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Abstract
Most current state-of-the-art approaches for
text classification are based on fine-tuning the
representations computed by large language
models (LLMs). This strategy has led to sig-
nificant improvements in classification perfor-
mance and contributed to a reduction of the
amount of labeled data required for training a
model. However, for some challenging clas-
sification tasks, providing enough annotations
to ensure a reliable classification continues to
be the main bottleneck. This is especially true
in settings of highly imbalanced class distribu-
tions. This paper proposes to tackle this bot-
tleneck by exploiting structural properties of
pre-trained embeddings. More precisely, we
develop a label propagation method that uses
pre-trained embeddings to spread information
from the labeled samples to nearby samples in
the induced space, ensuring the optimal use of
annotations. Our approach is simple and rela-
tively low-cost since it only requires comput-
ing some distances in the embedded space. We
conduct experiments on different text classifica-
tion datasets showing that the proposed method
is efficient and significantly outperforms both
self-training and random walk label propaga-
tion strategies.

1 Introduction

Currently, the dominant state-of-the-art approach
for text classification is based on fine-tuning the
representations computed by large language mod-
els (LLMs). This approach has led to significant
improvements in classification performance and
contributed to a reduction of the amount of super-
vised labeled data required for training a model.
However, for some challenging classification tasks,
providing enough annotations to ensure a reliable
classification continues to be the main bottleneck
in terms of cost and time. We would like to train
models with minimal annotation effort.

In this paper, we focus on the problem of learn-
ing a text classifier under annotation budget con-

straints and with no prior trained model. The only
assumption we make is access to a large unlabeled
dataset. This is sometimes referred to as few-shot
learning or the cold-start problem. Notice that
our setting is different from the classical active
learning scenario, where one assumes several train-
ing iterations and the algorithm alternates between
sampling data and learning a new model. Our fo-
cus is on the initial setting and we exploit a semi-
supervised strategy.

We are interested in classification scenarios with
highly imbalanced class distributions. Class imbal-
ance is a frequent phenomenon in real NLP appli-
cations because target categories tend to be skewed
(spam detection, hate speech). Class imbalance
poses an additional challenge when learning under
budget constraints. This is because, even if we only
require a small sample of the target class, to obtain
such a sample we might still require a significant
number of annotations. For instance, in a scenario
with a 10% target class probability, obtaining 10
representative samples would, on average, require
annotating 100 samples.

Self-training (Yarowsky, 1995) is a popular strat-
egy for learning textual classifiers with tight anno-
tation budgets and it is widely used by NLP practi-
tioners (Yang et al., 2021; McClosky et al., 2006).
This semi-supervised learning strategy starts by
training a model with a labeled seed set. Its pre-
dictions on a large unlabeled dataset are then used
to train a new model. Typically this process is re-
peated until the whole unlabeled dataset has been
labeled.

Instead of training a model with its predictions,
an alternative approach is to exploit the proper-
ties of the input space directly. Recent literature
on analyzing textual representations (Gonzalez-
Gutierrez et al., 2023; Yauney and Mimno, 2021;
Zhou and Srikumar, 2021) shows that pre-trained
embeddings exhibit some structural properties that
make them especially well-suited for text classifica-
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tion. Gonzalez-Gutierrez et al. (2023) showed that
the best representations are those in which we can
find latent clusters that are well aligned with the
classification task. The paper concludes with the
suggestion that the structure of the embedded space
could be further exploited to improve the perfor-
mance of classifiers when the budget for supervised
annotations is tight.

Motivated by this study, we propose a strategy to
leverage the structure of the embedded space to im-
prove classifier performance under tight annotation
budgets. If the latent structure of a representation
is well aligned with a task, we should be able to
exploit this with an appropriate label propagation
strategy. With this in mind, we develop a label
propagation strategy specifically designed for the
imbalanced class scenario.

Additionally, a label propagation strategy might
be more successful if the initial labeled set is di-
verse. Label propagation and diversity sampling
are complementary ideas of how to exploit the
structure of the embedded space. Diversity sam-
pling prioritizes the selection of representative sam-
ples, while label propagation maximizes the utility
of the chosen samples, therefore it is natural to
combine them. In this paper, we combine both
techniques and examine how the choice of initial
samples impacts overall performance under anno-
tation budget constraints.

Our experiments on text classification show that
our approach is very effective for fine-tuning clas-
sifiers under tight annotation budgets, especially in
imbalanced scenarios. Our technique outperforms
both self-training and label propagation strategies.
Furthermore, although the setting is different, we
compare our approach against a classical active
learning baseline and show that it leads to sig-
nificant reductions in the annotations required to
achieve a given classification performance. Over-
all, the results show that our proposed propagation
strategy leads to significant performance improve-
ments independent of the initial seed sampling strat-
egy. However, combining label propagation and
diversity sampling does lead to further improve-
ments with very low annotation budgets.

