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Abstract

Parameter-efficient finetuning (PEFT) is a key
technique for adapting large language models
(LLMs) to downstream tasks. In this paper, we
study leveraging knowledge graph embeddings
to improve the effectiveness of PEFT. We pro-
pose a knowledgeable adaptation method called
KnowLA. It inserts an adaptation layer into an
LLM to integrate the embeddings of entities ap-
pearing in the input text. The adaptation layer
is trained in combination with LoRA on instruc-
tion data. Experiments on six benchmarks with
two popular LLMs and three knowledge graphs
demonstrate the effectiveness and robustness of
KnowLA. We show that KnowLA can help ac-
tivate the relevant parameterized knowledge in
an LLM to answer a question without changing
its parameters or input prompts.

1 Introduction

In the era of large language models (LLMs) with
billions and possibly trillions of parameters (Du
et al., 2022; OpenAI, 2023; Touvron et al., 2023a),
parameter-efficient finetuning (PEFT) stands out as
a crucial technique enabling the necessary adapta-
tion of LLMs to downstream tasks. It freezes most
or even all parameters of LLMs and only finetunes
a small number of parameters using limited instruc-
tion data. LoRA (Hu et al., 2022) is a widely-used
PEFT method that trains small low-rank adapters
to approximate the large layers in LLMs. Follow-
up work improves the efficiency of LoRA by us-
ing quantized weights (Dettmers et al., 2023). In
this work, we seek to improve the effectiveness of
LoRA while preserving comparable efficiency.

Inspired by knowledge-injected pre-trained lan-
guage models (PLMs), e.g., ERNIE (Zhang et al.,
2019), we explore knowledge graphs (KGs) to en-
hance the PEFT of LLMs with LoRA. A KG is
a large-scale structured knowledge base contain-
ing a massive amount of trustworthy knowledge.

* Corresponding authors

The typical way of injecting KGs into PLMs in the
past few years is incorporating pre-trained entity
embeddings at the input layer of a PLM and finetun-
ing the full model on NLP tasks (Lauscher et al.,
2019; Peters et al., 2019; Yang et al., 2019; Zhang
et al., 2019; Levine et al., 2020; Liu et al., 2021; Lu
et al., 2021; Wang et al., 2022). Knowledge injec-
tion has improved many PLMs, e.g., BERT (Devlin
et al., 2019) and RoBERTa (Zhuang et al., 2021).
However, previous knowledge injection methods
require fully tuning PLMs, which is inapplicable
to LLMs. Furthermore, these methods are founded
on the encoder-based architecture of PLMs, and
their effectiveness for recent decoder-based LLMs
remains unknown. The following questions thereby
arise: Can knowledge injection still enhance the
PEFT of LLMs? Also, how can knowledge injection
be used to enhance PEFT?

To answer these questions, in this paper, we pro-
pose a knowledgeable adaptation method for PEFT,
particularly for LoRA, called KnowLA. It inserts
an adaptation layer into a pre-trained LLM. The
layer integrates external KG embeddings of enti-
ties appearing in the input text of the LLM. En-
tity embeddings and parameters of the LLM are
frozen in PEFT. The proposed adaptation layer is
trained combined with LoRA on instruction data.
The parameters in our adaptation layer are signifi-
cantly fewer than those in the LLM and even fewer
than those in LoRA. Thus, our KnowLA is also a
parameter-efficient method without changing the
original parameters of the LLM.

We evaluate KnowLA on six datasets, including
commonsense reasoning on CommonsenseQA (Tal-
mor et al., 2019), social interaction reasoning on
SIQA (Sap et al., 2019) and BIG-Bench Hard (Suz-
gun et al., 2023), single-hop reasoning of KBQA
on WebQuestionSP (Yih et al., 2016), and close-
book QA on TriviaQA (Joshi et al., 2017) and
TruthfulQA (Lin et al., 2022). Experimental results
show that KnowLA can enhance the effectiveness
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of LoRA at the expense of a limited number of
additional parameters. Even when compared to Al-
paca2 (Taori et al., 2023), which has a larger LoRA
with a similar number of parameters, KnowLA with
a smaller LoRA achieves better results.

We assess the robustness of KnowLA with two
popular foundation models (i.e., LLaMA 1 (Tou-
vron et al., 2023a) and Llama 2 (Touvron et al.,
2023b)), different instruction data (i.e., instruction-
following demonstrations in Alpaca2 and Vicuna2
(Chiang et al., 2023)), various KGs (i.e., WordNet
(Miller, 1995), ConceptNet (Speer et al., 2017),
and Wikidata (Vrandecic and Krötzsch, 2014)), and
typical embedding learning models (i.e., RESCAL
(Nickel et al., 2011), TransE (Bordes et al., 2013),
and RotatE (Sun et al., 2019)), combined with two
PEFT methods (i.e., LoRA (Hu et al., 2022) and
AdaLoRA (Zhang et al., 2023)). Experiments show
that KnowLA can offer stable improvements.

