
the similarity matrix, such as the sum of the eigen-
values of the graph Laplacian, the degree matrix,
and the eccentricity.

Surrogate models Shrivastava et al. (2023) in-
troduced white-box models as surrogate models,
like LLaMA-2 (Touvron et al., 2023b) and then
used logit-based methods to estimate the confi-
dence of the target model when prompted for the
same task. They also demonstrated that integrating
such confidence with linguistic confidence from
black-box LLMs can provide better confidence es-
timates across various tasks.

Summary Figure 2b shows the information
sources for confidence evaluation when the model
states are not accessible: linguistic confidence, con-
sistency, including lexical and semantic similarity,
and surrogate models. Linguistic confidence can
be elicited through prompts, but in practice, a mis-
match between these has been observed (Lin et al.,
2022; Liu et al., 2023c). Surrogate models (Shri-
vastava et al., 2023) facilitate white-box methods
on black-box LLMs. However, they rely on the
assumption of approximate parameter distribution
of models, necessitating further work to validate
their effectiveness. Consistency methods are com-
putationally intensive, but have proven effective
in various tasks. They can benefit the remaining
two approaches (Zone 1 and 2), such as the hybrid
method proposed by Xiong et al. (2024).
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Study Model Proposed Methods

Duan et al. (2023) OPT (Zhang et al., 2022) SAR (Shifting Attention to Relevance): considers the semantic relevance when evalu-
ating token and sentence-level uncertainty

Manakul et al. (2023b) GPT-3 (Brown et al., 2020) Semantic uncertainty: evaluates the consistency of the responses using various meth-
ods

Kuhn et al. (2023) OPT (Zhang et al., 2022) Clusters answers according to semantics and then computes the sum of the probabilities
within each cluster to estimate confidence

Kadavath et al. (2022) Anthropic LLM (Bai et al., 2022) P(True): the probability a model assigns to its answer being True; P(IK) is the
probability the model assigns to I know by leveraging a binary classifier

Xiong et al. (2024)
GPT3/3.5/4 (Brown et al., 2020),
Vicuna (Chiang et al., 2023)

Hybrid methods combining linguistic confidence and consistency-based confidence

Lin et al. (2023) GPT-3.5 Estimates the confidence by evaluating the lexical and the semantic similarity between
the responses

Shrivastava et al. (2023) GPT-3.5/4, Claude Hybrid methods combining confidence from the surrogate models and the linguistic
confidence of the target models

Table 2: Recent studies of LLM confidence estimation. These studies evaluate confidence estimation for question-
answering tasks, using measures such as ECE, AUROC, etc.

Additionally, integrating all three methods (Zone
4) has been explored by Shrivastava et al. (2023).
Table 2 shows the representative research on confi-
dence estimation for LLMs.

3.2 Calibration Methods

Here, we discuss related work in terms of calibra-
tion objectives: to enhance the quality of the gen-
erated text through calibration techniques and to
improve the model’s handling of unknowns or am-
biguity by enabling it to express uncertainty more
accurately. The first half of Table 3 presents recent
work on calibrating LLMs over generation tasks.

3.2.1 Improving the Quality of Generation
Many studies (Kumar and Sarawagi, 2019; Wang
et al., 2020; Lu et al., 2022) indicated that the mis-
calibration of token-level logit probabilities during
generation is one of the reasons for the decline in
generation quality. Kumar and Sarawagi (2019) in-
troduced modified temperature scaling, where the
temperature adjusts according to various factors,
e.g., the entropy of the attention, token logits, token
identity, and input coverage. Wang et al. (2020)
noted a pronounced prevalence of over-estimated
tokens compared to under-estimated ones. They
introduced graduated label smoothing, applying
heightened smoothing penalties to confident pre-
dictions. Xiao and Wang (2021) and van der Poel
et al. (2022) calibrated the token probability sepa-
rately by adding a weighted uncertainty estimated
with model ensembles (Lakshminarayanan et al.,
2017) and pointwise mutual information between
the source and the target tokens. Zablotskaia et al.
(2023) adapted diverse methods to improve model
calibration in neural summarization.

