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Abstract

Large language models (LLMs) have achieved
remarkable advancements in natural language
processing. However, the massive scale
and computational demands of these models
present formidable challenges when consid-
ering their practical deployment in resource-
constrained environments. While techniques
such as chain-of-thought (CoT) distillation
have displayed promise in distilling LLMs into
small language models (SLMs), there is a risk
that distilled SLMs may still inherit flawed
reasoning and hallucinations from LLMs. To
address these issues, we propose a twofold
methodology: First, we introduce a novel
method for distilling the self-evaluation capa-
bility from LLMs into SLMs, aiming to mit-
igate the adverse effects of flawed reasoning
and hallucinations inherited from LLMs. Sec-
ond, we advocate for distilling more compre-
hensive thinking by incorporating multiple dis-
tinct CoTs and self-evaluation outputs, to en-
sure a more thorough and robust knowledge
transfer into SLMs. Experiments on three NLP
benchmarks demonstrate that our method sig-
nificantly improves the performance of distilled
SLMs, offering a new perspective for devel-
oping more effective and efficient SLMs in
resource-constrained environments.

1 Introduction

With the gradual increase in the number of parame-
ters, large language models (LLMs) have achieved
significant successes in the field of natural language
processing (Brown et al., 2020; Kaplan et al., 2020;
Hoffmann et al., 2022; Chowdhery et al., 2023;
OpenAI, 2023). However, the tremendous model
sizes and computational requirements of LLMs in-
troduce challenges to their practical application,
especially in resource-limited environments (Zhao
et al., 2023; Zhu et al., 2023b). To address these
challenges, various studies have delved into the

∗Corresponding authors.

compression of LLMs into small language models
(SLMs) using knowledge distillation techniques
and have led to significant reductions in computa-
tional complexity and inference costs (Jiang et al.,
2020; Gu et al., 2023; Agarwal et al., 2023). This
process involves traditional teacher-student learn-
ing methods and the more recent chain-of-thought
(CoT) distillation method (Zhu et al., 2023b). The
CoT distillation methods use the CoT reasoning
process of LLMs as supervision for training SLMs,
rather than just labels. This allows SLMs to learn
the reasoning process of LLMs, thereby improving
the performance of SLMs.

While these CoT distillation methods have
proven to be beneficial, they are not without their
flaws, particularly:

1. Even during the CoT distillation process,
the distilled SLMs remain vulnerable to the
flawed supervision provided by LLMs, as
observations suggest that chains of thought
(CoTs) generated by LLMs may contain hal-
lucinations (Zhang et al., 2023), accumulate
errors (Shen et al., 2021), or lack robust-
ness (Vaswani et al., 2017; Radford et al.,
2019; Brown et al., 2020; Zhang et al., 2022).
As shown in the example in Figure 1, “LLM
Random CoT 2” incorrectly broadens the
scope of the premise by arguing that “Being an
animal welfare advocate means caring about
all the animals that inhabit the planet.” In
practice, it is not easy to exclude these flawed
CoTs, since the ground truth of CoTs is not
always easily obtainable (Zhang et al., 2023).
Training SLMs with these flawed CoTs will
result in SLMs inheriting these flaws and per-
formance degradation (Alemohammad et al.,
2023; Ho et al., 2023).

2. A single instance of CoT might not capture the
diverse reasoning routes LLMs can explore,
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Input Data

Premise: Bastedo was a
vegetarian and animal welfare
advocate.

Hypothesis: Bastedo cared for
all the animals that inhabit the
earth.

The premise mentions that Bastedo
was an animal welfare advocate. But
being an animal welfare advocate does
not necessarily entail caring for all the
animals that inhabit the earth. So the
answer is neutral.

LLM Random CoT 1

LLM
LLM Random CoT 2

The premise mentions that Bastedo
was an animal welfare advocate. Being
an animal welfare advocate means
caring about all the animals that inhabit
the planet. So the answer is
entailment. 

  LLM Self-Evaluation Output 1

The conclusion drawn, that being an
advocate doesn't automatically infer caring
for all animals on Earth, is sound.

Evaluation result: the given answer is
correct.

  LLM Self-Evaluation Output 2
Advocacy for animal welfare does suggest
a level of care for animals, but it does not
specify the extent of that care, nor does it
confirm care for all animals globally.

Evaluation result: the given answer is
incorrect.

Figure 1: Examples of both the random CoT responses and their self-evaluation outputs generated by the LLM
during natural language inference tasks. The human-like self-evaluation of the LLM enables the LLM to self-
evaluate the correctness of its CoT reasoning processes, identifying which are correct (highlighted in blue) and
which are incorrect (highlighted in red) in these randomly generated CoT reasoning.

limiting the richness of the distilled knowl-
edge of SLMs. Furthermore, relying solely
on the CoT reasoning process as supervision
for training SLMs is insufficient to distill the
comprehensive capabilities of LLMs, such as
the ability to check the correctness of answers.

To mitigate the impact of these flawed CoTs
and allow SLMs to learn more comprehensive ca-
pabilities, we propose an innovative methodology
that involves training SLMs to possess the self-
evaluation capability. Humans often evaluate their
reasoning processes to reduce errors in decision-
making (Poole and Mackworth, 2010), and a sim-
ilar self-evaluation capability has also been ob-
served in LLMs (Kadavath et al., 2022; Shinn et al.,
2023; Madaan et al., 2024; Paul et al., 2023), which
recognizes and corrects the generated hallucina-
tions, faulty reasoning, and harmful content in a
CoT (Pan et al., 2023). Figure 1 illustrates this with
an example where incorrect reasoning in “LLM
Random CoT 2” is identified and corrected in the
self-evaluation. The advantage of self-evaluation
is that it does not rely on external resources. How-
ever, it is constrained by the inherent capabilities
of the model. To address this, we guide SLMs
in distillation to learn the self-evaluation capabil-
ity of LLMs. By learning the ability of LLMs to
analyze right from wrong, SLMs can understand
both what should and should not be generated, en-
hancing their predictive accuracy and reliability in
various NLP tasks.

