
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 6799–6819

June 16-21, 2024 ©2024 Association for Computational Linguistics

Instructing Large Language Models to
Identify and Ignore Irrelevant Conditions

Zhenyu Wu1,2, Chao Shen1*, Meng Jiang2

1Xi’an Jiaotong University, 2University of Notre Dame
zhenyuwu@stu.xjtu.edu.cn, chaoshen@xjtu.edu.cn, mjiang2@nd.edu

Abstract

Math word problem (MWP) solving requires
generating a reasoning path based on a given
problem description that often contains irrel-
evant conditions. Existing chain-of-thought
(CoT) prompting methods elicited multi-step
reasoning abilities of large language models
(LLMs) to solve MWPs. However, they were
seriously confused by the irrelevant conditions,
resulting in low accuracy. In this paper, we pro-
pose a novel approach named I3C that instructs
LLMs to identify and ignore irrelevant condi-
tions. It identifies a set of irrelevant condition
candidates that have a weak semantic relevance
with the question. Then it prompts LLMs to ver-
ify the irrelevant conditions. Lastly it instructs
the LLMs with the verification on relevant and
irrelevant conditions to avoid confusion and im-
prove reasoning paths. Moreover, we propose
to select (problem, reasoning paths) pairs as
demonstrations to enhance I3C with few-shot
reasoning. We develop I3C-Select that selects
the most confusing problems based on the se-
mantic relevance measurement. We conduct
extensive experiments on eight MWP datasets.
I3C can be combined with any CoT prompting
methods to improve the performance of solving
MWPs. Notably, with GPT-3.5-Turbo and I3C-
Select, we achieve an accuracy of 96.0 and 94.1
on GSM-IC2-1K and GSM-ICM-1K, respec-
tively, significantly outperforming the state-of-
the-art few-shot prompting method Complex-
CoT by +11.7 and +11.1. Our implemen-
tation is made publicly available at https:
//wzy6642.github.io/I3C.github.io/.

1 Introduction

Math word problem (MWP) solving is a task of
developing algorithms to generate a reasoning path
towards an unknown quantity based on a problem
description. This task is challenging as it requires
mathematical understanding and multi-step reason-
ing abilities. Chain-of-thought (CoT) prompting

*Corresponding author

methods were able to guide large language models
(LLMs) to perform complex multi-step reasoning
(Kojima et al., 2022; Wang et al., 2023a). Adding
demonstrations created manually (Wei et al., 2022)
or retrieved from a large training set (Fu et al.,
2023) in CoT prompts enabled few-shot in-context
learning and improved accuracy. However, Shi
et al. found that existing CoT prompting methods
could be seriously confused by irrelevant condi-
tions which are specifications or data presented in
a problem that are unrelated to the solution (Kel-
logg, 2016). For example, as shown in Figure 1a,
the third condition “The height of Mary is 5 feet.”
was irrelevant to the final question and misled the
reasoning and prediction. Shi et al. added a plain
instruction “Feel free to ignore irrelevant condi-
tions in the problem description.” in the prompts,
but the LLMs could not effectively ignore them in
the problem solving process because they were not
identified or specified in the instruction.

Improving the reasoning on MWPs that have ir-
relevant conditions is non-trivial. Self-consistency
(Wang et al., 2023b) was proposed to repeatedly
solve a problem multiple times (e.g., 10 times) and
employ a majority vote strategy to determine the
most consistent answer as the final answer. How-
ever, it was computationally expensive and still
confused by the irrelevant conditions. Moreover,
the demonstrations would have to be re-designed to
obtain the few-shot learning ability of identifying
and ignoring the irrelevance, compared to those in
(Wei et al., 2022; Zhang et al., 2023).

In this paper, we propose a novel approach, I3C,
to instruct LLMs to explicitly Identify and Ignore
Irrelevant Conditions in the mathematical reason-
ing process. It creates effective instructions that
can be added to any CoT prompts to improve their
generated reasoning paths. Unlike self-consistency,
I3C does not prompt LLMs multiple times. Its ad-
vanced variant, I3C-Select, uses the most confusing
problems and their generated reasoning paths as

6799

https://wzy6642.github.io/I3C.github.io/
https://wzy6642.github.io/I3C.github.io/

𝑐! Steve is 5'6".
𝑐" He grows 6 inches.
𝑐# The height of Mary is 5 feet.
𝑞 How tall is Steve in inches?

Problem 𝑄:

5'6" 66 inches
(66 inches) + 6 inches 72 inches

5 feet 60 inches
(60 inches) + 6 inches 66 inches

66 inches?

(because condition 𝑐!
was irrelevant to 𝑞!)

(a) Existing CoT prompting methods were confused by irrelevant conditions in math word problems and gave wrong answers.

�
�3

�2

�1

Irrelevant condition
candidates:
• �1

 irr = �2
• �2

 irr = �3

�. Is condition ��
 irr relevant to the process

of solving problem �?

Condition relevance verification prompts:

LLM

Therefore,
the answer is

The condition “He grows 6 inches.” is
relevant to the process …

Verification output �1
 irr :

The condition “The height of Mary is 5
feet” is not relevant to the process …

Full prompt: I3C instruction + any CoT prompt:

The instructions are as follows: �1
 irr �2

 irr

Let’s consider these instructions and ignore the
irrelevant conditions to solve the problem.
{Demonstrations for few-shot prompting}
Problem: � Reasoning: ? Let’s think step by step.

�2
 irr :

LLM
Reasoning path �:

Steve is 5'6", which
is equal to 66 inches.
He then grows 6
inches, making his
new height 72 inches.

LLM
72. {Problem � demo ,

Reasoning path � demo }-pairs
from other data points

(b) I3C performs three steps: (1) Identify irrelevant condition candidates by encoding and condition-question similarity scoring;
(2) Use LLMs to verify if the candidates are relevant; (3) Leverage the verifications (and demonstrations) to generate accurate
reasoning paths and find correct answers.

Figure 1: The proposed I3C approach instructs LLMs to Identify and Ignore Irrelevant Conditions.

demonstrations for few-shot learning.
First, we quantify the semantic relevance of each

condition ci in a MWP Q = [{ci}, q]. Specifically,
we use a language model like SimCSE (Gao et al.,
2021) to encode the conditions {ci} and question
sentence q. The semantic relevance is lower if the
condition’s encoding is more distant from the en-
codings of question and other conditions, as shown
in Figure 1b. Then we identify a set of irrelevant
condition candidates, like c2 and c3 in this example,
and we denote them by {c(irr)

k }.
Next we use an LLM to verify if the candidates

are indeed irrelevant. For each candidate c(irr)
k , the

verification prompt is a natural language question
consisted of itself, Q, and q. The verification output
usually has the explicit answers “... is (not) relevant
to ...”, denoted by v(irr)

k .
Finally we put all the verification outputs {v(irr)

k }
to create a novel instruction which helps the LLM

to identify and ignore irrelevant conditions in the
problem description, so-called I3C. The I3C instruc-
tion is a plug-and-play module and can be added to
any CoT prompting methods to help LLMs avoid
confusion and improve generated reasoning paths.

To enable few-shot in-context learning, we fur-
ther develop I3C-Select, which uses pairs of prob-
lems and their corresponding generated reasoning
paths to automatically construct effective demon-
strations. Specifically, it defines the confusion
score of each problem in the training set: the score
is higher, if the semantic relevance of its condi-
tions is lower; and the problems with the highest
confusion scores are selected.

Experiments on GPT-3.5-Turbo demonstrate that
adding the I3C instruction to CoT prompting meth-
ods improves their performance. For example,
adding I3C instruction to Manual-CoT improves
the accuracy by +8.1 on AddSub, +8.1 on SVAMP,

6800

+6.0 on GSM8K, +5.1 on SingleEq, +5.1 on
GSM-IC2-1K, +2.8 on AQuA, +9.2 on MATH,
and +7.8 on GSM-ICM-1K.

Moreover, I3C-Select beats existing prompt-
ing methods by a striking margin on eight MWP
datasets. Specifically, I3C-Select boosts the per-
formance of Complex-CoT method by +11.7 on
GSM-IC2-1K, +11.1 on GSM-ICM-1K, +12.6 on
AQuA, +8.2 on MATH, and +10.0 on GSM8K.

2 Related Work

2.1 Math Word Problem Solving

Our work is related to existing efforts on solving
MWPs. Traditional methods used statistical learn-
ing to extract entities, quantities, and operators
from a question and generated an arithmetic equa-
tion to find the answer (Hosseini et al., 2014; Roy
et al., 2015; Zhou et al., 2015; Mitra and Baral,
2016; Hu and Jiang, 2022). Later, sequence-to-
sequence (Seq2Seq) model and recurrent neural
networks directly transformed the question into
an arithmetic equation (Wang et al., 2017, 2019;
Li et al., 2019). Recently, fine-tuned pre-trained
language models have significantly improved the
validity of generated equations and accuracy of an-
swers (Shen et al., 2021; Liang et al., 2023). How-
ever, these methods require a large amount of hu-
man annotations, lacking the ability to generalize
to new kinds of MWPs. In this work, we aim to
prompt LLMs to answer arbitrary MWPs and gen-
erate reasoning paths, without human annotations
or task-specific fine-tuning.

2.2 Chain-of-Thought Prompting Methods

CoT prompting methods have enabled LLMs to
generate reasoning paths and solve complex MWPs
(Kojima et al., 2022). The reasoning paths could
be more expressive if the prompts were added with
“Let’s think step by step”. To mitigate missing-
step errors, Plan-and-Solve (PS) prompting meth-
ods instructed the LLMs to devise a plan to break
down the entire task into smaller subtasks, and
then carry out the subtasks according to the plan
(Wang et al., 2023a). Manual-CoT, as a type of
few-shot prompting (Ziems et al., 2023), manu-
ally designed demonstrations to elicit multi-step
reasoning ability of the LLMs (Wei et al., 2022).
Program of Thought (PoT) generated programming
language statements and used a program interpreter
to execute the generated program to get final an-
swers (Chen et al., 2023). Zhang et al. designed

Auto-CoT, and their source code1 showed that they
sampled diverse questions from the test set to mini-
mize manual effort in finding demonstrations. Fu
et al. designed Complex-CoT, which selects the
most complex problems and their reasoning paths
as demonstrations. Aware of irrelevant conditions
in the problem description, Shi et al. added the in-
struction “Feel free to ignore irrelevant conditions
in the problem description” in the prompt. These
methods do not explicitly specify the irrelevant
conditions in the prompt, which makes it difficult
for LLMs to identify and ignore irrelevant condi-
tions in the problem solving process. Our method
identifies irrelevant conditions in the problem de-
scription, instructs the LLMs to ignore them, and
achieves significantly higher accuracy.

