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Abstract

Counterspeech, defined as a response to mit-
igate online hate speech, is increasingly used
as a non-censorial solution. The effectiveness
of addressing hate speech involves dispelling
the stereotypes, prejudices, and biases often
subtly implied in brief, single-sentence state-
ments or abuses. These expressions challenge
language models, especially in seq2seq tasks,
as model performance typically excels with
longer contexts. Our study introduces CoARL,
a novel framework enhancing counterspeech
generation by modeling the pragmatic implica-
tions underlying social biases in hateful state-
ments. The first two phases of CoARL involve
sequential multi-instruction tuning, teaching
the model to understand intents, reactions, and
harms of offensive statements, and then learn-
ing task-specific low-rank adapter weights for
generating intent-conditioned counterspeech.
The final phase uses reinforcement learning
to fine-tune outputs for effectiveness and non-
toxicity. CoARL outperforms existing bench-
marks in intent-conditioned counterspeech gen-
eration, showing an average improvement of
∼3 points in intent-conformity and ∼4 points
in argument-quality metrics. Extensive human
evaluation supports CoARL’s efficacy in gen-
erating superior and more context-appropriate
responses compared to existing systems, includ-
ing prominent LLMs like ChatGPT.

1 Introduction

Counterspeech (CS), defined as responses that
counteract hate speech by seeking to undermine,
weaken, or rebut hateful or offensive speech
through the use of positive or constructive dia-
logue (Benesch et al., 2016a; Chandrasekharan
et al., 2017), has proven to be an effective method
for mitigating online hate while maintaining a di-
versity of voices and opinions (Schieb and Preuss,

∗* Equal contribution

Hate Speech: Always quiet before the headscarves show up.

Model - GPS: Women wearing headscarves, like all individuals, bring their 
unique cultures, ideas, and peaceful presence, enriching the tapestry of 
our society. 

Model - DialoGPT: This statement is not only inaccurate but also unfairly 
targets a specific group. Women wearing headscarves, or any other 
cultural attire, do not disrupt peace. 

Model - QUARC: Why would the presence of women wearing headscarves 
be seen as a disruption to quiet?

Instruction: Analyze different aspects like target group, implied 
meaning and stereotype before writing a <Intent> counterspeech for the 
offensive statement: “Always quiet before the headscarves show up.”

Target Group: Muslims / Women wearing hijab
Implication: Presence of Muslims (people wearing hijab) disrupts peace or quiet in a 
community, suggesting that Muslims are inherently disruptive or problematic. 
Stereotype: 

Why should the attire of Muslim women such as headscarves be linked 
to the idea of disrupting to our communities? Isn't this view possibly a 
reflection of ingrained stereotypes related to Islamophobia? 

This statement wrongly implies that Muslims are responsible for 
creating disturbance in communities, which is a gross 
misrepresentation. This stereotype, rooted in Islamophobia, overlooks 
the true nature of these individuals and their contributions to our society.

Its vital to recognize that by wearing the hijab, muslim women express 
their cultural and religious identity, contributing to the rich diversity that 
strengthens and beautifies our community. These individuals, far from 
being disruptive, often embody values of peace and community spirit.

Positive

Denouncing

Questioning

Islamophobia
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��
          Classical CS generation

Instruction-Tuned CS generation

Figure 1: Classical methods vs. instruction tuning for
counterspeech generation. These examples show that
counterspeech generation can be improved by the use
of detailed and explicit instructions that allow a model
to focus on the different aspects of a given hate speech.

2016; Wright et al., 2017; Masud et al., 2024). This
approach emerges as a more viable solution to ad-
dress hateful online speech, avoiding the censor-
ship risks associated with deletion-based content
moderation. However, given the increasing scale of
hateful content online (Leetaru, 2019; Masud et al.,
2021, 2022; Kulkarni et al., 2023), relying solely
on human-generated counterspeech is becoming
increasingly tedious. In this scenario, NLP systems
offer a promising avenue for understanding and
automating the generation of counterspeech. Such
systems could significantly aid content moderators
and other stakeholders in efficiently and effectively
countering online hate (Parker and Ruths, 2023;
Garg et al., 2023). Consequently, there has been an
increasing interest in research focusing on the de-
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tection, analysis, and generation of counterspeech
(Mathew et al., 2019; Qian et al., 2019; Chung et al.,
2023; Fanton et al., 2021a; Bonaldi et al., 2022).

Generative approaches predominantly model it
as a seq2seq problem, mirroring the structure of
hate speech and its countering responses (Chung
et al., 2019; Sheng et al., 2020; Zhu and Bhat,
2021). This approach, however, has evolved with
the recognition that hate speech, and thus its coun-
terspeech, is not monolithic. Different instances of
hate speech may necessitate distinct types of coun-
terspeech, tailored to the specific context and nature
of the hateful content (Benesch et al., 2016a; Chung
et al., 2023). It has inspired generative approaches
that incorporate stylistic strategies (e.g., politeness,
joyfulness, detoxification (Saha et al., 2022) and
relevance (Sheng et al., 2020)). In particular, Gupta
et al. (2023) explored the concept of intent-specific
counterspeech generation, where the generation
is conditioned on certain well-established coun-
terspeech strategies. This approach offers a more
nuanced and effective toolkit for moderators, pro-
viding them with a range of response options to
counter hate (Benesch et al., 2016b).

Motivation: As outlined by Benesch et al.
(2016a), effective counterspeech should not only
align with a specific intent or strategy but also dis-
pel any bias, prejudice, or stereotypical beliefs ex-
pressed in the hate speech. However, a substantial
portion of online hate speech is characterized by
brief, single-sentence statements or abuses. Fur-
thermore, biases or stereotypical beliefs are rarely
projected in what is stated explicitly, but rather
through layers of implied meanings, subtly fram-
ing and influencing social judgments about certain
groups (Sap et al., 2019a). These short, often im-
plied expressions of hate, pose a unique challenge
to language models, which typically perform better
with more extended contexts. Having this limita-
tion is particularly pertinent in seq2seq modeling
tasks, where the brevity of input can adversely af-
fect the quality of counterspeech generation (Ke-
neshloo et al., 2019).

Instruction tuning (IT) has been shown to im-
prove over traditional supervised fine-tuning by
providing explicit and detailed instructions to the
language model (Zhou et al., 2023a). By providing
explicit instructions, IT can help reduce the ambi-
guity in the input, making it easier for the model
to understand the user’s intent and generate more
accurate outputs. We argue that counterspeech gen-

eration can be improved by adopting a similar setup.
By providing clear and specific instructions on how
to generate a desired counterspeech, IT can aid a
language model to understand both the context and
implied nuances of hate speech more effectively
and, thus, can lead to more accurate and relevant
responses.

We support our argument by providing an ex-
ample in Figure 1, where for a given hate speech,
we contrast the responses of three popular counter-
speech generation models – Generate-Prune-Select
(GPS) (Zhu and Bhat, 2021), DialoGPT (Zhang
et al., 2020b), and QUARC (Gupta et al., 2023)
against our proposed method, which employs IT
instead of the classical supervised fine-tuning setup.
We observe that although responses generated by
classical methods are semantically coherent and
somewhat aligned to the desired intent, they are
either generic or fail to form convincing arguments
against hate speech. This suggests the inability of
the classical methods to capture certain implied
aspects like bias, stereotype, or target group from
such short statements. On the other hand, we ob-
serve in our IT setup that clear and explicit instruc-
tions help the model understand which aspects of
hate speech to focus on and what type of CS is
expected, which reflects better responses.

