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Abstract

Large language models (LLMs) have shown re-
markable adaptability to diverse tasks, by lever-
aging context prompts containing instructions,
or minimal input-output examples. However,
recent work revealed they also exhibit label
bias—an undesirable preference toward pre-
dicting certain answers over others. Still, de-
tecting and measuring this bias reliably and at
scale has remained relatively unexplored. In
this study, we evaluate different approaches
to quantifying label bias in a model’s predic-
tions, conducting a comprehensive investiga-
tion across 279 classification tasks and ten
LLMs. Our investigation reveals substantial
label bias in models both before and after debi-
asing attempts, as well as highlights the im-
portance of outcomes-based evaluation met-
rics, which were not previously used in this re-
gard. We further propose a novel label bias cal-
ibration method tailored for few-shot prompt-
ing, which outperforms recent calibration ap-
proaches for both improving performance and
mitigating label bias. Our results emphasize
that label bias in the predictions of LLMs re-
mains a barrier to their reliability.1

1 Introduction

Large language models (LLMs) have demonstrated
impressive abilities in adapting to new tasks when
conditioned on a context prompt, containing task-
solving instructions (Wei et al., 2022) or few exam-
ples of input-output pairs (Brown et al., 2020). Still,
recent work has shown that predictions of LLMs
exhibit label bias—a strong, undesirable prefer-
ence towards predicting certain answers over oth-
ers (Zhao et al., 2021; Chen et al., 2022; Fei et al.,
2023, see Fig. 1). Such preferences were shown to
be affected by the choice and order of in-context
demonstrations (Liu et al., 2022; Lu et al., 2022),
the model’s pretraining data (Dong et al., 2022), or

1We release our code at https://github.com/
schwartz-lab-NLP/label-bias.

Figure 1: LLMs exhibit label bias—a tendency to output
a given label regardless of the context and input (in this
example, ‘yes’ over ‘no’). In this work we evaluate
LLM label bias across ten LLMs and 279 classification
tasks, showing label bias is a major problem in LLMs.

textual features of the task data (Fei et al., 2023).
Consequently, several approaches were proposed
to address this problem, mostly by calibrating the
model’s output probabilities to compensate for this
bias (Zhao et al., 2021; Fei et al., 2023).

Despite these efforts, label bias evaluation relies
on performance metrics such as accuracy, rather
than metrics designed to directly quantify the bias.
In doing so, we might inadvertently overlook cru-
cial aspects of model behavior. Indeed, although
a given method could effectively improve perfor-
mance, substantial bias might still persist in the
model’s predictions—deeming the method insuffi-
cient and the model unreliable. Alternatively, per-
formance could remain relatively unchanged, but
with the bias mostly removed.

In this work, we take a step towards a more
comprehensive understanding of the extent of la-
bel bias in LLMs and the effects of mitigation ap-
proaches. Using metrics to directly measure the
label bias in model predictions, which we derive
from previous work on fairness and label bias esti-
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mation, we evaluate ten LLMs on 279 diverse clas-
sification and multiple-choice tasks from SUPER-
NATURALINSTRUCTIONS (Wang et al., 2022). We
examine both performance and bias along axes
such as scale and number of in-context demon-
strations. We also evaluate the impact of label bias
mitigation methods, such as calibration and few-
shot LoRA fine-tuning (Hu et al., 2022).

Our investigation reveals substantial label bias
in the predictions of LLMs across all evaluated
settings, indicating that raw LLM output scores
often represent simple, heuristic solutions. While
increasing model size, providing in-context demon-
strations, and instruction-tuning all contribute to
reducing bias, ample bias persists, even after apply-
ing mitigation methods. Surprisingly, these results
also hold for tasks where the labels are all seman-
tically equivalent (e.g., in multi-choice question
answering). Further, although the examined cali-
bration methods can reduce bias and improve per-
formance, we also find cases where they negatively
impact both bias and overall performance.

Motivated by these findings, we propose a novel
calibration method for few-shot prompting that
more accurately estimates a model’s label bias, us-
ing only its predictions on the in-context demonstra-
tions. Compared to existing LLM bias calibration
methods, our method improves performance while
also removing considerably more bias.

Our findings highlight the necessity of consid-
ering and measuring biases in the predictions of
LLMs when evaluating their performance. More-
over, adjusting models to their tasks through more
accurate and effective estimation of biases holds
promise for improving the reliability of LLMs and
their applications.

2 LLM Label Bias

Our objective is to broaden the understanding of
label bias in LLMs and the effectiveness of miti-
gation strategies, focusing on classification tasks.
In this section, we define metrics designed to quan-
tify bias in model predictions, providing a nuanced
examination of label bias that extends beyond tradi-
tional performance metrics. We describe the setting
of label bias in in-context learning (§2.1), briefly
outline methods to mitigate it (§2.2), and finally
review approaches to evaluate label bias as well as
define the metrics we use in this work (§2.3).

2.1 Label Bias

When employing LLMs for classification tasks
through prompting, the model is given a test
example x, preceded by a context C. This
context can contain a (potentially empty) set
of examples of the task’s input-output map-
ping rpx1, y1q, . . . , pxk, ykqs, henceforth demon-
strations, and may also include task instructions.
To determine the model’s prediction from a set of
answer choices Y , the likelihood it assigns to each
continuation y P Y is computed, and the highest
probability option is taken as the model prediction:

argmax
yPY ppy | x,Cq

These output probabilities often exhibit label bias,
where the model tends to assign higher probability
to certain answers regardless of the input test ex-
ample x (Fig. 1). Multiple factors were posited to
influence this bias, including the choice of verbaliz-
ers Y , the choice and order of in-context examples
in C, and the overall textual features of task in-
put x (Zhao et al., 2021; Fei et al., 2023).