2.3 Identify Irrelevant Information

Jia and Liang have shown that question answering
systems are confused when paragraphs contain ir-
relevant information. Several studies have trained
models to identify and filter out the irrelevant in-
formation. For example, Roy and Roth trained a
classifier and scored the likelihood of each quantity
in the problem being an irrelevant quantity. Kim
et al. employed a new training loss to remove the
attribute-irrelevant information from the semantic
encoder output. Li et al. proposed a multi-scale
knowledge-aware transformer to eliminate identity-
irrelevant information. Yang et al. leveraged pre-
extracted semantic information to improve the pre-
processor’s ability to accurately identify and filter
out task-irrelevant information. All these methods
require massive human annotations. In contrast,
our method does not require time-consuming train-
ing or fine-tuning. It employs LLMs to automat-
ically identify irrelevant conditions and generate
instructions to help the models ignore them.

3 Proposed Approach

3.1 Overview

In this section, we elaborate on how to instruct
LLMs to identify and ignore irrelevant conditions
in the math word problem description. Given a
complex problem, we first identify a set of irrele-
vant condition candidates that have a weak seman-
tic relevance with the question (§ 3.2). Then we
prompt LLMs to verify if the candidates are in-
deed irrelevant. Putting all the verification results

1https://github.com/amazon-science/auto-cot

6801

https://github.com/amazon-science/auto-cot

together, we create a novel I3C instruction to in-
struct the LLMs to ignore the irrelevant conditions
in the problem description. The I3C instruction can
be added to any CoT prompting methods to help
LLMs avoid confusion and improve their generated
reasoning paths. Furthermore, we develop a few-
shot prompting method I3C-Select that selects the
most confusing problems and their reasoning paths
as demonstrations, and adds the I3C instruction be-
fore the demonstrations in the prompt. Given the
prompt and a target problem, the LLMs generate
an accurate reasoning path to improve the solving
process. We introduce the I3C instruction in § 3.3
and I3C-Select method in § 3.5.

3.2 Identify a Set of Irrelevant Condition
Candidates

Given a MWP Q, we first split it into n conditions
{ci}ni=1 and a question sentence q, where each con-
dition describes at most one quantity. So we have
Q = [{ci}, q]. Specifically, for a MWP, we ini-
tially segment it into multiple sentences based on
the full stop. Then, we select the last sentence as
the question sentence. For the remaining sentences,
we further analysis whether they contain multiple
quantities and commas. If they do, we segment
the sentence into multiple sub-sentences based on
the commas, with each sub-sentence containing
at most one quantity. For example, in Figure 1a,
the conditions are {“Steve is 5’6".”, “He grows 6
inches.”, “The height of Mary is 30 feet.”}, and the
question sentence is “How tall is Steve in inches?”.

Next, we use a pre-trained language model, e.g.,
SimCSE (Gao et al., 2021), to encode the condi-
tions and question sentence into vector represen-
tations. So we have {ci}ni=1 and q which are d-
dimensional vectors. We set d = 1, 024.

Then for each condition ci, we calculate the av-
erage similarity between ci and all other conditions
in Q using cosine similarity, because the SimCSE
embeddings were trained on cosine similarity:

s(c)
i =

1

n− 1

n∑

j=1,j ̸=i

cos (ci, cj)

=
1

n− 1

n∑

j=1,j ̸=i

c⊤i cj
∥ci∥ · ∥cj∥

.

(1)

We also calculate the similarity between ci and q:
s

(q)
i = cos (ci,q). So we have {s(c)

i , s
(q)
i }ni=1.

Now we can define a set of irrelevant condition
candidates I ⊂ {ci}ni=1 for each math word prob-

lem. A condition ci is potentially irrelevant if its se-
mantic relevance is lower than a threshold. In other
words, if s(c)

i < θ or s(q)
i < θ, I has ci. We re-index

the conditions in the set: I = {c(irr)k }|I|k=1. The
threshold θ is a hyperparameter. We set θ = 0.5.
See Appendix A.5 for hyperparameter analysis.

We can further define the confusion score of a
math word problem Q. We assume that the problem
is more confusing if its conditions are less relevant
with the final question. So the confusion score
is defined as the inverse of the average similarity
between any condition and the question:

conf(Q) =

[
1

n

n∑

i=1

cos (ci,q)

]−1

. (2)

The most confusing problems, i.e., the problems
of the highest confusion scores, and their gener-
ated reasoning paths, will be automatically used as
demonstrations in a few-shot setting. The demos
teach LLMs to better solve confusing problems.
Later sections give details.

3.3 Construct I3C Instruction
Given a set of irrelevant condition candidates I , we
use an LLM to verify if the candidates are indeed
irrelevant. For a math word problem Q, its final
question q, and a condition candidate c(irr)k ∈ I , we
construct a verification prompt: “Q. Is condition
c
(irr)
k relevant to the process of solving problem q?”

We feed the prompt to an LLM and receive a piece
of text v(irr)k justifying if c(irr)k is relevant or indeed
irrelevant. So we have a set of verification outputs
(size |I|): {v(irr)k }|I|k=1.

Now we can create a novel instruction to help
LLMs identify and ignore irrelevant conditions in
the problem description. In a zero-shot setting, the
instruction starts with all the verification outputs.
Specifically, this I3C instruction, simply denoted
by I , is “The instructions are as follows: v

(irr)
1

· · · v
(irr)
|I| . Let’s consider these instructions and

ignore the irrelevant conditions to solve the prob-
lem”. In case where I is an empty set, we follow
the Instruct-CoT method (Shi et al., 2023) and use
the sentence “Feel free to ignore irrelevant condi-
tions in the problem description” as the instruction.

3.4 Generate Reasoning Paths and Answers
with I3C Instruction

The I3C instruction can be added to any CoT
prompting methods such as Zero-Shot-CoT (Ko-

6802

jima et al., 2022), PS (Wang et al., 2023a), Instruct-
CoT (Shi et al., 2023), Manual-CoT (Wei et al.,
2022), Complex-CoT (Fu et al., 2023), and Auto-
CoT (Zhang et al., 2023). The goal is to generate
a reasoning path and answer a math word problem
Q. For example, in Zero-Shot-CoT (Kojima et al.,
2022), the prompt was “Q: Q. A: Let’s think step
by step”. By adding the I3C instruction to the Zero-
Shot-CoT method, denoted by Zero-Shot-CoT+I3C
in our experiments, the prompt becomes “I . Q: Q.
A: Let’s think step by step”. The full prompts in
experiments can be found in Appendix A.4.

Finally, after the reasoning path is generated, we
use the prompt “Therefore, the answer is” to get
the quantity prediction as the final answer.

3.5 I3C-Select: Select Confusing Problems as
Automatic Demonstrations

Fu et al. found that prompts with higher reasoning
complexity achieved better performance on multi-
step reasoning tasks. To further enhance the ability
of LLMs to address the irrelevance of conditions,
we develop a novel few-shot prompting method
I3C-Select. As presented in § 3.2, it first calculates
the confusion score of problems in the training set,
as defined in Eq.(2). Subsequently, it selects the K
most confusing problems and generates their rea-
soning paths using the Zero-Shot-CoT prompting
method (with K = 8 in our experiments). Fi-
nally, it uses the most confusing problems and
their reasoning paths as demonstrations, denoted
by {Q(demo)

1 , R(demo)
1 ; · · · ;Q(demo)

K , R(demo)
K }.

I3C-Select puts the demonstrations after the I3C
instruction to construct the full prompt. Specifi-
cally, the prompt is “I . Q: Q(demo)

1 A: R(demo)
1 · · ·

Q: Q(demo)
K A: R(demo)

K Q: Q. A:”. With the prompt
and the target problem Q, the LLMs generate a rea-
soning path for Q. Figure 1b illustrates the details.

4 Experiments

4.1 Experimental Setup

Datasets. We use eight math word problem
(MWP) datasets as our testbed. AddSub (Hos-
seini et al., 2014), SingleEq (Koncel-Kedziorski
et al., 2015), SVAMP (Patel et al., 2021), and
GSM8K (Cobbe et al., 2021) are classical MWP
datasets in which some of the problem descriptions
contain irrelevant conditions. GSM-IC2-1K (Shi
et al., 2023) and GSM-ICM-1K (Shi et al., 2023)
are challenging datasets that require multi-step rea-
soning, and each problem description contains ir-

relevant conditions. AQuA (Ling et al., 2017) and
MATH (Hendrycks et al., 2021) are more challeng-
ing datasets that contain problems from high school
competitions. More detailed dataset information
can be found in Appendix A.1.

Baselines. We compare our proposed I3C-Select
prompting method with two types of prompting
baselines: (1) Zero-shot baselines. We include
Zero-Shot-CoT (Kojima et al., 2022), PS (Wang
et al., 2023a), Instruct-CoT (Shi et al., 2023), and
Direct (Kojima et al., 2022). The Direct base-
line uses the prompt “The answer is” to get the
final answer. (2) Few-shot baselines. We include
Manual-CoT (Wei et al., 2022), Complex-CoT (Fu
et al., 2023), PAL (Gao et al., 2023), and Auto-
CoT (Zhang et al., 2023). The demonstrations of
these baselines are from their original papers. No-
tably, according to the source code, Auto-CoT’s
demonstrations are from the test set, whereas I3C-
Select’s demonstrations are from the training set.
Details of all baselines are shown in Appendix A.2.