To understand how KnowLA changes the output
of an LLM, we analyze the results from two per-
spectives, which show several interesting findings:
(i) KnowLA with LoRA can align the space of the
LLM with the space of KG embeddings, and (ii)
KnowLA can activate the parameterized potential
knowledge that originally exists in the LLM, even
though the used KG does not contain such knowl-
edge. According to our findings, in some cases,
the LLM outputs incorrect answers not because it
does not know the answers, but because its relevant
knowledge is not activated by the input prompts.
KnowLA can help activate its relevant knowledge
without changing its parameters or input prompts.

2 Related Work

2.1 Knowledge Injection

There are three typical knowledge injection meth-
ods for PLMs. The first method involves KG em-
beddings at the input layer of PLMs for joint learn-
ing (Zhang et al., 2019; Lu et al., 2021; Wang et al.,
2021b). Existing works incorporate entity embed-
dings for classification tasks, and their knowledge
injection modules are independent of PLMs. This
poses challenges to aligning the semantic spaces of
entity embeddings and PLMs. These knowledge in-
jection methods also necessitate updating the entire
model of PLMs. The second method converts rele-
vant triples in KGs into natural language sentences
used for pre-training PLMs (Liu et al., 2020; Sun
et al., 2020, 2021). The third method introduces
adapters into PLMs to enable them to learn KGs

Transformer Layer

Transformer Layer

Hitachi built which locomotive class?

Add & Norm

Knowledge injection

Knowledge fusion

frozen LLM parameters trainable parameters

KnowLA Layer

frozen entity embeddings

entity linking

JNR Class ED79

TransE
Hitachi

Figure 1: Illustration of knowledgeable adaptation. The
KnowLA layer is inserted between two decoder layers of
an LLM. It consists of knowledge injection and fusion.

(Wang et al., 2021a). Our KnowLA relates to the
first type of methods. It is also a variant of the
third method. However, previous methods are built
on PLMs while our method is the first attempt to
LLMs. KnowLA does not update the parameters
of LLMs. It employs a knowledge adapter dur-
ing PEFT to enhance the LLM’s capabilities. The
injected entity knowledge can also be deeply inte-
grated with the LLM’s knowledge in subsequent
decoding steps.

Apart from the above work injecting knowledge
inside the model, there are also methods retrieving
and augmenting relevant knowledge on the input
side of the model (Shwartz et al., 2020; Izacard
et al., 2022; Liu et al., 2022; Baek et al., 2023). For
example, given an input, Contriever (Izacard et al.,
2022) extracts relevant passages from Wikipedia.
GKP (Liu et al., 2022) generates relevant prompt
text using a sophisticated LLM. KAPING (Baek
et al., 2023) retrieves relevant triples in KGs.

2.2 Parameter-efficient Finetuning

PEFT methods aim to optimize LLMs while min-
imizing the computational resources and data re-
quired. Adapter Tuning (Houlsby et al., 2019) is
a lightweight alternative that inserts a small neu-
ral module called adapter in each layer of a PLM
while keeping the majority of the pre-trained pa-
rameters frozen. Inspired by the prompt engineer-
ing methods, Prefix Tuning (Li and Liang, 2021)
sets trainable prefix tokens in the input or hidden
layers, and only these soft prompts are trained.
LoRA (Hu et al., 2022) is a low-rank adaptive
method that allows training dense layers indirectly
by optimizing low-rank factorized matrices that
capture changes in dense layers during the adapta-
tion process while keeping the pre-trained weights
unchanged. QLoRA (Dettmers et al., 2023) im-
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proves LoRA by using NF4 quantization and dou-
ble quantization techniques. Adalora (Zhang et al.,
2023) is an improvement on LoRA, addressing the
limitation of the fixed incremental matrix rank in
LoRA. Adalora introduces a method that dynami-
cally allocates ranks for downstream tasks, yielding
promising results. Our KnowLA follows the main-
stream research of LLMs and achieves PEFT with
fewer parameters combined with LoRA. During
the finetuning process, the parameters of LLMs
and entity embeddings are fixed, allowing only gra-
dient backpropagation through the parameters of
adapters. This enables the use of external knowl-
edge to unleash the potential of LLMs.