Our Contribution: In response to the afore-
mentioned limitations, in this study, we aim to
develop an improved counterspeech generation
pipeline, one that produces responses that are both
aligned to the desired intent while also attentive
to the short and implied nature of the hate speech.
In total, we consider four counterspeech intents
–positive, informative, question, and denouncing.
We have curated IntentCONANv2, the largest
intent-specific counterspeech generation dataset
consisting of 13, 952 counterspeeches for 3, 488
hate speech instances. Further, we propose CoARL,
a novel three-phased counterspeech generation
framework. In the first stage, CoARL learns to gen-
erate explanations along different pragmatic and
implied dimensions of hate speech. In the second
stage, CoARL is trained to generate intent-specific
counterspeeches by learning task-specific adapters.
Finally, we fine-tune a policy using reinforcement
learning by designing a composite reward function
to optimize the model’s output towards being ef-
fective and non-toxic. An extensive comparison us-
ing automated and human evaluation suggests that
our proposed method consistently beats the current
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counterspeech generation benchmarks across mul-
tiple metrics and shows comparative performance
with LLMs like ChatGPT. We open-source both
the dataset and source code on Github1.

2 Related Work

Automatic Counterspeech Generation:
Qian et al. (2019) made an initial attempt to
generate counterspeeches with the seq2seq model.
Zhu and Bhat (2021) developed three-task pipeline
that includes an encoder, a grammar check, and
counterspeech retrieval based on hate speech to
produce diverse counterspeeches. While existing
studies indicate the effectiveness of conditioned
counterspeech based on context (Mathew et al.,
2019; Hangartner et al., 2021), effective coun-
terspeech generation is still at its nascent stage.
Saha et al. (2019) introduced CounterGEDI, a
model designed to control attributes like polite-
ness, detoxification, and emotions in generated
counterspeeches using class-conditioned language
models. Recently, Gupta et al. (2023) proposed
a two-phased pipeline to generate intent-specific
counterspeeches.

Instruction Tuning and RLAIF: Instruction
tuning (IT) enhances the functionality and control-
lability of large language models (LLMs), yield-
ing more predictable behaviors compared to stan-
dard LLMs (Wang et al., 2022; Mishra et al., 2022;
Zhang et al., 2023). Studies such as (Wei et al.,
2022) demonstrate that multitask fine-tuning with
instructions on moderate-size LMs facilitates zero-
shot task generalization. This is achieved by scal-
ing the number of training tasks, prompts per task,
and LM size. IT has also proven effective in con-
trolled text generation, often outperforming other
methods in constraint satisfaction. Zhou et al.
(2023a) have highlighted that incorporating con-
ditions into instructions enhances controlled text
generation. This approach allows models to dynam-
ically adapt to constraints, improving task-specific
generation and zero-shot constraint generalization.
By verbalizing constraints in natural language, the
prompt-based generation capabilities of pre-trained
models are optimally utilized, enabling them to ad-
dress new, unseen constraints during training by
simply describing them in natural language. We
use a similar strategy in our method where we ver-
balize the intent as part of the instruction itself (c.f
Table 5).

1https://github.com/LCS2-IIITD/coarl-counterspeech.git

Hate speech Counterspeech Intent

Target group INF POS QUE DEN Total

Muslims 914 914 914 914 3656
Women 508 508 508 508 2032
LGBTQ+ 449 449 449 449 1796
Jews 392 392 392 392 1568
Refugees 70 70 70 70 280
Asian people 29 29 29 29 116
Immigrants 562 562 562 562 2248
Disabled 173 173 173 173 304
POC 306 306 306 306 80
Other 85 85 85 85 208

Total 3488 3488 3488 3488 13952

Train 2383 2383 2383 2383 9532
Dev 365 365 365 365 1460
Test 740 740 740 740 2960

Table 1: Statistics of the IntentCONANv2 dataset.

Recently, IT combined with Reinforcement
learning from human feedback has been effica-
cious in aligning LLMs with human preferences
in various applications, including summarisation,
dialogue, and question answering (Ouyang et al.,
2022; Glaese et al., 2022), with recent work intro-
ducing Reinforcement Learning from AI Feedback
(RLAIF) (Lee et al., 2023) for optimizing help-
fulness and harmlessness, and demonstrating that
RLAIF can achieve improvements comparable to
traditional methods without relying on human anno-
tators (Ziegler et al., 2020; Christiano et al., 2023;
Nakano et al., 2022; Bai et al., 2022). Our approach
aims to explore the use of pretrained classifiers to
align an instruction-tuned LLM towards certain de-
sired attributes of effectiveness and non-toxicity.

3 Dataset

We introduce IntentCONANv2, an expanded
and revisited version of the publicly-available
dataset “IntentCONAN" (Gupta et al., 2023).
IntentCONANv2 is a large-scale dataset com-
prising 13, 952 CS instances across four distinct
intents: positive (POS), informative (INF), ques-
tioning (QUE), and denouncing (DEN). The devel-
opment of IntentCONANv2 involved address-
ing key limitations of the original dataset, lead-
ing to significant improvements in both content
and structure. Firstly, we eliminated the humor
intent, acknowledging its subjective nature and
tendency to produce vague or offensive content
(Chung et al., 2023; Gupta et al., 2023). Secondly,
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we addressed the non-uniform distribution of coun-
terspeeches in the original dataset (See Table 1).
While IntentCONAN had an inconsistent repre-
sentation of counterspeeches across different hate
speech instances, IntentCONANv2 ensures an
average of four counterspeeches per hate speech,
significantly improving upon the original average
of two. Our further improvements include a focus
on the length and content quality of the counter-
speeches. The effectiveness of a robust counter-
speech is reflected in its length, with a greater token
count indicating a more comprehensive response.
A higher token count suggests that the counter-
speech encompasses a broader range of informa-
tion to effectively counteract hate speech. Our anal-
yses indicate a notable presence of overly brief
responses in the original dataset, particularly in
the denouncing and questioning intents. To ad-
dress this, IntentCONANv2 emphasizes gener-
ating counterspeeches with substantial content, in-
creasing the average token length from 26.48 to
40.61. Appendix A shows more details about the
dataset and annotation process.

4 Proposed Methodology

In this section, we describe CoARL, a novel frame-
work for automated counterspeech generation de-
signed to address two main challenges: (i) generat-
ing intent-specific counterspeech that is both topi-
cally and semantically relevant to the hate speech,
and (ii) aligning the counterspeech with the desired
values of effectiveness and non-toxicity (Fig. 2).

Task Formulation

Let us denote the IntentCONANv2 dataset as
D = {(x1, c1, y1), . . . , (xn, cn, yn)}, where xi ∈
X is the i-th hate speech statement, yi ∈ Y is the
counterspeech corresponding to xi, and ci ∈ C
is the category/intent of yi. We aim to learn a
stochastic counterspeech generation function χ :
X × C → Y , such that yi ∼ χ(·|xi, ci).