Implementation. We use GPT-3 (text-davinci-
003) and GPT-3.5-Turbo-1106 as backend LLMs,
which are the most widely-used LLMs with public
APIs. Following (Shi et al., 2023), we set the tem-
perature to 0.7. To evaluate the model performance,
we follow (Chen et al., 2023) to adopt accuracy as
our evaluation metric. An answer is considered
correct if and only if the absolute error between the
answer and the gold answer is less than 1× 10−5.
See Appendix A.3 for detail.

4.2 Experimental Results
Overall performance on MWP datasets. As
shown in Table 1, I3C-Select consistently out-
performs the baseline methods across all MWP
datasets by a significant margin, regardless of
which model is used as the backend LLM. Specif-
ically, when applied to GPT-3 (text-davinci-003),
I3C-Select improves the accuracy over Zero-Shot-
CoT by at least +6.0 across all datasets, except for
SingleEq, where the improvement is +4.8. This
exception can be attributed to the fact that the prob-
lems in SingleEq do not contain irrelevant condi-
tions. Our proposed I3C-Select method primarily
instructs LLMs to identify and ignore irrelevant
conditions in the problem description. It is note-
worthy that even in the SingleEq dataset, using
the most confusing problems and their generated
reasoning paths as demonstrations effectively en-
hances MWP solving performance.

6803

Table 1: Accuracy (%) comparison on eight MWP datasets. I3C indicates that instructs LLMs to identify and ignore
irrelevant conditions. Adding the I3C instruction to CoT prompting methods effectively improves performance.
Selecting the most confusing problems and their generated reasoning paths as demonstrations for few-shot learning
(i.e., I3C-Select) achieves state-of-the-art performance on all eight MWP datasets.

LLM Method
Dataset

AddSub SVAMP GSM8K SingleEq GSM-IC2-1K GSM-ICM-1K AQuA MATH

G
PT

-3
(t

ex
t-

da
vi

nc
i-

00
3)

Direct 89.3 65.2 15.0 84.6 22.8 9.0 28.7 7.6

Direct + I3C 92.4 (+3.1) 74.5 (+9.3) 49.7 (+34.7) 92.7 (+8.1) 82.6 (+59.8) 66.9 (+57.9) 36.2 (+7.5) 11.3 (+3.7)

Zero-Shot-CoT 84.8 74.3 60.8 89.5 70.7 62.5 40.5 12.4

Zero-Shot-CoT + I3C 91.7 (+6.9) 75.9 (+1.6) 61.3 (+0.5) 93.7 (+4.2) 84.7 (+14.0) 71.4 (+8.9) 45.7 (+5.2) 17.9 (+5.5)

PS 88.1 72.0 58.2 89.2 70.9 63.5 38.1 13.7

PS + I3C 91.4 (+3.3) 75.6 (+3.6) 61.1 (+2.9) 93.1 (+3.9) 84.8 (+13.9) 69.4 (+5.9) 43.6 (+5.5) 18.2 (+4.5)

Instruct-CoT 90.4 76.3 57.8 91.1 82.4 64.3 44.5 16.1

Instruct-CoT + I3C 91.8 (+1.4) 77.0 (+0.7) 61.0 (+3.2) 92.7 (+1.6) 84.7 (+2.3) 71.3 (+7.0) 46.3 (+1.8) 21.3 (+5.2)

Manual-CoT 87.8 76.7 56.9 91.3 73.9 60.6 44.0 15.6

Manual-CoT + I3C 92.9 (+5.1) 80.1 (+3.4) 61.6 (+4.7) 93.9 (+2.6) 82.0 (+8.1) 66.1 (+5.5) 49.1 (+5.1) 19.8 (+4.2)

Auto-CoT 90.6 77.8 58.9 90.9 74.3 65.2 47.2 16.3

Auto-CoT + I3C 93.7 (+3.1) 80.0 (+2.2) 61.9 (+3.0) 93.5 (+2.6) 83.9 (+9.6) 68.2 (+3.0) 51.5 (+4.3) 22.5 (+6.2)

Complex-CoT 88.9 78.0 67.7 92.7 75.3 66.5 48.8 17.4

Complex-CoT + I3C 92.8 (+3.9) 80.0 (+2.0) 70.6 (+2.9) 94.0 (+1.3) 87.1 (+11.8) 83.6 (+17.1) 53.2 (+4.4) 23.1 (+5.7)

I3C-Select (Ours) 93.9 80.3 72.6 94.3 93.7 90.9 57.1 28.5

G
PT

-3
.5

-T
ur

bo
-1

10
6

Direct 86.1 78.2 77.8 93.1 88.9 83.4 63.4 39.7

Direct + I3C 94.4 (+8.3) 85.1 (+6.9) 78.5 (+0.7) 96.9 (+3.8) 92.5 (+3.6) 90.1 (+6.7) 64.2 (+0.8) 41.3 (+1.6)

Zero-Shot-CoT 85.2 76.7 78.6 90.3 87.0 82.0 51.3 37.9

Zero-Shot-CoT + I3C 93.4 (+8.2) 84.2 (+7.5) 82.0 (+3.4) 97.8 (+7.5) 92.7 (+5.7) 88.6 (+6.6) 63.1 (+11.8) 42.1 (+4.2)

PS 87.6 77.8 75.9 91.7 81.4 73.6 60.2 43.7

PS + I3C 93.7 (+6.1) 85.6 (+7.8) 82.5 (+6.6) 97.6 (+5.9) 92.7 (+11.3) 90.1 (+16.5) 64.5 (+4.3) 45.2 (+1.5)

Instruct-CoT 86.5 81.3 77.7 94.4 89.2 84.4 62.9 41.1

Instruct-CoT + I3C 92.9 (+6.4) 84.9 (+3.6) 82.0 (+4.3) 97.8 (+3.4) 92.9 (+3.7) 89.1 (+4.7) 65.5 (+2.6) 46.1 (+5.0)

Manual-CoT 85.3 77.1 76.4 92.9 86.8 81.4 54.3 35.1

Manual-CoT + I3C 93.4 (+8.1) 85.2 (+8.1) 82.4 (+6.0) 98.0 (+5.1) 91.9 (+5.1) 89.2 (+7.8) 57.1 (+2.8) 44.3 (+9.2)

Auto-CoT 88.0 80.9 78.8 95.9 84.3 81.8 57.8 39.1

Auto-CoT + I3C 93.2 (+5.2) 84.7 (+3.8) 82.8 (+4.0) 97.8 (+1.9) 91.8 (+7.5) 88.4 (+6.6) 62.7 (+4.9) 43.9 (+4.8)

Complex-CoT 87.9 80.4 78.9 94.5 84.3 83.0 59.1 39.5

Complex-CoT + I3C 93.7 (+5.8) 84.4 (+4.0) 82.4 (+3.5) 97.2 (+2.7) 91.7 (+7.4) 88.6 (+5.6) 63.2 (+4.1) 45.3 (+5.8)

PAL 89.1 77.8 79.5 97.6 85.2 84.7 63.4 38.7

I3C-Select (Ours) 94.9 89.9 88.9 98.6 96.0 94.1 71.7 47.7

In comparison to the competitive zero-shot base-
line, Instruct-CoT, the performance of I3C-Select
remains impressive. When applied to GPT-3.5-
Turbo, I3C-Select enhances the average accuracy
by +8.0 across eight MWP datasets compared to
Instruct-CoT. Furthermore, our analysis demon-
strates that I3C-Select consistently outperforms
few-shot baselines on all datasets. Specifically,
when compared to the Complex-CoT prompting
method, I3C-Select exhibits superior performance
in GSM-ICM-1K, GSM-IC2-1K, AQuA, MATH,
and GSM8K, with improvements of +11.1, +11.7,
+12.6, +8.2, and +10.0, respectively. These find-
ings indicate that incorporating more detailed in-
structions (e.g., I3C instruction) and using the most
confusing problems and their reasoning paths in
the prompt can achieve superior performance.

Does adding the I3C instruction work? As
shown in Table 1, adding the I3C instruction to
the CoT prompting methods significantly enhances
the MWP solving performance. Specifically, when
applied to GPT-3.5-Turbo, adding the I3C instruc-
tion to the Zero-Shot-CoT method (i.e., Zero-Shot-
CoT+I3C) improves the average accuracy by +6.9
across eight MWP datasets, compared to the origi-
nal Zero-Shot-CoT prompting method. For datasets
like GSM-IC2-1K and GSM-ICM-1K, which con-
tain irrelevant conditions in each problem descrip-
tion, Zero-Shot-CoT+I3C improves the accuracy by
+5.7 and +6.6, respectively. Even for prompting
methods such as Auto-CoT, which already achieve
high accuracy on most MWP datasets, the addition
of the I3C instruction (i.e., Auto-CoT+I3C) still
leads to significant improvements. Auto-CoT+I3C
improves accuracy by +7.5 on GSM-IC2-1K, +4.9

6804

Table 2: Accuracy (%) on GSM-IC-2K dataset, broken down by the number of reasoning steps required in the
standard answer. The GSM-IC-2K dataset is formed by merging the GSM-IC2-1K and GSM-ICM-1K datasets.