3 KnowLA

Considering that the hidden states in Transformer
layers encapsulate the parameterized knowledge of
an LLM (Li et al., 2023), we propose fusing entity
embeddings in a KG with the hidden states of an
LLM during PEFT. KnowLA inserts an adaptation
layer into an LLM, as shown in Figure 1.

Given a KG, we adopt a representation learning
model, e.g., TransE (Bordes et al., 2013), to train
its entity embeddings. The pre-trained embedding
of entity e is denoted by e. For an input question
Q = {ti}ni=1 to an LLM, each token ti may be
linked to a set of entities E(ti) in the KG. Our key
idea is to enhance PEFT by injecting the embed-
ding ei for each ei ∈ E(ti) into the representation
in the LLM. This method can be divided into three
modules: (i) Entity linking, which links the tokens
in a question to entities in the KG. (ii) Knowledge
mapping and injection, which maps the KG em-
bedding space to the LLM’s representation space
and infuses the entity embeddings corresponding
to a specific token in the question. (iii) Knowl-
edge fusion, which integrates each token represen-
tation with its entity embedding. Given the power-
ful abilities, popularity, and open-source nature of
the LLaMA family (Touvron et al., 2023a,b), we
consider it the foundation to build our KnowLA.

3.1 Entity Linking

Given an input text, we return its synsets as can-
didate entities in a KG. We use the text-rank algo-
rithm to recognize important tokens and link the
recognized tokens to the KG by string matching.
We also collect a set of synonyms for each related
entity. Based on the byte pair encoding (BPE) algo-
rithm (Sennrich et al., 2016), each token is divided

into multiple subwords sharing the same entity can-
didate. After this step, we obtain relevant entities
in the KG for the important tokens in the text. Each
entity is associated with a pre-trained embedding.

3.2 LLM Encoding
Given an LLM, e.g., Llama 2, it first encodes the
input text to get embeddings for prompts and ques-
tions. Specifically, for a prompt p, the LLM first
converts it into Q = ([s], p, [/s]). The decoder of
the LLM tokenizes Q with the BPE algorithm.
After tokenization, Q turns into {hi}mi=1 ∈ Rd1 ,
which is taken as input to the LLM.

3.3 Knowledge Mapping and Injection
The text representation of the l-th decoder layer
in the LLM is denoted by hl. In the knowledge
mapping module, to align with the pre-norm mode
adopted by the decoder and mitigate the issues of
gradient vanishing or exploding, we apply RM-
SNorm (Zhang and Sennrich, 2019) to the input hl

received by the decoder. We also map the semantic
space of entity embeddings to the semantic space
of the LLM for transformation, aiming to improve
knowledge injection and fusion.

The BPE encoding method employed by many
LLMs would let each token have multiple sub-
tokens after encoding. Let {hl

i}
k
i=1 denote the sub-

token embeddings, where k is the number. To better
calculate the relevance between different entities
and the given word, we unify the representations
of the k sub-tokens as ui using mean pooling:

ui = AvgPooling(hl
1, . . . ,h

l
k). (1)

As LLMs are employed for handling complex
natural language tasks, it is essential to have input
dimensions sufficiently large to accommodate the
intricacies. To enhance the expressive ability of
entity representation ei and align with the semantic
space of the LLM, we expand its dimension to
enrich the representation of ei:

ei = Wd

(
SwiGLU(Wu ei + bu)

)
, (2)

where Wd ∈ Rd1×d3 , Wu ∈ Rd3×d2 , and bu ∈
Rd3 are trainable weights. SwiGLU (Shazeer,
2020) is an activation function.

3.4 Knowledge Fusion
To mitigate the risk of the LLM encountering un-
familiar entities during finetuning in downstream
tasks, as well as to ensure the extracted entities are
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relevant to the input tokens, we follow (Yang et al.,
2019) and introduce a knowledge sentinel e. First,
we calculate the similarities of each token with its
relevant entities and the knowledge sentinel:

αij =
exp(ej · ui)∑

j exp(ej · ui) + exp(e · ui)
, (3)

βi =
exp(e · ui)∑

j exp(ej · ui) + exp(e · ui)
, (4)

where αij represents the relevance between the
i-th token and the j-th entity. βi represents the
relevance between the i-th token and the knowledge
sentinel. Here, we constrain that

∑
j αij + βi = 1.