Zhao et al. (2023b) suggested that MLE train-
ing can result in poorly calibrated sentence-level
confidence, as the model has only been exposed to
one gold reference. They proposed the sequence
likelihood calibration (SLiC) technique to rectify
this. It first generates m multiple sequences {ŷ}m
from the initial model θ0, and then calibrates the
model’s confidence as follows:

∑

{x,ȳ}
Lcal(θ,x, ȳ, {ŷ}m) + λLreg(θ, θ0,x, ȳ)

(5)
where the calibration loss Lcal aims to align mod-
els’ decoded candidates’ sequence likelihood ac-
cording to their similarity to the reference ȳ, and
the regularization loss Lreg prevents models from
deviating strongly. They further introduced SLiC-
HF (Zhao et al., 2023a), which was designed to
learn from human preferences.

3.2.2 Improving the Linguistic Confidence
Mielke et al. (2022) proposed a calibrator-
controlled method for chatbots, which involves a
trained calibrator to return the model confidence
score and fine-tuned generative models to enable
control over linguistic confidence. Lin et al. (2022)
fine-tuned GPT-3 with a human-labeled dataset con-
taining verbalized words and numbers to express
uncertainty naturally. Zhou et al. (2023) empiri-
cally found that injecting expressions of uncertainty
into prompts significantly increases the accuracy
of GPT-3’s answers and the calibration scores.

Different datasets (Amayuelas et al., 2023; Yin
et al., 2023; Wang et al., 2024a; Liu et al., 2023a)
have been presented containing questions that lan-
guage models cannot answer or for which there is
no clear answer.
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Study Model Task Calibration Methods

Kumar and Sarawagi
(2019)

LSTM (Bahdanau et al., 2015),
Transformer (Vaswani et al., 2017)

Machine Translation TS with Learnable Parameters

Lu et al. (2022) Transformer (Vaswani et al., 2017) Machine Translation Confidence-Based LS
Wang et al. (2020) Transformer (Vaswani et al., 2017) Machine Translation LS, Dropout

Xiao and Wang (2021)
LSTM (Bahdanau et al., 2015),
Transformer (Vaswani et al., 2017)

Data2Text Generation,
Image Captioning

Uncertainty-Aware Decoding

van der Poel et al. (2022) BART (Lewis et al., 2020) Text Summarization CPMI-Based Decoding

Zablotskaia et al. (2023) T5 (Raffel et al., 2020) Text Summarization
MC-Dropout, BE, SNGP,
DeepEnsemble

Zhao et al. (2023b) PEGASUS (Zhang et al., 2020a)
Text Summarization,
Question Answering

SLiC

Zhao et al. (2023a) T5 (Raffel et al., 2020) Text Summarization SLiC-HF
Mielke et al. (2022) BlenderBot (Roller et al., 2021) Dialogue Generation Linguistic Calibration
Lin et al. (2022) GPT-3 (Brown et al., 2020) Math Question Answering Fine-Tuning

Zhao et al. (2021) GPT-3 (Brown et al., 2020)
Text Classification, Fact Retrieval
Information Extraction

Contextual Calibration

Fei et al. (2023)
PALM-2 (Anil et al., 2023),
CLIP (Radford et al., 2021)

Text Classification Domain-Context Calibration

Han et al. (2023) GPT-2 (Radford et al., 2019) Text Classification Prototypical Calibration
Kumar (2022) GPT-2 (Radford et al., 2019) Multiple Choice Question Answering Answer-Level Calibration

Holtzman et al. (2021)
GPT-2(Radford et al., 2019),
GPT-3 (Brown et al., 2020)

Multiple Choice Question Answering PMIDC

Zheng et al. (2024)
LLaMA (Touvron et al., 2023a),
Vicuna (Chiang et al., 2023),
Falcon (Penedo et al., 2023), GPT-3.5

Multiple Choice Question Answering PriDE

Table 3: Research on LLM calibration. The first half of the table is about generation tasks, and the second half
is about classification tasks. Calibration methods: LS: label smoothing, TS: temperature scaling, BE: Bayesian
ensemble, SNGP: spectral-normalized Gaussian process, MCDropout: Monte Carlo dropout, SLiC: sequence
likelihood calibration, HF: human feedback, FBC: feature-based calibrator, CPMI: conditional pointwise mutual
information, PMIDC: domain conditional pointwise mutual information, PriDE: debiasing with prior estimation.