2.2 Bias Mitigation

The predominant approach to alleviate label bias is
to calibrate the model’s output probabilities post-
hoc, for a specific context prompt C. Such methods
typically first estimate the model’s label bias using
its output probabilities on a set of inputs, which
can be content-free (e.g., “N/A” or random words
from the task’s domain; Zhao et al. 2021; Fei et al.
2023) or ordinary task inputs (Han et al., 2023).
Next, calibration parameters are chosen based on
this estimate, and used to adjust the original out-
put probabilities during inference to generate the
(hopefully unbiased) output.

2.3 Evaluation Measures

Most LLM label bias analysis relies on indirect
assessments. For instance, some work inspected
improvements in overall performance gained after
applying techniques to mitigate it (Fei et al., 2023;
Holtzman et al., 2021; Zhao et al., 2021). However,
these do not indicate the extent of bias originally
present, or that which remains after mitigation. We
next examine approaches to measure this bias more
directly, and define the metrics we use in this work.
Importantly, we focus on label bias measures that
could be used effectively both before and after ap-
plying mitigation techniques such as calibration.
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Drawing from previous research on fairness and
bias in machine learning, we observe that there
are two distinct yet related aspects in which label
bias can be measured in LLM predictions: through
the probabilities assigned by the model to differ-
ent answers, e.g., assigning the label “yes” with
an average output probability of 0.55, while “no”
with 0.45; and through the model’s predictions for
different labels, e.g., achieving a recall of 0.50
for instances labeled “yes”, compared to 0.40 on
“no” (Mehrabi et al., 2021). Below we describe
methods to measure each of these notions of bias.

Probabilistic approach Previous work used
qualitative assessments to visualize model output
distributions on selected datasets (Zhao et al., 2021;
Han et al., 2023). However, these cannot be used
to rigorously evaluate models at larger scales. Re-
cently, Fei et al. (2023) proposed to measure a
model’s label bias by considering two sets of in-
puts: a set of synthetic, content-free task inputs
X̂cf, and inputs consisting of random vocabulary
words X̂rand. For each input, they compute the out-
put probabilities on every label y P Y , and finally
compute the model’s mean predicted probabilities
across both sets, p̂cf and p̂rand:

p̂˚pyq “ 1

|X̂˚|
ÿ

xPX̂˚

ppy | x,Cq

The model’s bias is then defined to be the total vari-
ation distance dTV between the two distributions:

dTV pp̂cf, p̂randq “ 1

2

ÿ

yPY
| p̂cfpyq ´ p̂randpyq |

Importantly, since Fei et al. (2023) also use the
model’s predictions on the content-free inputs X̂cf
to calibrate it, this metric cannot be used to quantify
the label bias remaining after calibration.

In this work, we simplify the computation of
this metric and adapt it to be used after calibra-
tion. First, we hold-out a set of inputs to be used
exclusively for measuring bias. Second, when
estimating the model’s average output probabili-
ties, instead of using synthetic inputs, we use in-
distribution examples held-out from the test set,
X̂i.d. “ ppx1, y1q, . . . , pxm, ymqq. This setup al-
lows to account for label imbalance in the data
used for bias estimation X̂i.d., as the instances in
the test set are all labeled. To do so, we first esti-
mate the model’s output distribution individually
on each subset of examples with gold label ℓ P Y ,

X̂ℓ
i.d. “ tpx, yq P X̂i.d. | y “ ℓu, by computing:

p̂ℓi.d.pyq “ 1

|X̂ℓ
i.d.|

ÿ

xPX̂ℓ
i.d.

ppy | x,Cq

and then set p̂i.d. to be the average of these esti-
mates.2 Instead of p̂rand, we use the uniform dis-
tribution over all answer choices p 1

|Y | , . . . ,
1

|Y | q,
which recent mitigation approaches considered as
the “ideal” and unbiased mean output distribu-
tion (Zhao et al., 2021). Finally, we define the
model’s bias score as the total variation distance
between these two distributions:

BiasScore “ 1

2

ÿ

yPY

∣∣∣∣ p̂i.d.pyq ´ 1

|Y |
∣∣∣∣

Outcomes-based approach When considering
the effects of label bias on model predictions,
strong label bias will likely result in disparities in
task performance on instances of different classes.
However, metrics to assess such disparities were
not used in previous analyses of label bias.

We propose to use the Relative Standard De-
viation of class-wise accuracy (RSD ; Croce et al.
2021; Benz et al. 2021), a metric used for study-
ing fairness in classification. RSD is defined as
the standard deviation of the model’s class-wise
accuracy pacc1, . . . , acc|Y |q, divided by its mean
accuracy acc on the entire evaluation data:3

RSD “
b

1
|Y |

ř|Y |
i“1pacci ´ accq2

acc

Intuitively, RSD is low when model performance is
similar on all classes, and high when it performs
well on some classes but poorly on others.

Discussion We note that each evaluation ap-
proach could detect biases that the other does not.
For example, a slight bias in the model’s average
output probabilities (e.g., 55% vs. 45%) could ren-
der dramatic bias in actual outcomes if the model al-
ways assigns higher probability to some label. Con-
versely, when the output probabilities are biased
on average but the model’s class-wise performance
is balanced, this hidden bias could result in actual
performance disparities on more difficult instances.
We therefore suggest reporting both measures.

2In case examples for an infrequent label ℓ P Y are not
found in X̂i.d., we exclude it from the computation of p̂i.d..