We approach this problem by decomposing the
counterspeech generation task into three phases. In
the first phase, we train a base language model on
seven hate speech explanation tasks, each cover-
ing a unique pragmatic facet of hate speech. In
the second phase, we freeze the model parameters
learnt during the previous phase, and fine-tune a
task-specific Low-Rank Adapter (LoRA) for coun-
terspeech generation. Finally, we train a policy us-
ing reinforcement learning to optimize the model’s

output to be both effective and non-toxic simulta-
neously. We use FLAN-T5 (Chung et al., 2022)
as the base model for all our experiments. Note
that while there is a range of valid model choices
when it comes to seq2seq modelling, we choose
FLAN-T5 based on its strong reasoning abilities
(Chung et al., 2022).

Phase 1: Auxiliary Explanation Generation
(AEG)

Following recent work in hate speech explanation
generation, we make use of COBRACORPUS (Zhou
et al., 2023b), a dataset of offensive statements
paired with free-text explanations along seven prag-
matic frames of hate speech − intent, target group,
power-dynamics, impact, emotional reaction, cog-
nitive reaction, and offensiveness. Contrary to
Zhou et al. (2023b) who generate explanations in a
linearized format, we adopt a multi-task instruction
tuning setup (c.f. Figure 2).

Let πPRE be a vanilla FLAN-T5 model pa-
rameterized by Θ. We begin by convert-
ing COBRACORPUS into a set of independent
instruction-tuning tasks along each of the seven ex-
planation dimensions {I1, I2, . . . , I7} (See Table
5). Following this, we fine-tune πPRE simultane-
ously for each of the seven explanation generation
tasks, with the aim of learning a shared representa-
tion that will enable the model to generalize better
on each task. The common multi-task training ob-
jective for all tasks (N = 7) can be written as
follows:

Θm = argmin
Θ

N∑

n=1

L0(In; Θ) (1)

where In corresponds to the instruction set for task
t ∈ {1, ..., N}, L0 denotes standard cross-entropy
loss, and Θm are the parameters of the fine-tuned
model.

Phase 2: Task-Specific Adapter Learning

We formulate the task of intent-conditioned coun-
terspeech generation, in which we verbalize the
intent as part of the instruction itself (See I8, Ta-
ble 5). Then, instead of fine-tuning a new model
from scratch, we train task-specific LoRA adapter
weights (Hu et al., 2021) on top of the model pa-
rameters learned during the previous phase. This
setup provides two benefits. First, it allows for
forward knowledge transfer where the model is
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FLAN-T5 + AdapterFLAN-T5 + Adapter

Toxicity Scorer

Pro/Con Scorer

Argument Quality 
Scorer

Adapter

finetuning

Proximal

Policy 


Optimization

(PPO)

Analyze the offensiveness of the 
statement: {HS}

The statement is an example 
of  offensive generation.

Analyze the stereotype underlying 
the offensive statement: {HS}

The statement reflects 
Xenophobia

Describe how the target group 
might feel emotionally after reading 

or listening to the offensive 
statement: {HS}

Immigrants could feel afraid 
or anxious that people will 

belive that stereotype

HS: Immigrants steal our jobs!, Intent: Questioning

write a {Intent} 
counterspeech for the 
offensive statement: 

{HS}

 Isn't targeting immigrants as job 
stealers an offensive 

oversimplification? Have you thought 
about how such false stereotypes might 

affect their cognitive perception of 
their own contributions and value in 

our community?

Aggregated 
reward

Figure 2: Overview of the three-phased architecture of CoARL. In the first phase (left), CoARL is trained on an
auxiliary task of hate speech (HS) explanation generation using a multi-task IT setup. Subsequently, in the second
phase (right), task-specific LoRA weights are trained by freezing the model parameters from the previous phase,
thus, enabling forward knowledge transfer without catastrophic forgetting. In the final phase (right), the model
output is optimized via RL using feedback from a composite reward model consisting of three pre-trained classifiers.

able to leverage the knowledge learnt during ex-
planation generation from phase 1. Second, learn-
ing task-specific LoRA parameters independently
helps avoid catastrophic forgetting.

We initialize a FLAN-T5 model with Θm, i.e.,
the parameters learned from the previous phase.
We then freeze the model’s parameters and fine-
tune task-specific LoRA parameters for intent-
conditioned counterspeech generation. Specifically,
we apply LoRA to the query and value projection
matrices in the self-attention module of FLAN-T5,
following Hu et al. (2021). Let Wm denote the
weight matrix corresponding to the model initial-
ized with Θm. For each pre-trained weight matrix
Wm ∈ Rd×d, we introduce two trainable matrices
A ∈ Rr×d and B ∈ Rd×r, where r ≪ d is the rank
of LoRA. We constrain the update to the weight
matrix by Wm+∆W = Wm+BA, where ∆W is
the low-rank adaptation. We initialize A randomly
and B to zero, and scale ∆Wx by α/r, where α
is a constant and x is the input vector. We freeze
Wm and only optimize A and B using the Adam
optimizer. Finally, we fine-tune the LoRA parame-
ters on D by maximizing the log-likelihood of the
target given the source instruction:

max
A,B

∑

(x,y)∈D

|y|∑

t=1

log(πPRE(yt|x, y<t;A,B)) (2)

where x is the hate speech instance, y is the target
counterspeech, and yt is the t-th token in y. We use
the cross-entropy loss as the objective function.

Phase 3: Optimization via Reinforcement
Learning

In this phase, we optimize our model to generate
counterspeeches that are both effective and non-
toxic, using a composite reward function that com-
bines three types of rewards: stance (pro-con), ar-
gument quality, and toxicity. Inspired by Bai et al.
(2022), our proposed RLAIF pipeline consists of
three phases: supervised fine-tuning, reward model-
ing, and reinforcement learning-based fine-tuning.

Supervised Fine-Tuning: Let πSFT parameter-
ized by θSFT denote the supervised fine-tuned
model learned during phase 2. Specifically, πSFT

can be represented as θSFT = Wm + BA, where
Wm ∈ Rd×d is the weight matrix learned in phase
1 (for the task of hate speech explanations gener-
ation), and A ∈ Rr×d and B ∈ Rd×r, are the two
low-rank LoRA matrices learned during phase 2
(for the task of intent-specific counterspeech gener-
ation).

Reward Model (RM): We use three transformer-
based models, each trained on the tasks of stance
(pro-con / PC) classification, argument quality
(AQ) prediction, and toxicity (T) prediction to pro-
vide the reward signals for each generated counter-
speech (see Appendix E for details). The reward
function aims to encourage the model to generate
counterspeeches that contradict hate speech, form
logical and persuasive arguments, and avoid harm-
ful or offensive language. The overall reward is
computed by taking the mean of these components
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after normalizing them to a unified scale of 0 to 1,
where 1 represents the ideal reward. The reward
function is formulated as:

r(x′, y′) =
1

3

(
1− PC(x′, y′)

2

)
+AQ(y′)+

(
1− T (y′)

) (3)

In this context, x′ denotes instruction-formatted
hate speech, while y′ denotes the counterspeech
generated by πSFT . The Pro-Con score PC(x′, y′)
is normalized to 1−PC(x′,y′)

2 to convert the original
scale of [-1, 1] to [0, 1], thereby aligning lower
scores with higher rewards. Additionally, AQ(y′)
represents the argument quality score, which is
already within the [0, 1] range. Finally, T (y′) is
inverted to 1−T (y′) to transform the original scale
of [0, 1] (where lower is better) to a scale where
higher scores indicate lower toxicity. By averaging
these normalized components, our RM incentivizes
the generation of counterspeech that is not only
relevant and persuasive but also minimizes toxicity.

