
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 6764–6783

June 16-21, 2024 ©2024 Association for Computational Linguistics

Divergent Token Metrics: Measuring degradation to
prune away LLM components – and optimize quantization

Björn Deiseroth1,2,3 Max Meuer1 Nikolas Gritsch1,5 Constantin Eichenberg1

{bjoern.deiseroth, max.meuer, nikolas.gritsch, constantin.eichenberg}@aleph-alpha.com

Patrick Schramowski2,3,4 Matthias Aßenmacher5,6 Kristian Kersting2,3,4

patrick.schramowski@dfki.de matthias@stat.uni-muenchen.de kersting@cs.tu-darmstadt.de

1 Aleph Alpha @ IPAI 2 Technical University Darmstadt
3 Hessian Center for Artificial Intelligence (hessian.AI)

4 German Center for Artificial Intelligence (DFKI)
5 Department of Statistics, LMU 6 Munich Center for Machine Learning (MCML)

Abstract

Large Language Models (LLMs) have reshaped
natural language processing with their im-
pressive capabilities. However, their ever-
increasing size has raised concerns about their
effective deployment and the need for LLM
compression. This study introduces the Diver-
gent Token Metrics (DTMs), a novel approach
to assessing compressed LLMs, addressing the
limitations of traditional perplexity or accu-
racy measures that fail to accurately reflect text
generation quality. DTMs measure token di-
vergences that allow deeper insights into the
subtleties of model compression, in particu-
lar, when evaluating components’ impacts in-
dividually. Utilizing the First Divergent To-
ken Metric (FDTM) in model sparsification re-
veals that 25% of all attention components can
be pruned beyond 90% on the Llama-2 model
family, still keeping SOTA performance. For
quantization, FDTM suggests that more than
80% of the parameters can be naively trans-
formed to int8 without special outlier manage-
ment. These evaluations indicate the neces-
sity of choosing appropriate compressions for
parameters individually—and that FDTM can
identify those—while standard metrics result
in deteriorated outcomes.

1 Introduction

Cutting-edge Large Language Models (LLMs)
based on the transformer architecture (Vaswani
et al., 2017) have revolutionized Natural Language
Processing with their exceptional performance, no-
tably exemplified by the GPT series (Radford et al.,

https://github.com/Aleph-Alpha/Divergent_Tokens

2018, 2019; Brown et al., 2020; Bubeck et al.,
2023) in text generation. However, these mod-
els have grown massively, even exceeding half a
trillion parameters (Chowdhery et al., 2023). Al-
though the large number of parameters aid in early
training convergence, their practical utility and true
necessity remain unclear. In particular, for the at-
tention mechanism, it was hinted that after some
training convergence, certain heads dominate the
inference process (Michel et al., 2019).

Compression strategies such as sparsification
and quantization can enhance the efficiency of the
parameters. Current metrics, however, either av-
erage too coarsely, such as perplexity, or are by
design too specific, such as standard NLP bench-
marks. Both fail to capture the diverging perfor-
mance nuances introduced early on by the com-
pression as they ignore the actual discontinuous
text generation process. This, however, is the main
application of the final model, and so we argue
that they are therefore insufficient measures for
the performance of the compressed model. This
misalignment can lead to unwanted subtle discrep-
ancies in generation, such as grammatical errors
or a mismatch in numbers, that cause subsequent
divergences. As we will show, this even occurs
when overall metrics, such as perplexity, appear
satisfactory (cf. Prop. 3.2, Sec. 4, Tab. 1).

To meet these challenges, we introduce the fam-
ily of Divergent Token Metrics (DTMs) in Sec. 3.
These metrics are tailored to measure the model
divergence of LLMs throughout the compression
process and in relation to the actual generation pro-
cedure on a token basis, as shown in Fig. 1. We

6764

 https://github.com/Aleph-Alpha/Divergent_Tokens

Figure 1: Illustration of a diverging generation process. Given the 3-token prefix as prompt, a baseline and its
compressed model generate 8 subsequent tokens. Our proposed metric points to the first divergent token (FDT). The
FDT may cause further divergence during the iterative generation process. Note how both models score the same
perplexity value, as it does not reflect the actual sampling process (cf. Fig. 2, Sec. 4 for an empirical exploration).

demonstrate that the First Divergent Token Metric
(FDTM) and the Share of Divergent Tokens Met-
ric (SDTM) offer a more nuanced evaluation com-
pared to perplexity. They also enable individual
component evaluation to rank parts of the model
best suited for compression, thus enabling meaning-
ful compression while preserving text generation
quality. Based on FDT probing, we introduce new
strategies for sparsifying and quantizing models in
Sec. 4.

Specifically, our proposed individual component
sparsification indicates significant differences in
component utilization across layers. For the first
time, we show that 25% percent of the models’ at-
tention components can be pruned beyond 90%,
and several even entirely removed, while preserv-
ing a single-digit perplexity. Consequently, a sparse
matrix format can be employed to accelerate com-
putational efficiency. Likewise, for precision reduc-
tion, we show that sorting components by FDTM
coincidentally correlates to sorting by their induced
number of outliers when being naively converted to
int8. FDTM identifies the optimal 80% of the com-
ponents that maintain overall performance without
specific outlier handling. The observed decline in
performance with more outliers, and the significant
influence of specific components on those, sug-
gests reevaluating the applied normalization meth-
ods throughout the model. We demonstrate that
this level of precision goes beyond what standard
perplexity and conventional NLP benchmarks can
achieve. The proposed Divergent Token Metrics
closely reflect the generation process and so can
be a measure to foster confidence in the deployed
compressed models.

2 Compression Principles

Model compression aims to reduce the hardware
resources needed to operate the model. However,
doing so may sacrifice the accuracy of the model.
To keep the loss as small as possible, a corrective

measure is typically used. Here, we discuss the
most commonly used concepts and state-of-the-art
methods for LLM sparsification and quantization.

Outlier and Hessians. Most model compres-
sion methods rely either on the separation of out-
liers (Dettmers et al., 2022; Sun et al., 2023) or
the computation of a Hessian matrix (Frantar et al.,
2023; Frantar and Alistarh, 2023). Outliers usu-
ally refer to significantly larger values in magni-
tude occurring either in the weight matrix directly
or in the activations during a forward pass. As
most computations are linear matrix multiplica-
tions, such outliers strongly influence the remain-
ing entropy contained in consecutive computations.
In the case of sparsification, outliers should be left
intact, and values with the least magnitude, which
are consequently the least influential, should in-
stead be masked (Han et al., 2015). On the other
hand, Hessian matrices can be applied to correct
errors (Frantar et al., 2023). They can effectively
be approximated by computing backpropagation
gradients for a small number of samples and repre-
sent a second-order approximation to reconstruct
the original model.

Sparsification. The goal of sparsification is
a reduction in the total number of weights and
therefore a distillation of the relevant computation.
Typically, this method is divided into “structured”
and “unstructured” pruning. Structured-pruning
aims to locate dynamics, such as the irrelevance of
an entire layer or dimension for a given use case,
and prunes these entirely. Unstructured-pruning
usually refers to weight masking, that is, setting ir-
relevant weights to 0. High levels of sparse matrix
computations could result in more efficient ker-
nels and computations. In scenarios where masks
exceed a 90% threshold, the implementation of a
specialized sparse matrix format becomes feasi-
ble. This format predominantly stores the indices
of non-zero weights. Although some additional
storage is required for these indices, the overall
requirement is reduced due to the exclusion of zero

6765

values. Moreover, this approach substantially im-
proves computational performance.

Magnitude pruning selects the masking of
weights based only on their magnitudes. This is
fast to compute but significantly degrades model
performance when pruning large amounts simulta-
neously. To resolve this issue, wanda (Sun et al.,
2023) proposes to sample a small amount of data
and incorporates activations of the forward pass.
This was shown to generate more effective one-shot
pruning masks. SparseGPT (Frantar and Alistarh,
2023) computes iterative Hessian approximations
to select the lowest impact weights and correct the
remaining.

Note that the incorporation of activations can, to
some extent, be interpreted as a form of training.
Moreover, despite these efforts, one-shot pruning
has not yet produced directly usable models with-
out further final fine-tunings. This is in particular
the case for the high sparsity levels beyond 70%
that we target. Finally, there has not yet been any
investigation of the individual components.