3The goal of this normalization is to enhance the metric’s
interpretability across tasks of varying difficulty.
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3 Experimental Setting

3.1 Datasets

We evaluate models on 279 diverse tasks
from the SUPER-NATURALINSTRUCTIONS bench-
mark (Wang et al., 2022). We select all available
classification and multi-choice question answering
tasks where the output space is a set of predefined
labels, such as “yes/no” or “A/B/C”. We sample
1,000 evaluation examples for all tasks with larger
data sizes, and additionally sample 32 held-out ex-
amples for computing the bias score metric (§2.3),
and 64 more examples to use as a pool of instances
for choosing in-context demonstrations and LoRA
fine-tuning examples. We only include tasks with
at least 300 evaluation examples in our experiments.
For details on the selected tasks, see App. B.

3.2 Models and Evaluation Setup

We experiment with models of different sizes from
three LLM families: Llama-2 7B and 13B (Tou-
vron et al., 2023), Mistral 7B (Jiang et al., 2023a),
and Falcon 7B and 40B (Penedo et al., 2023). We
use both the base and instruction fine-tuned ver-
sions of each model. We evaluate models using
context prompts with k P t0, 2, 4, 8, 16u demon-
strations, and average the results across 3 different
sets of demonstrations for each k. To control the
evaluation budget, we run the more expensive Fal-
con 40B experiments with k P t0, 8, 16u averaged
across 2 sets of demonstrations. We use the task
instructions and prompt template defined in SUPER-
NATURALINSTRUCTIONS. For tasks where the an-
swer choices y P Y have unequal token lengths, we
use length-normalized log-likelihood to compute
the output probabilities (Holtzman et al., 2021).
For additional implementation details, see App. A.

Data contamination During their instruction
tuning, Llama-2 chat models were initially
fine-tuned on the Flan data collection (Chung
et al., 2022; Longpre et al., 2023). As
roughly 20% of Flan consists of examples from
SUPER-NATURALINSTRUCTIONS, our evaluation
of Llama-2 instruction-tuned models is likely af-
fected by data contamination (Magar and Schwartz,
2022). Still, our results show both 7B and 13B
chat models exhibit extensive label bias, possibly
due to later fine-tuning on other data. As it is
unclear from the implementation details of Tou-
vron et al. (2023) which exact instances in SUPER-
NATURALINSTRUCTIONS were included in train-

ing, we do not take extra steps in attempt to reduce
possible overlap and contamination.

3.3 Bias Mitigation Techniques

We evaluate the effects of three label bias mitiga-
tion methods: two calibration methods designed to
correct a model’s label bias by adjusting its output
scores; and few-shot LoRA fine-tuning (Hu et al.,
2022), which adapts the model to the task and its
label distribution. We describe the methods below.

Contextual calibration (CC) Zhao et al. (2021)
proposed to use calibration in order to remove the
label bias arising from the context prompt C and
the model’s pretraining. Inspired by confidence
calibration methods (Guo et al., 2017), they define
a matrix W that is applied to the model’s original
output probabilities p during inference to obtain cal-
ibrated, debiased probabilities q “ softmaxpWpq.
To determine the calibration parameters W , they
first estimate the bias by computing the model’s
average predicted probabilities p̂ on a small set
of “placeholder” content-free input strings, such
as “N/A”, which replace the ordinary task input
that follows C.4 Finally, they set W “ diagpp̂q´1,
which ensures that the output class probabilities for
the average content-free input are uniform, aiming
to reduce bias on unseen examples.

Domain-context calibration (DC) Following
CC, Fei et al. (2023) proposed to estimate and mit-
igate the label bias arising from the textual distri-
bution of the task’s domain, by using task-specific
content-free inputs to compute p̂. They construct
such inputs by sampling and concatenating L ran-
dom words from the test set, where L is the average
instance input length in the data. They repeat this
process 20 times, and set p̂ to be the average output
probabilities over all examples. Given a test exam-
ple with original output probabilities p, they then
use the calibrated probabilities q “ softmaxpp{p̂q.

Few-shot fine-tuning Finally, we experiment
with few-shot, parameter-efficient fine-tuning for
adapting LLMs to a given task’s label distribution,
thus potentially mitigating label bias. We fine-tune
task-specific models for each context prompt us-
ing Low-Rank Adapation (LoRA; Hu et al., 2022),
training adapters on 16 held-out training examples
for 5 epochs. Importantly, we use the same context
C during both fine-tuning and evaluation. Due to

4As in the original implementation, we use “N/A”,
“[MASK]”, and the empty string.
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(a) Performance (Macro-F1) (b) Label bias (RSD ) (c) Label bias (BiasScore)

Figure 2: Performance (higher is better) and label bias metrics (lower is better) for Llama-2 pretrained and
instruction-tuned models (7B/13B). Both performance and RSD improve with scale, instruction tuning, and number
of demonstrations. In contrast, BiasScore is substantially worse after instruction tuning and does not improve when
scaling models up in most evaluated settings.

computational constraints, we only run LoRA on
Llama-2 7B and Mistral 7B, only consider values
of k P p0, 8, 16q, and average across two sets of
demonstrations. See App. A for more details.

4 Quantifying Label Bias in LLMs

4.1 LLMs are Label-Biased
We begin by examining the performance and la-
bel bias of models with and without instruction-
tuning. We report averaged results across all tasks
for Llama-2 models in Fig. 2. Results for other
models show similar trends (see App. C.1).

