@inproceedings{hengle-etal-2024-intent,
title = "Intent-conditioned and Non-toxic Counterspeech Generation using Multi-Task Instruction Tuning with {RLAIF}",
author = "Hengle, Amey and
Padhi, Aswini and
Singh, Sahajpreet and
Bandhakavi, Anil and
Akhtar, Md Shad and
Chakraborty, Tanmoy",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.374",
doi = "10.18653/v1/2024.naacl-long.374",
pages = "6716--6733",
abstract = "Counterspeech, defined as a response to mitigate online hate speech, is increasingly used as a non-censorial solution. The effectiveness of addressing hate speech involves dispelling the stereotypes, prejudices, and biases often subtly implied in brief, single-sentence statements or abuses. These expressions challenge language models, especially in seq2seq tasks, as model performance typically excels with longer contexts. Our study introduces CoARL, a novel framework enhancing counterspeech generation by modeling the pragmatic implications underlying social biases in hateful statements. The first two phases of CoARL involve sequential multi-instruction tuning, teaching the model to understand intents, reactions, and harms of offensive statements, and then learning task-specific low-rank adapter weights for generating intent-conditioned counterspeech. The final phase uses reinforcement learning to fine-tune outputs for effectiveness and nontoxicity. CoARL outperforms existing benchmarks in intent-conditioned counterspeech generation, showing an average improvement of ∼3 points in intent-conformity and ∼4 points in argument-quality metrics. Extensive human evaluation supports CoARL{'}s efficacy in generating superior and more context-appropriate responses compared to existing systems, including prominent LLMs like ChatGPT.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hengle-etal-2024-intent">
<titleInfo>
<title>Intent-conditioned and Non-toxic Counterspeech Generation using Multi-Task Instruction Tuning with RLAIF</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amey</namePart>
<namePart type="family">Hengle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aswini</namePart>
<namePart type="family">Padhi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sahajpreet</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anil</namePart>
<namePart type="family">Bandhakavi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="given">Shad</namePart>
<namePart type="family">Akhtar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Counterspeech, defined as a response to mitigate online hate speech, is increasingly used as a non-censorial solution. The effectiveness of addressing hate speech involves dispelling the stereotypes, prejudices, and biases often subtly implied in brief, single-sentence statements or abuses. These expressions challenge language models, especially in seq2seq tasks, as model performance typically excels with longer contexts. Our study introduces CoARL, a novel framework enhancing counterspeech generation by modeling the pragmatic implications underlying social biases in hateful statements. The first two phases of CoARL involve sequential multi-instruction tuning, teaching the model to understand intents, reactions, and harms of offensive statements, and then learning task-specific low-rank adapter weights for generating intent-conditioned counterspeech. The final phase uses reinforcement learning to fine-tune outputs for effectiveness and nontoxicity. CoARL outperforms existing benchmarks in intent-conditioned counterspeech generation, showing an average improvement of ∼3 points in intent-conformity and ∼4 points in argument-quality metrics. Extensive human evaluation supports CoARL’s efficacy in generating superior and more context-appropriate responses compared to existing systems, including prominent LLMs like ChatGPT.</abstract>
<identifier type="citekey">hengle-etal-2024-intent</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.374</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.374</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>6716</start>
<end>6733</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Intent-conditioned and Non-toxic Counterspeech Generation using Multi-Task Instruction Tuning with RLAIF
%A Hengle, Amey
%A Padhi, Aswini
%A Singh, Sahajpreet
%A Bandhakavi, Anil
%A Akhtar, Md Shad
%A Chakraborty, Tanmoy
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F hengle-etal-2024-intent
%X Counterspeech, defined as a response to mitigate online hate speech, is increasingly used as a non-censorial solution. The effectiveness of addressing hate speech involves dispelling the stereotypes, prejudices, and biases often subtly implied in brief, single-sentence statements or abuses. These expressions challenge language models, especially in seq2seq tasks, as model performance typically excels with longer contexts. Our study introduces CoARL, a novel framework enhancing counterspeech generation by modeling the pragmatic implications underlying social biases in hateful statements. The first two phases of CoARL involve sequential multi-instruction tuning, teaching the model to understand intents, reactions, and harms of offensive statements, and then learning task-specific low-rank adapter weights for generating intent-conditioned counterspeech. The final phase uses reinforcement learning to fine-tune outputs for effectiveness and nontoxicity. CoARL outperforms existing benchmarks in intent-conditioned counterspeech generation, showing an average improvement of ∼3 points in intent-conformity and ∼4 points in argument-quality metrics. Extensive human evaluation supports CoARL’s efficacy in generating superior and more context-appropriate responses compared to existing systems, including prominent LLMs like ChatGPT.
%R 10.18653/v1/2024.naacl-long.374
%U https://aclanthology.org/2024.naacl-long.374
%U https://doi.org/10.18653/v1/2024.naacl-long.374
%P 6716-6733
Markdown (Informal)
[Intent-conditioned and Non-toxic Counterspeech Generation using Multi-Task Instruction Tuning with RLAIF](https://aclanthology.org/2024.naacl-long.374) (Hengle et al., NAACL 2024)
ACL