Quantization. Model quantization refers to
the reduction of the precision of the used numer-
ical format. Usually, LLMs are trained in 16-bit
floating point (fp16) and converted to 8-bit inte-
ger (int8) representations. The naive conversion of
float matrices to integers is AbsMax rounding. This
divides a number by the maximum value occurring
in the matrix and multiplies by the largest available
integer, as such, it spans a uniform representation
grid. The largest float value is stored and multiplied
for dequantization. The most prominent methods
for minimizing the introduced rounding errors are
LLM.int8 and GPTQ.

Dettmers et al. (2022) introduced LLM.int8(),
which identifies vectors containing outliers and re-
tains them in their original fp16 form during the
matrix multiplication of a forward pass. The vec-
tors lacking outliers are fully quantized. The int8
weights and activations during the forward pass
are subsequently multiplied and dequantized af-
terward. This allows them to be integrated with
the fp16 representation of the outliers. Through
empirical investigation optimizing the trade-off be-
tween degradation in perplexity and the number of
outliers preserved in fp16, they fixed an absolute
outlier threshold.

The GPTQ framework offers a more robust quan-
tization approach, in particular, to different integer
bit precisions. It does not rely on any outlier detec-
tion mechanism or mixed precision computations—

matrix multiplications with the weights are fully
performed using integers. Frantar et al. (2023)
introduce an efficient Hessian approximation and
iteratively quantize the weights of the matrices
while performing error corrections on the remain-
ing weights.

3 Model Divergence Metrics

Perplexity fails to identify minor variations in
model degradation at an early stage. This behavior
is depicted in Fig. 1 and 2 and discussed in Sec. 3.5
and 4 in more detail. To assess model divergence
and enhance the model compression process, we in-
troduce token-based metrics specifically designed
to detect those nuances occurring in early compres-
sion stages. We start by establishing our notation
and presenting the perplexity metric (PPL). Subse-
quently, we introduce an enhanced variant of PPL
and propose the Share of Divergent Tokens Metric
(SDTM) and First Divergent Token Metric (FDTM).
We conclude by discussing the advantages of each
metric compared to traditional measures based on
perplexity when assessing the degradation of the
generative performance of compressed models.

3.1 Basic notation

Let F denote an auto-regressive model
over a vocabulary V = {0, 1, ..., |V| − 1},
y = (y1, .., yN) ∈ VN an arbitrary token sequence
and F (y) = F (y)ij ∈ RN×|V| the model logits,
with i denoting the sequence and j the respective
vocabulary positions. Given a prefix length n < N ,
we denote the token prefix y:n = (y1, ..., yn) and
the greedily decoded completion up to index N by
G(F, y:n, N). It is defined recursively as follows:
G(F, y:n, N):n = y:n, and for n ≤ i ≤ N − 1

G(F, y:n,N)i+1

= argmaxj F (G(F, y:n, N):i)ij .

3.2 Perplexity (PPL)

Given a ground truth sequence y and model F , the
negative log-likelihood of y given F is

NLL(y, F,n)

= − 1
N−n

∑N−1
i=n logP(yi+1|yi, .., y1),

with P(yi+1|yi, .., y1) = (softmax F (y))iyi+1 .
Then the perplexity (PPL) is given by

PPL(y, F, n) = exp(NLL(y, F, n)).

6766

FDT SDT DPPL PPL
0

200

400

600

800

1000

Wi
ns

Figure 2: Pruning lowest weights, and random weights.
FDT is able to discriminate the cases. PPL exactly
performs on the level of guessing. Cf. Sec. 4.2.

A common practice in the literature, e.g. (Dettmers
et al., 2022), is to measure model degradation as
the increase in average perplexity over a given test
dataset D, e.g. randomly sampled from C4 (Raf-
fel et al., 2020). Usually, this metric is computed
disregarding the prefix, i.e., with PPL(y, F) :=
PPL(y, F, 1).

3.3 Context aware model comparison
First, we argue that standard evaluation does not re-
flect the typical generative model usage, i.e., there
are no empty prompts, and as such, those positions
should not be taken into account when evaluat-
ing the generative performance. Moreover, when
comparing a compressed model F ′ to the original
model F , one is interested to what extent the origi-
nal behavior is kept. Therefore, we propose to use
the outputs of the original model F as a ground
truth to assess the performance of the compressed
model F ′. This leads to the definition of the diver-
gent perplexity (DPPL) metric as

MDPPL(F,F
′, y:n, N) (1)

= PPL(G(F, y:n, N), F ′, n) .

Finally, letD be an arbitrary test dataset containing
documents of potentially varying length. For a
fixed prompt length n and completion length N , we
define the aggregated divergent perplexity metric
as the complete evaluation on the dataset:

MDPPL(F, F
′, n,N) = (2)

1
|D|

∑
y∈D MDPPL(F, F

′, y:n, N).

DPPL already substantially improves discrimina-
tive capabilities over PPL, as we will demonstrate
in the empirical evaluation.

3.4 Divergent Token Metrics
SDT. To further improve on the expressiveness and
interpretability of model divergence, we propose

the share of divergent tokens (SDT) as follows:

SDT(y,F, n)

= |{i ≥ n : argmaxj F (y)ij ̸= yi+1}|,

SDT(y, F, n) can be interpreted as the number of
times the model would need to be corrected during
decoding to match the ground truth after consum-
ing the prefix. This measure provides a more direct
interpretation of the errors that occur during actual
token generation, as opposed to estimating predic-
tion certainties as PPL does.

FDT. In addition to SDT, we introduce the first
divergent token (FDT) as

FDT(y, F, n) (3)

= min{i ≥ n : argmaxj F (y)i,j ̸= yi+1} − n,

with the convention that the minimum is equal to
N if the set on the right-hand side is empty. Analo-
gously to Eq. 1 and Eq. 2, we define MSDT,MFDT,
MSDT andMFDT in the same way.

As an illustrative example, consider computing
MFDT(F, F

′, y:n, N). We first perform a greedy
decoding of N − n tokens with the base model F
given the prefix y:n. We then feed the sequence
G(F, y:n, N) into the compressed model F ′ and
find the first index greater than or equal to n, where
the logit argmax of F ′ differs from what F gen-
erated. This computation can be done in a single
forward pass similar to perplexity, and so is more
efficient than accuracy-based evaluations. Trivially,
0 ≤ MFDT(F, F

′, y:n, N) ≤ N − n, where the
upper bound is reached if and only if F and F ′

would generate the exact same sequence up to po-
sition N given the prefix y:n. Further note that
MFDT is symmetric, i.e. MFDT(F, F

′, y:n, N) =
MFDT(F

′, F, y:n, N), in contrast to PPL.
In the following, we will ease the notation and

omitM, some parameters, or the words aggregated
and metric, when they are clear from the context.

3.5 Token vs. Perplexity Metrics
It turns out that divergent token metrics offer a
superior criterion for analyzing model performance
degradation compared to perplexity-based metrics,
especially in the context of greedy decoding. The
main reason is that the greedy decoding operation
G is a discontinuous function of the logits. To
formalize this, let us discard the model itself and
focus notation solely on the concept of logits.

Definition 3.1. The operators and metrics from pre-
vious sections defined for models F, F ′ are defined

6767

for logits l, l′ ∈ RN×|V| by replacing all occur-
rences of F, F ′ with l, l′.

For example, G(l, y:n, N)i+1 = argmaxj lij , for
n ≤ i ≤ N .

Proposition 3.2. Given any y, N and ε > 0 there
exist logits l, l′ ∈ RN×|V| such that

|PPL(y, l, 1)− PPL(y, l′, 1)| < ε,

MSDT(l, l
′, y:1, N) = N.

Proof. See App. A.

This means that even if the average perplexity
of a compressed model matches the perplexity of
the original model, the compressed model can pro-
duce a very different (and potentially worse) output
when performing greedy decoding. Hence leading
to a false positive. In practice, this is a severe is-
sue since even a single diverging token can lead
to a completely different subsequent output. It is
illustrated in Fig. 1 and 2 and discussed in Sec. 4.2.