We first verify that, as expected, model perfor-
mance (Fig. 2a) substantially improves with scale,
with instruction tuning and with the number of
demonstrations. We then consider the two bias
metrics—RSD (Fig. 2b) and BiasScore (Fig. 2c).
We observe that label bias is substantial across most
evaluated settings: When prompted with two or
no demonstrations, all models obtain high RSD
values of 0.6 or more, with base models obtain-
ing even higher values around 0.9. This implies a
widespread disparity in model performance across
classes in many of the evaluated tasks, and indi-
cates that for most tasks, models primarily succeed
on instances of certain classes, while consistently
failing on others. Increasing the number of demon-
strations to 8 helps reduce the bias, but RSD re-
mains substantial at around 0.4, and adding further
demonstrations results in little to no improvement.

Similarly, we find BiasScore improves consid-
erably when using sufficient demonstrations, with
models obtaining values as high as 0.25 when us-
ing no demonstrations, to around 0.05 for the best
model and setting. High BiasScore values indicate
the model is uncalibrated, and tends to make overly
confident predictions on certain labels regardless

of the input. Although BiasScore can be relatively
small for some models—indicating their average
output distribution is close to uniform—when ob-
served together with high RSD , it implies that the
model subtly but persistently assigns more prob-
ability mass to the preferred labels, resulting in
substantial bias.

4.2 Differences between the Bias Measures

We further observe that, interestingly, both bias
metrics show divergent trends. Although RSD val-
ues, much like model performance, sharply im-
prove after instruction-tuning, the resulting models’
BiasScore is often higher than their base counter-
parts. Similarly, while RSD improves with scaling,
the BiasScore of smaller models is lower.

We note that higher performance together with
lower RSD means that the model’s performance
has improved across most classes. In contrast,
higher BiasScore indicates that its average pre-
dicted probabilities grew farther than uniform.
Taken together, this implies that the scaled-up and
instruction-tuned models are making more confi-
dent predictions on some classes, but not on others.
This could mean more confident correct predic-
tions on the preferred classes, or more confidently
wrong predictions on others (or both). Altogether,
this suggests more subtle forms of bias persist after
instruction-tuning or scaling up (Tal et al., 2022).

Overall, we find the two metrics to be compli-
mentary due to their measurement of different as-
pects of label bias. We hence use both in further
experiments to provide a more comprehensive un-
derstanding of label bias in model predictions.
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(a) Macro-F1 (b) RSD (c) Bias Score

Figure 3: The effect of label bias mitigation methods on performance and bias for Llama-2 models. CC improves
neither performance nor bias; DC and LoRA fine-tuning improve both; our Leave-One-Out Calibration (LOOC)
method leads to the best performance among the calibration methods, and the overall lowest bias for k P t8, 16u.

4.3 Label Bias Persists after Mitigation

We have seen that LLMs demonstrate extensive
label bias across different models, scales and
tasks (§4.1). We next examine techniques aimed
at mitigating such bias, and assess the extent of
label bias remaining after their application. We
report our results for Llama-2 models in Fig. 3, and
observe similar trends for other models (App. C.2).

We first consider the effect of bias mitigation
on model performance (Fig. 3a) using the three
methods described in §3.3: contextual calibration
(CC), domain-context calibration (DC), and few-
shot fine-tuning with LoRA. Compared to stan-
dard prompting (black lines), we find that applying
CC (orange) provides little to no gains. More-
over, it can even undermine model performance,
especially for instruction-tuned models, as previ-
ously observed by Fei et al. (2023). In contrast,
DC (purple) can provide substantial performance
gains, especially when using few or no in-context
demonstrations, where baseline performance is rel-
atively low. However, when calibrating instruction-
tuned models prompted with a higher number of
demonstrations, we find that DC mostly fails to
improve performance. Finally, LoRA considerably
improves performance in all cases (green in Fig. 3,
upper row), vastly outperforming both CC and DC.

We next turn to measure label bias (Fig. 3b
and 3c). Notably, here we observe that for the
two calibration methods, changes in both RSD and

BiasScore are correlated with changes in perfor-
mance. We find that CC substantially worsens
label bias in instruction-tuned models, and can
also increase bias for base models. Conversely,
while DC alleviates bias in many of the evaluated
settings, it is largely unsuccessful in mitigating it
when prompting instruction-tuned models with 8
or more demonstrations. LoRA proves effective
for improving RSD in all settings, but RSD values
still remain relatively high. In contrast, BiasScore
noticeably increases after LoRA fine-tuning, indi-
cating that more subtle bias persists.

Overall, our results indicate that existing bias
calibration approaches are insufficient for dimin-
ishing label bias in essential cases, particularly for
instruction-tuned models. Further, while LoRA
fine-tuning is effective in both improving per-
formance and mitigating certain aspects of bias
(though not others), it is also considerably more
computationally expensive than calibration.

5 Mitigating Label Bias by Calibrating on
Demonstrations

Motivated by the challenges of existing calibration
approaches on instruction-tuned models (§4.3), we
aim to develop an effective calibration method for
such scenarios. We hypothesize a possible cause
for such difficulties is that the inputs used for cal-
ibration in CC and DC are very distinct from the
more curated, high-quality inputs models observe
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during instruction-tuning (Touvron et al., 2023).5

Seeking to use more naturally-occurring inputs,
and to avoid any reliance on additional held-out
examples, we propose to calibrate models using the
in-context examples readily available in few-shot
prompts. We therefore need to obtain the model’s
output probabilities on these inputs to estimate its
bias. However, as these examples appear alongside
their labels in the context provided to the model,
it could simply copy the correct answer from the
prompt, leading to unreliable bias estimates. We
introduce a simple method to alleviate this concern.