In summary, our main contributions are:

• We develop a label propagation method for train-
ing text classifiers with minimal supervision. Our
approach is designed to exploit structural prop-
erties of pre-trained embeddings. The proposed
method is simple and low-cost, it only requires

computing distances in the embedded space. We
believe that it can become a practical tool for
working with tight annotation budgets.

• We conduct experiments on various datasets
showing that the proposed method is very effec-
tive and outperforms both self-training and label
propagation strategies.

• We study the combination of semi-supervised
learning with seed diversity sampling and show
that in low-budget scenarios it can lead to further
improvements.

2 Leveraging Pre-trained Embeddings for
Learning with an Annotation Budget

In this section, we present our proposed semi-
supervised approach, which leverages pre-trained
embeddings to learn textual classifiers under tight
annotation budgets.

2.1 Learning Setting
Let U = {xi}ni=1 be an unlabeled dataset where xi

is a text document and n is the size of the dataset.
We let Y be the set of label classes. In addition, we
have at our disposal an oracle O(xi) = yi that we
can query to obtain the label of a sample. Finally,
in the learning-under-a-budget setting, we also as-
sume that we have an annotation budget of B so
that we can only query the oracle for B annotations
(we assume a unit cost for each annotation).

We apply a seed selection mechanism to pick
a subset of the documents and label them. This
constitutes our seed set L of size B. Our goal is to
leverage information from the remaining samples
in U to obtain the best possible classifier under the
given budget constraints.

2.2 Graph Label Propagation over
Pre-trained Embeddings (GLPE)

The general steps of our method are the following.
We first use an LLM to compute an embedding for
each document in the dataset. Once both labeled
and unlabeled documents have been projected to
the embedding space, we compute affinity matrices
between them for each target class. The affinity
graphs are then used to propagate labels from the
seeds to nearby unlabeled samples, generating a
new set of pseudo-labeled samples. Later, we use
both the seeds and the pseudo-labeled samples to
fine-tune the final classification model. Figure 1
provides a high-level view of our method.

We assume that a small subset of the points have
been labeled with their true class values, this is our
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Figure 1: General schema of Graph Label Propagation over Pre-trained Embeddings (GLPE). First, an embedded
representation is computed for the entire pool. The given seed samples serve to compute an affinity matrix for each
label based on similarities between labeled and unlabeled points. Finally, label propagation is performed based on
the highest aggregated score.

seed set L. The goal of the label propagation step
is to make the best use of the seed set by exploiting
information in the unlabeled pool U .

Gonzalez-Gutierrez et al. (2023) has shown that
pre-trained embeddings for text classification have
some key properties, usually referred to as smooth-
ness and manifold (van Engelen and Hoos, 2020;
Yang et al., 2021). These properties state that close
samples in the embedded space will belong with
high probability to the same class. Furthermore,
the paper also showed that the embedded repre-
sentation satisfied the class-clustering alignment
property. This property ensures that points within
the embedded space clusters will belong, with high
probability, to the same class. We propose to ex-
ploit these properties via a graph-based label prop-
agation strategy that will generate a new set of
pseudo-labeled samples for fine-tuning a model.

Note that these properties refer to the relation be-
tween the embedding and the task, and differ from
intrinsic (unsupervised) properties of the embedded
space. Properties such as isotropy (Gao et al., 2019;
Ethayarajh, 2019; Su et al., 2021) or clusterability
(Xu et al., 2023) might be beneficial, but what we
require is that the representation shows clustering
alignment with the task.

We start by running an LLM to compute an em-
bedded representation for every data point in the
pool: R = {emb(xi)}ni=1.

Similar to Zhu and Ghahramani (2002), we em-
ploy a kernel function to build an affinity matrix
Ac ∈ Rn×p for each class label c. Where n is the
number of unlabeled samples, and p is the number
of samples of class c contained in the labeled set L.

The affinity matrices are defined as:

Ac
ij = exp

(
−d(ri, rj)

σ2

)
(1)

where d(·) is some distance metric, σ is a band-
width parameter, and ri ∈ R and rj ∈ R are the
embeddings for the ith unlabeled point and the jth

seed labeled as c. Every row of Ac measures the
affinity between an unlabeled sample and each of
the seeds labeled as c. Each column corresponds
to the affinity between a labeled seed and each of
the unlabeled samples.1

To create a new set of pseudo-labeled samples,
we start by computing a single score for each un-
labeled point and label class. Using the affinity
matrix we define the aggregate score for the ith

unlabeled point and label class c as:

Sc
i =

1

p

p∑

j=1

Ac
ij (2)

In other words, the compatibility score of an unla-
beled point and a target class is proportional to the
average affinity of that point to the set of labeled
seeds of that class.2

After computing the affinity scores we rank
all unlabeled samples and create a new set of
pseudo-labeled samples by selecting a total of k
top-ranking labeled samples. Where k and its distri-
bution among the class labels are parameters of the
label propagation strategy. More details about how
these parameters are set are provided in Section 3.