Method
(GPT-3.5-Turbo)

Accuracy by Steps (GSM-IC-2K)
2 Steps 3 Steps 4 Steps ≥ 5 Steps All

Zero-Shot-CoT 87.0 82.0 80.2 82.6 84.5

Zero-Shot-CoT + I3C 92.7 (+5.7) 91.4 (+9.4) 81.3 (+1.1) 92.4 (+9.8) 90.7 (+6.2)

Instruct-CoT 89.2 85.8 81.3 84.6 86.8

Instruct-CoT + I3C 92.9 (+3.7) 90.6 (+4.8) 82.3 (+1.0) 93.9 (+9.3) 91.0 (+4.2)

Manual-CoT 86.8 85.0 78.8 79.7 84.1

Manual-CoT + I3C 91.9 (+5.1) 90.6 (+5.6) 80.6 (+1.8) 94.8 (+15.1) 90.6 (+6.5)

Complex-CoT 84.3 81.0 83.4 84.6 83.7

Complex-CoT + I3C 91.7 (+7.4) 89.8 (+8.8) 83.8 (+0.4) 91.6 (+7.0) 90.2 (+6.5)

I3C-Select (Ours) 96.0 95.2 87.3 98.6 95.1

A
d

d
S

u
b

S
V

A
M

P

G
S

M
8K

S
in

gl
eE

q

G
S

M
-I

C
2-

1K

G
S

M
-I

C
M

-1
K

A
Q

u
A

M
A

T
H

Dataset

40

60

80

100

A
cc

u
ra

cy
(%

)

(a) Accuracy of different methods

A
d

d
S

u
b

S
V

A
M

P

G
S

M
8K

S
in

gl
eE

q

G
S

M
-I

C
2-

1K

G
S

M
-I

C
M

-1
K

A
Q

u
A

M
A

T
H

Dataset

0
10
20
30
40
50

T
im

e
(s

)

(b) Average time consumption

A
d

d
S

u
b

S
V

A
M

P

G
S

M
8K

S
in

gl
eE

q

G
S

M
-I

C
2-

1K

G
S

M
-I

C
M

-1
K

A
Q

u
A

M
A

T
H

Dataset

0
500

1000
1500
2000
2500

T
ok

en
s

(c) Average token consumption

Complex-CoT Complex-CoT+I3C Complex-CoT-Self-Consistency

Figure 2: Performance comparison of Complex-CoT, Complex-CoT with I3C instruction (i.e., Complex-CoT+I3C),
and Complex-CoT with self-consistency (i.e., Complex-CoT-Self-Consistency). We can observe that the accuracy
of Complex-CoT+I3C and Complex-CoT-Self-Consistency is nearly identical, while Complex-CoT+I3C consumes
much less tokens and time than Complex-CoT-Self-Consistency.

on AQuA, +4.8 on MATH, and +4.0 on GSM8K.

How does LLM selection affect I3C-Select? Ta-
ble 1 shows that I3C-Select works better when
the LLM is more powerful. Specifically, on the
GSM8K dataset, the GPT-3.5-Turbo model ex-
hibits a +16.3 increase in accuracy compared to the
text-davinci-003 model. Similarly, on the AQuA
dataset, using the GPT-3.5-Turbo model results in
a +14.6 improvement in accuracy over the text-
davinci-003 model. It is noteworthy that GPT-3.5-
Turbo is a chat-optimized model built upon text-
davinci-003 (Zheng et al., 2023). The enhanced
performance with GPT-3.5-Turbo can be attributed
to its enhanced power, making it better at under-
standing and utilizing the given prompt.

Compared with executor-augmented prompting
methods. Table 1 shows that I3C-Select consis-
tently outperforms the executor-augmented prompt-
ing methods, such as PAL, across all MWP datasets.

Specifically, in comparison to the PAL prompt-
ing method, I3C-Select exhibits superior perfor-
mance in GSM-IC2-1K, AQuA, SVAMP, AddSub,
and GSM8K, with improvements of +10.8, +8.3,
+12.1, +5.8, and +9.4, respectively.

Does I3C instruction work for complex prob-
lems? We analyze the breakdown accuracies for
problems with respect to the reasoning steps2 in Ta-
ble 2. The GSM-IC-2K dataset is formed by merg-
ing the GSM-IC2-1K and GSM-ICM-1K datasets.
Each problem in GSM-IC-2K contains irrelevant
conditions and requires multiple steps to solve.
Obviously, adding the I3C instruction to the CoT
prompting method significantly enhances the MWP
solution performance for both simple and com-
plex problems. Moreover, compared to Complex-
CoT, I3C-Select significantly improves the perfor-

2Number of reasoning steps of a problem is given by the
number of sentences in standard answer. (Cobbe et al., 2021)

6805

Low Medium High
90

92

94

96

A
cc

u
ra

cy
(%

)

90.5

94.0

96.0
(a) GSM-IC2-1K

Low Medium High
88

90

92

94

A
cc

u
ra

cy
(%

)

88.1

91.7

94.1
(b) GSM-ICM-1K

Figure 3: Demonstration construction methods compar-
ison. “Low” indicates selecting eight problems with the
lowest confusion scores. “Medium” indicates randomly
selecting eight problems. “High” indicates selecting
eight problems with the highest confusion scores.

Table 3: Accuracy (%) comparison of different methods
that help LLMs ignore irrelevant conditions.

Method
(GPT-3.5-Turbo)

Dataset
GSM-IC2-1K GSM-ICM-1K

Zero-Shot-CoT 87.0 82.0

Zero-Shot-CoT + Refine 89.2 84.8

Zero-Shot-CoT + I3C 92.7 88.6

mance on GSM-IC-2K: from 83.7 to 95.1. These
results indicate that adding the I3C instruction to
the prompt can effectively solve complex problems.

Efficiency and effectiveness of I3C instruction.
Self-consistency (Wang et al., 2023b) is the process
of solving a problem M times and using a major-
ity vote strategy to determine the most consistent
answer as the final answer. We evaluate the perfor-
mance of Complex-CoT with self-consistency (i.e.,
Complex-CoT-Self-Consistency) on eight MWP
datasets. Following (Wang et al., 2023a), we
set M to 10. Figure 2 shows that the accuracy
of Complex-CoT-Self-Consistency and Complex-
CoT+I3C is nearly identical. In terms of time con-
sumption3, Complex-CoT+I3C proves to be an effi-
cient method, reducing the average time required to
solve an MWP by 2-4 times compared to Complex-
CoT-Self-Consistency. Regarding token consump-
tion, Complex-CoT+I3C consumes fewer tokens
than Complex-CoT-Self-Consistency, indicating its
more concise and efficient nature in solving MWPs.
Overall, the results demonstrate that Complex-
CoT+I3C consumes much fewer computational re-
sources than Complex-CoT-Self-Consistency while
maintaining comparable accuracy.

3Efficiency analysis for Complex-CoT+I3C considers the
cost of (1) running SimCSE for each problem, (2) using LLM
as a verifier, and (3) prompting LLM to solve the problem.

Table 4: Accuracy (%) comparison of different demon-
stration construction methods.

Method
(GPT-3.5-Turbo)

Dataset
GSM-IC2-1K GSM-ICM-1K

Complex-CoT 84.3 83.0

I3C-Select - I3C 92.7 89.5

4.3 Ablation Studies

How does demonstration construction affect
I3C-Select? In I3C-Select, we select the K most
confusing problems and their reasoning paths as
demonstrations and named this demonstration con-
struction method “High”. To verify the effective-
ness of the demonstration construction method, we
also consider: (1) “Low”, where we select the K
problems with the lowest confusion scores and
their reasoning paths as demonstrations, and (2)
“Medium”, where we randomly select K problems
and their reasoning paths as demonstrations. We
set K to 8 throughout our experiments. As shown
in Figure 3, selecting more confusing problems
and their reasoning paths as demonstrations can
effectively improve the model’s performance.

Instructing to ignore irrelevant conditions vs.
refining problems to eliminate irrelevant con-
ditions. In Zero-Shot-CoT+I3C, we use I3C in-
struction to instruct LLMs to identify and ignore
irrelevant conditions in the MWP solving pro-
cess. In addition, we can refine the given prob-
lem to eliminate irrelevant conditions based on
the verification outputs generated in § 3.3, and
solve the refined problem using the Zero-Shot-
CoT method (i.e., Zero-Shot-CoT+Refine). As
shown in Table 3, Zero-Shot-CoT+Refine (89.2
and 84.8) substantially outperforms Zero-Shot-
CoT (87.0 and 82.0) on GSM-IC2-1K and GSM-
ICM-1K, respectively. This highlights that the gen-
erated verification outputs can explicitly identify
irrelevant conditions in the problem description.
Furthermore, Zero-Shot-CoT+I3C consistently out-
performs Zero-Shot-CoT+Refine. This is mainly
because the identified irrelevant conditions may
contain some useful conditions. When we refine
the given problem, we may eliminate some useful
conditions, resulting in an incorrect answer. In-
structing the LLM to ignore irrelevant conditions
can effectively alleviate the problem of losing use-
ful conditions during problem refinement. Case
studies are provided in Appendix A.5.

6806

Comparison of different demonstration con-
struction methods. To evaluate the effectiveness
of the demonstration construction methods, we also
consider I3C-Select - I3C, which selects the 8 most
confusing problems and their reasoning paths as
demonstrations, without including the I3C instruc-
tion in the prompt. Table 4 shows that I3C-Select
- I3C (92.7 and 89.5) significantly outperforms
Complex-CoT (84.3 and 83.0) on GSM-IC2-1K
and GSM-ICM-1K, respectively. These results sug-
gest that selecting the most confusing problems and
their reasoning paths as demonstrations is a more
effective demonstration construction method.

5 Conclusion

In this study, we introduce a plug-and-play mod-
ule, I3C, which can be added to any CoT prompt-
ing methods to enhance LLMs’ ability to explic-
itly identify and ignore irrelevant conditions in the
mathematical problem-solving process. Moreover,
we propose a novel few-shot prompting method,
I3C-Select, which selects the most confusing prob-
lems and their corresponding reasoning paths as
demonstrations. Extensive experiments on eight
math word problem datasets demonstrate the effec-
tiveness and efficiency of our proposed method.

Acknowledgments

Zhenyu Wu was a visiting student at the Univer-
sity of Notre Dame, advised by Meng Jiang. His
visit was financially supported by Xi’an Jiaotong
University. Chao Shen is the corresponding author.

References
Wenhu Chen, Xueguang Ma, Xinyi Wang, and

William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2023. Complexity-based prompting for
multi-step reasoning. In The Eleventh International
Conference on Learning Representations.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and

Graham Neubig. 2023. Pal: Program-aided lan-
guage models. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML’23.
JMLR.org.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. In Proceedings of
the Neural Information Processing Systems Track on
Datasets and Benchmarks, volume 1. Curran.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 523–533, Doha, Qatar. Association for Com-
putational Linguistics.