Amayuelas et al. (2023) analyzed how differ-
ent large language models, including both smaller
and open-source models, perform on a dataset of
various unanswerable questions. They observed
that LLMs showed varying accuracy levels depend-
ing on the question type, while smaller and open-
source models tended to perform almost randomly
for all question types. Liu et al. (2023a) eval-
uated both open-source models such as LLaMA-
2 (Touvron et al., 2023b) and Vicuna (Chiang et al.,
2023), and closed-source models such as GPT-3.5
and GPT-4, focusing on their refusal rate, accu-
racy, and uncertainty when handling unanswerable
questions.

4 LLMs for Classification Tasks

Large language models are recognized for their
efficiency in classification tasks, enabling rapid
task implementation via prompting and few-shot
learning (Brown et al., 2020; Zhao et al., 2021).
Although the underlying principles of confidence
estimation in a classification setup are similar to
those for a generation setup, the objectives of the
calibration and the approaches used differ signifi-
cantly.

4.1 In-Context Learning

In-context learning (ICL) is a new learning
paradigm with LLMs, where the model learns
to perform a task based on a few examples
and the context in which the task is pre-
sented. Assuming that k selected input–label pairs
(x1, y1), · · · , (xk, yk) are given as demonstrations,
with the predictive probability as the confidence,
ICL makes predictions as follows:

ŷ = argmax
y

P (y|x1, y1, · · · ,xk, yk,x) (6)

When there are no demonstrations, the model
performs zero-shot classification.

Calibration methods We refer to the input-label
pairs as C for context, and to the original predic-
tive probability as P (y|C,x). Zhao et al. (2021)
introduced a method called contextual calibra-
tion. It gauges the model’s bias with context-free
prompts such as "[N/A]", "[MASK]" and an empty
string. Then the context-free score is obtained
by P̂cf = P (y|C, [N/A]). Subsequently, it trans-
forms the scores with W = diag(p̂cf)

−1 to offset
the miscalibration.
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Fei et al. (2023) proposed domain-context cal-
ibration, which first estimates the prior bias for
each class using random text of an average sen-
tence length and averaging the estimates n times:
P̄rd(y|C) = 1

n

∑n
i=1 P (y|C, [RANDOM TEXT]).

Then, the prediction is obtained as follows:

ŷ = argmax
y

P (y|C,x)

P̄rd(y|C)
(7)

Some methods aim to improve few-shot learn-
ing performance by combining classic statistical
machine learning techniques. Nie et al. (2022)
enhanced predictions by integrating a k-nearest-
neighbor classifier with a datastore containing
cached few-shot instance representations, while
Han et al. (2023) introduced prototypical calibra-
tion, which uses Gaussian mixture models (GMM)
to learn decision boundaries.

4.2 ICL Application: Multiple-Choice
Question Answering

Multiple-choice question answering (MCQA) is
an application of ICL, which is used in evalu-
ating LLMs by prompting them to answer ques-
tions with predefined choices. The context C con-
tains the question q, and a set of options I(q) =
{o1, · · · ,oK}, where each option is prefaced by
an identifier such as A, B, and, if available, with a
demonstration as an instruction.

Note that the implementation of the evaluation
protocols can significantly impact the ranking of
models. For instance, the original evaluation of the
MMLU (Hendrycks et al., 2021) ranks the proba-
bilities of the four option identifiers. The answer
is considered correct when the highest probabil-
ity corresponds to the correct option. The HELM
implementation (Liang et al., 2023) considers prob-
abilities over the complete vocabulary. The HAR-
NESS implementation1 prefers length-normalized
probabilities of the entire answer sequence.

Calibration Methods Jiang et al. (2021) pro-
posed various fine-tuning loss functions and tem-
perature scaling for calibrating the performance
of MCQA datasets. Additionally, they proposed
techniques such as candidate output paraphrasing
and input augmentation to calibrate the confidence.
Holtzman et al. (2021) claimed that surface form
competition occurs when different valid surface
forms compete for probability.

1https://github.com/EleutherAI/lm-evaluation-
harness/tree/v0.3.0

Thus, they introduced domain conditional point-
wise mutual information, which reweighs each op-
tion according to a term that is proportional to
its prior likelihood within the context of the spe-
cific zero-shot task. To overcome the bias from
the choice position, Zheng et al. (2024) proposed
PriDe, which first decomposes the observed model
prediction distribution into an intrinsic prediction
over option contents and a prior distribution over
option identifiers and then estimates the prior by
permuting option contents on a small number of
test samples. Kumar (2022) believed that under the
neutral context Cϕ, the probabilities of different op-
tions should be the same, but obviously, the LLM
cannot meet this condition, so they proposed us-
ing logP (ok|C) − sim(C,Cϕ) logP (ok|Cϕ) to
make the prediction. Given that C is very similar
to the neutral context Cϕ, the approach will assign
an equal score to each choice.