1Constructing the graph with edges solely between labeled-
unlabeled pairs decreases the number of distances to calculate
from quadratic on the number of samples (n2), as in a fully
connected graph, to linear given a fixed budget: B · |U |.

2Other aggregations (min., max.) are also possible.
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This algorithm can work iteratively, where k is
set incrementally, and for each step, the affinity
matrices are computed from the seed sample and
the pseudo-labels computed in the previous step.

3 Experiments

3.1 Experimental Setup
With the data annotation bottleneck problem in
mind, we evaluate our proposed method under an-
notation budget constraints on three highly imbal-
anced binary classification datasets and three multi-
class datasets. We compare our strategy with other
strategies for learning under tight annotation bud-
gets. In all cases, the classification model, pre-
trained embeddings, and fine-tuning step are the
same.

In this section, we describe the datasets used,
implementation details of the pre-trained embed-
dings and base classifier, and the different learning
strategies to be evaluated. Further details and a list
of hyper-parameters used in the experiments can
be found in A.1.

3.1.1 Datasets
We performed experiments on three binary imbal-
anced datasets: AG News (Zhang et al., 2016),
imbalanced as in Ein-Dor et al. (2020) and using
world news as the target class; Wikipedia toxic
comment detection (Wiki Toxic; Wulczyn et al.,
2017); and Civil Comments (Borkan et al., 2019)
using toxicity labels. We also study the multi-class
setting on Swahili News (David, 2020) topic clas-
sification; Ohsumed (Hersh et al., 1994) medical
abstract MeSH categorization; and TREC (Li and
Roth, 2002; Hovy et al., 2001) coarse question clas-
sification. Table 1 shows the dataset statistics.

3.1.2 Pre-trained Embeddings and Base
Classification Model

We obtained the embeddings for the dataset sam-
ples using a pre-trained BERTbase model (Devlin
et al., 2019). To generate sentence embeddings,
we extracted the activations of the second-to-last
layer and performed average-pooling of all tokens
(BERTµ

2 ).
The classification model of choice was a pre-

trained BERTbase implemented using HuggingFace
Transformers library (Wolf et al., 2020). For
Swahili News, we used SwahBERT (Martin et al.,
2022), a pre-trained BERT for Swahili.

Model parameters were validated using the
available labeled samples in an 80%/20% train-

Dataset |Y| Prior Pool Test Len.

AG News 2 10.0 15k 2.5k 38
Wiki Toxic 2 9.6 160k 64k 68
Civil Comments 2 8.0 1.9M 97k 53
Swahili News 6 imb. 22.2k 7.34k 327
Ohsumed 23 imb. 54.7k 294k 269
TREC 6 1/|Y| 5.45k 500 10

Table 1: Number of classes |Y|, class prior (%), pool
and test partition sizes, and average sequence length.

development partition (we do not assume a fixed
development set). The model was then trained with
100% of the available labels. We repeated each ex-
periment 5 times using different random initializa-
tion seeds and reported the average performance.

3.1.3 Learning Under a Budget Strategies
• BERT: As a baseline, we consider a BERT

model fine-tuned with the seed sample alone.

• Self-Training (Yarowsky, 1995): A classic strat-
egy that trains the model with its own predic-
tions. It operates iteratively, training a model and
making predictions over the unlabeled set. All
samples whose prediction confidence is above
a certain threshold are added to the training set
and the model is trained again with the additional
pseudo-labeled samples. This process is repeated
until no unlabeled samples satisfy the confidence
threshold condition or until all unlabeled samples
have been added to the training set. We used a
threshold of 0.75, fine-tuned the first model for 5
epochs and, for each iteration, further fine-tuned
for 1 epoch on the propagated set.

• Random Walk Label Propagation (RW LP;
Zhu and Ghahramani, 2002): A classic graph-
based technique that works on a similarity ma-
trix constructed by applying a kernel function
to all data points in the embedded space. This
algorithm performs stochastic random walks iter-
atively until a steady state is reached, clamping
the known hard labels at each step.