As described above, another option is to com-
pute the perplexity with respect to the generated
completions of the original model. This metric
relates more reasonably to the share of divergent
tokens (SDT):

Proposition 3.3. The following upper bound holds:

MSDT(l, l
′, y:n, N) ≤ N−n

log 2 logMDPPL(l, l
′, y:n, N).

Proof. See App. A.

However, a comparable lower bound generally
does not hold. In fact, in the case l = l′ we trivially
have MSDT(l, l, y:n, N) = 0. Further, the value
of MDPPL(l, l, y:n, N) can still be as high as the
maximal value, which occurs when l is a perfectly
flat distribution at any sequence index. This could
lead to a false negative signal for the generation
process.

In conclusion, perplexity-based metrics suffer
from false positives or false negatives when eval-
uating the degradation of generative performance.
The case for FDT and SDT is quite straightforward
in that they both directly measure the difference
between model outputs in a what-you-see-is-what-
you-get manner.

Note that additional token-based metrics, such
as the measurement of the distance between er-
roneous predictions, can be readily formulated.
These metrics may prove especially valuable when
assessing potential benefits, for instance, in the con-
text of correction-based inference strategies such

as speculative decoding (Leviathan et al., 2023).
App. I further discusses the use of ground-truth
versus model generated probes. We now empiri-
cally demonstrate the improvements of well-known
compression methods using our metrics.

4 Token Metrics Improve Model
Compression

We will demonstrate in the following how the pro-
posed metrics provide novel insights into the effi-
ciency of the architecture of LLMs and establish
benchmarks for model compression. Throughout
all experiments, we outperform standard PPL as a
ranking metric.

More precisely, we apply componentwise prob-
ing to sparsification to determine individual spar-
sity rates. Interestingly, the model tends to com-
pletely remove components of the attention mech-
anism in certain layers. In total, 40 out of 160
attention components are sparsed beyond 90% and
15 removed completely. For quantization, on the
other hand, we show how component selection sig-
nificantly influences the overall number of model
outliers. For the first time, almost 10% of the model
components can be converted to 4-bit integer repre-
sentations without significant model degradation.

4.1 Experimental Protocol

Let us start by clarifying the experimental setup.
Test environment. All experiments were per-

formed on the public Llama2-7B and 13B mod-
els (Touvron et al., 2023). Note, however, that we
observed similar behavior amongst other decoder
transformer models. It remains, in particular, with
upscaled sizes and smaller variations on the archi-
tecture or the training procedure.

For all experiments, we follow best practices
for compression evaluations (Sun et al., 2023) and
randomly sample data from the C4 dataset (Raf-
fel et al., 2020) for training iterations. The final
model evaluation is performed comparing the loss
on the Wikitext2 dataset (Merity et al., 2017) and
the standard NLP benchmarks (Gao et al., 2021).

Metrics. We apply our proposed metrics for per-
formance evaluation, as well as selection criteria.
We employ FDT, SDT, DPPL and PPL as metrics to
assess the overall model divergence. With regard to
model compression, we demonstrate that both PPL
and our variant DPPL typically struggle to mea-
sure minor changes adequately (cf. Sec. 3.5, 4.2
and Fig. 2). However, FDT is particularly suited to

6768

0.1 1.0 4.0
Sparsification step (%)

10

25

50

100

200

300

Pre
fix

 le
ng

th

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
FDT75 std

Figure 3: Hyperparameter selection of FDT. Visual-
ized is the standard deviation (std) in FDT75 over all
components when varying prefix length (y-axis) and
applying different choices for sparsity-step increases
(x-axis), cf. Sec. 4.1 and 4.2.

characterize errors for subtle model changes. Con-
sequently, we apply FDT for model compression.
In the following paragraph, we describe the param-
eters selected for using FDT in more detail.

Divergent Token Parameters. We empirically
selected hyperparameters as follows. Through pre-
liminary sparsification experiments, we observed
that the most variance is present in the 75%-
quantile of FDT, as defined in Eq. 3 (cf. Fig. 22).
We denote this value by FDT75. In the following,
it is our compare-to value.

Next, we sweep over the given context prefix
length n of FDT and sparsification steps as de-
picted in Fig. 3 on the y- and x-axis, respectively.
The heatmap shows the overall standard deviation
of FDT75 on 5k probes. For simplicity, we fixed
the prefix length to 100 tokens, as it is most dis-
criminative on average.

We observed that most of the sparsification steps
introduce an error in FDT75 within the range of
100 completion tokens. Therefore, we selected
N = 100. Finally, to determine the number of
probes |D|, we compared the mean deviation with
a baseline of 5000 probes. As the deviation in the
value ofMF75 of 1000 to 5000 probes only differs
on average by a value 4, we selected |D| = 1000
(cf. Fig. 20).

Pruning of LLMs. In Sec. 4.2, we will show
that FDT improves sparsification procedures to
achieve high compression rates on LLama2-13B.
To this end, we iterate small unstructured sparsifi-
cation with continued training steps for the model
to attune to the remaining weights and recover
performance. Specifically, we apply eight itera-
tions to increase the average model sparsity by
20, 15, 10, 10, 5, 5, 5, and 5 percent, resulting in a
final model with 25% total parameters remaining.

We run this experiment in two configurations,

Algorithm 1 Iteration of pruning algorithm

input: F, step ▷ current model, target sparsity

fdt_sparse_map← {}
for ci ∈ Components do

fdt_sparse_map[ci]← [100,
MFDT75(F, F

ci+step/2),
MFDT75(F, F

ci+step+step/2), 0]

▷ FDT values measured for added sparsities of
0, step/2, step+ step/2, 100% to
component ci on model F . The maximal
FDT value measured is 100.

end for
f ← 100 ▷ iteratively decrease from maximum
s← 0 ▷ track current added sparsity
comp_sparse_map← {}
while s ≤ step and f ≥ 0 do

for ci ∈ Components do
comp_sparse_map[ci]←

lin_interpol(fdt_sparse_map[ci], f)
end for
s← weighted_mean(comp_sparse_map)
f ← f − 1

end while
F ′ ← F pruned by comp_sparse_map

output: F ′

uniform and FDT-selective. Uniform sparsification
applies the target increase of the current round uni-
formly to each component, pruning their lowest
weights. For FDT, we determine individual compo-
nent sparsification values to evenly distribute the
induced error as depicted in Algorithm 1:

Based on the previous sparsed model F and
for the current target increase step, we probe
each component ci separately with an additional
step±step/2 percent of the lowest weights pruned,
denoted by F ci+s, to determine itsMFDT75 value.
We further add the constant extrema, that is, step
sparsity 0 and 100% with values of 100 and 0.
Given these four data points, we segment-wise in-
terpolate linearly to achieve the highest value of
MFDT75 possible across all components, but on
average yielding the target sparsity. Specifically,
we find the set of component-sparsities {si} that
optimize for

argmax{si}miniMFDT75(F, F
ci+si),

such that
∑

i s̃i = step using s̃i to represent the
normalized sparsity of si relative to the individual

6769

0 500 1000 1500 2000 2500 3000 3500 4000
Training Step

2.0

2.5

3.0
Tr

ai
ni

ng
 L

os
s (

)
Uniform
FDT (our)

20

40

60

80

Sp
ar

sit
y

(%
, -

--)

(a) Comparison of uniform and componentwise pruning using
FDT as a metric for comparison.

0 5 10 15 20 25 30 35 40
Layer

40

50

60

70

80

90

100

Sp
ar

sit
y

(%
)

Comp. Type
A. Query
A. Key
A. Value
A. Dense
MLP Up
MLP Down
MLP Gate

(b) Converged component config with 75% average sparsity.
Layers (x-axis), Component-sparsity (y-axis).

Figure 4: Depiction of the proposed sparsification pro-
cess that converged to a 75% sparse Llama-2-13B. a)
Model training performance throughout all rounds. Our
FDT-based sparsification clearly outperforms uniform
magnitude pruning. b) Converged sparsity values per
component. One quarter of attention components are
pruned beyond 90% sparsity. Significant outliers appear
in first and last layers.

parameters of component ci.
We further follow the findings of AC/DC (Peste

et al., 2021) and alternate compressed and decom-
pressed iterations as follows: Each round we train
a total of 500 steps, of which the first 450 are with
the sparsification mask applied and the following
50 without any masks. We found that this alterna-
tion produces smaller spikes in training loss after
sparsification steps.