Leave-One-Out Calibration (LOOC) Our goal
is to estimate the model’s average output proba-
bilities p̂ at test-time by using the k demonstra-
tions rpx1, y1q, . . . , pxk, ykqs provided in the con-
text C, and then use it for calibration. Drawing
from leave-one-out cross-validation, when evaluat-
ing the model on the i-th demonstration’s input xi,
we prompt it with an edited context C´i comprised
of the original context C after removing the current
demonstration pxi, yiq, resulting in k ´ 1 demon-
strations.6 We thus obtain k output probabilities:

pipyq “ ppy | xi, C´iq
To reliably estimate p̂, we further need to account
for the demonstrations’ labels yi: for imbalanced
choices of demonstrations (e.g., class imbalance),
using the average of pi’s could lead to an underes-
timation of the probability assigned to infrequent
labels. We therefore compute the average output
probabilities p̂ by taking into account the labels
yi, as we do for computing BiasScore (§2.3): We
first average pi’s associated with the same label ℓ,
Dℓ “ tpi | yi “ ℓu, and then set p̂ as the mean of
these intra-label averages:

p̂pyq “ 1

|Y |
ÿ

ℓPY

¨
˝ 1

|Dℓ|
ÿ

yiPDℓ

pipyq
˛
‚

Finally, we use p̂ to compute calibration parameters
and score new examples using the same method-
ology as Zhao et al., 2021 (§3.3). We refer to our
method as Leave-One-Out Calibration (LOOC).

Results We use LOOC to calibrate models in
the same setup of §4.3. We report our results for

5Specifically, nonsensical task inputs made up of random
words as in DC, or placeholder-like strings as in CC, are less
likely to be observed during instruction tuning.

6We leave all other demonstrations in their original order.

Llama-2 models in Fig. 3 (cyan lines), finding sim-
ilar trends in other models (App. C.2). Compar-
ing our method to other calibration approaches,
we find LOOC surpasses CC and DC by a wide
margin in both performance and bias metrics for
prompts with k “ 8, 16 demonstrations. Impor-
tantly, using LOOC to calibrate instruction-tuned
models in this setting dramatically improves upon
the uncalibrated model, whereas other calibration
methods fail to achieve meaningful gains (§4.3).
Further, LOOC nearly closes the gap with LoRA-
level performance while improving upon it in both
bias metrics, yet uses substantially less compute.

As LOOC relies on the in-context demonstra-
tions for bias estimation, k needs to be sufficiently
large for calibration to succeed. Surprisingly, we
find that with as few as k “ 4 demonstrations, our
method is often comparable to the next best cali-
bration method on all metrics. Finally, we note that
while our method can substantially reduce label
bias compared to other approaches, the remaining
RSD is still considerable, indicating that model
performance is still biased on some tasks.

6 Analysis

We study the effect of different factors on the extent
of label bias in model predictions: the semantic
meaning of the task labels (§6.1), the level of label
imbalance in the demonstrations (§6.2), and the
choice of demonstrations (§6.3).

6.1 Semantically Equivalent Labels

The output space for classification tasks often con-
sists of labels with strong semantic meaning (e.g.,
“Positive” vs. “Negative”). Recent work has indi-
cated that, when faced with such labels, models are
affected by semantic priors from their pretraining
or instruction-tuning (Wei et al., 2023; Min et al.,
2022b) that could affect label bias (Fei et al., 2023).

We examine whether models exhibit lower la-
bel bias when the task’s labels are semantically
equivalent and interchangeable. We extract all
multi-choice QA tasks—with label spaces such
as “A/B/C/D” or “1/2/3”—and all sentence com-
pletion tasks, where models choose a logical con-
tinuation for an input text between two options,
usually labeled A and B. This results in 18 tasks
with semantically equivalent labels.

We compare label bias on this subset of tasks
and the entire evaluation suite for Llama-2 models
in Fig. 4, with results for other models largely fol-
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lowing similar trends (App. C.3). We find that, in
most cases, models demonstrate lower label bias on
tasks with semantically equivalent labels. This is
especially evident in settings with few or no demon-
strations, where models are typically strongly bi-
ased (§4.1). Still, RSD levels for such tasks re-
main relatively high across all evaluated settings.
Further, we observe that instruction-tuned models
prompted with 8 or more demonstrations are often
more biased on this subset of tasks. In summary,
although using semantically equivalent labels may
potentially mitigate bias in scenarios with limited
demonstrations, LLMs still exhibit substantial label
bias when faced with such labels.

6.2 Imbalanced In-context Demonstrations

Label imbalance in the in-context demonstra-
tion set was previously shown to amplify label
bias (Zhao et al., 2021) as well as decrease model
performance (Min et al., 2022a), but such results
were derived on a restricted set of tasks. We use
our evaluation suite to investigate the observed la-
bel bias and performance of models when vary-
ing the level of imbalance in the demonstrations.
To establish a consistent definition of label im-
balance across different tasks, we use the subset
of binary classification tasks (N “ 197) with
k “ 8 demonstrations. Given a task with la-
bels L “ tℓA, ℓBu and a context C, we define
pÒ as the proportion of the most frequent label in
the demonstrations of C, such that pÒ attains val-
ues in t0.5, 0.625, 0.75, 0.875, 1.0u. Specifically,
pÒ “ 0.5 means the labels are perfectly balanced,
and pÒ “ 1.0 means the demonstrations only in-
clude examples for one of the labels.

For every task, we prompt Llama-2 (7B/13B)
and Mistral (7B) models using 10 different sets
of demonstrations, with 2 sets for each value of
pÒ: one where ℓA is the most frequent label in C,
and another where ℓB is the most frequent, as well
as two different balanced sets (pÒ “ 0.5).7 We
group measurements taken across different tasks
and demonstration sets by their level of label imbal-
ance pÒ, and inspect the average results per level.