Zijian Hu and Meng Jiang. 2022. Heterogeneous line
graph transformer for math word problems. arXiv
preprint arXiv:2208.05645.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031, Copenhagen, Denmark. Association for
Computational Linguistics.

Ronald T. Kellogg. 2016. Fundamentals of cognitive
psychology, 3rd ed. Sage Publications, Inc.

Junhan Kim, Kyuhong Shim, and Byonghyo Shim. 2022.
Semantic feature extraction for generalized zero-shot
learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 1166–1173.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199–22213. Curran Associates, Inc.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585–597.

Hongchao Li, Chenglong Li, Aihua Zheng, Jin Tang,
and Bin Luo. 2022. Mskat: Multi-scale knowledge-
aware transformer for vehicle re-identification. IEEE
Transactions on Intelligent Transportation Systems,
23(10):19557–19568.

6807

https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=yf1icZHC-l9
https://openreview.net/forum?id=yf1icZHC-l9
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D17-1215
https://doi.org/https://doi.org/10.1609/aaai.v36i1.20002
https://doi.org/https://doi.org/10.1609/aaai.v36i1.20002
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1109/TITS.2022.3166463
https://doi.org/10.1109/TITS.2022.3166463

Jierui Li, Lei Wang, Jipeng Zhang, Yan Wang, Bing Tian
Dai, and Dongxiang Zhang. 2019. Modeling intra-
relation in math word problems with different func-
tional multi-head attentions. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 6162–6167, Florence, Italy.
Association for Computational Linguistics.

Zhenwen Liang, Jipeng Zhang, Lei Wang, Yan Wang,
Jie Shao, and Xiangliang Zhang. 2023. Generaliz-
ing math word problem solvers via solution diver-
sification. Proceedings of the AAAI Conference on
Artificial Intelligence, 37(11):13183–13191.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158–167, Vancouver,
Canada. Association for Computational Linguistics.

Arindam Mitra and Chitta Baral. 2016. Learning to
use formulas to solve simple arithmetic problems.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2144–2153, Berlin, Germany.
Association for Computational Linguistics.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1743–1752, Lisbon, Portu-
gal. Association for Computational Linguistics.

Subhro Roy, Tim Vieira, and Dan Roth. 2015. Reason-
ing about quantities in natural language. Transac-
tions of the Association for Computational Linguis-
tics, 3:1–13.

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin
Jiang, Ming Zhang, and Qun Liu. 2021. Generate &
rank: A multi-task framework for math word prob-
lems. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 2269–2279,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed Chi, Nathanael Schärli, and
Denny Zhou. 2023. Large language models can be
easily distracted by irrelevant context. In Proceed-
ings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.

2023a. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2609–2634, Toronto,
Canada. Association for Computational Linguistics.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu,
Lianli Gao, Bing Tian Dai, and Heng Tao Shen. 2019.
Template-based math word problem solvers with re-
cursive neural networks. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01):7144–
7151.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–854,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Mingyi Yang, Luis Herranz, Fei Yang, Luka Murn,
Marc Gorriz Blanch, Shuai Wan, Fuzheng Yang, and
Marta Mrak. 2023. Semantic preprocessor for image
compression for machines. In ICASSP 2023 - 2023
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1–5.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic chain of thought prompting
in large language models. In The Eleventh Interna-
tional Conference on Learning Representations.

Shen Zheng, Yuyu Zhang, Yijie Zhu, Chenguang Xi,
Pengyang Gao, Xun Zhou, and Kevin Chen-Chuan
Chang. 2023. Gpt-fathom: Benchmarking large lan-
guage models to decipher the evolutionary path to-
wards gpt-4 and beyond.

Lipu Zhou, Shuaixiang Dai, and Liwei Chen. 2015.
Learn to solve algebra word problems using quadratic
programming. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 817–822, Lisbon, Portugal. Asso-
ciation for Computational Linguistics.

Noah Ziems, Wenhao Yu, Zhihan Zhang, and Meng
Jiang. 2023. Large language models are built-
in autoregressive search engines. arXiv preprint
arXiv:2305.09612.

6808

https://doi.org/10.18653/v1/P19-1619
https://doi.org/10.18653/v1/P19-1619
https://doi.org/10.18653/v1/P19-1619
https://doi.org/10.1609/aaai.v37i11.26548
https://doi.org/10.1609/aaai.v37i11.26548
https://doi.org/10.1609/aaai.v37i11.26548
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P16-1202
https://doi.org/10.18653/v1/P16-1202
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.1162/tacl_a_00118
https://doi.org/10.1162/tacl_a_00118
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://aclanthology.org/2023.acl-long.147
https://aclanthology.org/2023.acl-long.147
https://aclanthology.org/2023.acl-long.147
https://doi.org/10.1609/aaai.v33i01.33017144
https://doi.org/10.1609/aaai.v33i01.33017144
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.18653/v1/D17-1088
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.1109/ICASSP49357.2023.10096472
https://doi.org/10.1109/ICASSP49357.2023.10096472
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr
http://arxiv.org/abs/2309.16583
http://arxiv.org/abs/2309.16583
http://arxiv.org/abs/2309.16583
https://doi.org/10.18653/v1/D15-1096
https://doi.org/10.18653/v1/D15-1096

A Appendix

A.1 Datasets

We use eight math word problem datasets for as-
sessing prompting method quality. The statistics
of the datasets are shown in Table 5. All of these
datasets are accessible under the MIT License. We
give a brief description of the datasets used below:

− SingleEq (Koncel-Kedziorski et al., 2015)
contains a set of grade-school algebra word
problems. Each problem may involve multi-
ple math operations including multiplication,
division, subtraction, and addition.

− AddSub (Hosseini et al., 2014) consists of
math word problems on addition and subtrac-
tion for third, fourth, and fifth graders.

− SVAMP (Patel et al., 2021) consists of one-
unknown math word problems which can be
solved by expressions requiring no more than
two operators.

− GSM8K (Cobbe et al., 2021) consists of high
quality grade school math word problems cre-
ated by human problem writers. These prob-
lems take between 2 and 8 steps to solve, and
solutions primarily involve performing a se-
quence of elementary calculations using basic
arithmetic operations to reach the final answer.

− AQuA (Ling et al., 2017) consist of multiple
option math questions covering a broad range
of topics and difficulty levels.

− MATH (Hendrycks et al., 2021) is a challeng-
ing datasets consisting of 12k problems within
7 categories testing the models’ advanced
math and science reasoning. The problems in
this dataset are very hard as they come from
mathematics competitions written in LATEX.

− GSM-IC (Shi et al., 2023) is an arithmetic
reasoning dataset with irrelevant conditions in
the problem description. It is divided into
two splits: GSM-IC2, consisting of prob-
lems requiring two steps to solve, and GSM-
ICM, consisting of problems requiring more
than two steps to solve. Being mindful of
the experiment costs, we uniformly sample
1, 000 examples from the GSM-IC2 dataset
(denoted by GSM-IC2-1K) and 1, 000 exam-
ples from the GSM-ICM dataset (denoted by

Table 5: Dataset description. The last column indicates
the percentage of problems with irrelevant conditions in
the problem description.

Dataset # Problems Avg.# Words Irrelevant Condition
SingleEq 508 27.4 0.0%

AddSub 395 31.5 30.9%

SVAMP 1, 000 31.8 36.7%

GSM8K 1, 319 46.9 6.2%

AQuA 254 51.9 14.2%

MATH 500 68.6 3.8%

GSM-IC2-1K 1, 000 41.8 100.0%

GSM-ICM-1K 1, 000 61.4 100.0%

GSM-ICM-1K) for evaluation and analysis
purposes throughout this paper.

A.2 Baselines

As we study how to prompt large language models
to solve math word problems, we employ seven
prompting baselines. We give a brief description
of the baselines used below:

− Direct (Kojima et al., 2022) is a baseline that
utilizes the symbolic reasoning ability of large
language models. By simply adding the sen-
tence “The answer is” after the problem of
interest, which instructs the large language
model to generate the answer to the problem.

− Zero-Shot-CoT (Kojima et al., 2022) is a
Chain-of-Thought prompting method. By
adding “Let’s think step by step” to the prob-
lem to elicit the large language model to gener-
ate reasoning path leading to the final answer.

− Plan-and-Solve (PS) (Wang et al., 2023a) re-
places the sentence “Let’s think step by step”
with “Let’s first understand the problem and
devise a plan to solve the problem. Then let’s
carry out the plan and solve the problem step
by step” to address the missing step issue in
Zero-Shot-CoT.

− Instruct-CoT (Shi et al., 2023) adds the sen-
tence “Feel free to ignore irrelevant conditions
in the problem description.” before the prob-
lem of interest, which instructs the large lan-
guage model to ignore irrelevant information
in the problem description.

− Manual-CoT (Wei et al., 2022) is a few-shot
prompting method. By representing manual

6809

designed demonstrations that solve the corre-
sponding problems with intermediate reason-
ing steps in the prompts, Manual-CoT elicits
multi-step reasoning ability of LLMs.

− Auto-CoT (Zhang et al., 2023) automatically
constructs demonstrations with questions and
reasoning paths from the test set to eliminate
manual designs in Manual-CoT.

− Complex-CoT (Fu et al., 2023) is a few-shot
prompting method that selects the most com-
plex problems and their generated reasoning
paths as demonstrations.

− PAL (Gao et al., 2023) is a few-shot prompt-
ing method that generates programming lan-
guage statements and uses a program inter-
preter to execute the generated program to get
final answers.