This yields a total of 4000 training steps. During
training, we apply a weight decay of 0.01, batch
size 256, and sequence length 2048. Note that
throughout this series of experiments, we only ap-
ply pure magnitude pruning per iteration. Other
pruning methods, such as wanda (Sun et al., 2023),
can also be straightforwardly augmented by this
probing strategy.

Quantization of LLMs. For model quantiza-
tion, we compare the performance of the proposed
metrics on the task of sorting the model’s compo-
nents by their lowest introduced error. To this end,
we build a search tree to find the best model config-
uration as follows: We build a parallel depth-first
search tree with a branching width of 10, which

0 50 100 150 200
No. Quantized Components

0.000

0.005

0.010

0.015

0.020

0.025

SD
T (

)

FDT
DPPL

PPL
LLM.Int8()

0.00

0.25

0.50

0.75

1.00

1.25

No
. L

LM
.in

t8
()

Ou
tli

er
s (

)

1e7

|

(a) Performance of FDT, DPPL and PPL.

0 50 100 150 200
0

10

20

30

0 50 100 150 200
No. Quantized Components

0

10

20

30

N
o.

 Q
ua

nt
ize

d
M

od
ul

es

Component Type
MLP Gate
MLP Down
MLP Up
A. Query
A. Key
A. Value
A. Dense

(b) Selected Components FDT (top) vs PPL (bottom).

Figure 5: Evaluation of the Tree Search as described in
text. a) Comparison of Tree Search based componen-
twise quantization. Different numbers of components
(x-axis) lead to different token divergence scores (y-axis,
normalized to [0, 1]), and in particular correlates early
on to introduced outliers (second y-axis). Throughout
the entire search, FDT is able to rank components by
their potential errors and, coincidentally, outliers. b)
Selected components at respective depth. A.Key and
A.Value induce most error.

relates to a beam search with beam width 10. In
particular, at each level of the tree, we simultane-
ously explore all possible successor configurations
for the currently top-10 performing nodes, with one
more component naively quantized using AbsMax.
From this newly identified set of nodes, we again
select the best performing 10 nodes for the next
iteration. Starting with the unquantized base model
Llama2-7B, each node contains exactly the number
of quantized components respective to its depth,
while the final node is a fully AbsMax quantized
model. We further apply deduplication to prevent
redundant computations.

4.2 Sparsification reveals:
Attention is not all you need!

We applied stepwise uniform magnitude pruning,
and our balanced componentwise pruning using
FDT, to achieve 75% model sparsity. A summary
of the results is shown in Fig. 4.

Attention almost erased. Fig. 4b visualizes
the converged sparsity values when applying our
balanced pruning using FDT. Notably, the model

6770

Sparsification
Model FDT ↑ PPL ↓ NLP ↑
Llama2-13B - 4.884 53.59
∼ 60% sparse (unif.) 4.7 9.244 46.32
∼ 60% sparse (our) 7.9 6.242 48.89
∼ 75% sparse (unif.) 3.5 13.512 41.67
∼ 75% sparse (our) 5.5 8.101 46.32
∼ 80% sparse (our) 5.2 9.531 45.66

Quantization
Model FDT ↑ PPL ↓ NLP ↑
Llama2-7B - 5.472 50.79

in
t8

LLM.int8()all 36.1 5.505 50.81
AbsMax PPL150 46.3 5.500 50.72
AbsMax DPPL150 54.1 5.490 50.75
AbsMax FDT150 (our) 71.7 5.489 50.75

in
t4

GPTQall 11.1 5.665 48.34
GPTQ PPL16 45.0 5.511 49.91
GPTQ DPPL16 137.0 5.476 50.02
GPTQ FDT16 (our) 205.0 5.475 50.13

Table 1: Evaluations of the final Compressed Models.
Even when evaluating these, aggregations of standard
NLP benchmarks (cf. Fig. 11,13) do not reflect the
actual degradation of the model, as observed in AbsMax
quantization. FDT and PPL are evaluated on Wikitext2
samples. Throughout all experiments, our FDT probed
compression outperforms standard variations. Subscript
refers to best found k quantized components. Bold
denotes the best values.

favors pruning attention over MLP. In total 40 of
160 attention components are sparsed beyond 90%
and 15 even completely removed. In general, the
second half of the model appears to be more prun-
able than the first half. The value matrices are
overall the least pruned of the attention matrices.
Finally, significant outliers appear in the first and
last layers. This finding indicates that attention is
not utilized efficiently throughout model inference.
In fact, only layers 3 to 20 and layer 40 appear
to be of significant relevance for the model’s final
prediction. This observation might be attributed to
an evolving shift in distributions and, with that, the
concepts processed in embeddings.

Notably, in the first layer Attention Value and
MLP Down remain significantly dense, while all
others are comparably sparse. This observation
indicates an incomplete shift of token embeddings.

General Observations. As shown in Fig. 4a,
FDT based balanced pruning significantly lowers
the introduced error between sparsification rounds.
Uniform pruning, on the other hand, substantially
diverged, and in particular does not regain perfor-
mance with the given amount of compute. Gener-
ally speaking, what is lost can hardly be recovered.

The standard evaluation of FDT and PPL on

Wikitext2, is found in Tab. 1. The 75% compressed
13B model, with several components pruned away,
scored PPL 8.1, compared to PPL 4.8 of the base
model. Note that no other model sparsed beyond
70% has yet been reported, in particular, achieving
single-digit PPL. Uniform pruning achieved 13.5.
Further note, that we almost doubled the mean
FDT value when compared to uniform pruning.
However, as the generally low FDT value suggests,
it still diverged substantially from the base model.

FDT is more discriminative. In practice, FDT
is better able to discriminate subtle changes than
PPL. We demonstrate this with the following exper-
iment: On each component of the model, we prune
0.1% of the weights either randomly or from the
lowest weights. The resulting model is probed for
1000 trials with all the discussed metrics used to
distinguish the cases. The results in Fig. 2 clearly
indicate that FDT is capable of distinguishing the
cases, while they remain indifferent for PPL-based
comparison. We therefore omit using PPL as a
metric to determine step-sizes for the described
sparsification experiment.

4.3 Quantization: Outliers can be prevented
Finally, we demonstrate the impact of selecting the
right components for quantization. We compare the
proposed metrics PPL, DPPL, and FDT as ranking
criteria to showcase their discrimation capabilities.

Quantization without outlier-handling. Fig. 5
shows the average performance of the top 10 nodes
occuring in the respective search tree depth (x-axis).
FDT continuously outperforms the other metrics
on the SDT value (y-axis). Notably, this is on
par with the total number of outliers occurring for
the respective configurations (second y-axis). Cer-
tain components appear to significantly influence
the decline observed in both measures. Although
DPPL enhances some aspects of performance, nei-
ther variant of PPL effectively distinguishes these
components and tends to select those prematurely.

With FDT, we can cast 80%, i.e. 150, of
the model’s components directly into int8 using
only naive AbsMax—and without further outlier
handling—still outperforming the full LLM.int8()
conversion in model performance. Selecting those
150 components with DPPL and FDT leads to close
perplexity scores 5.490 and 5.489 on Wikitext2, cf.
Tab. 1. However, the resulting mean FDT improves
by almost 50% when also selecting the compo-
nents by this metric. The larger generation of the
same sequences suggests a model closer to the orig-

6771

A. Query A. Key A. Value A. Dense MLP Up MLP Gate MLP Down
Component

0

100

200

300

400

500
FD

T
Method
AbsMax
LLM.int8()
GPTQ (8bit)
GPTQ (4bit)

(a) Quantization methods evaluated on Components.

4 8 16 32 64 96 128 160 192
No. Quantized Components

0

100

200

300

400

500

FD
T

Selection Criteria: FDT DPPL

 Criteria
FDT
DPPL

(b) Selected GPTQ (4bit) components.