Summary The second half of Table 3 lists recent
calibration studies over classification tasks. Cur-
rent calibration methods primarily aim to mitigate
biases associated with labels or choice positions in
MCQA (Zhao et al., 2021; Jiang et al., 2021). A
growing trend in the field is to deepen the under-
standing of the ICL (Holtzman et al., 2021) and
to integrate semantics (Kumar, 2022). Besides, a
systematic benchmark for evaluating different cali-
bration methods is still missing.

5 Applications

Hallucination Detection and Mitigation Con-
fidence or uncertainty can be applied as a sig-
nal for detecting and mitigating hallucinations of
LLMs (Zhang et al., 2023b; Huang et al., 2023a).
SelfCheckGPT (Manakul et al., 2023a) and SAC3

(Zhang et al., 2023a) both explored hallucinations
in the generation with self-consistency, while the
latter also checked cross-model response consis-
tency by taking generations from other models
as a reference. Varshney et al. (2023) leveraged
the model’s logits to identify potential hallucina-
tions, checked their correctness through a valida-
tion procedure, appended the repaired sentence to
the prompt, and continued to generate. Fadeeva
et al. (2024) proposed using token-level uncertainty
quantification to detect hallucinations in biogra-
phies generated by LLMs. A similar idea was used
to detect machine-generated text, based on pertur-
bations in a white-box setup (Su et al., 2023).
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Ambiguity Detection and Selective Generation
When identifying ambiguity in the data or unan-
swerable questions, reliable LLMs are anticipated
to refrain from providing answers rather than gen-
erating responses arbitrarily (Kamath et al., 2020).
Ren et al. (2023) proposed a selective generation
method based on relative Mahalanobis distance.
Zablotskaia et al. (2023) provided a comprehen-
sive benchmark study that evaluates various cal-
ibration methods in neural summarization. Cole
et al. (2023) and Hou et al. (2023) respectively
used a disambiguate-and-answer approach and in-
put clarification ensembling to measure data uncer-
tainty for detecting ambiguous questions. Fadeeva
et al. (2023) introduced LM-Polygraph, a frame-
work with implementations of a battery of uncer-
tainty estimation methods, focusing on improving
selective generation of LLMs.

Uncertainty-Guided Data Exploitation
Through measuring data uncertainty, the most
representative instances will be selected for
few-shot learning (Yu et al., 2023) or human
annotation (SU et al., 2023). Regarding the
knowledge enhancement to LLMs, Jiang et al.
(2023) proposed an adaptive multi-retrieval method
that first forecasts future content and then retrieves
relevant documents stimulated by low-confidence
tokens within the upcoming sentences.

6 Future Directions

Comprehensive Benchmarks The extensive util-
ity of confidence estimation and calibration across
numerous applications calls for a robust, multidi-
mensional benchmark that covers a diverse array
of tasks and domains. Moreover, fine-grained an-
notations of LLMs’ responses, with an emphasis
on long-form generation, are essential in fostering
the development of more efficient approaches that
improve the performance on intricate generation
tasks (Tian et al., 2024; Huang et al., 2024). The
extensive utility of confidence estimation and cal-
ibration across numerous applications calls for a
robust, multidimensional benchmark that covers
a diverse array of tasks and domains. Moreover,
fine-grained annotations of LLMs’ responses, with
an emphasis on long-form generation, are essential
in fostering the development of more efficient ap-
proaches that improve the performance on intricate
generation tasks (Huang et al., 2024).

Multi-Modal LLMs By using additional pre-
training with image–text pairings or by fine-tuning
on specialized visual-instruction datasets, LLMs
can be transited into the multimodal domain (Dai
et al., 2023; Liu et al., 2023b; Zhu et al., 2024).
However, it remains unclear whether these confi-
dence estimation methods are effective for mul-
timodal large language models (MLLMs) and
whether these models are well-calibrated. Geng
et al. (2024) found that on QA datasets focused
on fact-checking, the ECE of GPT-4V’s verbalized
confidence is much lower than that of open-source
models, which tend to be overly confident. We look
forward to more efforts in detecting hallucinations
in MLLMs through confidence estimation and in
calibrating these models to discern events that are
impossible in the real world.