• Hierarchical Sampling Admissible Pseudo-
Labeling (HS+APL; Dasgupta and Hsu, 2008):
This is an approach that combines a seed diversity
hierarchical sampling strategy (described later in
Section 4.1) with a hierarchical pseudo-labeling
schema for predicting pseudo-labels for all the
unlabeled data points. The pseudo-labeling algo-
rithm assigns labels that minimize the expected
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Method AG News Wiki Toxic Civil Com. TREC Ohsumed Swah. News
100 200 100 200 100 200 100 200 100 200 100 200

BERT 31.827 73.812 37.513 44.810 9.32.5 8.43.6 15.94.2 56.038 7.15.4 11.06.2 59.89.6 75.02.9
Self-Tr. 51.923 50.621 33.223 45.217 7.60.5 8.51.1 18.45.1 18.24.5 11.54.4 13.83.2 41.98.2 48.66.6
RW LP 78.35.8 83.13.3 17.54.2 14.46.3 19.718 8.71.3 40.415 59.02.8 11.74.7 13.14.6 69.70.5 70.30.6
HS+APL 74.99.8 83.42.3 38.56.3 46.816 9.51.7 16.65.1 42.012 57.45.8 13.72.0 14.70.8 76.02.8 76.12.6
MixText 49.922 65.011 38.911 46.010 9.11.1 12.44.9 59.65.4 73.05.8 13.02.6 16.84.1 58.66.0 69.34.0

GLPE 82.91.3 83.81.1 54.311 62.32.4 20.79.5 28.57.5 49.621 54.222 15.31.0 18.60.9 74.64.5 78.81.2
iGLPE 82.41.4 83.91.0 60.35.3 64.22.6 14.64.5 18.66.3 71.92.3 74.31.0 21.51.5 21.81.3 74.72.4 78.13.1
e-kNN 82.10.7 82.31.9 48.48.3 50.43.2 16.85.3 20.83.4 25.18.0 23.85.0 12.83.4 17.90.6 66.73.7 68.10.7

Table 2: Performance of semi-supervised methods on various datasets and annotation budgets. We report AUC%
for binary imbalanced datasets (AG News, Wiki Toxic, Civil Comments) and accuracy% for multi-class datasets
(TREC, Ohsumed, Swahili News) with standard deviation in subscripts.

error of the assignment, relying on the estimated
purity of each node. The expected error is esti-
mated by considering the structure of the dendro-
gram and the labeled samples.

• MixText (Chen et al., 2020): combines interpo-
lation of samples in the model hidden space for
consistency regularization with supervised learn-
ing using self-training pseudo-labeled samples.
For a fair comparison, we have removed extrinsic
data augmentation such as back translation.

• GLPE: Our strategy presented in Section 2.2.
We use cosine similarity as the distance metric
and σ = 1 for the bandwidth parameter. We fixed
the parameter k (the number of pseudo-labeled
samples to add to the training dataset) to 4000.
As for the sampling ratio assigned to each label
class, we first estimate the class priors using the
available annotations in the seed and set the ratios
proportional to its class prior. For example, for
a binary dataset for which the estimated prior
of the positive class is 10%, we will generate
400 positive samples and 3600 negative samples.
In general, this parameter could also be cross-
validated to obtain further improvements.

• iGLPE: Iterated variant of GLPE using steps of
ks = 100 until k = 4000. The other parameters
are the same as the non-iterative version.

• Embedding kNN: In addition to using our base
classifier, we employ the embedding representa-
tions as classifiers. Based on the label class dis-
tribution computed by our method (Section 2.2),
we compute the k nearest neighbors and aver-
age their corresponding label probabilities. For
consistency with our strategy, we set k to 4000.

3.2 Results

In this section, we compare the performance of
different strategies by training our base classifier
with the methods described in Section 3.1.3. For
binary imbalanced datasets, we report the area un-
der the precision-recall curve of the target class
(AUC). This metric is a natural choice for highly
imbalanced scenarios and avoids the need for val-
idating thresholds. For multi-class datasets, we
report accuracy as is common practice. We tested
the performance of each method trained with two
budget sizes: 100 and 200 annotations. Table 2
shows a summary of the results obtained.

Overall, we observe that self-training is an un-
stable strategy. When applied to datasets like Wiki
Toxic and Civil Comments, self-training exhibits
erratic performance, potentially indicating the pres-
ence of confirmation bias in its outcomes. Random
walk label propagation shows a similar unstable
behavior. Additionally, MixText fails to achieve
significant performance improvements within this
more constrained learning framework.

Directly using the embedded representation to
make predictions with kNN outperforms the self-
training strategy but falls behind the label propa-
gation strategies. Interestingly, for very low anno-
tation budgets, a kNN over the pre-trained repre-
sentation outperforms consistently the fine-tuned
model BERT baseline.

In contrast, our proposed strategy GLPE con-
sistently outperforms all the other strategies and
shows significant improvements over the baseline
for all datasets and budgets. It also shows a sur-
prisingly stable behavior, which is a well-known
challenge when leveraging LLMs under tight anno-
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Figure 2: Performance (AUC) of different seed sample strategies with and without GLPE for increasing annotation
budgets. HS+APL and LC are also shown for comparison.

tation budgets (Margatina et al., 2022; Zhang et al.,
2021). Additionally, the generation of pseudo-
labels is done more efficiently compared to other
strategies (see A.3 for a runtime comparison).