Figure 6: Evaluation of FDT performance. a) evaluates components separately on all quantization methods. Clear
outliers in performance are A. Value and MLP Up. GPTQ (8bit) is able to evenly amortize the induced error. b)
Selecting top-k components of GPTQ (4bit). FDT is suited to rank components one-shot.

inal when choosing FDT as a selection criterion.
Fig. 5b) shows the selected components at each
depth in relation to a). Most outliers occur when
the Attention Key is selected early on. Notably, we
observed in Sec. 4.2, that this is one of the matrices
most suitable to sparsify.

16 components in 4-bit. Figure 6a) presents
a comprehensive assessment of the quantization
techniques discussed. First, it is noticeable that the
LLM.int8() method slightly improves the lower
quantile scores of FDT in comparison to Abs-
Max. However, GPTQ (8bit) demonstrates supe-
rior performance, outshining both plain AbsMax
and LLM.int8(). This method achieves a more
balanced error distribution across all components
(cf. App. Fig. 17). On the contrary, GPTQ (4-bit)
shows noticeable deviations in the generation pro-
cess, with only a limited number of components
achieving FDT scores greater than 400. Despite
this, the discriminative power of FDT enabled us
to identify and merge the top 16 components that
minimally compromised the integrity of the model,
as illustrated in Fig. 6b).

5 Conclusion

We introduced the Divergent Token Metrics
(DTMs), a tailored approach to evaluate the perfor-
mance differences of compressed generative mod-
els. In particular, DTMs respect the usually applied
greedy sampling procedure to generate predictions.
We proved that DTMs achieve appropriate metric
bounds and are not affected from catastrophic arte-
facts that perplexity-based metrics encounter. We
constructed algorithms for iterative sparsification
and quantization processes based on DTM prob-
ing of individual components. Using DTMs, we
achieved an outperforming 75% sparse version of
Llama2-13B and successfully converted 80% of
the LLama2-7B components naively to int8.

Limitations

With the proposed DTMs, compression processes
can be tailored to use cases—and we can measure
their performance degeneration. We hinted with
the sparsification experiments, that MLP and Atten-
tion can be ascribed varying levels of significance
throughout the layers. These studies should be fur-
ther extended to various model architectures such
as BERT or MoE. Moreover, variations of specific
datasets to probe or finetune on could lead to in-
teresting observations. For example, multilingual,
multitasking and instruction tuned MoE models
could be pruned multiple times using FDT to in-
vestigate how the information actually is stored
and assembled. Note that this work solely relied
on English-tailored pruning for a mostly English-
trained model. Furthermore, augmenting our met-
rics to probe for (and investigate) specific aspects
such as safety alignments, and preserving these el-
ements throughout model compression would be a
significant area of study.

As a pruning strategy, we achieved outperform-
ing results using only naive magnitude pruning.
DTMs should be directly applicable to other mask-
ing strategies, such as Wanda (Sun et al., 2023),
which may further improve results. Finally, the
generalizability of the metrics to other sampling
strategies should be investigated.

Acknowledgments

We thank the three anonymous referees for their
constructive comments and suggestions, which
helped us to improve this paper considerably.

This work has been partially funded by the
Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) as part of BERD@NFDI -
grant number 460037581.

We gratefully acknowledge support by the Ger-
man Center for Artificial Intelligence (DFKI)

6772

project “SAINT”, the Hessian Ministry of Higher
Education, the Research and the Arts (HMWK)
cluster projects “The Adaptive Mind” and “The
Third Wave of AI”, and the ICT-48 Network of
AI Research Excellence Center “TAILOR” (EU
Horizon 2020, GA No 952215).

We thank Graphcore, Jamie Packer, Manuel
Brack and Samuel Weinbach for the fruitful dis-
cussions and the invaluable feedback throughout
this work.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan,
Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter
Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg,
Harsha Nori, Hamid Palangi, Marco Túlio Ribeiro,
and Yi Zhang. 2023. Sparks of artificial general
intelligence: Early experiments with GPT-4. CoRR,
abs/2303.12712.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. Journal of Machine Learning
Research, 24:240:1–240:113.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gpt3.int8(): 8-bit matrix multi-
plication for transformers at scale. In Advances in

Neural Information Processing Systems, volume 35,
pages 30318–30332.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, volume 202, pages 10323–10337.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2023. OPTQ: accurate quantization for
generative pre-trained transformers. In International
Conference on Learning Representations.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.

Song Han, Jeff Pool, John Tran, and William J. Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in Neural In-
formation Processing Systems, pages 1135–1143.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, volume 202, pages 19274–19286.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? Advances
in neural information processing systems, 32.

Alexandra Peste, Eugenia Iofinova, Adrian Vladu,
and Dan Alistarh. 2021. AC/DC: alternating com-
pressed/decompressed training of deep neural net-
works. In Advances in Neural Information Process-
ing Systems, pages 8557–8570.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training. OpenAI blog.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21:140:1–140:67.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter.
2023. A simple and effective pruning approach for
large language models. CoRR, abs/2306.11695.

6773

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/ARXIV.2303.12712
https://doi.org/10.48550/ARXIV.2303.12712
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/c3ba4962c05c49636d4c6206a97e9c8a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c3ba4962c05c49636d4c6206a97e9c8a-Paper-Conference.pdf
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://openreview.net/pdf?id=tcbBPnfwxS
https://openreview.net/pdf?id=tcbBPnfwxS
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://proceedings.neurips.cc/paper/2021/hash/48000647b315f6f00f913caa757a70b3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/48000647b315f6f00f913caa757a70b3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/48000647b315f6f00f913caa757a70b3-Abstract.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.48550/ARXIV.2306.11695
https://doi.org/10.48550/ARXIV.2306.11695

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

6774

https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Appendix

A Proof of Propositions

Proof of Proposition 3.2. There are many ways to
construct sequences that satisfy the desired relation.
One is as follows: Let l ∈ RN×|V| be any logit
sequence with no re-occurring values. Denote by
mk(l)i the top-k value at position i, and by ak(l)i
the top-k vocab index at position i, respectively.
Now we pick any such sequence with the additional
property that maxim1(l)i −m2(l)i < δ for some
small δ. Define the sequence l′ by

l′ia2(l)i = lia2(l)i + δ,

and l′ij = lij for all remaining indices. Then
we have a1(l)i ̸= a1(l

′)i for all i and hence
MSDT(l, l

′, y:1, N) = N . On the other hand we
have ||l − l′||∞ ≤ δ. Since PPL(y, l, 1) is a con-
tinuous function in l, we have |PPL(y, l, 1) −
PPL(y, l′, 1)| < ε for any ε and small enough
δ.

Proof of Proposition 3.3. Let z = G(l, y:n, N)
and pi = (softmax l′)izi+1 . Applying the defi-
nitions and elementary operations, we have

N∑

i=n

− log pi = (N − n) logMDPPL(l, l
′, y:n, N).

Let A = {i ≥ n : pi ≤ 1/2}. Then

N∑

i=n

− log pi =
∑

i∈A
− log pi +

∑

i∈Ac

− log pi

≥
∑

i∈A
− log pi ≥ |A| log 2.

Here we first used that log pi ≤ 0 and then the
observation that indices contained in A satisfy
− log pi ≥ log 2 by the defining property of A.
Finally, we argue that SDT(z, l′, n) ≤ |A|. Indeed,
at any position i where argmaxj l

′
ij ̸= zi+1 it must

hold that pi ≤ 1/2, since any softmax-value larger
than 1/2 is automatically the maximum value of
the distribution, and the softmax operation is mono-
tone. Putting everything together we arrive at the
desired inequality.

B FDT compared to standard model
evaluations

Fig. 10 shows a comparison of standard bench-
marks (middle) to FDT (right) and PPL (left)

Figure 7: Pruning MLP and Attn only indeed compro-
mises remaining model capabilities.

when quantizing parts of a model. Often, stan-
dard evaluations fail to distinguish between com-
pressed models. Sometimes they even depict better
performance—which may be true, when regarding
compression as a fine-tuning method and consid-
ering the short required token predictions. FDT
thoroughly gives discriminative statistics with re-
sprect to the base model, on how much the com-
pressed model equals the original. Note how the
error seems to be upper bounded, which suggests
that errors may average out throughout the model.
Mean zeroshot accuracy denotes the average on the
standard NLP-eval harness.