Reinforcement Learning: We use the Proximal
Policy Optimization (PPO) algorithm (Schulman
et al., 2017). We initialize a policy model πRL

from the SFT model πSFT and fine-tune it using
the reward signals given by the reward model RM.
We also add a regularization term in the form of
KL divergence to the final objective function, to
ensure a smooth and natural gradient update and
prevent the policy from deviating too much from
the original model.

LPPO(π
RL) =Ex∼D,y∼πRL(x)

[
πRL(y|x)
πSFT (y|x)r(y)

− ϵ ·KL(πSFT (x)||πRL(x))

] (4)

where πRL(y|x) and πSFT (y|x) are the proba-
bilities of generating counterspeech y given hate
speech x by the policy model πRL and the SFT
model πSFT , respectively, r(y) is the reward given
by the reward model for counterspeech y, and
KL(πSFT (x)||πRL(x)) is the Kullback-Leibler
Divergence (KL) between the probability distri-
butions of counterspeeches generated by πSFT and
πRL for a given hate speech x.

KL(πSFT (x)||πRL(x)) =
∑

x P (x) log πSFT (x)

πRL(x)
(5)

The KL term is used to penalize large changes in
the policy and ensure a smooth update. The hyper-
parameter ϵ controls the trade-off between explo-
ration and exploitation. Thus, the final objective

function aims to maximize the expected reward
while keeping the policy model πRL close to the
SFT model πSFT .

5 Experimental Setup

5.1 Baselines

We report Generate Prune Select (GPS) by (Zhu
and Bhat, 2021), which employs a three-stage
pipeline including an autoencoder for initial coun-
terspeech generation, a grammatical pruning model,
and a vector-based response selection model. We
also fine-tune DialoGPT (Zhang et al., 2020b)
for its ability to generate contextually relevant re-
sponses, surpassing similar models like GPT-2. Ad-
ditionally, we include QUARC (Gupta et al., 2023),
recognized as the current state-of-the-art in intent-
conditioned counterspeech generation. To further
broaden our comparison scope, we also consider
prompting baselines leveraging the capabilities of
LLMs. Recent advances in in-context learning
have revealed that these models can achieve per-
formances comparable to, or even surpass, tradi-
tional supervised fine-tuning across various NLP
tasks. Thus, for a comprehensive evaluation, we
report both zero- and few-shot performances on
three LLMs – Vanilla FLAN-T5XXL (Chung et al.,
2022), AEG FLAN-T5XXL, i.e., FLAN-T5XXL

trained on auxiliary explanation generation, GPT-
3.5-Turbo (ChatGPT) and GPT-4 (Ouyang et al.,
2022). Details about prompting experiments are
presented in Appendix D.

5.2 Evaluation Metrics

Evaluating counterspeech generation presents
unique challenges due to the task’s inherent open-
ended nature, varied correct responses, and the ab-
sence of standard evaluation criteria (Chung et al.,
2023). To address these challenges, our evaluation
adopts a multidimensional approach, each focusing
on a specific aspect of counterspeech quality. These
dimensions include lexical similarity, relevance, ef-
fectiveness, intent conformity, and toxicity. Lexical
similarity, measuring the linguistic alignment be-
tween generated and reference counterspeech, is
evaluated using Rouge (Lin, 2004) and Meteor
(Banerjee and Lavie, 2005). Relevance, focus-
ing on the counterspeech’s direct engagement with
the primary topic of the hate speech, is assessed
through cosine similarity (Reimers and Gurevych,
2019) and BERTScore (Zhang et al., 2020a), en-
suring topical and semantic coherence. A low rele-
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Method Prompt/Adapter ROUGE (↑) M (↑) BS (↑) CS (↑) CA (↑) PC (↓) AQ (↑) T (↓)

R1 R2 RL

GPS − 0.175 0.026 0.151 0.128 0.856 0.150 0.295 −0.013 0.679 0.126
DialoGPT − 0.236 0.061 0.208 0.230 0.875 0.202 0.921 −0.118 0.811 0.106
QUARK − 0.219 0.062 0.191 0.174 0.874 0.182 0.745 −0.030 0.790 0.108

Vanilla FLAN-T5XXL ZS 0.175 0.042 0.157 0.123 0.859 0.148 0.528 −0.113 0.710 0.321
Vanilla FLAN-T5XXL FS 0.177 0.043 0.158 0.125 0.869 0.148 0.509 −0.120 0.705 0.299
AEG FLAN-T5XXL ZS 0.185 0.041 0.169 0.126 0.873 0.161 0.518 −0.082 0.730 0.263
AEG FLAN-T5XXL FS 0.184 0.043 0.165 0.126 0.870 0.167 0.517 −0.125 0.728 0.268

GPT-3.5-Turbo ZS 0.204 0.058 0.181 0.274 0.856 0.323 0.828 0.118 0.898 0.038
GPT-3.5-Turbo FS 0.230 0.067 0.199 0.293 0.885 0.310 0.891 −0.045 0.914 0.043

GPT-4 ZS 0.242 0.057 0.211 0.270 0.874 0.345 0.929 0.149 0.854 0.012
GPT-4 FS 0.247 0.056 0.214 0.267 0.886 0.346 0.924 0.148 0.856 0.013

CoARL (Ours) LoRA16 0.251 0.078 0.221 0.244 0.876 0.226 0.944 −0.130 0.824 0.067

- RL LoRA16 0.251 0.071 0.220 0.249 0.868 0.231 0.946 −0.112 0.815 0.101
- reward (Toxicity) LoRA16 0.251 0.078 0.220 0.244 0.874 0.226 0.943 −0.130 0.823 0.107
- reward (AQ) LoRA16 0.248 0.076 0.217 0.232 0.868 0.223 0.938 −0.129 0.804 0.076
- reward (PC) LoRA16 0.245 0.076 0.215 0.239 0.865 0.221 0.937 −0.107 0.815 0.071
- AEG − 0.247 0.069 0.216 0.245 0.862 0.222 0.930 −0.113 0.816 0.124
- LoRA (SFT) − 0.234 0.067 0.210 0.233 0.809 0.215 0.939 −0.111 0.801 0.106

∆CoARL(Ours)−BestMethod ↑ 0.004 ↑ 0.011 ↑ 0.006 ↓ 0.049 ↓ 0.010 ↓ 0.12 ↑ 0.015 ↑ 0.085 ↓ 0.090 ↓ 0.055

Table 2: Comparative evaluation of CoARL against state-of-the-art models across multiple evaluation metrics. The
symbol ↑ (↓) indicates the higher (lower) value is better.

vance score suggests a topic mismatch, where the
counterspeech diverges from the primary subject
of the hate speech. Effectiveness is assessed using
Project Debater’s API services: Pro/Con (PC) and
Argument Quality (AQ) (Bar-Haim et al., 2021).
The PC metric evaluates whether an argument sup-
ports or opposes a given topic, while AQ assigns a
quality score to the argument. We treat hate speech
as the topic and the generated counterspeech as
the argument, calculating these metrics for each
model output. Category Accuracy (CA), follow-
ing (Gupta et al., 2023), measures how effectively
each model incorporates the intended intent into
the generated counterspeech. Finally, we evaluate
Toxicity2 using the Detoxify library, an unbiased
toxicity classification model (Hanu and Unitary
team, 2020), to ensure that the generated counter-
speech does not perpetuate harmful language.