4 GLPE Ablation Studies

4.1 Seed Diversity Sampling
To further exploit the structure of the embedded
space we propose to select the seed set to label so
that the resulting annotated data is as diverse as
possible. In some cases, when the annotation bud-
get is very tight we expect that selecting a diverse
seed will lead to a more useful label propagation.
This is because when the initial seed covers a larger
portion of the space, the pseudo-labeled samples
tend to contain more information.

We experiment with different diversity seed se-
lection strategies designed to leverage the class-
clustering alignment property of the embedded
space. More precisely, we test two diversity sam-
pling strategies, namely: clustering diversity and
hierarchical sampling.

• Clustering Diversity: The main idea of this se-
lection approach is to first cluster the data points
and then select one representative sample per
cluster for annotation. We employed hierarchical
clustering with Ward’s (1963) method to build
the data dendrogram. We set the number of clus-
ters to be equal to the annotation budget size B.
Then for each of the B clusters we select the
sample that is closest to the cluster’s center and
add it to the seed set.

• Hierarchical Sampling (HS; Dasgupta and Hsu,
2008): In this method, the seed set is built one
sample at a time in an active manner. This strat-
egy explores the dataset dendrogram obtained by
hierarchical clustering to get the most informa-

tive and diverse set of seeds. Active exploration
ensures that more seeds are selected from dendro-
gram nodes (clusters) whose class distribution is
estimated to be less pure. That is, we select more
seeds to label from clusters that are expected to
contain samples from multiple classes.

• Least Confidence (LC; Lewis and Gale, 1994):
While the active learning setting differs from the
learning under an annotation budget scenario, it
remains a popular strategy to mitigate the annota-
tion data bottleneck. Therefore, we also compare
our method to a classical uncertainty sampling
strategy: least confidence.

We tested the performance of each method in
binary imbalanced datasets when trained with an-
notation budgets of increasing sizes, thus obtaining
learning curves with performance as a function of
the budget size. Figure 2 shows a summary of the
results obtained using GLPE with different seed
sampling strategies. A.2 contains learning curves
of other semi-supervised methods in combination
with seed sampling.

The first observation is that HS+APL leads to
some improvements compared to BERT, but the
improvements are not consistent. For example,
for Wiki Toxic and budgets larger than 200, HS
without APL propagation seems to be better than
with propagation.

In contrast, GLPE propagation always leads to
better performance, irrespective of the initial seed
selection strategy. The only exception is Civil Com-
ments with very low budgets, where performance
is the same with or without label propagation.

Most of the improvements in performance over
the BERT baseline are obtained because of label
propagation. Diversity and Hierarchical Sampling
seed selection alone (without label propagation)
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Figure 3: GLPE propagation error as a function of parameter k, for a budget of 200, randomly sampled, and
averaged over 5 seeds. a) Error curves for different datasets (y-axis in the log-scale). b) Seed sample selection
strategies for Wiki Toxic dataset. c) Choices of embedding model for Ohsumed dataset. d) Kernel and distance
functions for Wiki Toxic, AG News, and Civil Comments combined.

do lead to some improvement over random seed
selection, but the improvements are not consistent
across datasets and budgets.

When combined with GLPE, the initial seed se-
lection method does not seem to be very impor-
tant. In other words, regardless of the initial seed
selection method, GLPE seems to generate an ef-
fective and informative set of pseudo-labeled sam-
ples. With one exception, for very low budgets
diversity seed selection does lead to significant im-
provements over the random seed selection method
for AG News and Wiki Toxic datasets.

Active learning performs well with medium-
sized budgets. Least Confidence consistently sur-
passes Random with larger annotation budgets.
However, with tighter annotation budgets, active
learning shows the opposite tendency and falls
short of the baseline.

4.2 Representation and Classifier Choice

We now turn our attention to the relative impor-
tance of the representation used to build the affinity
matrices in GLPE and the classifier used with the
pseudo-labels. We compare performance using
three classifiers: BERT and kNN classifiers de-
scribed in Section 3, and RoBERTabase (Liu et al.,
2019). As a baseline, we train the models without
pseudo-labels.

We compare three representations: BERTµ
2 ,

our base representation; RoBERTaµ1 , a sentence-
transformers (Reimers and Gurevych, 2019)
RoBERTa representation, fine-tuned for the Se-
mantic Textual Similarity Benchmark (Cer et al.,
2017), using average pooling of the last layer; and
LLaMA2w1 , embeddings based on LLaMA2-17B
(Touvron et al., 2023) using weighted average-
pooling of the last layer. See A.1 for further details.