C True positives can be predicted

Fig. 8 shows several metrics applied to the token-
distributions, in order to estimate on whether the
compressed and original model predictions are
equal. Notably, L1 and L2 errors on the entire

6775

distribution seem to somewhat capture the discrim-
inative capabilities of false predictions. The proba-
bility scores themselves are only marginally usable.
Using top-2 uncertainty, i.e. the difference between
the top-2 tokens as a measure, we obtain a reliable
prediction of true positives. True negatives how-
ever still remain with a significant overlap.

D MLP is for knowledge,
Attention for relation

Finally, we observed that when pruning only at-
tention, prompt-extraction capabilities degenerate
severely. When only pruning MLP components, on
the other hand, it influences mostly world knowl-
edge QA benchmarks, cf. Fig. 7.

E Details on Search Tree, Sec. 4.3

Fig. 9 shows the layers (y-axis) of which compo-
nents are selected at each round (x-axis). While
there seems to be a pattern on when using FDT as
a criteria (top), selection by PPL (bottom) looks
more random.

Fig. 15 shows the comparison of search tree as
described to greedy search on a single evaluation
of all components. Until 150 components, FDT
proves more stable over the PPL variants as seen
in Fig. 15a.

F Details on Quantization Sec. 4.3

Fig. 17 shows detailed componentwise evaluations
aggregated in Fig. 6a.

Fig. 16 shows the final configurations as com-
pared in Tab. 1.

Fig. 11 shows the detailed nlp-eval scores of
Tab. 1.

Fig. 12 shows greedy search trees over various
context lengths.

In total the entire search evaluation required 16
GPU-days with A100s to complete all metrics.

G Details on Sparsification, Sec. 4.2

Fig. 18 shows a different aggregated perspective
of Fig. 4b, to point out more direct the occuring
variances.

Fig. 19 shows the rank of lowest influence (mea-
sured by FDT) of components (x-axis) throughout
various sparsity levels (y-axis). I.e. starting with a
uniformly pruned model in 5% steps, we measured
the rank when adding an additional 2.5% only to a
single component. Interestingly, components seem

to retain their importance throughout the various
levels of sparsity.

Fig. 13 shows the detailed nlp-eval scores of
Tab. 1.

Note that, despite being often close in relative
sparsity, the total number of parameters pruned
for MLP is significantly larger than for Attention
matrices (ratio 3:1).

Finally, Fig. 22 shows detailed componentwise
pruning experiments.

In total one sparsification training required 32
GPU-days with A100s for our experiment, and 29
GPU-days for uniform pruning.

H Further Hyperparameters

Fig. 20 shows that 1k probes are enough to deter-
mine a stableMF75 value.

I Model Completion vs. Ground Truth

Fig. 21 shows the FDT value that compares the
ground truth of the data set with the completion
of the model on Wikitext2. Tab. 2 further gives an
example for better comparison. It can be observed
that, even though Wikitext2 was contained in the
training dataset, Llama2-13B does not properly re-
call it, and as such, the FDT value is close to 0.
Therefore, we cannot utilize generic data samples
as ground truth alone in such a general-purpose
pruning setup. Afterall, our goal is to measure the
“deviation” of the compressed model to its base-
line. For more specific, e.g. Q/A datasets, it may,
however, be more feasible.

6776

All Same
prediction

Different
prediction

0.0

0.5

1.0
L1 error

All Same
prediction

Different
prediction

L2 error

All Same
prediction

Different
prediction

Probability difference
for token predicted by baseline

All Same
prediction

Different
prediction

Top-2 uncertainty

Figure 8: Top-2 uncertainty is discriminative enough to give clear true-positives estimates on compressed models.

30
25
20
15
10
5

La
ye

r D
ep

th

0 20 40 60 80 100 120 140 160 180 200 220
Number of Quantized Components per Config

30
25
20
15
10
5

La
ye

r D
ep

th

0

5

10

0

5

10

Figure 9: Layers selected in each round of the search
tree. Top, when applying FDT, bottom, when applying
PPL as a ranking metric.

Baseline Best Worst First Half Second Half
Quantized Component

0

100

200

300

400

500

600

FD
T

Ac
cu

ra
cy

Accuracy Metric
FDT
PPL

0.0

1.9

3.8

5.7

7.6

9.4

11.3

PP
L

Ac
cu

ra
cy

Figure 10: Comparison of the discrimination capabili-
ties of FDT and PPL for different configurations when
applying LLM.int8() conversion on Llama2-7B. Best
and Worst mark a single component being converted,
with most and least mean influence. First and Second
half consecutively convert half of the model each. While
significant changes can be observed using FDT, all con-
figurations appear indifferent for PPL.

AR
C-

Ch
al

le
ng

e
AR

C-
Ea

sy
Bo

ol
Q

CO
PA

He
lla

sw
ag

LA
M

BA
DA

LA
M

BA
DA

 C
LO

ZE
M

ul
tiR

c
Op

en
Bo

ok
QA

PI
QA

RA
CE RT

E
Tr

iv
ia

QA
W

SC
W

eb
QS W
iC

W
in

oG
ra

nd
e

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Selection Criteria
Llama2-7b
AbsMax FDT150
AbsMax DPPL150
AbsMax PPL150
LLM.int8()

(a) 8-bit Quantization NLP benchmarks

AR
C-

Ch
al

le
ng

e
AR

C-
Ea

sy
Bo

ol
Q

CO
PA

He
lla

sw
ag

LA
M

BA
DA

LA
M

BA
DA

 C
LO

ZE
M

ul
tiR

c
Op

en
Bo

ok
QA

PI
QA

RA
CE RT

E
Tr

iv
ia

QA
W

SC
W

eb
QS W
iC

W
in

oG
ra

nd
e0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Selection Criteria
LLama2-7b
GPTQ FDT16
GPTQ DPPL16
GPTQ PPL16
GPTQall

(b) 4-bit Quantization NLP benchmarks

Figure 11: Detailed view on aggregated values of Tab. 1
when selecting Llama2-7B components to quantize by
metrics.

6777

0 50 100 150 200
No. Quantized Components

0.000

0.005

0.010

0.015

0.020

0.025

SD
T

(
)

FDT
DPPL

PPL
LLM.Int8()

0.00

0.25

0.50

0.75

1.00

1.25

No
. L

LM
.in

t8
()

Ou
tli

er
s (

)1e7

|

(a) Context size of 10 tokens.

0 50 100 150 200
No. Quantized Components

0.00

0.01

0.02

SD
T

(
)

FDT
DPPL

PPL
LLM.Int8()

0.00

0.25

0.50

0.75

1.00

1.25

No
. L

LM
.in

t8
()

Ou
tli

er
s (

)1e7

|

(b) Context size of 25 tokens.

0 50 100 150 200
No. Quantized Components

0.00

0.01

0.02

SD
T

(
)

FDT
DPPL

PPL
LLM.Int8()

0.00

0.25

0.50

0.75

1.00

1.25

No
. L

LM
.in

t8
()

Ou
tli

er
s (

)1e7

|

(c) Context size of 50 tokens.

0 50 100 150 200
No. Quantized Components

0.00

0.01

0.02

0.03

SD
T

(
)

FDT
DPPL

PPL
LLM.Int8()

0.0

0.5

1.0

1.5

No
. L

LM
.in

t8
()

Ou
tli

er
s (

)1e7

|

(d) Context size of 200 tokens.

0 50 100 150 200
No. Quantized Components

0.000
0.005
0.010
0.015
0.020
0.025

SD
T

(
)

FDT
DPPL

PPL
LLM.Int8()

0.0

0.5

1.0

1.5

No
. L

LM
.in

t8
()

Ou
tli

er
s (

)1e7

|

(e) Context size of 300 tokens.

0 50 100 150 200
No. Quantized Components

0.000

0.005

0.010

0.015

0.020

0.025

SD
T

(
)

FDT
DPPL

PPL
LLM.Int8()

0.0

0.5

1.0

1.5

No
. L

LM
.in

t8
()

Ou
tli

er
s (

)1e7

|

(f) Context size of 400 tokens.

Figure 12: Greedy Search Tree results for different context sizes.