6 Experimental Results

In this section, we delve into a comprehensive anal-
ysis of the experimental results, comparing the per-
formance of our proposed method, CoARL (Ours)
against state-of-the-art baselines.

6.1 Quantitative Results

Table 2 shows quantitative results across a spec-
trum of automated metrics, illustrating the superior

2https://www.perspectiveapi.com/

performance of CoARL in various evaluative crite-
ria. In ROUGE-based scores, namely R1, R2, and
RL, CoARL achieves outstanding scores of 0.251,
0.078, and 0.221, respectively, demonstrating its
effectiveness in generating lexically-aligned coun-
terspeech, a key factor for relevance and appropri-
ateness in responding to hate speech. Furthermore,
CoARL attains an impressive Category Accuracy
(CA) score of 0.944, underscoring its precision in
incorporating the intended intent within counter-
speech. When compared to baseline models such
as GPS, DialoGPT, and QUARK, CoARL not only
excels in lexical similarity but also in relevance
and argument quality. This is evidenced by its
higher BERTScore (0.876) and Argument Qual-
ity (0.824) while maintaining a significantly lower
toxicity score (0.067).

CoARL’s outputs also exhibit higher semantic
and topical relevance, indicated by its Meteor,
BERTScore, and Cosine Similarity scores, only
surpassed by GPT-3.5 and GPT-4, which benefits
from its larger model architecture and RLAIF fine-
tuning. This comparison highlights the importance
of the model size and fine-tuning approaches in
counterspeech generation. The inclusion of Auxil-
iary Explanation Generation (AEG) in our method-
ology has proven beneficial, as FLAN-T5 models
trained with AEG outperform their vanilla counter-
parts in lexical and semantic similarity metrics, in
both zero- and few-shot settings, further validating
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the hypothesis that hate speech explanation gen-
eration enhances counterspeech quality. Notably,
CoARL outperforms GPT-4 in CA and PC metrics,
emphasizing its ability to generate counterspeech
that effectively counters hate speech while main-
taining comparable performance in toxicity scores,
thus generating impactful yet non-toxic counter-
speech.

6.2 Ablation Study

This section details ablation experiments conducted
to evaluate the significance of various compo-
nents within the CoARL framework. We assess
CoARL’s performance with and without Reinforce-
ment Learning (RL), Auxiliary Explanation Gener-
ation (AEG), the LoRA adapter, and using differ-
ent reward functions, as presented in Table 2. The
results demonstrate a performance decline upon
removing any of these components, underscoring
their collective importance.
• RL optimizes counterspeech for effectiveness and
non-toxicity using a composite reward function
(stance, argument quality, and toxicity). With-
out RL, counterspeech effectiveness diminishes,
indicated by lower Pro/Con and Argument Qual-
ity scores, and toxicity increases. Each reward
component uniquely influences counterspeech qual-
ity. Excluding the stance reward slightly decreases
Pro/Con scores but increases Argument Quality, im-
plying some counterspeeches might be persuasive
without directly opposing hate speech. Removing
argument quality rewards significantly lowers Ar-
gument Quality scores but slightly decreases Toxi-
city, suggesting possible harmful language in high-
quality arguments. Eliminating the toxicity reward
notably raises Toxicity scores but slightly improves
Pro/Con and Argument Quality, indicating some
effective counterspeeches might use offensive lan-
guage.
• AEG enhances the model’s understanding of hate
speech context and nuances, leading to more rele-
vant and coherent counterspeeches. Without AEG,
ROUGE, Meteor, BERTScore, Cosine Similarity,
Argument Quality, and Category Accuracy scores
drop.
• The LoRA adapter allows for learning task-
specific parameters in counterspeech generation
without erasing prior knowledge. In its absence,
the model uses sequential fine-tuning of the base
FLAN-T5 model, resulting in reduced ROUGE,
BERTScore, Argument Quality, and Category Ac-
curacy, along with an increase in Toxicity.

6.3 Human Evaluation

Given the open-ended nature of the problem, we
undertook an extensive human evaluation. We ana-
lyze a randomly selected subset of counterspeeches
generated by four best-performing methods from
our quantitative evaluation (See Table 2): COARL,
DialoGPT, few-shot ChatGPT (GPT-3.5 Turbo)
and GPT-4. The subset was uniformly distributed
across all four intents. For a given hatespeech, we
ask our evaluators3 to rank responses from the each
of the aforementioned models across the following
metrics:
• Independent Counterspeech (IC) evaluates the
ability of the generated counterspeech to function
independently, without reliance on additional con-
text.
• Adequacy (A) is used to assess the grammatical
correctness, coherence, and fluency of the coun-
terspeech, examining how effectively it adheres to
grammatical norms and syntactical clarity.
• Contextual Relevance (CR) denotes the counter-
speech’s capacity to address key elements of hate
speech, including subject matter, false claims, tar-
geted group, projected stereotypes, or biases.
• Argumentative Effectiveness (AE) measures the
counterspeech’s success in presenting cogent and
convincing arguments in response to hate speech.
High AE is indicative of a logically structured and
impactful counterargument.
• Category Accuracy (CA): This evaluates the
extent to which the counterspeech aligns with its
intended objective, based on the categorization of
its intent by evaluators.

For each of these metrics, we report the Win Rate
of CoARL against the respective best-performing
methods in Table 3. Win Rate evaluates the end-to-
end quality of two models, measuring how often
one model is preferred by humans over the other.
The percentage of instances where model A is pre-
ferred over model B is referred to as "Win Rate of
A vs B".