We test performance on Ohsumed dataset, the

Represent. e-kNN BERT RoBERTa
100 200 100 200 100 200

No label pr. - - 7.1 11.0 14.5 18.0
BERTµ

2 12.8 17.9 15.3 18.6 15.7 18.4
RoBERTaµ1 6.5 15.7 21.9 25.0 21.8 25.6
LLaMA2w1 10.3 20.2 24.5 27.8 23.7 28.0

Table 3: GLPE performance (accuracy%) using differ-
ent embeddings and classifiers on Ohsumed dataset.

most challenging one. Table 3 shows the results
obtained. As expected, we observe performance
gains using representations fine-tuned for text simi-
larity (RoBERTaµ1 ) or with very long pre-training
(LLaMA2w1 ). Classifiers show a similar tendency
but their behavior is more erratic, probably due to
different tolerances to noise. The performance vari-
ability of embedding kNN across representations
for low budgets can be attributed to the parameter
k, which was initially set according to the perfor-
mance of BERTµ

2 representation in GLPE.

4.3 Pseudo-Labeling Quality

In this section, we proceed to examine the pseudo-
label propagation quality without employing the
end model for classification. For this purpose, we
use the gold labels of the datasets to calculate the
error rate of the pseudo-labels generated by the
different extrinsic semi-supervised methods.

Table 4 shows the error rate and size of the prop-
agation of GLPE in comparison with other tech-
niques. These values can explain the performances
found in Table 2. Self-training tends to pseudo-
label the whole unlabeled set, and incur big confir-
mation biases, or fails to pseudo-label at all when
the model is less confident. Label propagation has a
similar confirmation bias. Instead, GLPE achieves
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Budget Dataset Self-Train. RW LP HS+APL GLPE iGLPE
error size error size error size error size error size

100

AG News 9.90.0 14.9k 5.81.0 14.9k 6.72.8 10k 0.70.4 4k 0.30.1 4k
Wiki Toxic 9.60.0 159.5k 9.60.0 159.5k 9.30.2 10k 0.20.1 4k 0.20.1 4k
Civil Com. 8.00.1 1.9M 8.40.5 1.9M 7.80.3 10k 5.62.1 4k 7.12.2 4k
TREC 0.00.0 0 56.34.7 5.1k 57.63.4 10k 37.20.9 4k 32.11.5 4k
Ohsumed 0.00.0 0 86.64.7 10.3k 85.62.2 10k 79.60.9 4k 70.51.0 4k
Swah. News 0.00.0 0 30.50.5 22.1k 23.60.4 10k 12.84.6 4k 13.23.1 4k

200

AG News 9.40.9 14.8k 4.71.2 14.8k 5.42.4 10k 0.50.1 4k 0.60.4 4k
Wiki Toxic 9.50.1 159.4k 9.60.0 159.4k 8.50.8 10k 0.10.0 4k 0.10.0 4k
Civil Com. 8.00.1 1.9M 8.30.6 1.9M 7.70.3 10k 3.31.5 4k 5.32.2 4k
TREC 0.00.0 0 46.82.1 5.2k 51.33.4 10k 32.91.4 4k 29.61.2 4k
Ohsumed 0.00.0 0 84.24.8 10.2k 83.40.8 10k 74.61.4 4k 68.40.7 4k
Swah. News 0.00.0 0 29.50.6 22k 23.30.6 10k 11.12.7 4k 12.71.9 4k

Table 4: Propagation error (%) and number of pseudo-labels added (size) for the extrinsic semi-supervised techniques
studied in this work.

relatively low pseudo-labeling error and controls
the propagation size by fixing the k parameter.

Figure 3 shows curves with the propagation error
incurred by GLPE as a function of k. In Figure 3a,
error rate curves for different datasets illustrate
their relative difficulty and the trade-off between
propagation size and propagation error. The choice
of k heuristically balances this trade-off for diverse
tasks, yet validation could enhance the propagation
quality. Figure 3b shows how various seed sam-
pling strategies obtain slightly different propaga-
tion errors, parallel to the performance observed in
Section 4.1. These strategies do not obtain consis-
tently better propagation and depend on the choice
of k. Instead, Figure 3c demonstrates how the
model used to generate the embeddings can reli-
ably improve the quality of the propagation and the
subsequent performance, as seen in Section 4.2. Fi-
nally, other distance measures and kernel functions
(Figure 3d) obtain similar propagation qualities,
showing the robustness of GLPE to this choice.

5 Related Work

Semi-supervised learning techniques that leverage
unlabeled data to improve the performance of mod-
els trained with tight annotation budgets have a
long history in NLP and are still widely used to
mitigate the data annotation bottleneck. We can
distinguish two main approaches: those based on
self-training and those based on graph-based regu-
larization.