To facilitate comprehensive thinking and address
the randomness and limitations of relying on a sin-
gle CoT and a single self-evaluation, our second
methodology insight involves distilling SLMs from

diverse CoTs and multiple self-evaluation outputs
generated by LLMs. This enables SLMs to inherit
a broader range of comprehensive thinking capa-
bilities since diverse CoTs and self-evaluation col-
lectively offer a more comprehensive perspective,
derived from the varied state spaces of LLMs.

In summary, our contributions can be outlined
as follows:

1. We distill the self-evaluation capability from
LLMs into SLMs, which helps SLMs under-
stand the potential reasons behind correct or
incorrect reasoning and lays the foundation
for mitigating errors (e.g., hallucinations) aris-
ing from flawed CoTs.

2. We distill diverse CoTs and corresponding
multiple self-evaluation outputs from LLMs
into SLMs, enabling SLMs to learn a more
comprehensive state space of LLMs. This
approach empowers SLMs with enhanced rea-
soning and more comprehensive capabilities.

3. Comprehensive experiments demonstrate that
our method enables SLMs to inherit the
self-evaluation capability and comprehensive
thinking of LLMs, significantly enhancing the
performance and reliability of distilled SLMs,
and outperforming previous CoT distillation
methods. This affirms our method is essen-
tial for creating robust and efficient SLMs ca-
pable of high-quality reasoning in resource-
constrained environments.

The code is available at https:
//github.com/Attention-is-All-I-Need/
Mind-s-Mirror-Distilling-LLM.
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2 Related Work

Chain-of-thought reasoning Chain-of-thought
(CoT) is a prompting method where a model gener-
ates intermediate reasoning steps to enhance its
problem-solving capabilities (Wei et al., 2022).
The chain-of-thought with self-consistency (CoT-
SC) (Wang et al., 2023b) builds upon CoT, sam-
pling a set of diverse reasoning paths and select-
ing the most consistent answer as the final answer.
This largely mitigates errors introduced by the in-
herent randomness of LLMs. The Tree of Thoughts
(ToT) method (Yao et al., 2024) models problem-
solving as a tree search process, enabling LLMs to
explore different reasoning pathways and conduct
self-evaluation to determine the solution taken at
each step. Therefore, by leveraging the capability
of LLMs to generate diverse reasoning paths and
self-evaluation, ToT significantly enhances the per-
formance of LLMs in solving tasks such as Game
of 24, Creative Writing, and Mini Crosswords.

Self-evaluation in LLMs Many recent works
have leveraged the self-evaluation capability of
LLMs to enhance the reliability of their responses,
such as Self-Refine (Madaan et al., 2024), Self-
Check (Miao et al., 2023), SelfCheckGPT (Man-
akul et al., 2023), and Reflexion (Shinn et al., 2023).
Concurrently, other studies have demonstrated
the self-improvement potential of LLMs (Huang
et al., 2023; Pan et al., 2023), as exemplified by
RLAIF (Lee et al., 2023). However, these meth-
ods are designed for LLMs and do not consider
distilling the self-evaluation capability into SLMs.

Knowledge distillation from LLMs Knowledge
distillation enhances the performance of smaller
models by transferring knowledge from larger mod-
els (Hinton et al., 2015). This method has been
widely adopted for the optimization and compres-
sion of models. Recent studies have been focus-
ing on leveraging the CoT reasoning generated by
LLMs to enhance the performance of SLMs (Wang
et al., 2023a; Magister et al., 2023; Shridhar et al.,
2023; Wang et al., 2023c; Chen et al., 2023; Fu
et al., 2023; Zhu et al., 2023a; Saha et al., 2023).
For instance, Hsieh et al. (2023) introduced a “Dis-
tilling step-by-step” method for extracting ratio-
nales from LLMs as additional supervision for
training SLMs. Similarly, Li et al. (2023) pro-
posed the Symbolic Chain-of-Thought Distillation
(SCoTD) method, which trains SLMs to learn CoT
reasoning. Additionally, Ho et al. (2023) presented

“Fine-tune-CoT”, a method that generates reason-
ing samples from LLMs to fine-tune SLMs. How-
ever, these methods do not consider mitigating the
impact of harmful content in CoTs generated by
LLMs on SLMs, as well as distilling other capa-
bilities beyond CoTs. In contrast, our methodol-
ogy incorporates the self-evaluation capability of
LLMs into distillation, which can be utilized to
mitigate the effects of flawed CoTs in a completely
unsupervised manner and without relying on exter-
nal resources, and allows SLMs to learn the more
comprehensive capabilities of LLMs. Furthermore,
some related works utilize SLMs with up to sev-
eral billion parameters and have not been able to
validate their effectiveness on SLMs with as few as
220M parameters, so our approach exhibits lower
resource requirements and broader applicability.

3 Distilling Self-Evaluation Capability
and Comprehensive Thinking

We propose a new methodology for distilling the
self-evaluation capability and comprehensive think-
ing of an LLM into an SLM. Our overall framework
is illustrated in Figure 2, which operates in 4 steps:
(1) Given an LLM and an unlabeled dataset, we
utilize CoT prompts to generate diverse rationales
and corresponding pseudo-labels from the LLM.
(2) By devising self-evaluation prompts, we enable
the LLM to evaluate the correctness of its generated
CoTs, which also include both the rationales and
labels in its self-evaluation outputs. (3) Leverag-
ing the rationales and labels in the self-evaluation
outputs generated by the LLM, we employ multi-
task learning to train the SLM, enabling the SLM
to distinguish right from wrong. (4) Utilizing the
diverse rationales in CoTs and labels from either
LLM-generated pseudo-labels or human-annotated
labels, we employ multi-task learning to train the
SLM’s reasoning capability.