7 Conclusion

To address online hate speech with effective and
diverse responses, we introduced the task of auto-
mated counterspeech generation, integrating prag-
matic reasoning. We created CoARL, a three-stage
framework that leverages instruction tuning and re-

3The evaluation panel consisted of 35 experts from the
fields of NLP and social science, aged between 20-30 years,
with a gender distribution of 45% male and 55% female.
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Model Human Evaluation Metric

IC ↑ A ↑ CR ↑ AE ↑ CA ↑
CoARL vs GPT-4 (FS) 0.57 0.32 0.39 0.46 0.61
CoARL vs GPT-3.5 (FS) 0.60 0.31 0.55 0.38 0.68
CoARL vs DialoGPT 0.62 0.47 0.73 0.58 0.66

Table 3: Results for different human evaluation metrics.
We report Win Rate % for responses generated from
CoARL against those generated by a) GPT-4 (FS), b)
GPT-3.5 (FS), and c) DialoGPT.

inforcement learning to generate high-quality coun-
terspeeches that are aligned to the pragmatic facets
and intents of hate speech. We also presented
IntentCONANv2, consisting of 13, 952 intent-
specific counterspeeches. We performed a com-
prehensive evaluation across both quantitative and
qualitative metrics to demonstrate the superiority
of CoARL over existing methods and ablations.
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Limitation

Our study has limitations that should be acknowl-
edged. First, our dataset of hate speech and counter-
speech is not exhaustive, and may not cover all pos-
sible types and targets of online hate. Second, our
framework relies on pre-trained models for reward
modeling and reinforcement learning, which may
introduce biases or errors from the source models.
Third, our evaluation metrics are not fully aligned
with the human perception of counterspeech qual-
ity, and may not capture the nuances and subtleties
of natural language. Fourth, our framework does
not account for the potential feedback loop or es-
calation that may occur after generating counter-
speech, which may affect the long-term effective-
ness and impact of our approach. Furthuremore,
although the annotators kept the quality of coun-
terspeech as high as possible, it is possible that
this data is not at par with other datasets that are
annotated by more skilled NGO operators, as is
the case with the Multi-Target CONAN dataset
(Fanton et al., 2021b). Future work could address
these limitations by expanding and diversifying the
dataset, improving the reward function and evalu-
ation criteria, and incorporating human feedback
and dialogue modeling into the framework.
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We are cognizant of the delicacy required when
dealing with online hate speech and acknowledge
that engaging in research within this domain may
introduce ethical and moral challenges. This initia-
tive represents a preliminary effort to establish a
detailed and diverse compilation of counterspeech
reactions for every occurrence of hate speech. We
are aware that algorithms designed for automated
counterspeech could produce statements that do
not accurately reflect intended meanings, under-
scoring the necessity for a better incorporation of
real-world knowledge into these algorithms. Even
though generative algorithms show promise, the
critical need for a broad and diverse counterspeech
database to secure consistently positive outcomes
persists. Furthermore, although fully functional
counterspeech algorithms have not been actualized,
groups such as United Against Hate play a pivotal
role in diminishing the prevalence of hate speech
online.
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field guide4 focusing on “addressing online harass-
ment”. This preliminary stage involved extensive
dialogues with the annotators to deepen their grasp
on the concept of counterspeech. They were in-
structed to concentrate on key objectives for each
counterspeech variant:

1. Establishing the Objective: Each variant
of counterspeech should represent a distinct
foundational idea, mode of expression, and
desired effect.

2. Diminishing Conflict: The goal was to en-
sure that every counterspeech contributed to
de-escalating the situation without prompt-
ing further hostility or provoking more hate
speech.

3. Avoiding Hostile Language: A firm rule was
set against incorporating harsh language, such
as threats, derogatory names, and swear words
in the counterspeeches.

Adhering to these criteria, the annotators devel-
oped counterspeech responses tailored to 3, 488
unique cases of hate speech. For an exhaustive
analysis of the dataset, see Table 1 in the IntentCO-
NAN statistics section.

Statistical Analysis: In Figure 3, we present a
detailed statistical analysis of IntentCONANv2.
Our focus is on fine-graining the target groups into
10 distinct categories, a classification that signif-
icantly enhances the model’s capacity to compre-
hend hate speech context in conjunction with intent.
Figure 3a specifically features a donut chart illus-
trating the distribution of hate speech target groups.
To delve into specifics, we meticulously extracted
refugees from the broader category "Immigrants,"
and this subgroup constitutes a noteworthy 2% of
the entire dataset. Simultaneously, we honed in
on the "Asian people (AP)" category within the
expansive classification of "Others," contributing a
modest yet discernible 0.8% to the overall dataset.
Moving on to Figure 3b, it provides the distribution
of counter speech across the intent dimension. This
multi-faceted examination contributes to a compre-
hensive evaluation of both hate speech and counter-
speech dynamics within the dataset.

To delve into details regarding our expanded
dataset, Figure 3c provides insights into the uni-

4https://onlineharassmentfieldmanual.
pen.org/
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Figure 3: Visual exploration of various attribute distri-
bution present in IntentCONANv2

form distribution of data points across training, val-
idation, and testing sets. Examining Figure 3d
along the target group dimension reveals a consis-
tent dispersion of counter speeches across different
intents. Figures 3e and 3f elucidate the mean to-
ken distribution of counter speeches, both across
intents and within various target groups. Notably,
the counter speeches with the highest mean token
length tend to lean towards positive intents, as evi-
denced by the findings. Simultaneously, a pattern
of uniformity emerges in the mean token length
distribution across the diverse target groups, con-
tributing to a comprehensive understanding of the
dataset characteristics.

B Hate Speech Explanations

In this study, we employ the COBRACORPUS
dataset (Zhou et al., 2023b) to develop seven dis-
tinct subsets for instruction tuning. Each subset cor-
responds to specific explanation dimensions as out-
lined in Table 5. We adhere to the original training,
validation, and testing partitions as established in
the COBRACORPUS dataset for each of these sub-
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HS Gypsies are essentially thieves.

INF

Stereotyping an entire community based on
the actions of a few is unfair and perpetuates
discrimination. it is important to recognize
that criminal behavior exists in every society
and is not limited to any specific group.
Painting all gypsies as thieves is a harmful
generalization. It is crucial to approach
individuals and communities with respect
and empathy rather than perpetuating
negative stereotypes.

CS QUE∗
They are not thieves, just like any other citizen.
Did you just infer that from their belonging to
that community?

DEN Respect and understanding should prevail
instead.

POS

It is important to avoid generalizations and
stereotypes about any community, including
the gypsy community. Stereotyping an entire
group based on the actions of a few individuals
is unfair and perpetuates discrimination. Let’s
focus on promoting understanding and empathy
towards diverse communities, appreciating their
rich cultural heritage and contributions.

Table 4: Comparison between IntentCONAN and In-
tentCONANv2. The ∗ shows the pre-existing counter
speech in the IntentCONAN dataset.

sets. The explanation dimensions we incorporate
are grounded in theoretical frameworks from prag-
matics and implicature (Grice, 1975; Perez Gomez,
2021) as well as the social psychology of bias and
inequality (Nieto and Boyer, 2006; Nadal et al.,
2014). This approach allows for an extensive ex-
pansion of reasoning dimensions compared to pre-
vious studies, which primarily focused on identify-
ing targeted groups and biased implications (Sap
et al., 2019b; ElSherief et al., 2021). Below, we
provide a comprehensive description of each expla-
nation dimension.

Speaker Intent: The Speaker Intent delves into
the fundamental communicative purpose underly-
ing a statement deemed hate speech (e.g., "to in-
cite", "to jest", "to demean"). Earlier studies have
illustrated that understanding the speaker’s intent is
pivotal for identifying the pragmatic consequences,
including biases and damages, thus facilitating the
recognition of hate speech (Kasper, 1990; Dynel,
2015; Holgate et al., 2018).