Calibration to Human Variation Plank (2022)
clarified the prevalent existence of human variation,
i.e., humans have different opinions when labeling
the same data. Human disagreement (Jiang and
de Marneffe, 2022) can be attributed to task ambi-
guity (Tamkin et al., 2023), annotator’s subjectivity
(Sap et al., 2022), and input ambiguity (Meissner
et al., 2021). Recent work (Baan et al., 2022; Lee
et al., 2023) demonstrated misalignment between
LLM calibration measures and human disagree-
ment in various learning paradigms. Expressing
the concern regarding different types of ambigu-
ity (Xiong et al., 2024), abstaining from answer-
ing ambiguous questions (Yoshikawa and Okazaki,
2023), and further resolving ambiguity (Varshney
and Baral, 2023) are necessary for trustworthy and
reliable LLMs aligned with human variation.

7 Conclusion

This survey highlights the critical role of confi-
dence estimation and calibration in addressing er-
rors and biases in LLMs. The evolution of LLMs
has paved the way for novel research opportunities
and presented distinctive challenges. We first intro-
duced the fundamental concepts of confidence and
uncertainty, along with common metrics, estima-
tion methods, and calibration techniques used in tra-
ditional discriminative models. We then identified
the challenges these methods face in LLMs. Next,
we delved into the latest research, introducing the
principles, the advantages, and the drawbacks of
various methods for generation and classification
tasks. We concluded by discussing the current ap-
plications and future research directions.
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Limitations

No experimental benchmarks Without original
experiments, we cannot offer empirical validation
of the theories or the concepts that we discussed.

Potential omissions We made our best effort to
compile the latest advancements. Due to the rapid
development in the field, there is a possibility that
we might have overlooked some important work.

Ethical Considerations and Potential Risks

We anticipate no major ethical concerns for our
work. Our review surveys the latest developments
in this research field, and we did not conduct ex-
periments, nor did we engage with risky datasets;
we also did not employ any workers for manual
annotation.
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A Appendix

A.1 Confidence Estimation Methods
The methods for confidence estimation can gener-
ally be categorized into the following groups:

Logit-based estimation Given the model input
x, the logit z, along with the prediction ŷ (i.e.,
the class with the highest probability emitted by
softmax activation σ), the model confidence is esti-
mated directly using the probability value:

confsp(x, ŷ) = P (ŷ|x) = σ(z)ŷ (8)

The confidence can also be estimated based on
transformations of the logits, such as examining
the gap between the two highest ones (Yoshikawa
and Okazaki, 2023) or by using entropy, which
indicates the uncertainty with a larger value.

Ensemble-based & Bayesian methods Deep en-
semble methods (Lakshminarayanan et al., 2017)
train multiple neural networks independently and
estimate the uncertainty by computing the variance
of the outputs from these models. Monte Carlo
dropout (MCDropout, Gal and Ghahramani 2016)
methods extend the dropout techniques to estimat-
ing uncertainty. As in the training phase, dropout is
also applied during inference, and multiple forward
passes are performed to obtain predictions. The fi-
nal prediction is obtained through averaging the
predictions, with the variability of the predictions
reflecting the model uncertainty.

Methods such as deep-ensemble and MC-
Dropout introduce a heavy computational overhead,
especially when applied to LLMs (Malinin and
Gales, 2021; Shelmanov et al., 2021; Vazhentsev
et al., 2022), and there is the need to optimize the
computation. For example, determinantal point pro-
cess (Kulesza and Taskar, 2012) can be applied to
facilitate MCDropout by sampling diverse neurons
in the dropout layer (Shelmanov et al., 2021).

Density-based estimation approaches (Lee et al.,
2018; Yoo et al., 2022) assume that the regions of
the input space where the training data is dense
are the regions where the model is likely to be
more confident in its predictions. Conversely, re-
gions with sparse training data are areas of higher
uncertainty. Lee et al. (2018) first proposed a Ma-
halanobis distance-based confidence score, which
calculates the distance between one test point and a
Gaussian distribution fitting the test data. The con-
fidence estimation is obtained by exponentiating
the negative value of the distance.