3.1 Obtaining diversity CoTs and
self-evaluation outputs from the LLM

In our pipeline, an LLM functions as the teacher,
while an SLM serves as the student. First, we
let the LLM generate multiple different CoTs and
self-evaluation outputs for a given task. We utilize
few-shot CoT prompting to enhance the quality and
standardize the formats of the CoTs generated by
the LLM. This process is shown as step 1 and step
2 in Figure 2.
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After resting they
decided to go for a
swim. The depth of
the water is 2 times
Dean's height. Dean
is 8 feet shorter than
Ron. If Ron stands at
14 feet

Few-shot
 CoT Prompt LLM

Dean is 8 feet shorter than Ron, and
Ron stands at 14 feet. So Dean's
height is 14 - 8 = 6 feet. The depth of
the water is 2 times Dean's height,
so the depth is 2 * 6 = 12 feet. The
answer is ((14 - 8) * 2).

Few-shot 
Self-Evaluation

Prompt
SLM

The given answer first calculates Dean's height as 14 - 8 = 6
feet, which is correct. Then, it calculates the depth of the
water as 2 times Dean's height, or 2 * 6 = 12 feet, which is
also correct. Finally, the answer represents these calculations
in the form of an equation ((14 - 8) * 2), which is accurate.

Evaluation result: the given answer is correct.

Step 1. Multiple CoTs generation
Step 4. Multi-task training with CoTsStep 3. Multi-task training with self-evaluations
Step 2. Multiple self-evaluations generation

Input Data

Example

Multiple Self-Evaluation Outputs

Multiple CoTs

How deep was the
water?

Body

Question

T5

Rationales in CoTs/self-evaluation outputs Labels in CoTs/self-evaluation outputs

Figure 2: Detailed overview of our proposed methodology. Step 1: Obtain multiple CoTs from the LLM (Sec-
tion 3.1.1). Step 2: Obtain multiple self-evaluation outputs from the LLM (Section 3.1.2). Step 3: Train the SLM
with multiple self-evaluation outputs, enabling the SLM to distinguish right from wrong (Section 3.2.1). Step 4:
Train the SLM with multiple CoTs to give the SLM comprehensive reasoning capabilities (Section 3.2.2).

3.1.1 Obtaining multiple CoTs
For an unlabeled dataset D, we devise a few-shot
CoT prompt template p delineating how the task
should be approached. We combine each input
data xi with p and use it as an input to LLM. With
examples from p, the LLM can simulate examples
to generate the CoT response for xi that contains a
rationale ri and a pseudo-label yi (the yellow part
and the green part of the “Multiple CoTs Outputs”
in Figure 2). We let the LLM regenerate several
times to get multiple different CoTs.

3.1.2 Obtaining multiple self-evaluation
outputs

After forming multiple CoTs representing different
thoughts, a self-evaluation phase is initiated to eval-
uate the correctness of the CoTs. This is essential
to imitate the complete human thought process and
correct mistakes in reasoning. Given an unlabeled
dataset D, we devise a few-shot self-evaluation
prompt template peval , which guides the LLM in
evaluating each CoT’s correctness. For each CoT
xc, shown in “Multiple CoTs” in Figure 2, we add it
to peval and use this as an input to prompt the LLM
to generate the self-evaluation. With examples in
peval , the LLM simulates examples to generate the
self-evaluation output for xc that also contains a
rationale revali and a label yevali (the yellow part
and the green part of the “Multiple Self-Evaluation

Outputs” in Figure 2).
Similarly, to distill a more comprehensive self-

evaluation capability of the LLM, we generate mul-
tiple different self-evaluation outputs for each CoT.
Multiple self-evaluation outputs along with mul-
tiple CoTs represent a more comprehensive and
complete thought process for the LLM. Addition-
ally, given the randomness of LLM outputs, we
suggest examining the quality and diversity of mul-
tiple CoTs and self-evaluation outputs generated
by the LLM for the same input, and removing du-
plicates and outputs of inferior quality, to enhance
data quality. This is an optional step.

3.2 Training the SLM with multiple
self-evaluation outputs and diverse CoTs

After generating diverse CoTs and their correspond-
ing self-evaluation outputs using the LLM, we be-
gin to train the SLM. Our training methodology
for SLMs first emphasizes distilling self-evaluation
capability to lay the foundation for reducing the
impact of errors in CoTs on SLMs, followed by
incorporating comprehensive reasoning capabil-
ity through diverse CoTs distillation. Hsieh et al.
(2023) have demonstrated that multi-task learning
can lead to better performance than simply treating
rationale and label predictions as a single joint task,
and can reduce computation overhead during in-
ference since it allows the SLM to directly predict
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labels without generating rationales. Hence, we
employ multi-task learning to train the SLM for
self-evaluation capability and CoT reasoning capa-
bility. By appending different “task prefixes” at the
beginning of the input, we can direct the SLM to
generate either a label or a rationale (Raffel et al.,
2020). We train the SLM to generate a label when
the prefix is “predict: ”, and to generate a ratio-
nale when the prefix is “explain: ”. This process is
shown as step 3 and step 4 in Figure 2.

3.2.1 Distilling self-evaluation capability
Using the self-evaluation data generated by the
LLM, we aim to distill this capability into the SLM.
During this phase, the model is trained to predict
the self-evaluation label yevali as well as generate
corresponding rationale revali . To guide the SLM
in learning the self-evaluation outputs for each CoT,
we employ a multi-task loss function:

LSE =
1

Neval

Neval∑

c=1

(
λℓ(f(xc), yevalc)

+ (1− λ)ℓ(f(xc), revalc)
)
,

where f represents the SLM and ℓ is the cross-
entropy loss between the tokens predicted by the
SLM and the target tokens. xc is the CoT that
needs to be evaluated. λ is a hyperparameter for
weighing the rationale loss. yevalc indicates the
self-evaluation label generated by the LLM, revalc
is the rationale in the cth self-evaluation output, and
Neval is the total amount of self-evaluation outputs.

3.2.2 Distilling CoT reasoning capability
After successfully distilling self-evaluation capa-
bility, the focus shifts to leveraging diverse CoTs
to train the comprehensive reasoning capability of
SLMs. For each instance in the dataset, we also
employ a multi-task loss function to guide the SLM
in learning CoT reasoning by:

LCoT =
1

NCoT

NCoT∑

i=1

(
λℓ(f(xi), ŷi)

+ (1− λ)ℓ(f(xi), rCoT i)
)
,

where xi indicates input data, ŷi indicates the
pseudo-label yi generated by the LLM or human-
annotated label, rCoT i is the rationale in the ith

CoT, and NCoT is the total amount of CoTs.
This two-pronged training regimen ensures that

the SLM is not merely parroting the CoT rea-

soning but deeply understands introspective self-
evaluation and nuanced reasoning, mirroring the
powerful cognitive capabilities of the LLM.