Self-training is a popular semi-supervised strat-

egy for text classification and has been explored
by several recent works (Chen et al., 2020, 2022;
Karamanolakis et al., 2021), with a focus on zero-
shot or few-shot scenarios (Gera et al., 2022; Chen
et al., 2021; Ye et al., 2020), light architectures (Liu
et al., 2021), or the multilingual setup (Dong and
de Melo, 2019).

One of the main known limitations of self-
training is that it can suffer from confirmation bias
which happens when the model repeatedly over-fits
and assigns incorrect pseudo-labels. Since these
pseudo-labels are used to retrain the model, this
repeated over-fitting can make the model diverge
from the true class distribution. This problem is
especially critical with over-parameterized models
such as transformers because they tend to overfit.

To avoid the confirmation bias problem an al-
ternative approach is to consider strategies that di-
rectly exploit the structure of the unlabeled space.
Graph-based regularization approaches for semi-
supervised classification have been proposed in
this context. These techniques first compute a sim-
ilarity graph among unlabeled data points, using
a representation space. Then soft label propaga-
tion is implemented implicitly by modifying the
training loss function, using unlabeled data as a
form of regularization. This is achieved by includ-
ing a term in the optimization function that biases
the classifier to provide labels for unlabeled points
that are similar according to the graph. We term
it soft label propagation because the regularization
penalty implicitly imposes some regularities on the
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label assignments of unlabeled points.
One of the first graph-based semi-supervised ap-

proaches for text classification was introduced in
Ozaki et al. (2011); Ren et al. (2011), before the
emergence of pre-trained LLMs. More recently,
Saraiva et al. (2021) used a graph-based method for
toxic comment detection. Similar to our work, they
also use pre-trained embeddings to build the simi-
larity graph over the unlabeled data points. How-
ever, their approach differs significantly from ours,
as they use the graph to regularize the loss function
of simpler classifiers like decision trees and support
vector machines.

Another line of work has studied the use of
graph-based semi-supervised techniques in multi-
label classification (Taha et al., 2022). In this case,
the objective is somehow different since the graph
regularization is used to infer missing labels in the
label set associated with a document. Unlabeled
data might as well be multi-modal (e.g. images
and text). Sirbu et al. (2022) proposed a semi-
supervised graph-based method for this setting.

One potential disadvantage of graph-based meth-
ods is that they tend to be classifier-specific, that
is, they are specifically designed with one classi-
fication function in mind. Another disadvantage
is that they can be computationally expensive be-
cause typically to train a model the loss function
is modified to include constraints between all (or a
large subset) of pairs of unlabeled points.

To mitigate the inefficiency and lack of general-
ity of graph-based methods, an alternative is to con-
sider explicit label propagation techniques. These
methods generate a set of pseudo-labeled samples
to be used by any training algorithm. Different
from graph-based methods, the model is regular-
ized by giving it additional pseudo-labeled data
instead of via loss constraints. This approach can
have the advantages of more costly graph-based ap-
proaches while being simpler, more efficient, and
general (applicable to any classification model).

In this paper, we decided to follow this approach
and develop an efficient and effective label propa-
gation strategy for text classification. Interestingly,
D’Sa et al. (2020) studied the application of ran-
dom walk label propagation over pre-trained em-
beddings and reached a negative conclusion. In
contrast, we found our proposed label propagation
technique to be very effective. As we have shown,
not all label propagation techniques are equally
effective. In particular, we have seen how ran-
dom walk label propagation leads to noisy pseudo-

labels.
To summarize, while there has been a significant

amount of work in self-training and graph-based
methods for text classification, to the best of our
knowledge, we are the first ones to show that a
simple and efficient semi-supervised explicit label
propagation strategy in the pre-trained embedded
space can lead to significant and consistent im-
provements when learning classifiers under tight
annotation budgets.

6 Conclusion and Future Work

This study has illustrated the effectiveness of im-
plementing label propagation within the embed-
ded spaces derived from LLMs. The clustering
alignment property of the LLM embedded space
explains the method’s success. One of the key
distinctions that set our propagation strategy apart
from self-training is its inherent resistance to over-
fitting in the fine-tuning phase. This is because
label propagation primarily exploits the embedded
space, making it less prone to the pitfalls associ-
ated with over-fitting. Our findings suggest that the
specific strategy employed for seed selection is less
critical than previously assumed.

Overall, our paper demonstrates that a simple
and efficient strategy can be effective for training
classifiers in scenarios with imbalanced class dis-
tribution and limited annotated data. This opens up
possibilities for improving semi-supervised learn-
ing strategies in scenarios closer to real-world ap-
plications.

Future work will explore the combination of la-
bel propagation with active learning techniques,
such as uncertainty sampling. We intend to investi-
gate the role of seed selection in this context, as it
may still yield performance gains when combined
with active strategies.