A.3 Metrics
We use accuracy to evaluate the performance of
different prompting methods. Since large language
models cannot perform the computation precisely
(especially with high-precision floats), we consider
an answer to be correct if and only if the absolute
error between the answer and the gold answer is
less than 1× 10−5. Let P be a set of problems, the
accuracy of the prompting method is

Accuracy =
1

|P|
∑

Q∈P
1
(
a
(final)

, a
(gold)

)

1
(
a
(final)

, a
(gold)

)
=

1, if Abs
(
a(final) − a(gold)

)
< 1 × 10−5

0, if Abs
(
a(final) − a(gold)

)
≥ 1 × 10−5

where a(gold) is the gold answer to question Q,
a(final) is the model-generated answer to question
Q, and Abs(·) is the absolute value function.

A.4 Full prompts in experiments

We list the prompts for all experiments in Table 6.

A.5 Additional Experimental Results

Does I3C instruction work with weaker LMs?
In all our experiments in § 4, we use GPT-3 (text-
davinci-003) and GPT-3.5-Turbo as backend LLMs,
but can I3C instruction work with weaker LMs?
We compare CoT prompting methods with adding
the I3C instruction to CoT prompting methods
when use UL2-20B as backend LM. Note that
UL2-20B is a weaker LMs with 20 billion param-
eters, but GPT3 has 175 billion parameters. As

Table 6: All prompts used in experiments. Q represents
the problem to be solved. I represents the I3C instruc-
tion that instructs LLMs to identify and ignore irrelevant
conditions in the problem description. The demonstra-
tions of Manual-CoT is from its original paper (Wei
et al., 2022).

Method Prompt

Direct
Q: Q
A: The answer is.

Direct + I3C
I
Q: Q
A: The answer is.

Zero-Shot-CoT
Q: Q
A: Let’s think step by step.

Zero-Shot-CoT + I3C
I
Q: Q
A: Let’s think step by step.

PS

Q: Q
A: Let’s first understand the problem
and devise a plan to solve the problem.
Then, let’s carry out the plan and solve
the problem step by step.

PS + I3C

I
Q: Q
A: Let’s first understand the problem
and devise a plan to solve the problem.
Then, let’s carry out the plan and solve
the problem step by step.

Instruct-CoT

Feel free to ignore irrelevant conditions
in the problem description.
Q: Q
A: Let’s think step by step.

Instruct-CoT + I3C

I
Feel free to ignore irrelevant conditions
in the problem description.
Q: Q
A: Let’s think step by step.

Manual-CoT
{hand-crafted demonstrations}
Q: Q
A:

Manual-CoT + I3C

I
{hand-crafted demonstrations}
Q: Q
A:

Auto-CoT
{demonstrations}
Q: Q
A:

Auto-CoT + I3C

I
{demonstrations}
Q: Q
A:

Complex-CoT
{demonstrations}
Q: Q
A:

Complex-CoT + I3C

I
{demonstrations}
Q: Q
A:

PAL
{demonstrations}
Q: Q
A:

I3C-Select (Ours)

I
{demonstrations}
Q: Q
A:

6810

Table 7: Accuracy (%) comparison on six MWP datasets. I3C indicates that instructs LLMs to identify and ignore
irrelevant conditions. Adding the I3C instruction to CoT prompting methods effectively improves performance.
Selecting the most confusing problems and their generated reasoning paths as demonstrations for few-shot learning
(i.e., I3C-Select) achieves state-of-the-art performance on all six MWP datasets.

Method
(UL2-20B)

Dataset
AddSub SVAMP GSM8K SingleEq GSM-IC2-1K GSM-ICM-1K

Direct 28.6 16.9 5.0 21.7 12.9 9.5

Direct + I3C 33.9(+5.3) 27.8(+10.9) 9.8(+4.8) 32.7(+11.0) 21.3(+8.4) 13.2(+3.7)

Zero-Shot-CoT 32.9 29.5 22.7 38.8 29.6 25.5

Zero-Shot-CoT + I3C 36.7(+3.8) 30.5(+1.0) 22.7(+0.0) 40.0(+1.2) 40.6(+11.0) 27.6(+2.1)

PS 30.0 26.7 21.2 36.6 27.4 24.9

PS + I3C 31.9(+1.9) 28.4(+1.7) 21.3(+0.1) 40.0(+3.4) 32.4(+5.0) 26.0(+1.1)

Instruct-CoT 34.7 31.2 23.5 40.0 33.8 26.4

Instruct-CoT + I3C 35.4(+0.7) 31.5(+0.3) 21.2(−2.3) 41.1(+1.1) 40.0(+6.2) 28.6(+2.2)

Manual-CoT 34.9 31.7 25.2 43.3 35.4 28.0

Manual-CoT + I3C 39.0(+4.1) 28.1(−3.6) 22.2(−3.0) 42.9(−0.4) 43.0(+7.6) 28.5(+0.5)

Auto-CoT 36.7 31.9 24.5 41.9 35.0 29.4

Auto-CoT + I3C 39.5(+2.8) 28.7(−3.2) 24.7(+0.2) 43.6(+1.7) 41.1(+6.1) 30.1(+0.7)

I3C-Select (Ours) 39.7 34.6 27.5 44.1 46.0 35.9

0.0 0.2 0.4 0.6 0.8 1.0
Threshold θ

0

20

40

60

80

100

R
ec

al
l

(%
)

(a) Recall with Different Thresholds

AddSub

SVAMP

GSM8K

SingleEq

GSM-IC2-1K

GSM-ICM-1K

0.0 0.2 0.4 0.6 0.8 1.0
Threshold θ

0

20

40

60

80

100

V
er

ifi
ca

ti
on

co
n

d
it

io
n

s
(%

)

(b) Percentage of Conditions to be Verified

AddSub

SVAMP

GSM8K

SingleEq

GSM-IC2-1K

GSM-ICM-1K

Figure 4: Hyperparameter analysis. (a) As the threshold increases, the recall scores of identified irrelevant condition
candidates first increase and then remain unchanged for all datasets except SingleEq. (b) As the threshold increases,
the percentage of conditions to be verified first increases and then remains unchanged for all datasets.

shown in Table 7, even though the absolute accu-
racies of UL2-20B are lower, adding the I3C in-
struction to CoT prompting methods effectively im-
proves MWP solving performance, and I3C-Select
achieves consistent performance improvements on
MWP datasets. This shows that I3C instruction can
work with weaker LMs.

Hyperparameter setup for I3C instruction. To
compare the identification accuracy of irrelevant
conditions at different thresholds θ, we employ the
recall metric. Recall is computed by dividing the
number of correctly identified irrelevant conditions
by the total number of irrelevant conditions. As
shown in Figure 4a, as the threshold increases, the
recall score for the irrelevant condition identifica-

tion first increases and then remains unchanged
in all datasets except SingleEq. The exception
is due to the problems in SingleEq not contain-
ing irrelevant conditions, the recall score remains
0 regardless of the threshold. Notably, when the
threshold is 0.5, we can accurately identify 98.6%
of irrelevant conditions. Furthermore, as shown in
Figure 4b, the percentage of conditions to be ver-
ified initially increases and then stabilizes across
all datasets as the threshold increases. The per-
centage of conditions to be verified is calculated
by dividing the number of conditions in the set of
irrelevant condition candidates by the total number
of conditions. When the threshold is 0.5, the LLM
is required to verify 66.6% of conditions on aver-

6811

Table 8: Case study of answers generated by different methods. Irrelevant conditions in the problem description is
highlighted with red color, and the LLM-generated final answer is highlighted with yellow color.

Problem Granger went to the grocery store. He saw that the Spam is $3 per can, the peanut
butter is $5 per jar, and the bread is $2 per loaf. Jack owns 5 bottles of water with
each worth $2. If Granger bought 12 cans of spam, 3 jars of peanut butter, and 4
loaves of bread, how much is the total amount he paid?

Gold Answer 3× 12 + 5× 3 + 2× 4 = 59

Auto-CoT Granger bought 12 cans of spam. 12 * $3 = $36. Granger bought 3 jars of peanut
butter. 3 * $5 = $15. Granger bought 4 loaves of bread. 4 * $2 = $8. Jack owns 5
bottles of water. 5 * $2 = $10. The total amount he paid is $36 + $15 + $8 + $10 =
$69. The answer is 69. %

Instruct-CoT Granger bought 12 cans of Spam, so that’s 12 x $3 = $36. He bought 3 jars of
peanut butter, so that’s 3 x $5 = $15. He bought 4 loaves of bread, so that’s 4 x $2 =
$8. Jack owned 5 bottles of water, so that’s 5 x $2 = $10. Adding them all up, the
total amount Granger paid is $36 + $15 + $8 + $10 = $69. %

Complex-CoT The cost of 12 cans of spam is 12 x $3 = $36. The cost of 3 jars of peanut butter is
3 x $5 = $15. The cost of 4 loaves of bread is 4 x $2 = $8. The cost of 5 bottles of
water is 5 x $2 = $10. Therefore, the total amount Granger paid is $36 + $15 + $8 +
$10 = $69. The answer is $69. %

I3C-Select First, calculate the cost for each item that Granger bought: 12 cans of Spam = 12 x
$3 = $36; 3 jars of peanut butter = 3 x $5 = $15; 4 loaves of bread = 4 x $2 = $8.
Then, calculate the total cost of all the items: $36 + $15 + $8 = $59. !

age, and the average number of verification calls
per MWP made to the LLM is approximately 2.18.
Overall, we set the threshold θ to 0.5 to achieve a
trade-off between efficiency and effectiveness.

I3C instruction enhances robustness against ir-
relevant conditions. Table 8 shows that apart
from I3C-Select, the other methods fail to provide
accurate answers to the given problem. Instruct-
CoT, Complex-CoT, and Auto-CoT produce incor-
rect answers due to the incorporation of irrelevant
conditions in the MWP solving process. In con-
trast, I3C-Select explicitly identifies and ignores
irrelevant conditions in the MWP solving process.