4 Experiments

Tasks and datasets To evaluate our distillation
method, we conduct comprehensive experiments
on three tasks: 1) math word problems (MWPs)
task with the SVMAP dataset (Patel et al., 2021);
2) commonsense question answering (CQA) task
with the CQA dataset (Talmor et al., 2019; Rajani
et al., 2019); 3) natural language inference (NLI)
task with the ANLI dataset (Nie et al., 2020). For
dataset samples, we use either human-annotated
labels from the dataset or LLM-generated pseudo-
labels to explore the effect of human annotation
availability on our method.

Setup In distillation, we utilize gpt-3.5-turbo as
the LLM1. We utilize 5-shot CoT prompting to en-
hance the quality and standardize the formats of
the responses generated by the LLM. We follow
the CoT prompts from Wei et al. (2022) for the
CQA dataset and devise similar prompts for other
datasets and self-evaluation. To strike a balance
between diversity and cost, in the main experiment,
we obtain five CoTs for each training instance and
five self-evaluation outputs of each CoT from the
gpt-3.5-turbo model and choose the T5-Base model
(220M) (Raffel et al., 2020) as the SLM. We pro-
vide more experimental details in Appendix A. We
also explore the effect of the value of the hyper-
parameter λ on the results, which are presented in
Appendix B. Therefore, we select λ = 0.5 as the
optimal hyperparameter for our main experiments.
In all experiments, we report the mean results and
standard deviations over 3 random runs.

4.1 Main results
Our results, presented in Table 1, show the advan-
tages of our distillation method. Across all tasks
and label types, the method we propose consis-
tently outperformed the baselines (standard distilla-
tion and CoT distillation). In particular, we observe
significant leaps in model performance when simul-
taneously training with five CoTs and their corre-
sponding self-evaluation outputs. This reinforces
our hypothesis about the value of incorporating
self-evaluation and comprehensive thinking during
the distillation process. Moreover, our approach

1Most experiments were conducted in August 2023 using
the gpt-3.5-turbo model provided by the OpenAI API.
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Method SVAMP CQA ANLI

Pseudo-labels Human-labels Pseudo-labels Human-labels Pseudo-labels Human-labels

Standard
Distillation / Fine-tuning 49.2 ± 1.9 59.3 ± 1.2 58.7 ± 0.4 62.0 ± 0.4 37.7 ± 1.2 42.1 ± 5.0

1 CoT
(i.e., CoT distillation) 51.7 ± 2.1 65.0 ± 1.1 59.7 ± 0.4 63.4 ± 0.2 39.8 ± 0.4 48.5 ± 1.2

1 CoT
w/ Self-Evaluation 55.5 ± 0.4 67.8 ± 0.6 60.4 ± 0.2 63.7 ± 0.2 41.8 ± 0.4 49.2 ± 0.5

5 CoTs 54.8 ± 1.0 68.7 ± 0.2 61.2 ± 0.4 63.9 ± 0.2 41.7 ± 0.4 49.7 ± 0.8
5 CoTs
w/ Self-Evaluation 60.3 ± 0.6 72.7 ± 1.0 61.9 ± 0.3 65.0 ± 0.1 44.3 ± 0.2 50.8 ± 0.4

Table 1: Results of the main experiment. We compare the accuracy (mean ± standard deviation, %) of different
distillation methods on three different datasets (SVAMP, CQA, and ANLI) using 220M T5-Base models, utilizing
pseudo-labels generated by the LLM or human-annotated labels. The Human-labels represent human-annotated
labels. The “1 CoT” adopts the “Distilling step-by-step” method proposed by Hsieh et al. (2023).

exhibits a lower standard deviation than baseline
methods, particularly under the “5 CoTs w/ self-
evaluation” setting, indicating that our method of-
fers stable improvements and enhances the robust-
ness of distilled SLMs.

Effect of label quality A discernible pattern
from the results is the gap in performance between
models trained using LLM-generated pseudo-
labels and human-annotated labels. Given the typi-
cally higher accuracy of human-annotated labels,
which are considered the gold standard in super-
vised learning, this result is expected. However,
regardless of the type of training labels used, our
method exhibits consistent advantages, suggesting
that the benefits of our distillation method are also
robust to variations in label quality.

Robustness across tasks Our method’s superi-
ority is consistently evident when considering per-
formance on different tasks, although the degree
of improvement varies. In tasks such as MWPs
(SVAMP dataset) and NLI (ANLI dataset), where
reasoning complexity and potential for hallucina-
tory content are higher, the benefits of our method-
ology are more pronounced. This suggests that
the proposed method effectively mitigates flawed
reasoning and hallucinations in complex reasoning
scenarios. In tasks like CQA (CQA dataset), where
the reasoning processes might be less convoluted,
the increments in performance are smaller yet still
notable. This showcases the adaptability of our
method to different types of reasoning complexity
within various NLP tasks.

4.2 Effect of model size

To analyze the effectiveness of our proposed
method across different model sizes, we further

conducted experiments on the SVAMP dataset us-
ing both the T5-Small (60M) and T5-Large (770M)
models. The results are presented in Table 2. Our
method shows significant performance improve-
ments on models of different sizes, reflecting the
robustness of our method to model scale.