Target Group: Target Group characterizes the
particular social or demographic group that is the
subject or object of the hate speech (for example,
“those jews”, “dislike black artists”), and this may

encompass the addressee if they are the intended
target. This aspect has been emphasized in nu-
merous previous studies due to its significance in
grasping the offensive nature and potential harm of
the speech (Zampieri et al., 2019; Sap et al., 2019b;
Vidgen et al., 2019).

Power Dynamics: Power Dynamics encapsulate
the imbalances in social and cultural power or the
axis along which privilege and discrimination align
between the speaker and the referred group or au-
dience of a statement (Nieto and Boyer, 2006). An
instance is when a statement is made by someone of
white ethnicity towards a person of black ethnicity,
demonstrating a racial hierarchy where the former
holds greater societal privilege and status than the
latter. This hierarchy is instrumental in compre-
hending how the context modifies the offensive-
ness and potential harm of a statement. Statements
from a position of greater power towards some-
one with less power are typically more offensive or
damaging. The hierarchy is described through free-
text explanation of the nature of power disparity,
like “gender-based disparity”, “racial hierarchy”,
or “economic disparity”.

Implication: Implication of Implied Meaning
elucidates the biased, prejudicial, or stereotype-
laden meaning suggested by the hate speech state-
ment, akin to (Sap et al., 2019b). This meaning
significantly aligns with the interpretation received
by the audience or target group and may deviate
from the intent ascribed by the speaker (e.g., in
cases of microaggressions). The Connoted Mean-
ing dimension is expressed as a free-text elucida-
tion of the type of harm or impact implicated in the
statement, such as “emotional distress”, “perpet-
uation of stereotypes”, or “dissemination of false
information”. This aspect is crucial for deciphering
the repercussions of a statement and its capacity
to offend or injure. It also aids in identifying the
specific nature of harm or impact, which is benefi-
cial for crafting effective strategies to alleviate the
detrimental effects of harmful speech.

Emotional Reaction: Emotional Reaction or Af-
fective Response outlines the potential adverse im-
pacts and injuries resulting from the statement and
its suggested meaning on the audience or referred
group (Nadal et al., 2014). It consists of a free-
text narrative describing the immediate emotional
responses or reactions to a statement (e.g., “irrita-
tion and displeasure”, “sense of insignificance”).

6729



For instance, in the remark "Wow, your English
is surprisingly good!" made by a white individual
to a person of color, the affective response could
include “the recipient and people of color might
feel irked, patronized, or insecure about their En-
glish proficiency”. This dimension is insightful for
understanding the psychological ramifications of
pejorative language and its effect on the targeted
group or listener’s emotional health.

Cognitive Reaction: Cognitive Reaction details
the potential intellectual impacts and damages that
the statement and its suggested meaning could in-
flict on the audience or referred group (Nadal et al.,
2014). This is articulated through a free-text nar-
rative on the immediate intellectual reactions to a
statement (e.g., “bewilderment”, “skepticism”, “in-
credulity”). For example, the remark, “You’re too
young to grasp this,” could lead to reactions such
as “the addressee feeling perplexed, questioning
their own comprehension, or feeling undervalued”.
This dimension is valuable for gauging the intellec-
tual influence of derogatory language and its effect
on the mental well-being of the targeted group or
listener.

Offensiveness: Offensiveness quantifies how in-
sulting or harmful a statement can be to the referred
group or listener. This offensive measure is con-
veyed through a free-text depiction of the type of
harm or impact implicated in the statement, such
as “racial prejudice”, “gender discrimination”, or
“anti-LGBTQ+ sentiment”.

C Instructions

While defining Instructions for both the Auxiliary
Explanation Generation and Counterspeech Gener-
ation tasks, we follow a standard format where the
instruction is brief, to the point, and describes the
expectation from the model clearly (See Table 5).

D Prompting

Drawing from previous studies (Lee et al., 2023),
we follow a preamble prefix (Preamble - Instruc-
tion - Exemplar) prompt template for both the
zero-shot and few-shot experiments. An exam-
ple prompt template for one-shot exemplar is il-
lustrated in Table 6. For each of the three LLM
baselines described in section 5.1, we conduct infer-
ence on the IntentCONANv2 test set. For few-shot
prompting, we sample exemplars for in-context
learning from the IntentCONANv2 training set. For

a given hate speech instance from the test set, we
select exemplars based on the top-n semantically
similar instances from the training set based on
BM25 scores. We experiment with n=3, n=5, and
n=8 exemplars, are find that the best results are
obtained from n=3 in-context examples. We report
the numbers with n=3 in-context examples for all
few-shot experiments.

For inference on the FLAN-T5 XXL model, we
make use of one NVIDIA A100 (80 GB) GPU,
which results in 2 inferences per second. For GPT-
3.5-turbo and GPT-4, we use the gpt-3.5-turbo-
1106 and gpt-4 model versions respectively as
hosted by the OpenAI API5. On average each turn
takes about 2 seconds for inference for both zero-
and few-shot inference.

E Reward Model (RM)

As detailed under section 4, we design a com-
posite reward function by combining outputs of
three transformer-based models - Argument Qual-
ity (AQ), Pro-Con (PC), and Toxicity (T).

Argument Quality: Akin to the Argument Qual-
ity (AQ) service detailed by Bar-Haim et al. (2021),
we train a BERT-based regression model using
a dataset comprising around 27, 000 arguments,
which span a diverse range of subjects. Each ar-
gument in this dataset has been assigned a quality
rating, as outlined in (Gretz et al., 2020). High-
quality arguments are characterized by their gram-
matical accuracy, proper use of language, clear and
concise expression, and a clearly defined stance on
the topic.

In this study, the primary role of the regression
model is to assess the effectiveness of counter-
speech. It evaluates how well a counterspeech can
form logical and coherent arguments. The model
assigns a score ranging from 0 to 1 to each argu-
ment, where a score of 1 represents a high-quality
argument and a score of 0 indicates a low-quality
one. Essentially, this scoring system is used to de-
termine the effectiveness of counterspeech in terms
of its argumentative quality and coherence.

Pro-Con: Similar to the Pro-Con service de-
scribed by Bar-Haim et al. (2021), we train a
BERT-based classifier on 400K stance labeled ex-
amples, including arguments extracted from the
Lexis-Nexis corpus, as well as arguments collected
via crowdsourcing (Toledo-Ronen et al., 2020).