Instructing to ignore irrelevant conditions vs.
refining problems to eliminate irrelevant con-
ditions. In Zero-Shot-CoT+I3C, we use I3C in-
struction to instruct LLMs to identify and ignore
irrelevant conditions in the MWP solving process.
In addition, we can refine the given problem to
eliminate irrelevant conditions based on the veri-
fication outputs generated in § 3.3, and solve the
refined problem using the Zero-Shot-CoT method
(i.e., Zero-Shot-CoT+Refine). For example, as
shown in Table 9, the condition “On Friday, he
only works from 8am to 11am.” and the condition

“Last week, Tom repaired 10 more umbrellas than
the cobbler.” are identified as the irrelevant con-
ditions. By eliminating these identified irrelevant
conditions, we get the refined problem “A cobbler
can mend 3 pairs of shoes in an hour. From Mon-
day to Thursday, the cobbler works for 8 hours
each day. How many pairs of shoes can the cob-
bler mend in a week?”. Obviously, in this case,
we incorrectly identified the condition “On Friday,
he only works from 8am to 11am.” as an irrele-
vant condition. Eliminating this condition would
result in losing useful conditions in the problem
refinement process, resulting in an incorrect an-
swer. In contrast, instructing the LLM to ignore
irrelevant conditions can effectively alleviate the
problem of losing useful conditions during problem
refinement, and can effectively enhance the MWP
solving performance.

A.6 Sample Predictions on MWP Datasets
We present case studies in Tables 10 to 15. It is
evident that I3C instructs LLMs to explicitly iden-
tify and ignore irrelevant conditions in the prob-
lem statement. Adding I3C instruction to the CoT
prompting methods effectively helps LLMs avoid
confusion and improve reasoning paths.

6812

Table 9: Example outputs by Zero-Shot-CoT + Refine and Zero-Shot-CoT + I3C for GSM-ICM-1K. Irrelevant
conditions in the problem description is highlighted with red color.

Problem A cobbler can mend 3 pairs of shoes in an hour. From Monday to Thursday, the
cobbler works for 8 hours each day, and on Friday, he only works from 8am to 11am.
Last week, Tom repaired 10 more umbrellas than the cobbler. How many pairs of
shoes can the cobbler mend in a week?

Gold Answer (4× 8 + 11− 8)× 3 = 105

Verification
Outputs

■ Yes, the condition A cobbler can mend 3 pairs of shoes in an hour is relevant
to the calculation process of the problem How many pairs of shoes can the cobbler
mend in a week? Without the condition, it would be impossible to calculate the
number of pairs of shoes the cobbler can mend in a week.

■ The condition on Friday, he only works from 8am to 11am is not relevant to the
calculation process.

■ The condition Last week, Tom repaired 10 more umbrellas than the cobbler. is
not relevant to the calculation process of the problem.

Refined Prob-
lem

A cobbler can mend 3 pairs of shoes in an hour. From Monday to Thursday, the
cobbler works for 8 hours each day. How many pairs of shoes can the cobbler mend
in a week?

Reasoning Path Zero-Shot-CoT + Refine Zero-Shot-CoT + I3C

First, we need to calculate how many pairs
of shoes the cobbler can mend in 4 days
(Monday to Thursday). Since he works 8
hours a day, and can mend 3 pairs of shoes
per hour, he can mend 8 x 3 = 24 pairs of
shoes in 4 days. This gives us 24 pairs of
shoes in a week.

Step 1: Calculate the number of hours
the cobbler works in a week. From
Monday to Thursday, the cobbler works
for 8 hours each day. That’s 8 x 4 =
32 hours. On Friday, he only works
from 8am to 11am. That’s 3 hours. So
in a week, the cobbler works 32 + 3 =
35 hours. Step 2: Calculate the num-
ber of pairs of shoes the cobbler can
mend in a week. The cobbler can mend
3 pairs of shoes in an hour. So in 35
hours, the cobbler can mend 35 x 3 =
105 pairs of shoes. Step 3: Determine
if the condition is relevant to the cal-
culation process. The fact that Tom re-
paired 10 more umbrellas than the cob-
bler does not affect the calculation pro-
cess. Therefore, the cobbler can mend
105 pairs of shoes in a week.

Final Answer 24% 105!

6813

Table 10: Example outputs by Zero-Shot-CoT, Zero-Shot-CoT + I3C and I3C-Select. Irrelevant conditions in the
problem description is highlighted with red color, and the LLM-generated final answer is highlighted with yellow
color.

Problem Megan is an actress. She was the lead actress in 80% of her work. In total, Megan
participated in 100 plays. Tom bought the tickets for 300 plays. How many times
Megan was not the lead actress?

Gold Answer 100× (1− 80%) = 20

Verification
Outputs

■ Megan participated in 100 plays. That means she was the lead actress in 80 of
them. That leaves 20 plays where she was not the lead actress. Tom bought tickets to
300 plays. That means Megan was the lead actress in 240 of them, and she was not
the lead actress in 60 of them. So, the answer is 60 times. The condition She was the
lead actress in 80% of her work is relevant to the calculation process, as it tells us
that 80 out of 100 plays she was the lead actress.

■ Megan was the lead actress in 80% of her plays, so she was the lead actress in 80
plays. Since she participated in a total of 100 plays, that means she was not the lead
actress in the remaining 20 plays. The condition that Tom bought tickets for 300
plays is irrelevant to the calculation process.

Reasoning Path

Zero-Shot-CoT

Megan was the lead actress in 80 plays. 100 - 80 = 20 Tom bought the tickets for
300 plays. Megan was not the lead actress in the remaining 200 plays. %

Zero-Shot-CoT + I3C

Megan was the lead actress in 80% of her work, which means she was the lead
actress in 80 plays. That leaves 20 plays in which she was not the lead actress. Tom
bought tickets for 300 plays, but that information does not affect the calculation of
how many times Megan was not the lead actress. Therefore, the answer is 20 times.
!

I3C-Select

Megan was the lead actress in 80% of her work, so she was the lead actress in 80
plays. That leaves 20 plays in which she was not the lead actress. Tom bought the
tickets for 300 plays, but that information does not affect the calculation of how
many times Megan was not the lead actress. Therefore, the answer is 20 times. !

6814

Table 11: Example outputs by Direct, Direct + I3C and I3C-Select. Irrelevant conditions in the problem description
is highlighted with red color, and the LLM-generated final answer is highlighted with yellow color.

Problem Sally eats 2 sandwiches on Saturday and 1 sandwich on Sunday. Jack bought 2
more pieces of bread than Sally yesterday. If each sandwich uses 2 pieces of bread,
how many pieces of bread does Sally eat across Saturday and Sunday?

Gold Answer (2 + 1)× 2 = 6

Verification
Outputs

■ Sally eats 2 sandwiches on Saturday, so she has eaten 4 pieces of bread. On
Sunday, she eats 1 sandwich, so she has eaten 2 more pieces of bread. Jack bought 2
more pieces of bread than Sally, so Sally has eaten 6 pieces of bread across Saturday
and Sunday. Therefore, the answer is 6 pieces of bread. The condition of 1 sandwich
on Sunday is relevant to the calculation process, since it tells us how many pieces of
bread Sally has eaten on Sunday.

■ Sally ate 2 sandwiches on Saturday, so she used 4 pieces of bread on Saturday. On
Sunday, Sally ate 1 sandwich, so she used 2 pieces of bread on Sunday. Therefore,
Sally ate 6 pieces of bread across Saturday and Sunday. The condition Jack bought 2
more pieces of bread than Sally is not relevant to the calculation process, as it does
not affect the number of pieces of bread Sally ate across Saturday and Sunday.

Reasoning Path

Direct

Sally eats a total of 4 pieces of bread across Saturday and Sunday. %

Direct + I3C

6 pieces of bread. Sally ate 2 sandwiches on Saturday, which used 4 pieces of bread,
and 1 sandwich on Sunday, which used 2 pieces of bread, so she ate 6 pieces of
bread across Saturday and Sunday. The condition that Jack bought 2 more pieces of
bread than Sally is not relevant to the calculation process. !

I3C-Select

Sally ate 2 sandwiches on Saturday, so she used 4 pieces of bread on Saturday. On
Sunday, Sally ate 1 sandwich, so she used 2 pieces of bread on Sunday. Therefore,
Sally ate 6 pieces of bread across Saturday and Sunday. The condition Jack bought
2 more pieces of bread than Sally is not relevant to the calculation process, as it
does not affect the number of pieces of bread Sally ate across Saturday and Sunday.
!

6815

Table 12: Example outputs by PS, PS + I3C and I3C-Select. Irrelevant conditions in the problem description is
highlighted with red color, and the LLM-generated final answer is highlighted with yellow color.

Problem Holden’s current master bedroom is 309 sq ft and his master bath is 150 sq ft.
The basketball field of Tom is 200 sq ft larger than Holden’s bathroom. If Holden
wants to add a home office/personal gym divided space that is twice as large as his
bedroom and bathroom, how much sq ft will this new room have?

Gold Answer (309 + 105)× 2 = 918

Verification
Outputs

■ The master bedroom is 309 sq ft and the master bathroom is 150 sq ft. Therefore,
the combined area of the bedroom and bathroom is 459 sq ft. If this space is to be
doubled for the new home office/personal gym, then the new room will have 918
sq ft. The condition Holden’s current master bedroom is 309 sq ft is relevant to the
problem, as it is used to determine the combined area of the bedroom and bathroom
(459 sq ft). This combined area is then doubled to get the total area of the new room
(918 sq ft).

■ Holden’s bedroom is 309 sq ft. Holden’s bathroom is 150 sq ft. The total sq ft of
Holden’s bedroom and bathroom is 459 sq ft. We need to find a space that is twice
as large as Holden’s bedroom and bathroom combined. Therefore, the new room
will be 2 x 459 sq ft = 918 sq ft. The basketball field of Tom is 200 sq ft larger than
Holden’s bathroom so it is not relevant to the calculation process of this problem.