4.3 Effect of the number of CoTs

Using the SVAMP dataset as an example, we ex-
plore the effect of varying the number of CoTs
on our method, where each CoT is accompanied
by five self-evaluation outputs. As shown in Fig-
ure 3, initially, as the number of CoTs increases
from 1 to 5, there is a notable improvement in per-
formance metrics across both pseudo-labels and
human-annotated labels. This trend underlines the
benefit of exposing SLMs to a broader spectrum
of reasoning processes and self-evaluation outputs,
enhancing their capability to navigate complex rea-
soning and correct flawed reasoning. SVAMP as
math word problems may benefit from a variety of
different solutions, CQA as commonsense question
answering may acquire richer knowledge from dif-
ferent answers, and ANLI as natural language infer-
ence might also benefit from different explanations.
However, diminishing returns are observed when
the number of CoTs exceeds five. In particular,
when the number of CoTs exceeded 7, performance
degradation is observed using human-annotated la-
bels. It indicates that while multiple CoTs and self-
evaluation outputs enrich the model’s reasoning ca-
pabilities, there is a threshold beyond which perfor-
mance cannot be further enhanced. This could be
attributed to several factors: one possibility is that
the integration of too many CoTs may introduce
noise or conflicting reasoning patterns, thereby dis-
rupting the distilled SLM. Another factor could be
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Method T5-Small T5-Base T5-Large

Pseudo-labels Human-labels Pseudo-labels Human-labels Pseudo-labels Human-labels

Standard
Distillation / Fine-tuning 25.5 ± 1.7 30.8 ± 1.6 49.2 ± 1.9 59.3 ± 1.2 60.2 ± 1.5 76.5 ± 1.2

1 CoT
(i.e., CoT distillation) 29.2 ± 1.4 32.5 ± 0.4 51.7 ± 2.1 65.0 ± 1.1 66.2 ± 1.2 77.0 ± 1.2

1 CoT
w/ Self-Evaluation 37.2 ± 1.4 35.2 ± 1.2 55.5 ± 0.4 67.8 ± 0.6 68.0 ± 1.1 79.0 ± 0.4

5 CoTs 36.5 ± 2.0 33.3 ± 1.0 54.8 ± 1.0 68.7 ± 0.2 66.5 ± 0.7 81.3 ± 0.8
5 CoTs
w/ Self-Evaluation 39.3 ± 1.2 36.8 ± 0.8 60.3 ± 0.6 72.7 ± 1.0 69.3 ± 0.6 83.7 ± 0.6
Performance Gain + 10.1 + 4.3 + 8.6 + 7.7 + 3.1 + 6.7

Table 2: Experimental results for models of different sizes. “Performance Gain” refers to the improvement in
performance of our proposed method (“5 CoTs w/ Self-Evaluation”) relative to the baseline method (“1 CoT”).

1 3 5 7 10
Number of CoTs

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

55.5±0.4

67.8±0.6

58.8±0.5
60.3±0.6 60.7±0.6 61.3±1.3

71.3±0.2
72.7±1.0 73.2±0.6

71.0±1.0

Human-annotated labels
Pseudo-labels

Figure 3: The experimental results of our method using
the T5-Base model on the SVAMP dataset for different
numbers of CoTs.

the cognitive load on the SLM. Beyond a certain
scope, the model may struggle to effectively learn
from additional training data.

This observation underscores the importance of
finding an optimal balance in the number of CoTs
used for distillation. As the number of CoTs and
self-evaluation outputs increases, there is a corre-
sponding rise in data costs and training expenses.
Therefore, we opted to use five CoTs in our main
experiments, balancing cost and performance.

4.4 Effect of the number of self-evaluation
outputs for each CoT

We also investigate how the comprehensiveness of
the self-evaluation affects the performance of our
method by varying the number of self-evaluation
outputs for each CoT. As shown in Figure 4, in
both pseudo-labels and human-annotated labels set-
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Figure 4: We present experimental results on the
SVAMP dataset using the T5-Base model for differ-
ent numbers of self-evaluation outputs for each CoT.
Experiments are conducted under the settings of a sin-
gle CoT and five CoTs, respectively.

tings, we can observe that: as the number of self-
evaluation outputs per CoT increases, there is a no-
table enhancement in the accuracy of the distilled
SLMs, although it may not strictly be monotoni-
cally increasing. This indicates that distilling more
self-evaluation outputs enables SLMs to produce
more accurate and reliable outputs. Notably, ac-
curacy improves more with five CoTs than with
a single CoT, underscoring the synergistic effect
of combining multiple CoTs with corresponding
self-evaluation. Overall, these findings emphasize
the importance of incorporating self-evaluation in
the distillation and confirm the value of introspec-
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ANLI Example Ground Truth Label: neutral

Model Input

Premise: East Bengal Football Club is a professional football club, based in Kolkata, West
Bengal, India. It currently competes in the I-League, the top tier of Indian football. The club
has won three National Football League (India) (later named as I league) titles, eight Federation
Cups, and three Indian Super Cups, among others. The club is the current holder of the Calcutta
Football League.
Hypothesis: All of the team members live in West Bengal.

Model Output
(CoT Distillation)

Rationale: The premise mentions that East Bengal Football Club is based in Kolkata, West
Bengal, India. The hypothesis states that all of the team members live in West Bengal. The
hypothesis is consistent with the information provided in the premise.
Label: entailment

Model Output
(Our Method)

Rationale: The premise mentions that East Bengal Football Club is based in Kolkata, West
Bengal, India. However, it does not provide any information about the location of the team
members. Therefore, the premise neither supports nor contradicts the hypothesis.
Label: neutral

Table 3: A case study on the ANLI dataset. The model trained by the CoT distillation method incorrectly predicts
the label as entailment due to the premise location matching the hypothesis statement (highlighted in red), while the
model trained by our method correctly identifies the lack of information regarding the team members’ residences
and correctly predicts the label as neutral (highlighted in blue).

tive self-evaluation in improving the reasoning and
predictive capabilities of SLMs. Such introspective
capabilities enable models to refine internal repre-
sentations, rectifying possible misconceptions or
potential pitfalls in their reasoning.