5https://openai.com/blog/openai-api
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Task-ID Generation Type Instruction

I1 Offensiveness Analyze the offensiveness of the statement: {HS}

I2 Target Group Identify the group of people that the speaker is targeting or dis-
criminating against in the offensive statement: {HS}

I3 Speaker Intent Analyze the speaker’s intention behind writing the offensive state-
ment: {HS}

I4 Power Dynamics Explain the underlying power dynamics between the speaker and
the target group in the offensive statement: {HS}

I5 Implication Explain the implied meaning underlying the offensive statement:
{HS}

I6 Emotional Reaction Describe how the target group might feel emotionally after reading
or listening to the offensive statement: {HS}

I7 Cognitive Reaction Describe how the target group might react cognitively after reading
or listening to the offensive statement: {HS}

I8 Intent-Specific
Counterspeech

Analyze the different aspects such as offensiveness, target group,
stereotype, power dynamics, implied meaning, emotional, and
cognitive reactions before writing a {INT} counterspeech for the
offensive statement: {HS}

Table 5: Detailed Instructions for the tasks of explanation and counterspeech generation respectively. The instructions
labeled {I1, I2, ..., I7} correspond with each of the dimensions of hate speech explanations in the Auxiliary
Explanation Generation (AEG) task, as outlined in Section 4. Instruction I8 is crafted for training task-specific
LoRA adapter for generating intent-conditioned counterspeech, detailed in Section 4. In these instructions, HS
represents the instance of hate speech, and INT denotes the targeted intent of the counterspeech, which includes
Positive, Denouncing, Informative, or Questioning.

The classifier’s function is to evaluate a given sen-
tence’s stance towards a specific topic, assigning
a score between −1 and 1. A score of 1 signifies
a pro-stance (in favor of the topic), while −1 in-
dicates a con-stance (contradicting the topic). In
the context of this study, the classifier is used to
analyze the relationship between hate speech (as
the topic) and counterspeech (as the sentence). The
goal is to determine how well the counterspeech
opposes the hate speech. A high reward is expected
if the counterspeech effectively contradicts the hate
speech, and a lower reward if it supports it.

To facilitate this assessment, the output
score from the Pro-Con classifier, denoted as
(PC(x′, y′)), is normalized from its original range
of [−1, 1] to [0, 1] by (1−PC(x′,y′)

2 ). This normal-
ization ensures that lower Pro-Con scores, which in-
dicate effective counterspeech against hate speech,
correspond to higher rewards. This approach aligns
the Pro-Con scoring mechanism with the reward
structure desired in the study, emphasizing the effi-
cacy of counterspeech in opposing hate speech.

Toxicity: We use a pre-trained model from the
Detoxify python library6. Specifically, we employ
the textttunbiased classifier, which is a RoBERTa-
based model trained on the Jigsaw Unintended Bias
in Toxicity Classification challenge7. The primary
function of this model is to predict the level of
toxicity in a given text input. It generates a score
ranging from 0 to 1, where 0 corresponds to low
toxicity and 1 to high toxicity.

In the composite reward function, the model’s
output is utilized to determine the toxicity of coun-
terspeech that is generated. The objective is to
ensure that counterspeech has minimal toxicity.
Therefore, within the reward function of the study,
the toxicity score is subtracted from 1, effectively
inverting the scale. In this inverted scale, a higher
value is considered better, signifying lower toxicity.

6https://pypi.org/project/detoxify/
7https://www.kaggle.com/c/jigsaw-toxic-comment-

classification-challenge
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Preamble

A Positive Counterspeech responds to a hate speech statement
using empathy and affiliation...attenuating entrenched extremist
viewpoints.

A Counterspeech is considered to be good if it satisfies certain
desired qualities like relevance, effectiveness, and non-toxicity.
Below we define each of these axes:

Relevance: This axis evaluates the extent to which counterspeech
directly addresses the core message of the hate speech. It assesses
whether the counterspeech maintains a coherent and focused dialogue
aimed at neutralizing the impact of the hate speech. A low relevance
indicates a disconnect between the counterspeech and the hate speech,
exemplified by counterspeech that strays off-topic. For instance,
if the hate speech centers on LGBTQ issues, but the counterspeech
diverts to religious beliefs, it would be deemed irrelevant.
Effectiveness: This axis gauges the ability of counterspeech to
logically and coherently challenge or refute the biases, stereotypes,
or offensive content present in the hate speech. Effective
counterspeech should logically counteract the hate speech, thereby
diminishing its impact or negating its offensive message.
Non-toxicity: This axis measures the level of respectfulness
and reasonableness in the counterspeech. It is essential that
counterspeech remains free from rudeness or provocativeness. A
non-toxic approach is crucial as counterspeech that is perceived as
aggressive or disrespectful may exacerbate the situation, potentially
leading to an escalation of hate speech rather than its mitigation.

Instruction
»»»» Instruction »»»»
Given a hate speech statement, generate a Positive Counterspeech by
following the definitions given above.

Exemplars
(1-shot)

»»»» Examples »»»»
Statement - Children should learn about gender identity and sexual
orientation from their families rather than in class from LGBT
fundamentalists.
Positive Counterspeech - Teaching all children to be accepting of
each other gives a sense of belonging to any child who feels a little
bit different, and helps them to know it’s okay to be themselves.

Sample to
Generate

Statement - LGBTs just want to brainwash our children. They should
not be taught about gender identity and sexual orientation in school,
theyll end up being bullied.
Positive Counterspeech -

Table 6: Prompt template used for zero-shot and few-shot experiments.

F Experimental Setup

All the models in our study were developed using
the HuggingFace platform8 and Pytorch. For the
implementation of LoRA, we utilized the peft
Python library9, and for the Proximal Policy Op-
timization (PPO) algorithm, the TRL library was
employed10. At inference time, we use a common
set of generation parameters in all our experiments:
top_k = 1, top_p = 1, max_new_tokens = 512, tem-
perature = 1, do_sample = False. The entirety of
our training and testing was conducted on a single
NVIDIA A100 (80 GB) GPU. Detailed descrip-
tions of the training procedures for each phase of
CoARL are presented in the subsequent sections.

8https://huggingface.co/
9https://pypi.org/project/peft/

10https://github.com/lvwerra/trl

Phase 1: Auxiliary Explanation Generation. In
this phase, we fine-tuned a FLAN-T5 XXL model,
which has 11 billion parameters, over three epochs.
The training used the AdamW optimizer, with a
learning rate of 1e− 4 and a batch size of 8. Beam
search was employed as the decoding strategy. The
entire training process, using FP32 on an NVIDIA
A100 GPU, took approximately 12 hours.

Phase 2: Task-Specific Adapter Training. Dur-
ing this phase, the model weights established in
Phase 1 were locked, and we initialized a LoRA
adapter using PEFT. This adapter was then fine-
tuned on the IntentConanV2 training set, fol-
lowing the instruction format detailed in Table 5.
The fine-tuning process involved specific hyperpa-
rameters, including a batch size of 8, training for
16 epochs, and using the Adam optimizer. The
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learning rate was set to 4e− 6. Other vital settings
included a maximum input token length of 256, a
LoRA (r) value of 16, a LoRA (α) value of 32, and
a LoRA layer dropout rate of 0.05.

Phase 3: Optimization via RLAIF. As detailed
in section 4, we trained a policy model using the
Proximal Policy Optimization (PPO) method. This
training applied to FLAN-T5 XXL with LoRA
adapters from the previous phase, involved the fol-
lowing hyperparameters: a learning rate of 1.4e−6,
an initial KL penalty coefficient (Initklcoeff ) of
0.03, a batch size of 32, a mini-batch size of 2,
15000 steps, a target KL value (Target) of 5 for
adaptive KL control, a horizon of 10000 for adap-
tive KL control, a cliprange value of 0.25 for loss
calculation, 5 epochs, and a target KL (Targetkl)
of 0.05.
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