Reasoning Path

PS

Plan: 1. Find the combined sq ft of the bedroom and bathroom. 2. Add 200 sq ft to
the combined sq ft from step 1. 3. Multiply the combined sq ft from step 2 by 2.
Solution: 1. 309 sq ft (bedroom) + 150 sq ft (bathroom) = 459 sq ft 2. 459 sq ft +
200 sq ft = 659 sq ft 3. 659 sq ft x 2 = 1318 sq ft Therefore, the new room will have
1318 sq ft. %

PS + I3C

First, we need to calculate the combined area of Holden’s bedroom and bathroom,
which is equal to 309 sq ft (bedroom) + 150 sq ft (bathroom) = 459 sq ft. Next, we
need to double this combined area to get the total area of the new room. This can be
done by multiplying 459 sq ft (the total sq ft of Holden’s bedroom and bathroom
combined) by 2, which gives us 918 sq ft. Therefore, the new room will have 918
sq ft. The basketball field of Tom is 200 sq ft larger than Holden’s bathroom so it is
not relevant to the calculation process of this problem. !

I3C-Select

Holden’s bedroom is 309 sq ft and his bathroom is 150 sq ft. The total sq ft of
Holden’s bedroom and bathroom combined is 459 sq ft. We need to find a space
that is twice as large as Holden’s bedroom and bathroom combined. Therefore, the
new room will be 2 x 459 sq ft = 918 sq ft. The condition The basketball field of
Tom is 200 sq ft larger than Holden’s bathroom is not relevant to the calculation
process of this problem, as it does not involve any calculation involving Holden’s
bedroom and bathroom. !

6816

Table 13: Example outputs by Instruct-CoT, Instruct-CoT + I3C and I3C-Select. Irrelevant conditions in the problem
description is highlighted with red color, and the LLM-generated final answer is highlighted with yellow color.

Problem James buys 6 t-shirts for 50% off. They each cost $20. Emma works at the mall
with an hourly salary of $10. How much did James pay?

Gold Answer (20/2)× 6 = 60

Verification
Outputs

■ First, James paid 50% off the normal price for the 6 t-shirts, which would normally
cost $20 each. This means he paid $10 per t-shirt. So, James paid $60 total for the 6
t-shirts. The condition James buys 6 t-shirts for 50% off is relevant to the calculation
process, as it determined the amount that James paid for the 6 t-shirts. Emma’s
hourly salary of $10 is not relevant to the calculation process of this problem.

■ James bought 6 t-shirts, so he paid for 6 times $20. Then, he got 50% off, so
50% of $20 is $10, so he paid for 6 times $10. The condition They each cost $20 is
relevant to the problem, because it tells us how much James paid for each t-shirt. So,
the answer is James paid $60.

■ James bought 6 t-shirts at 50% off, which means the t-shirts were 50% cheaper
than their original price. This means that each t-shirt cost $20. Multiplying 6 t-shirts
by $20, James paid a total of $120 for the 6 t-shirts. The condition that Emma works
at the mall with an hourly salary of $10 is not relevant to the calculation process of
this problem.

Reasoning Path

Instruct-CoT

Since James bought 6 t-shirts for 50% off, the price of each t-shirt is reduced to $20.
Therefore, James paid $120 in total for the 6 t-shirts. Emma’s hourly salary of $10
is irrelevant to the question. %

Instruct-CoT + I3C

James bought 6 t-shirts that were 50% off, so the original price of each t-shirt was
$20. Therefore, James paid $10 for each t-shirt, and he bought 6 t-shirts, so he paid
$60 in total. The condition that Emma works at the mall with an hourly salary of
$10 is not relevant to the calculation process of this problem. !

I3C-Select

First, James paid 50% off the normal price for the 6 t-shirts, which would normally
cost $20 each. This means he paid $10 per t-shirt. So, James paid $60 total for the 6
t-shirts. The condition James buys 6 t-shirts for 50% off is relevant to the calculation
process, as it determined the amount that James paid for the 6 t-shirts. Emma’s
hourly salary of $10 is not relevant to the calculation process of this problem. !

6817

Table 14: Example outputs by Manual-CoT, Manual-CoT + I3C and I3C-Select. Irrelevant conditions in the problem
description is highlighted with red color, and the LLM-generated final answer is highlighted with yellow color.

Problem James collects all the fruits from his 2 trees. Each tree has 20 plants. Each plant has
1 seed and he plants 60% of those. James’ sister is 10 years old. How many trees
did James plant?

Gold Answer 2× 20× 60% = 24

Verification
Outputs

■ James collected all the fruits from his 2 trees. This means he did not plant any new
trees. Each tree has 20 plants. This means James had 40 plants in total. Each plant
has 1 seed. This means James had 40 seeds in total. He planted 60% of those seeds.
This means he planted 24 seeds. Therefore, James planted 24 seeds, but he did not
plant any new trees. The condition James collects all the fruits from his 2 trees is
relevant to the calculation process because it indicates that James did not plant any
new trees, only seeds.

■ First, James collected all the fruits from his two trees. Each tree has 20 plants, so
James collected 40 plants in total. Second, each plant has 1 seed, so James collected
40 seeds in total. Third, he planted 60% of those seeds, so James planted 24 seeds in
total. Finally, we can conclude that James planted two trees, since each tree had 20
plants and he planted 24 seeds in total. So, to answer the question, James planted
two trees. Yes, the condition Each tree has 20 plants is relevant to the calculation
process of the problem How many trees did James plant?, since it helps us determine
how many plants he collected in total and how many seeds he planted in total.

■ James collects all the fruits from his 2 trees. Each tree has 20 plants. Each plant
has 1 seed. This means there are 40 seeds in total. James then plants 60% of those,
which means he plants 24 seeds. The condition James’ sister is 10 years old is not
relevant to the calculation process of this problem. Therefore, James planted 24 trees.

Reasoning Path

Manual-CoT

James collected all the fruits from his 2 trees. Each tree has 20 plants. Each plant
has 1 seed. He planted 60% of those. 60% is 0.6, so he planted 0.6 x 20 = 12 of
those. James’ sister is 10 years old. This has nothing to do with the question, so the
answer is still 12. %

Manual-CoT + I3C

James collected all the fruits from his two trees, so he has 40 plants. Each plant has
1 seed, so he has 40 seeds. He plants 60% of those, so he plants 24 seeds. Therefore,
James planted 24 trees. The condition James’ sister is 10 years old is not relevant to
the calculation process of this problem. !

I3C-Select

First, James collected all the fruits from his two trees, so he has 40 plants. Second,
each plant has 1 seed, so he has 40 seeds. Third, he plants 60% of those, so he plants
24 seeds. Therefore, James planted 24 trees. The condition that James’ sister is 10
years old is not relevant to the calculation process of this problem. The relevant
information to answer this question is that James collected all the fruits from his
two trees, each tree has 20 plants, and he plants 60% of those. To calculate how
many trees James planted, we need to calculate the number of seeds he planted. So
the answer would be: 24 trees. !

6818

Table 15: Example outputs by Auto-CoT, Auto-CoT + I3C and I3C-Select. Irrelevant conditions in the problem
description is highlighted with red color, and the LLM-generated final answer is highlighted with yellow color.

Problem Hamza has several empty buckets of different sizes, holding either 3, 5, or 6 liters.
She fills the 5-liter bucket and pours as much as she can into the 3-liter bucket.
Then, she pours the remainder into the 6-liter bucket. Jack drinks 7 liters of milk
every day. How much more water, in liters, can Hamza put into the 6-liter bucket,
without overflowing?

Gold Answer 6− (5− 3) = 4

Verification
Outputs

■ First, Hamza fills the 5-liter bucket and then pours as much as she can into the
3-liter bucket. Since the 3-liter bucket has a capacity of 3 liters, she can pour all 5
liters into it. Then, she pours the remainder (2 liters) into the 6-liter bucket. That
means she has put a total of 7 liters into the 6-liter bucket. Now, Jack drinks 7 liters
of milk every day. That means the 6-liter bucket is emptied every day. Therefore,
Hamza can put up to 6 liters more water, in liters, into the 6-liter bucket, without
overflowing. Yes, the condition Hamza has several empty buckets of different sizes,
holding either 3, 5, or 6 liters. is relevant to the calculation process of the problem.
This condition gives us the capacity of each bucket, which is necessary to calculate
the amount of water Hamza can put into the 6-liter bucket without overflowing.

■ We can calculate that Hamza can put an additional 3 liters of water into the 6-liter
bucket, without overflowing. This is because the 6-liter bucket can hold a maximum
of 6 liters of water, and it currently holds 3 liters of water. The condition Jack drinks
7 liters of milk every day is not relevant to the calculation process of this problem.

Reasoning Path

Auto-CoT

The 5-liter bucket is filled. She pours as much as she can into the 3-liter bucket.
That leaves 2 liters in the 5-liter bucket. She then pours the remainder into the 6-liter
bucket. That leaves 2 liters in the 6-liter bucket. Jack drinks 7 liters of milk every
day, so she has to leave 7 liters of water for him. Therefore, she can put 5 liters of
water in the 6-liter bucket without overflowing. The answer is 5. %

Auto-CoT + I3C

Hamza first fills the 5-liter bucket. She then pours as much as she can into the 3-liter
bucket, filling it to capacity. The remaining 2 liters of water from the 5-liter bucket
are then poured into the 6-liter bucket, leaving 4 liters of space for more water (6
liters - 2 liters = 4 liters). Hamza can add 4 more liters of water into the 6-liter
bucket without overflowing. The answer is 4. !

I3C-Select

Hamza has a 5-liter bucket. This is relevant to the calculation process as it tells us
the size of the bucket Hamza has. She fills the 5-liter bucket and pours as much
as she can into the 3-liter bucket. This is relevant to the calculation process as it
tells us how much water Hamza is transferring from the 5-liter bucket to the 3-liter
bucket. The 3-liter bucket can only hold 3 liters of water, so Hamza would be able
to pour 3 liters of water from the 5-liter bucket into the 3-liter bucket. She then
pours the remainder of the water (2 liters) into the 6-liter bucket. This is relevant to
the calculation process as it tells us how much water Hamza is transferring from the
5-liter bucket to the 6-liter bucket. The 6-liter bucket currently has 2 liters of water
in it, so it can hold 4 more liters of water without overflowing. So the answer would
be 4 liters. !

6819