Confidence learning uses a specific network
branch to learn the confidence of model predictions.
DeVries and Taylor (2018) leveraged a confidence
estimation branch to forecast scalar confidence, and
the original probability is modified by interpolat-
ing the ground truth according to the confidence
to provide “hints” during the training process. Ad-
ditionally, it discourages the network from always
asking for hints by applying a small penalty. Cor-
bière et al. (2019) empirically demonstrated that the
confidence based on true class probability (TCP)
is better for distinguishing between correct and in-
correct predictions. Given the ground truth y, TCP
can be represented as P (y|x). However, y is not
available when estimating the confidence of the
predictions. Hence, Corbière et al. (2019) used
a confidence learning network to learn TCP confi-
dence during training.

A.2 Model Calibration

Calibration methods can be categorized based on
their execution time as in-training and post-hoc
methods.

A.2.1 In-Training Calibration
Research indicates that model generalization meth-
ods can be used for calibration (Kim et al., 2023),
and calibration methods can enhance model per-
formance, particularly in out-of-domain genera-
tion (Desai and Durrett, 2020).

Novel loss functions Many studies considered
the cross-entropy (CE) loss to be one of the causes
leading to model miscalibration (Mukhoti et al.,
2020; Kim et al., 2023). Mukhoti et al. (2020)
demonstrated that focal loss (Lin et al., 2017), de-
signed to give more importance to hard-to-classify
examples and to down-weigh the easy-to-classify
examples, can improve the calibration of neural net-
works. The correctness ranking loss (CRL; Moon
et al. 2020) calibrated models by penalizing in-
correct rankings within the same batch and by us-
ing the difference in proportions as the margin to
differentiate sample confidence. Besides, entropy
regularization loss (ERL; Pereyra et al. 2017) and
label smoothing (LS; Szegedy et al. 2016) were
introduced to discourage overly confident output
distributions.

Data augmentation involves creating new train-
ing examples by applying various transformations
or perturbations to the original data. It has been
widely used for calibration of discriminative LMs

6594



by alleviating the issue of over-confidence, such
as MixUp (Zhang et al., 2018), EDA (Wei and
Zou, 2019), Manifold-MixUp (Verma et al., 2019),
MIMO (Havasi et al., 2021), and AUM-guided
MixUp (Park and Caragea, 2022).

Ensemble and Bayesian methods were initially
introduced to quantify model uncertainty. However,
both can also be valuable for model calibration, as
they can enhance accuracy, mitigate overfitting,
and reduce overconfidence (Kong et al., 2020; Kim
et al., 2023).

A.2.2 Post-Hoc Calibration
Scaling methods are exemplified by matrix scal-
ing, vector scaling and temperature scaling (Guo
et al., 2017). Using a validation set, they fine-
tune the predicted probabilities to better align with
the true outcomes, leveraging the negative log-
likelihood (NLL) loss. Among them, temperature
scaling (TS) is popular due to its low complexity
and efficiency. It involves re-weighing the logits
before the softmax function by a learned scalar τ ,
known as the temperature.

Feature-based calibrator leverages both the in-
put features and the model predictions to refine
the predicted probabilities. To train the calibrator,
one first applies a trained model on a validation
dataset. Subsequently, both the original input fea-
tures and the model’s predictions from this dataset
are passed to a binary classifier (Jagannatha and
Yu, 2020; Jiang et al., 2021; Si et al., 2022).

A.3 Summary
Confidence estimation Logit-based methods
stand out as the most straightforward to implement
and interpret. Reducing the computational cost and
improving the sampling efficiency pose challenges
to ensemble-based and Bayesian methods. Density-
based estimation can be used to identify which data
points are associated with different types of un-
certainties. However, it makes assumptions about
data distribution (Baan et al., 2023) and can also
be computationally intensive when dealing with
large datasets (Sun et al., 2022). Confidence learn-
ing can acquire task-relevant confidence; however,
it requires modifying the neural network and per-
forming specific training.

Model calibration Post-hoc methods are gen-
erally model-independent and can calibrate the
probabilities without impacting the model’s per-
formance (Guo et al., 2017).

Desai and Durrett (2020) empirically found that
temperature scaling effectively reduces the calibra-
tion error when in-domain, whereas label smooth-
ing is more beneficial in out-of-domain settings.
Kim et al. (2023) found that augmentation can en-
hance both classification accuracy and calibration
performance. However, ensemble methods may
sometimes degrade model calibration if individ-
ual members produce similar predictions due to
overfitting. Table 1 represents significant work
in calibrating discriminative LMs. We have com-
prehensively listed the models,the tasks, and the
calibration methods they used.
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