AR
C-

Ch
al

le
ng

e
AR

C-
Ea

sy
Bo

ol
Q

CO
PA

He
lla

sw
ag

LA
M

BA
DA

LA
M

BA
DA

 C
LO

ZE
M

ul
tiR

c
Op

en
Bo

ok
QA

PI
QA

RA
CE RT

E
Tr

iv
ia

QA
W

SC
W

eb
QS W
iC

W
in

oG
ra

nd
e

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Selection Criteria
Llama2-13b
60% FDT
60% unif.
75% FDT
75% unif.
80% FDT

Figure 13: Detailed view on aggregated values of Tab. 1
when selecting Llama2-13B components to sparsify by
metrics.

6778

0 50 100 150 200
No. Quantized Components

0.000

0.005

0.010

0.015

0.020

0.025

SD
T

(
)

Tree Search FDT
Greedy Search FDT

LLM.Int8()

0.00

0.25

0.50

0.75

1.00

1.25

No
. L

LM
.in

t8
()

Ou
tli

er
s (

)

1e7

|

(a) FDT tree vs greedy

0 50 100 150 200
No. Quantized Components

0.005

0.010

0.015

0.020

0.025

0.030

SD
T

(
)

Tree Search DPPL
Greedy Search DPPL

LLM.Int8()

0.00

0.25

0.50

0.75

1.00

1.25

No
. L

LM
.in

t8
()

Ou
tli

er
s (

)

1e7

|

(b) DPPL tree vs greedy

0 50 100 150 200
No. Quantized Components

0.005

0.010

0.015

0.020

0.025

0.030

SD
T

(
)

Tree Search PPL
Greedy Search PPL

LLM.Int8()

0.00

0.25

0.50

0.75

1.00

1.25

No
. L

LM
.in

t8
()

Ou
tli

er
s (

)

1e7

|

(c) PPL tree vs greedy

Figure 14: Comparison of performance when selecting components by the tree-search as described to greedy
selection of once evaluated components for all discussed metrics. Clearly, FDT is most stable until 150 components.

0 50 100 150 200
No. Quantized Components

0.00

0.01

0.02

SD
T

(
)

FDT
DPPL

PPL
LLM.Int8()

0.00

0.25

0.50

0.75

1.00

1.25

No
. L

LM
.in

t8
()

Ou
tli

er
s (

)1e7

|

(a) Mean sorted greedy tree with 50 context tokens.

0 50 100 150 200
No. Quantized Components

0.00

0.01

0.02

SD
T

(
)

FDT
DPPL

PPL
LLM.Int8()

0.00

0.25

0.50

0.75

1.00

1.25

No
. L

LM
.in

t8
()

Ou
tli

er
s (

)1e7

|

(b) Std=0.25 sorted components with 50 context tokens.

0 50 100 150 200
No. Quantized Components

0.00

0.01

0.02

0.03

SD
T

(
)

FDT
DPPL

PPL
LLM.Int8()

0.00

0.25

0.50

0.75

1.00

1.25

No
. L

LM
.in

t8
()

Ou
tli

er
s (

)1e7

|

(c) Mean sorted greedy tree with 100 context tokens.

0 50 100 150 200
No. Quantized Components

0.00

0.01

0.02

SD
T

(
)

FDT
DPPL

PPL
LLM.Int8()

0.00

0.25

0.50

0.75

1.00

1.25

No
. L

LM
.in

t8
()

Ou
tli

er
s (

)1e7

|

(d) Std=0.25 sorted components with 100 context tokens.

Figure 15: Comparing the ranking of the components based on mean or standard deviation.

6779

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Layer

MLP Gate

MLP Down

MLP Up

A. Key

A. Value

A. Query

A. Dense

Co
m

po
ne

nt
Selection Criteria

DPPL
PPL
FDT

(a) The 150 selected components selected by metrics for 8-bit AbsMax conversion.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Layer

MLP Gate

MLP Down

MLP Up

A. Key

A. Value

A. Query

A. Dense

Co
m

po
ne

nt

Selection Criteria
DPPL
PPL
FDT

(b) The 16 selected components selected by metrics for 4-bit GPTQ conversion.

Figure 16: Detailed view of the Llama2-7B components in Tab. 1 selected by metrics for lower precision conversion.

Prefix:
‘Where On June 19 , 1865 , Union General Gordon Granger , standing on its balcony , read the contents of
“ General Order No. 3 ” , thereby emancipating all slaves in the state of Texas . St. Joseph ’ s Church was
built by German immigrants in 1859 @-@ 60 and is the oldest wooden church building in Galveston and
the oldest German Catholic Church in Texas . The church was ’
Ground-truth:
‘dedicated in April 1860 , to St. Joseph , the patron saint of laborers . The building is a wooden gothic
revival structure , rectangular with a square bell tower with trefoil window . The U.S. Custom House
began construction in 1860 and was completed in 1861 . The Confederate Army occupied the building
during the American Civil War , In 1865 , the Custom House was the site of the’
Llama2-7B completion:
‘built in the Gothic Revival style , and its bell tower has a spire that rises 125 feet . The church is located
in the East End Historic District , which is listed on the National Register of Historic Places . The church
was added to the National Register of Historic Places in 1975 . The Strand National Historic Landmark
District is a National Historic Landmark District in Galveston , Texas , United States . It is located on the
Strand ,’
LLM.int8(Llama2-7B) completion:
‘originally located on 25th Street between Broadway and Strand Street in Galveston . It was moved to
its present location in 1892 . The church was designated a Recorded Texas Historic Landmark in 1964 ,
listed on the National Register of Historic Places in 1975 , and designated a National Historic Landmark
in 2000 . The Galveston Daily News Building is a historic commercial building in Galveston , Texas .’

Table 2: Example of a Wikitext2 probe as used to determined the FDT value. It can be observed that the fully
LLM.int8 compressed model, though having only minor differences in the NLP and PPL benchmarks, substantially
alters the original model completion, starting at the very first token.