We report our results in Fig. 5. Examining
the two bias metrics, RSD (Fig. 5a) and BiasS-
core (Fig. 5b), we observe that both pretrained and
instruction-tuned models are resistant to label im-
balance: Increased imbalance does not result in

7To build each set, we randomly select and permutate 8
demonstrations from a pool of 16 held-out examples, while
controlling for the selected number of examples per label.

(a) BiasScore

(b) RSD

Figure 4: Label bias metrics for Llama-2 models
(7B/13B), when evaluated on all tasks in our evalua-
tion suite (All) vs. a subset of tasks with semantically
equivalent labels (Sem. Eq. Labels). LLMs exhibit label
bias even on tasks with semantically equivalent labels,
such as multi-choice question answering.

notable gains in bias, unless the imbalance is very
extreme—specifically, when the demonstrations in-
clude only a single or no demonstrations for one of
the labels (pÒ ą 0.75). Interestingly, model perfor-
mance follows the same trends (Fig. 5c). Overall,
our results indicate that for most tasks, the impact
of label imbalance in the demonstrations set is min-
imal, except for cases of severe imbalance.

6.3 Choice of Demonstrations

The performance of LLMs in in-context learning
was shown to be sensitive to the exact choice of
demonstrations used to prompt the model (Liu
et al., 2022; Chang and Jia, 2023). We examine
whether such choices also impact the extent of label
bias in model predictions. We assess the perfor-
mance and bias of Llama-2 (7B/13B) and Mistral
(7B) models across 5 different sets of k “ 8 demon-
strations for each task in our evaluation suite. In
addition to reporting the mean and standard devia-
tion of each metric, we use several oracle methods
to aggregate and choose a specific demonstration
set per task when computing the overall cross-task
performance and bias metrics. Specifically, we se-
lect the demonstration sets that attain the following,
per task: best performance; worst performance;

6791



(a) RSD (b) BiasScore (c) Macro-F1

Figure 5: Label bias and performance metrics for Llama-2 (7B/13B) and Mistral (7B) models, when aggregated by
the level of imbalance in the demonstrations set used for prompting the model, measured by the proportions of its
most frequent label (pÒ). For most tasks, label imbalance has only minor impact on both bias and performance,
unless the imbalance is extreme. Instruction-tuned models are less sensitive to imbalance.

Choice of Demonstrations F1 (Ò) RSD (Ó) BiasScore (Ó)

Mean (SD) 0.47 (˘ 0.088) 0.69 (˘ 0.316) 0.077 (˘ 0.039)

Best Performance 0.565 0.384 0.068
Median Performance 0.478 0.656 0.079
Worst Performance 0.355 1.083 0.071

Least Bias – by RSD 0.553 0.35 0.066
Least Bias – by BiasScore 0.457 0.755 0.024

Most Bias – by RSD 0.358 1.102 0.069
Most Bias – by BiasScore 0.436 0.781 0.119

Table 1: Results of Llama-2 7B base model when
prompted with 5 different sets of demonstration on our
evaluation suite. We employ oracles to aggregate and
compute cross-task results by choosing a specific set
of demonstrations for each task. Label bias is highly
sensitive to the choice of in-context examples.

median performance; least bias; and most bias.
We report our results for Llama-2 7B base

in Tab. 1, with other models showing similar
trends (App. C.4). We find that label bias, similarly
to model performance, is highly sensitive to the
choice of demonstrations, as indicated by the high
variance across sets. Interestingly, the set of demon-
strations that attains the worst performance also
leads to strong bias, and vice-versa. In fact, we find
that performance and bias are anti-correlated, with
strong Pearson correlation for RSD (r “ ´0.74)
and moderate for BiasScore (r “ ´0.30), indicat-
ing that when LLMs underperform in classification,
it is often due to prompts that exacerbate bias. We
leave further research into demonstrations that lead
to biased and unbiased predictions to future work.

7 Related Work

Biases in LLM predictions Recent work has re-
vealed various biases in the predictions of LLMs.
Wang et al. (2023a) showed that models exhibit po-
sitional bias when presented with several texts for
evaluation and ranking. Pezeshkpour and Hruschka

(2023) and Zheng et al. (2024) exposed a similar
bias in multi-choice QA. Si et al. (2023) studied
inductive biases in in-context learning. Compli-
mentary to these works, we study label bias and
seek to improve its evaluation and mitigation.

Calibrating Label Bias in LLMs Recent work
introduced calibration methods to mitigate label
bias in LLMs (Zhao et al., 2021; Fei et al., 2023).
Han et al. (2023) proposed to fit a Gaussian mixture
to the model’s output probabilities and use it for
calibration, but their approach requires hundreds
of labeled examples. Concurrently to our work,
Jiang et al. (2023b) proposed to generate inputs for
calibration by conditioning models on the context
prompt, and Zhou et al. (2023) calibrate models
using model output probabilities on the entire test
set. While the motivation for both methods is sim-
ilar to ours, our approach does not require access
to the test set, or any compute to obtain inputs for
calibration. Importantly, unlike previous work on
bias calibration, our main focus is the evaluation of
label bias in LLMs.