5 Discussion

5.1 Can our method mitigate the flawed
reasoning and hallucinations of SLMs?

We conduct case studies on three datasets in the set-
ting of using pseudo labels generated by LLMs. In
the ANLI dataset case presented in Table 3, the task
is to judge the relationship between the premise and
hypothesis. The model trained by the CoT distil-
lation method incorrectly infers that the premise
entails the hypothesis because superficially the geo-
graphic locations mentioned in the two statements
match each other. This flawed reasoning likely
results from a lack of critical evaluation of the in-
formation’s depth and relevance, a pitfall in models
trained without a self-evaluation mechanism. Con-
versely, the model trained by our method identifies
the lack of specific information about team mem-
bers’ residences in the premise and correctly con-
cludes that the premise is neutral to the hypothesis.
This accurate judgment showcases our method’s
strength in instilling a comprehensive and critical
reasoning capability in the model, enabling it to
discern the nuances and gaps in information that
affect the reasoning. Case studies on other datasets
are in Appendix C. The results indicate that our
method effectively reduces flawed reasoning and
hallucinations produced by distilled SLMs.

Given the absence of a gold standard for quan-
tifying model hallucinations or harmful content,
each of our 10 researchers (all holding Bachelor’s
degrees or higher) examined the outputs of different
models for 200 pieces of data (with corresponding
compensation). They manually compared the oc-
currences of hallucinations or harmful content in
the outputs of models trained using our method and
models trained using the CoT distillation baseline
method. We statistically found that, on average,
in approximately 7% of the cases, models trained
with our method exhibited a significant reduction
in hallucinations or harmful content, 91% of the
cases tied and less than 2% contained more halluci-
nations or harmful content.

5.2 Can distilled SLMs really learn the
self-evaluation capability?

Previous works (refer to Section 2) have already
demonstrated that SLMs can achieve CoT reason-
ing by learning from the CoTs generated by teacher
models. Based on this, we propose that SLMs
should also be able to master a certain level of self-
evaluation capability through learning from the self-
evaluation outputs generated by teacher models.
Gudibande et al. (2023) point out that “distilled im-
itation models are adept at mimicking ChatGPT’s
style but not its factuality”, because crowd work-
ers rate their outputs as competitive with ChatGPT,
yet their performance on NLP benchmarks does
not improve. However, our paper demonstrates
through tests on three NLP benchmarks that our
method significantly improves the performance of
distilled SLMs. Therefore, the SLMs distilled by
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our method do not merely imitate the style of Chat-
GPT, but indeed enhance the model’s capabilities.
Furthermore, our study improves the capability of
imitation models by using extensive imitation data
in situations of limited resources and unchangeable
base SLMs, which is consistent with the approach
given by Gudibande et al. (2023) to improve the
capability of imitation models.

In Appendix D, we tested SLMs trained with
self-evaluation capability for their accuracy in eval-
uation predictions and printed their evaluation out-
puts. The results indicate that SLMs trained with
self-evaluation capability achieve a consistency
rate of approximately 90% with GPT-3.5 evalu-
ations and are capable of producing rational eval-
uation processes. In contrast, SLMs without self-
evaluation training were completely unable to per-
form evaluations.

Method Reduced CQA

Pseudo-labels Human-labels

Standard
Distillation / Fine-tuning 41.6 ± 3.4 46.7 ± 1.2

1 CoT
(i.e., CoT distillation) 45.1 ± 1.2 47.1 ± 1.5

1 CoT
w/ Self-Evaluation 42.6 ± 2.0 45.9 ± 1.3

5 CoTs 44.8 ± 0.6 48.9 ± 1.6
5 CoTs
w/ Self-Evaluation 46.1 ± 0.1 49.0 ± 0.6

Table 4: The experimental results of training using 900
samples from the CQA dataset.

5.3 What leads to differences in effectiveness?
Compared to CQA and ANLI, our method shows
greater effectiveness on smaller SVAMP dataset. Is
this due to the diminishing returns of our method
as the volume of training data increases? We se-
lect the CQA dataset, which shows the least per-
formance gain in our experiments, and reduce the
number of training samples used from 8,766 to
900 to match the scale of SVAMP (keeping the
test set unchanged) and then conduct experiments.
The experimental results are presented in Table 4.
Under the full training sample setting of the CQA
dataset, “5 CoTs w/ Self-Evaluation” provides a
performance gain of 2.2% and 1.6% respectively
compared to “1 CoT” under two labels. In the set-
ting of 900 training samples, the performance gains
are 1.0% and 1.9% respectively. For the SVAMP
dataset, the performance gains are 8.6% and 7.7%.
Therefore, we believe that the returns of our method
do not diminish with the increase in training data

volume, but are more closely related to the nature
of different tasks. SVAMP, as a math word prob-
lems task, is more likely to benefit from feedback
through self-evaluation, while CQA, as a common-
sense question answering task, benefits less. How-
ever, in our experiments, regardless of the task type,
our method proved effective, demonstrating the uni-
versality of our approach.

Method SVAMP

Pseudo-labels Human-labels

5 CoTs 54.8 ± 1.0 68.7 ± 0.2
5 CoTs
w/ Self-Evaluation 60.3 ± 0.6 72.7 ± 1.0

10 CoTs 55.8 ± 1.0 67.6 ± 0.2
10 CoTs
w/ Self-Evaluation 61.3 ± 1.3 71.0 ± 1.0

Table 5: The experimental results of expanding the num-
ber of distilled CoTs to 10 CoTs on the SVAMP dataset.

5.4 Can learning self-evaluation be replaced
by learning more CoTs?

From Table 5, it can be observed that the marginal
gain of increasing from “5 CoTs” to “10 CoTs”
is almost negligible, and the performance of “10
CoTs” is significantly lower than that of “5 CoTs
w/ Self-Evaluation”. In the case of “10 CoT”,
the incorporation of self-evaluation distillation still
manages to enhance the performance of the model.
Therefore, we further confirmed that the role of
self-evaluation cannot be substituted by merely
adding more CoT data. When increasing the num-
ber of CoTs is ineffective, employing our proposed
method of distilling with self-evaluation can further
enhance model performance, breaking through the
performance ceiling of CoT distillation.