6780

0 100 200 300 400 500
FDT

Layer: 0 Module: A. Dense
Layer: 0 Module: A. Key

Layer: 0 Module: A. Query
Layer: 0 Module: A. Value

Layer: 0 Module: MLP Down
Layer: 0 Module: MLP Gate

Layer: 0 Module: MLP Up
Layer: 1 Module: A. Dense

Layer: 1 Module: A. Key
Layer: 1 Module: A. Query
Layer: 1 Module: A. Value

Layer: 1 Module: MLP Down
Layer: 1 Module: MLP Gate

Layer: 1 Module: MLP Up
Layer: 2 Module: A. Dense

Layer: 2 Module: A. Key
Layer: 2 Module: A. Query
Layer: 2 Module: A. Value

Layer: 2 Module: MLP Down
Layer: 2 Module: MLP Gate

Layer: 2 Module: MLP Up
Layer: 3 Module: A. Dense

Layer: 3 Module: A. Key
Layer: 3 Module: A. Query
Layer: 3 Module: A. Value

Layer: 3 Module: MLP Down
Layer: 3 Module: MLP Gate

Layer: 3 Module: MLP Up
Layer: 4 Module: A. Dense

Layer: 4 Module: A. Key
Layer: 4 Module: A. Query
Layer: 4 Module: A. Value

Layer: 4 Module: MLP Down
Layer: 4 Module: MLP Gate

Layer: 4 Module: MLP Up
Layer: 5 Module: A. Dense

Layer: 5 Module: A. Key
Layer: 5 Module: A. Query
Layer: 5 Module: A. Value

Layer: 5 Module: MLP Down
Layer: 5 Module: MLP Gate

Layer: 5 Module: MLP Up
Layer: 6 Module: A. Dense

Layer: 6 Module: A. Key
Layer: 6 Module: A. Query
Layer: 6 Module: A. Value

Layer: 6 Module: MLP Down
Layer: 6 Module: MLP Gate

Layer: 6 Module: MLP Up
Layer: 7 Module: A. Dense

Layer: 7 Module: A. Key
Layer: 7 Module: A. Query
Layer: 7 Module: A. Value

Layer: 7 Module: MLP Down
Layer: 7 Module: MLP Gate

Layer: 7 Module: MLP Up
Layer: 8 Module: A. Dense

Layer: 8 Module: A. Key
Layer: 8 Module: A. Query
Layer: 8 Module: A. Value

Layer: 8 Module: MLP Down
Layer: 8 Module: MLP Gate

Layer: 8 Module: MLP Up
Layer: 9 Module: A. Dense

Layer: 9 Module: A. Key
Layer: 9 Module: A. Query
Layer: 9 Module: A. Value

Layer: 9 Module: MLP Down
Layer: 9 Module: MLP Gate

Layer: 9 Module: MLP Up
Layer: 10 Module: A. Dense

Layer: 10 Module: A. Key
Layer: 10 Module: A. Query
Layer: 10 Module: A. Value

Layer: 10 Module: MLP Down
Layer: 10 Module: MLP Gate

Layer: 10 Module: MLP Up
Layer: 11 Module: A. Dense

Layer: 11 Module: A. Key
Layer: 11 Module: A. Query
Layer: 11 Module: A. Value

Layer: 11 Module: MLP Down
Layer: 11 Module: MLP Gate

Layer: 11 Module: MLP Up
Layer: 12 Module: A. Dense

Layer: 12 Module: A. Key
Layer: 12 Module: A. Query
Layer: 12 Module: A. Value

Layer: 12 Module: MLP Down
Layer: 12 Module: MLP Gate

Layer: 12 Module: MLP Up
Layer: 13 Module: A. Dense

Layer: 13 Module: A. Key
Layer: 13 Module: A. Query
Layer: 13 Module: A. Value

Layer: 13 Module: MLP Down
Layer: 13 Module: MLP Gate

Layer: 13 Module: MLP Up
Layer: 14 Module: A. Dense

Layer: 14 Module: A. Key
Layer: 14 Module: A. Query
Layer: 14 Module: A. Value

Layer: 14 Module: MLP Down
Layer: 14 Module: MLP Gate

Layer: 14 Module: MLP Up
Layer: 15 Module: A. Dense

Layer: 15 Module: A. Key
Layer: 15 Module: A. Query
Layer: 15 Module: A. Value

Layer: 15 Module: MLP Down
Layer: 15 Module: MLP Gate

Layer: 15 Module: MLP Up
Layer: 16 Module: A. Dense

Layer: 16 Module: A. Key
Layer: 16 Module: A. Query
Layer: 16 Module: A. Value

Layer: 16 Module: MLP Down
Layer: 16 Module: MLP Gate

Layer: 16 Module: MLP Up
Layer: 17 Module: A. Dense

Layer: 17 Module: A. Key
Layer: 17 Module: A. Query
Layer: 17 Module: A. Value

Layer: 17 Module: MLP Down
Layer: 17 Module: MLP Gate

Layer: 17 Module: MLP Up
Layer: 18 Module: A. Dense

Layer: 18 Module: A. Key
Layer: 18 Module: A. Query
Layer: 18 Module: A. Value

Layer: 18 Module: MLP Down
Layer: 18 Module: MLP Gate

Layer: 18 Module: MLP Up
Layer: 19 Module: A. Dense

Layer: 19 Module: A. Key
Layer: 19 Module: A. Query
Layer: 19 Module: A. Value

Layer: 19 Module: MLP Down
Layer: 19 Module: MLP Gate

Layer: 19 Module: MLP Up
Layer: 20 Module: A. Dense

Layer: 20 Module: A. Key
Layer: 20 Module: A. Query
Layer: 20 Module: A. Value

Layer: 20 Module: MLP Down
Layer: 20 Module: MLP Gate

Layer: 20 Module: MLP Up
Layer: 21 Module: A. Dense

Layer: 21 Module: A. Key
Layer: 21 Module: A. Query
Layer: 21 Module: A. Value

Layer: 21 Module: MLP Down
Layer: 21 Module: MLP Gate

Layer: 21 Module: MLP Up
Layer: 22 Module: A. Dense

Layer: 22 Module: A. Key
Layer: 22 Module: A. Query
Layer: 22 Module: A. Value

Layer: 22 Module: MLP Down
Layer: 22 Module: MLP Gate

Layer: 22 Module: MLP Up
Layer: 23 Module: A. Dense

Layer: 23 Module: A. Key
Layer: 23 Module: A. Query
Layer: 23 Module: A. Value

Layer: 23 Module: MLP Down
Layer: 23 Module: MLP Gate

Layer: 23 Module: MLP Up
Layer: 24 Module: A. Dense

Layer: 24 Module: A. Key
Layer: 24 Module: A. Query
Layer: 24 Module: A. Value

Layer: 24 Module: MLP Down
Layer: 24 Module: MLP Gate

Layer: 24 Module: MLP Up
Layer: 25 Module: A. Dense

Layer: 25 Module: A. Key
Layer: 25 Module: A. Query
Layer: 25 Module: A. Value

Layer: 25 Module: MLP Down
Layer: 25 Module: MLP Gate

Layer: 25 Module: MLP Up
Layer: 26 Module: A. Dense

Layer: 26 Module: A. Key
Layer: 26 Module: A. Query
Layer: 26 Module: A. Value

Layer: 26 Module: MLP Down
Layer: 26 Module: MLP Gate

Layer: 26 Module: MLP Up
Layer: 27 Module: A. Dense

Layer: 27 Module: A. Key
Layer: 27 Module: A. Query
Layer: 27 Module: A. Value

Layer: 27 Module: MLP Down
Layer: 27 Module: MLP Gate

Layer: 27 Module: MLP Up
Layer: 28 Module: A. Dense

Layer: 28 Module: A. Key
Layer: 28 Module: A. Query
Layer: 28 Module: A. Value

Layer: 28 Module: MLP Down
Layer: 28 Module: MLP Gate

Layer: 28 Module: MLP Up
Layer: 29 Module: A. Dense

Layer: 29 Module: A. Key
Layer: 29 Module: A. Query
Layer: 29 Module: A. Value

Layer: 29 Module: MLP Down
Layer: 29 Module: MLP Gate

Layer: 29 Module: MLP Up
Layer: 30 Module: A. Dense

Layer: 30 Module: A. Key
Layer: 30 Module: A. Query
Layer: 30 Module: A. Value

Layer: 30 Module: MLP Down
Layer: 30 Module: MLP Gate

Layer: 30 Module: MLP Up
Layer: 31 Module: A. Dense

Layer: 31 Module: A. Key
Layer: 31 Module: A. Query
Layer: 31 Module: A. Value

Layer: 31 Module: MLP Down
Layer: 31 Module: MLP Gate

Layer: 31 Module: MLP Up

Co
m

po
ne

nt

AbsMax

0 100 200 300 400 500
FDT

LLM.int8()

0 100 200 300 400 500
FDT

GPTQ (8bit)

0 100 200 300 400 500
FDT

GPTQ (4bit)

Figure 17: Full view of the influence of individual componentwise quantization measured by FDT.

6781

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Layer

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ar

sit
y

A. Query A. Key A. Value A. Dense MLP Up MLP Down MLP Gate
Component

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ar

sit
y

First-half
Second-half

Figure 18: Distribution of 75% average model sparsity.
A. denotes Attention. Top: Aggregated by layers. The
first and last layer have highest variance (MLP most
important, cf. Fig. 4b). Second half reaches sparsities
close component removal. Bottom: Per component
aggregation. In the second half of layers, the importance
of attention drops drastically. MLP almost remains, with
outliers to larger importance.

Figure 19: Trends during sparsification. We plot the
ranking of the components FDT value through various
sparsity levels (y-axis) for all components (x-axis). In-
terestingly, there is a clear trend of components retaining
“their importance”.

1k vs 5k

0

2

4

6

8

10

de
vi

at
io

n

Figure 20: Boxplot of the absolute differences inMF75

value for 1000 experiments comparing aggregating with
1k and 5k samples of F75 values.

Figure 21: Boxplot shows FDT value (y-axis) for 1000
samples of the original Wikitext2 completions and
LLama2-13b completions.

6782

Figure 22: In style of Fig. 17, Boxplots of the FDT
value for all components, when pruning the lowest 60%
weights of a single at once for Llama-13B. Almost de-
picting a sinus curve, “most equal” relevance of compo-
nents appear in the middle of the model. The first and
last layers are dominated by outliers, i.p., MLP Up and
A. Dense.

6783