8 Conclusion

The label bias of LLMs severely hinders their re-
liability. We considered different approaches for
quantifying this bias. Through extensive exper-
iments with ten LLMs across 279 classification
tasks, we found that substantial amounts of label
bias exist in LLMs. Moreover, we showed this bias
persists as LLMs increase in scale, are instruction-
tuned, are provided in-context examples, and even
when they are calibrated against such bias. We
proposed a novel calibration method, which outper-
forms existing calibration approaches and reduces
label bias dramatically. Our results highlight the
need to better estimate and mitigate LLM biases.
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Limitations

Model sizes Although we experiment with mod-
els of several sizes, the models we use are all in
the 7B–40B range. We chose not to include rel-
atively small models as these often exhibit poor
performance in prompt-based settings. While re-
cent efforts have released better and more efficient
models, we leave those for future work. We chose
not to experiment with very large LLMs such as
Llama 70B due to limitations in computational re-
sources, and as many of them (e.g., GPT-4) are
closed (Rogers et al., 2023). Therefore, the ex-
tent to which our findings apply to such models is
unclear.

Prompt format Our evaluations are performed
on a large and diverse set of tasks extracted from
SUPER-NATURALINSTRUCTIONS. Still, all tasks
contain similar prefixes before introducing instruc-
tions, demonstrations and task inputs. Furthermore,
each task only has one human-written instruction.
We leave experimentation with more varied formats
and examination of bias across different instruction
phrasings to future work.

Evaluating multilingual tasks To build our eval-
uation suite, we extracted tasks from SUPER-
NATURALINSTRUCTIONS, focusing only on En-
glish tasks. We leave analysis on label bias for
multilingual tasks to future work.
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A Experimental Setting

Our implementation and pretrained model check-
points use the Huggingface Transformers li-
brary (Wolf et al., 2020). Our code for model
evaluation on SUPER-NATURALINSTRUCTIONS

is based on the code from Wang et al. (2023b).

Inference When running inference, we load all
models using bf16, except for Falcon-40B, which
we load using 8-bit inference. We evaluate models
using a maximum sequence length of 1024. When
incorporating in-context demonstrations into the
prompt, the demonstrations are added one by one
until the maximal sequence length is reached, while
ensuring enough space remains for the input of

the evaluated example. Any remaining demonstra-
tions exceeding this length are excluded from the
prompt. Consequently, when evaluating tasks with
k demonstrations, the contexts for tasks with very
long inputs may contain fewer than k demonstra-
tions. In our experiment detailed in §6.2, which
investigates the impact of label imbalance in the
demonstrations set on label bias, we use a sequence
length of 2048 and only analyze results for tasks
where the prompt contains precisely k demonstra-
tions, excluding other instances from our reported
findings.

Compute We run all experiments on Quadro
RTX 6000 (24GB) and RTX A6000 (48GB) GPUs,
except for Falcon-40B experiments, which we run
on A100 GPUs. Average inference run-times on
our entire evaluation suite is 18 hours for 7B mod-
els, 24 hours for 13B models, and 24 hours for 40B
models. Running LoRA fine-tuning along with in-
ference for 7B models takes 26 hours. Computing
calibration parameters, including running inference
on inputs required for calibration, takes around 30
minutes to 2 hours for each model, depending on
the method used.

LoRA hyperparameters We use all of the hy-
perparamets used by Dettmers et al. (2023) when
fine-tuning on SUPER-NATURALINSTRUCTIONS,
except for using bf16 training instead of 8-bit, a
warm-up rate of 0.0, and 5 training epochs. Specifi-
cally, we use a learning rate of 0.002, LoRA r “ 64
and LoRA α “ 16.

B Evaluation Suite

We evaluate models on a subset of 279 tasks
from the SUPER-NATURALINSTRUCTIONS bench-
mark (Wang et al., 2022). We use up to 1000 eval-
uation examples for each task. Altogether, our
evaluation set consists of 264,176 examples.

We detail the categories of the selected tasks
along with the number of tasks corresponding to
each category in Tab. 2. We also report the distribu-
tion of the number of labels across tasks in Tab. 3,
as well as the 20 most frequent labels in Tab. 4.

C Supplementary Results

C.1 Performance and Label Bias

We provide additional results for the performance
and label bias of models (§4.1) for Mistral (Fig. 8)
and Falcon (Fig. 9) models.
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C.2 Bias Mitigation Methods
We present additional results for the impact of bias
mitigation methods (§4.3) for Mistral (Fig. 10) and
Falcon (Fig. 11) models.

C.3 Semantically Equivalent Labels
We present additional results for the analysis on
label bias for tasks with semantically equivalent
labels (§6.1) for Mistral (Fig. 6) and Falcon (Fig. 7)
models.

C.4 Choice of Demonstrations
We present additional results for the analysis on the
sensitivity of label bias to the choice of in-context
examples (§6.3). We report separate results for
each model: Llama-2 7B chat (Tab. 5), Llama-
2 13B base (Tab. 6), Llama-2 13B chat (Tab. 7),
Mistral 7B base (Tab. 8), and Mistral 7B in-
struct (Tab. 9).

Task Category # of Tasks # of Instances

Sentiment Analysis 39 37748
Text Categorization 30 27652

Toxic Language Detection 25 24114
Commonsense Classification 23 22239

Textual Entailment 15 14613
Question Answering 13 12380

Answerability Classification 12 11286
Text Matching 11 10807

Question Understanding 8 7730
Text Completion 7 7000

Speaker Identification 6 4739
Ethics Classification 6 5501

Text Quality Evaluation 6 6000
Dialogue Act Recognition 6 5401

Stereotype Detection 6 5627
Cause Effect Classification 5 4200

Word Relation Classification 5 4680
Gender Classification 5 5000

Negotiation Strategy Detection 5 4150
Coherence Classification 5 5000

Answer Verification 4 4000
Information Extraction 4 4000

Dialogue State Tracking 3 2855
Coreference Resolution 3 3000

Linguistic Probing 2 1808
Pos Tagging 2 2000

Irony Detection 2 1933
Word Semantics 2 1210

Text to Code 2 2000
Intent Identification 2 2000

Section Classification 2 2000
Tasks With Unique Categories 13 11503

Total 279 264,176

Table 2: Categories of tasks included in our evalua-
tion suite, based on SUPER-NATURALINSTRUCTIONS,
along with the number of tasks per category and the
total number of instances used for evaluating models.