Limitations

We have focused our study on imbalanced binary
classification and multi-class classification. The
conclusions driven by the experiments can not be
readily extrapolated to other tasks such as multi-
label classification without further experiments. A
more extensive empirical study would be necessary
to draw robust conclusions for text classification
under tight annotation budgets in those settings.

Our approach is essentially semi-supervised and
while our empirical study has provided valuable
insights about the combination of label propaga-
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tion and seed sampling for learning under tight
annotation budgets, additional research would be
necessary to study the combination of active learn-
ing with semi-supervised learning.
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A Appendix

A.1 Experimental Details
Datasets. For Wiki Toxic and Civil Comments,
we have applied a pre-processing consisting of re-
moving non-alphanumeric characters.

Models. The following table shows details of
the models used in the experiments, including the
dataset card, the number of parameters, the asso-
ciated embedding, and its corresponding vector
dimension.

Model #par. Embedding dim.

BERTbase-unc.
3 110M BERTµ

2 768
SwahBERT4 110M SwahBERTµ

2 768
RoBERTabase

5 125M RoBERTaµ1 768
LLaMA2-13B6 13B LLaMA2w1 5120

Hyper-parameters. Table 5 contains a summary
of the hyper-parameters used in the experiments.

A.2 Learning Curves
Figure 4 extends the comparative analysis in Sec-
tion 4.1 on the effect of the initial seed sample for
other semi-supervised techniques considered in this
work, namely self-training and random walk label
propagation.

A.3 Time Efficiency
In Table 6 we show the average running times of
the different tasks performed in our experiments.

Experiments were performed using a single
Tesla V100 GPU or on the CPU, depending on
the task.

3huggingface.co/bert-base-uncased
4huggingface.co/pranaydeeps/SwahBERT-base-cased
5huggingface.co/roberta-base
6huggingface.co/meta-llama/Llama-2-13b-hf

Hyper-parameter Value

RWLP kernel 7-NN
RWLP max. iterations 1000
RWLP convergence tolerance 10−3

Self-Training threshold 0.75
Self-Training max. iterations 10
Self-Tr. max. iter. (Civ.Com.) 1
HS+APL dendrogram leaves 104

HS+APL β 2.0
MixText sharpen temp. 0.5
MixText α 16
MixText mix layer set {7, 9, 12}
kNN k 4000
GLPE k 4000

Training epochs 20
Learning rate 5 · 10−5

AdamW λ 0.0
AdamW β1 0.9
AdamW β2 0.999
Attention dropout 0.1
Hidden dropout 0.1
Mixed Precision fp16
Seq. length (AG News) 128
Seq. length (Wiki Toxic) 150
Seq. length (Civil Comments) 150
Seq. length (TREC) 128
Seq. length (Ohsumed) 512
Seq. length (Swahili News) 512
Batch size (AG News) 32
Batch size (Wiki Toxic) 50
Batch size (Civil Comments) 50
Batch size (TREC) 32
Batch size (Ohsumed) 32
Batch size (Swahili News) 32

Table 5: Summary of hyper-parameters used in the ex-
periments.
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Figure 4: Learning curves showing the performance (AUC) as a function of the annotation budget for various
imbalanced datasets, comparing different semi-supervised techniques and Least Confidence active learning strategy.
Each sub-figure corresponds to a seed sampling selection strategy.
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Task AG News Wiki Toxic Civil Com. TREC Ohsumed Swahili News

BERT Embedding 29m 56s 20m 03s 4h 04m 43s 1m 29s 5m 28s
Hier. Clustering 23s* 26s* 23s* 5s* 26s* 22s*

RW lab. prop. 2.7s* 59.4s* 1h 46m* 1.1s* 3.4s* 5.2s*
GLPE lab. prop. 34ms* 25ms* 289ms* 12ms* 48ms* 58ms*

BERT train 23s 1m 32s 1m 51s 33s 2m 45s 2m 38s
Self-Training 7m 54s 1h 19m 20h 46m 42s 54s 54s
Label Prop. train 10m 54s 1h 24m 5h 54m 4m 6s 31m 1h 9m
HS+APL train 5m 48s 9m 18s 10m 48s 3m 54s 22m 54s 30m 18s
MixText train 43m 41s 1h 24m 1h 35m 31m 29s 1h 16m 1h 47m
SAT train 3m 32s 15m 47s 21m 56s 1m 09s 14m 44s 19m 04s
kNN 0.2s* 20.6s* 91.1s* 0.1s* 0.8s* 0.8s*
GLPE train 3m 47s 3m 22s 3m 55s 2m 56s 13m 17s 12m 55s
iGLPE train 7m 01s 10m 19s 9m 23s 6m 38s 29m 05s 28m 11s

Table 6: Average running times of different tasks. ‘*’ means computed in the CPU.
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