6 Conclusion

In this study, we have introduced an innovative
method to effectively distill the more comprehen-
sive capabilities from LLMs into SLMs, empha-
sizing both the transfer of self-evaluation capabil-
ity and comprehensive thinking, to mitigate the
shortcomings of previous CoT distillation meth-
ods. Comprehensive experiments demonstrate that
our method outperforms prior distillation methods
consistently in various NLP tasks, significantly im-
proving the performance and reliability of SLMs.
We hope that this study can promote the more ef-
fective and efficient utilization of SLMs, especially
in resource-limited environments.
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7 Limitations

Despite the promising results and advancements
achieved in our study, certain limitations need ac-
knowledgment and further investigation:

1. Limited teacher and student models: The
experiments we conducted primarily utilized
a single teacher model, GPT-3.5, and two stu-
dent models, T5-Base and T5-Large. While
these selections were influenced by their cur-
rent popularity and efficacy, it is crucial to
note that the landscape of LLMs and SLMs
is rapidly evolving. As such, our distilla-
tion method may manifest differently when
paired with other architectures or models. Fu-
ture work will involve testing a wider range
of models to confirm the universality of our
method.

2. Limited tasks: Although we evaluated our
methods on three different NLP tasks, NLP
tasks are broad and complex. Therefore, fu-
ture evaluations of our method’s performance
on a wider range of tasks are needed to pro-
vide a more comprehensive evaluation of its
strengths and potential weaknesses.

3. Self-evaluation reliability: One inherent lim-
itation of the self-evaluation process is its re-
liance on the LLM’s capacity for introspec-
tion. If the LLM’s self-evaluation mechanism
is flawed or biased, it might adversely affect
the distilled SLM. In future work, we will
investigate the differences in self-evaluation
capabilities among different LLMs, such as
Llama 2 (Touvron et al., 2023), GPT-3.5, and
GPT-4 (OpenAI, 2023), and how these dif-
ferences affect the performance of distilled
SLMs.

In conclusion, while we have made significant
strides in advancing the distillation process from
LLMs to SLMs, there exists a plethora of avenues
for further refinement and exploration. Future en-
deavors should aim to address these limitations to
ensure broader and more robust applicability.

8 Ethical Considerations

Potential risks While our approach is dedicated
to reducing the flaws inherited by SLMs from
LLMs, SLMs may still inherit harmful biases and
discrimination from LLMs. Therefore, future work

will aim to further minimize the impact of harmful
content from LLMs on SLMs.

The use of closed source LLMs Many related
studies and open source models have already uti-
lized data obtained from the GPT family of models
provided by OpenAI. We also obtain CoTs and self-
evaluation outputs from the gpt-3.5-turbo model.
However, the purpose of this study is not to develop
models that compete with general large language
models like ChatGPT. Instead, it aims to enhance
the effectiveness and efficiency of small language
models in resource-constrained environments, pro-
moting the democratization of NLP. We only use
gpt-3.5-turbo as the LLM to validate the effective-
ness of our method, and it is not required to use
the gpt-3.5-turbo model in practical applications,
so different LLMs can be employed according to
the licenses.

The use of AI assistants We employed ChatGPT
to assist us in polishing our paper and writing code.
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A Experimental details

Datasets The dataset statistics are shown in Ta-
ble 6. Following Hsieh et al. (2023), for the
SVAMP dataset, 20% of the original data is used
as the test set. For the CQA dataset, the original
validation set is used as the test set. Then, for both
datasets, 10% of the data from the original train-
ing set is sampled to serve as the validation set.
The ANLI dataset follows the original split. The
language of all datasets is English. To the best of
our knowledge, all datasets used have been widely
employed in NLP research and do not contain any
information that names or uniquely identifies indi-
vidual people or offensive content.

Dataset Train Validation Test

SVAMP 720 80 200
CQA 8,766 975 1,221
ANLI 16,946 1,000 1,000

Table 6: Dataset statistics.

LLM performance In Table 7, we report the ac-
curacy of LLM (gpt-3.5-turbo) on three datasets in
our experiments, including accuracy on the train-
ing set (i.e., the accuracy of pseudo-labels used for
training SLMs) and accuracy on the test set.

Dataset SVAMP CQA ANLI

Training Set 85.6 69.1 68.6
Test Set 84.3 72.4 55.1

Table 7: The accuracy (%) of LLM (gpt-3.5-turbo).

Models & Training The T5-Small2 (60M), T5-
Base3 (220M) and T5-Large4 (770M) models are
all initialized with pre-trained weights obtained
from Hugging Face, and the hyperparameter set-
tings for their training are shown in Table 8. We
perform the main experiments on 4 A100 GPUs.

B Effect of the hyperparameter λ

As shown in Figure 5, our experiments reveal trends
regarding the effect of the hyperparameter λ on the
accuracy of the SLMs trained using both pseudo-
labels and human-annotated labels.

2https://huggingface.co/google/t5-v1_1-small
3https://huggingface.co/google/t5-v1_1-base
4https://huggingface.co/google/t5-v1_1-large

Hyperparameter T5-Small / T5-Base T5-Large

Total Batch Size 64 32
Learning Rate 5× 10−5 5× 10−5

Max Input Length 1,024 1,024
Maximum Steps

4,000 9,000
(for SVAMP)

Maximum Steps
12,000 -

(for CQA & ANLI)

Table 8: Training hyperparameter settings.
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Figure 5: We present experimental results of distillation
using the T5-Base model on the SVAMP dataset with
different λ values for “1 CoT” and “5 CoTs with self-
evaluation” respectively.

For pseudo-labels, the performance of both meth-
ods declines as λ increases, yet our approach ex-
hibits a lesser decrease. Contrastingly, in the case
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of human-annotated labels, we observe a differ-
ent trend. The accuracy initially increases with
λ, peaking at λ = 0.5, and then begins to de-
cline. This pattern underscores a critical obser-
vation: up to a certain point (λ ≤ 0.5), increasing
the weight on human-annotated labels positively
impacts the model’s ability to predict labels. How-
ever, beyond this optimal point, overly emphasiz-
ing human-annotated labels while neglecting ra-
tionales can lead to a decrease in label prediction
accuracy. This suggests that the best way to en-
hance model performance is to learn high-quality
labels and rationales in a balanced way. The dif-
fering trends observed between pseudo-labels and
human-annotated labels may be attributed to varia-
tions in label quality: human-annotated labels, be-
ing of higher quality, benefit the model’s accuracy
when their weight is increased, whereas low-quality
pseudo labels do not require higher weighting.