Answer Choices Number of Tasks

2 39
3 30
4 25
5 23

6-9 14
10+ 8

Table 3: Distribution of the number of labels across
tasks in our evaluation suite.

Label Freq. Label Freq.

no 76 3 14
yes 75 negative 13
1 31 4 10

true 20 c 9
false 20 5 9

b 19 neutral 8
a 19 d 7
2 18 anti-stereotype 5
0 17 stereotype 5

positive 14 pos 5

Table 4: The 20 most frequent labels in our evaluation
suite and the number of tasks they appear in.

Choice of Demonstrations F1 (Ò) RSD (Ó) BiasScore (Ó)

Mean (SD) 0.571 (˘ 0.059) 0.417 (˘ 0.178) 0.141 (˘ 0.061)

Best Performance 0.636 0.267 0.095
Median Performance 0.577 0.401 0.137
Worst Performance 0.494 0.613 0.197

Least Bias – by RSD 0.619 0.216 0.084
Least Bias – by BiasScore 0.614 0.25 0.07

Most Bias – by RSD 0.503 0.645 0.205
Most Bias – by BiasScore 0.511 0.613 0.22

Table 5: Results of Llama-2 7B chat model when
prompted with 5 different sets of demonstration on our
evaluation suite. We employ oracles to aggregate and
compute cross-task results when choosing a specific set
of demonstrations for each task.

Choice of Demonstrations F1 (Ò) RSD (Ó) BiasScore (Ó)

Mean (SD) 0.54 (˘ 0.069) 0.546 (˘ 0.205) 0.088 (˘ 0.031)

Best Performance 0.618 0.352 0.065
Median Performance 0.544 0.522 0.084
Worst Performance 0.452 0.782 0.114

Least Bias – by RSD 0.605 0.314 0.062
Least Bias – by BiasScore 0.592 0.369 0.052

Most Bias – by RSD 0.457 0.806 0.118
Most Bias – by BiasScore 0.475 0.747 0.128

Table 6: Results of Llama-2 13B base model.
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(a) BiasScore

(b) RSD

Figure 6: Label bias metrics for Mistral 7B models
when evaluated on all tasks in our evaluation suite (All)
vs. a subset of tasks with semantically equivalent labels
(Sem. Eq. Labels).

Choice of Demonstrations F1 (Ò) RSD (Ó) BiasScore (Ó)

Mean (SD) 0.592 (˘ 0.058) 0.397 (˘ 0.173) 0.134 (˘ 0.058)

Best Performance 0.656 0.241 0.092
Median Performance 0.597 0.383 0.13
Worst Performance 0.517 0.584 0.185

Least Bias – by RSD 0.643 0.201 0.085
Least Bias – by BiasScore 0.632 0.251 0.067

Most Bias – by RSD 0.523 0.622 0.194
Most Bias – by BiasScore 0.534 0.58 0.21

Table 7: Results of Llama-2 13B chat model.

Choice of Demonstrations F1 (Ò) RSD (Ó) BiasScore (Ó)

Mean (SD) 0.601 (˘ 0.092) 0.432 (˘ 0.239) 0.064 (˘ 0.034)

Best Performance 0.692 0.225 0.057
Median Performance 0.616 0.387 0.064
Worst Performance 0.47 0.747 0.064

Least Bias – by RSD 0.68 0.196 0.055
Least Bias – by BiasScore 0.579 0.484 0.021

Most Bias – by RSD 0.477 0.77 0.067
Most Bias – by BiasScore 0.563 0.537 0.102

Table 8: Results of Mistral 7B base model.

(a) BiasScore

(b) RSD

Figure 7: Label bias metrics for Falcon (7B/40B) mod-
els when evaluated on all tasks in our evaluation suite
(All) vs. a subset of tasks with semantically equivalent
labels (Sem. Eq. Labels).

Choice of Demonstrations F1 (Ò) RSD (Ó) BiasScore (Ó)

Mean (SD) 0.607 (˘ 0.059) 0.389 (˘ 0.167) 0.085 (˘ 0.035)

Best Performance 0.672 0.232 0.06
Median Performance 0.613 0.368 0.08
Worst Performance 0.53 0.585 0.115

Least Bias – by RSD 0.663 0.202 0.059
Least Bias – by BiasScore 0.653 0.245 0.044

Most Bias – by RSD 0.535 0.604 0.119
Most Bias – by BiasScore 0.553 0.545 0.131

Table 9: Results of Mistral 7B instruct model.
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(a) Performance (Macro-F1) (b) Label bias (RSD ) (c) Label bias (BiasScore)

Figure 8: Performance and label bias metrics for Mistral 7B pretrained and instruction-tuned models.

(a) Performance (Macro-F1) (b) Label bias (RSD ) (c) Label bias (BiasScore)

Figure 9: Performance and label bias metrics for Falcon pretrained and instruction-tuned models (7B/40B).
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(a) Macro-F1 (b) RSD (c) Bias Score

Figure 10: The effect of label bias mitigation methods on performance and bias for Mistral models.
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(a) Macro-F1 (b) RSD (c) Bias Score

Figure 11: The effect of label bias mitigation methods on performance and bias for Falcon models.
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