Based on these observations, we select λ = 0.5
as the optimal hyperparameter for our main experi-
ments, maintaining a balance between the weights
of labels and rationales.

C Case study

The detailed case studies presented in Tables 3, 10,
and 11 provide insightful examples demonstrating
the effectiveness of our methodology compared
to the baseline CoT distillation method. These
cases highlight the importance of incorporating
both self-evaluation and comprehensive thinking in
the distillation process, which significantly reduces
flawed reasoning and hallucinations in SLMs.

In the SVAMP example (Table 10), the model
trained by the baseline CoT distillation method
exhibits flawed reasoning in its calculation, erro-
neously summing the hours for learning Chinese
and Spanish only, resulting in an incorrect total.
This illustrates a common issue with CoT distil-
lation, where the model may focus on a part of
the problem, leading to incomplete reasoning. In
stark contrast, the model trained by our method cor-
rectly identifies and sums the hours for all three lan-
guages, demonstrating a more comprehensive un-
derstanding and accurate reasoning process. This
accurate reasoning underscores the effectiveness
of our method, which incorporates both multiple
CoTs and self-evaluation capability. By expos-
ing the model to diverse reasoning processes and
enabling it to evaluate its reasoning, our method
equips the model to consider all relevant informa-

tion comprehensively and to avoid flawed reason-
ing paths.

Similarly, in the CQA example (Table 11), the
model trained by the baseline CoT distillation
method incorrectly concludes that the most logical
result of dying is a change of color, showcasing a
case of flawed reasoning and hallucination. This er-
ror is likely due to a superficial association between
the concepts of dying and color change, without a
deeper understanding of the context of organic ma-
terial decay. The model trained by our method, on
the other hand, correctly identifies “death and de-
cay” as the logical result of dying in the context of
organic material, reflecting a deeper and more accu-
rate comprehension of the question’s essence. The
comprehensive thinking instilled by our method,
coupled with the ability to critically evaluate its rea-
soning, enables the model to select the most logical
answer from the provided choices.

D Self-evaluation prediction accuracy
and evaluation outputs of SLMs

Table 9 shows that the evaluation results of SLMs
(T5-Base) are mostly consistent with those of GPT-
3.5, indicating that they have learned most of the
evaluation capabilities of GPT-3.5. Table 12 il-
lustrates an example where the SLM trained with
self-evaluation capability can conduct reasonable
evaluation, whereas that without this training is un-
able to evaluate CoT. The outputs of SLMs in other
samples are similar to the examples shown.

SVAMP CQA ANLI

84.7 94.1 91.8

Table 9: The self-evaluation prediction accuracy (%) of
SLMs (T5-Base) trained with self-evaluation capability
on three datasets.
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SVAMP Example Ground Truth Label: ( ( 6.0 + 7.0 ) + 3.0 )

Model Input
Every day Ryan spends 6 hours on learning English 7 hours on learning Chinese and 3 hours on
learning Spanish. How many hours does he spend on learning English, Chinese, and Spanish in
all?

Model Output
(CoT Distillation)

Rationale: Ryan spends 6 hours on learning English and 7 hours on learning Chinese. To find
out how many hours he spends on learning English, we need to add the number of hours spent
on learning Chinese and Spanish together: 7 + 3 = 6.
Label: (7 + 3)

Model Output
(Our Method)

Rationale: Ryan spends 6 hours on learning English, 7 hours on learning Chinese, and 3 hours
on learning Spanish in total. To find the total number of hours he spends on learning English,
Chinese, and Spanish in all, we need to add the number of hours spent on learning English,
Chinese, and Spanish together. So, the equation is 6 + 7 + 3.
Label: (6 + 7) + 3

Table 10: A case study on the SVAMP dataset. The model trained by the CoT distillation method incorrectly
calculates the total time to learn the three languages (highlighted in red), while the model trained by our method
correctly sums the time to learn the three languages (highlighted in blue).

CQA Example Ground Truth Label: death and decay

Model Input Question: As a result of dying, what happens to organic material?
Choices: [change of color, stop breathing, wake up, death and decay, getting cold]

Model Output
(CoT Distillation)

Rationale: The question is asking about the result of dying. Of the given choices, the most
logical result of dying is a change of color.
Label: change of color

Model Output
(Our Method)

Rationale: The question is asking about the result of dying and the process of organic material.
Of the given choices, the most logical result of dying is death and decay, as organic material
undergoes the process of decay.
Label: death and decay

Table 11: A case study on the CQA dataset. The model trained by the CoT distillation method incorrectly
considers that the most logical result of dying is a change of color (highlighted in red), while the model trained by
our method correctly identifies the most logical result as death and decay (highlighted in blue).

SVAMP Self-Evaluation Example Ground Truth Label: correct

Model Input Paige and her mom planted 10 seeds in each flower bed, and there are 45 flower beds. So, they
planted a total of 10 * 45 = 450 seeds. The answer is (10 * 45).

Model Output
(w/o Self-Evaluation)

Rationale: . The answer is (10 * 45). So, they planted 450 seeds. So, they are 450 seeds. So,
they are 450 seeds. So, they are 450 seeds. So, they are 450 seeds. So, they are. So. So. So. So.
So. So
Label: -

Model Output
(w/ Self-Evaluation)

Rationale: Evaluation: The given answer correctly states that Paige and her mom planted 10
seeds in each flower bed and there are 45 flower beds. Then, it calculates the total number of
seeds planted as 10 * 45 = 450 seeds, which is accurate. Finally, the answer represents these
calculations in the form of an equation (10 * 45), which is correct.
Label: correct

Table 12: A case study on the evaluation of a CoT for the SVAMP dataset by SLMs trained with self-evaluation
capability versus those not trained with self-evaluation capability. The SLM trained with self-evaluation
capability can output rationales and labels that are coherent and well-reasoned. In contrast, SLMs that are not
trained with self-evaluation capability fail to produce logically sound rationales and formally appropriate labels.
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