Then, we fuse ui with its relevant entities:

ui =
∑

j

αij ej + βi e, (5)

hi = θ SwiGLU
(
Wm[ui;ui] + bm

)
+ hi, (6)

where θ serves as a trainable balancing factor to
equalize the impact of KG and text. Wm ∈
R2d1×d1 and bm ∈ Rd1 are trainable weights. Dur-
ing knowledge fusion, all the k sub-token embed-
dings {hi}ki=1 share the same ui. hi denotes the
final representation of knowledge injection and
serves as the output of the current adapter, which
is passed as input to the next layer of the decoder.

Similar to other parameter-efficient modules like
LoRA (Hu et al., 2022), KnowLA achieves the
alignment between KG knowledge and textual se-
mantics by freezing the LLM during finetuning.
It can also be used in conjunction with LoRA to
achieve efficient learning of the LLM with a lim-
ited number of parameters. The effectiveness of
this module is shortly assessed in the experiments.

4 Experiments

4.1 Baselines and Implementation

We consider the following LLMs with 7B parame-
ters as foundation models in our main experiments:

• Llama 2 is a collection of open-source LLMs
trained on public datasets with trillions of to-
kens. We use the Llama 2-7B model.

• Alpaca2 (Taori et al., 2023) is a Llama 2
variant finetuned with 52,000 instruction-
following demonstrations using LoRA.

Given that there are currently no knowledge in-
jection methods for PEFT, we choose retrieval aug-
mented generation (RAG) methods as baselines:

• Contriever (Izacard et al., 2022) is pre-
trained using English Wikipedia. We use it to
retrieve triples from KGs and passages from
Wikipedia to augment the input of the LLM.

• KAPING (Baek et al., 2023) retrieves rele-
vant triples from KGs to improve the KBQA
task. We use KAPING to enhance LLMs on
knowledge-relevant tasks.

In our main experiments, we use the official hy-
perparameters and instruction data of Alpaca2 to
finetune Llama 2-7B with LoRA and KnowLA. Our
layer is inserted after the 32nd layer of Llama 2.
We also consider LLaMA 1 and the instruction data
of Vicuna2 (Chiang et al., 2023) in Sect. (4.10).

During the training process, we set the batch size
to 128 and the learning rate to 3e-4, and use the
AdamW optimizer to train 3 epochs. We keep the
hyperparameters the same for different models to
ensure the fairness of the experiment. We also keep
the input prompts the same in the experiments. To
study the impact of the number of trainable param-
eters, we train two LoRA models with different
ranks: r = 16 and 32. They both perform better
than ranks r = 4, 8 on most datasets. All models
are finetuned on A800 GPUs. The code is publicly
available at our GitHub repository.1

4.2 Datasets and Settings
We consider three types of tasks: multi-choice QA,
closed-book QA, and truthful QA. We pick Com-
monsenseQA (Talmor et al., 2019) and SIQA (Sap
et al., 2019) as the multiple-choice QA datasets,
and choose 15 challenging multi-choice tasks from
BIG-Bench Hard (BBH) (Suzgun et al., 2023). We
use WebQuestionSP (Yih et al., 2016) and Trivi-
aQA (Joshi et al., 2017) for closed-book QA evalu-
ation. We also use TruthfulQA (Lin et al., 2022) to
evaluate whether KnowLA is truthful in generating
answers to questions. Appendix A complements
more details. To assess the direct improvement of
our KnowLA to enhance PEFT, we employ zero-
shot settings for all tasks.

4.3 KGs and Configurations
We select WordNet (Miller, 1995), ConceptNet
(Speer et al., 2017), and Wikidata (Vrandecic and
Krötzsch, 2014) as the KGs in our method. See
Appendix A for more descriptions.

For RAG methods, we consider the overlap be-
tween questions and knowledge sources. For multi-

1https://github.com/nju-websoft/KnowLA
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Methods #Parameters
CommonsenseQA SIQA BIG-Bench Hard

Accuracy Score Accuracy Score Accuracy Score

Llama 2 (7B) 7B 45.37 36.40 46.42 40.58 26.95 24.87
Alpaca2 (r = 16) + 0.24% 56.92 46.55 52.61 46.18 28.93 25.42
Alpaca2 (r = 32) + 0.50% 57.90 46.81 53.17 46.21 28.79 25.36

Contriever (WordNet)
+ 0.50%

57.15 46.09 52.58 46.13 - -
Contriever (ConceptNet) 57.06 45.30 52.51 45.51 - -
KAPING (WordNet)

+ 0.50%
57.21 45.91 52.51 45.89 - -

KAPING (ConceptNet) 57.58 45.64 52.66 46.15 - -

KnowLA (Random)

+ 0.55%

57.49 47.82 52.61 46.56 29.26 25.34
KnowLA (WordNet) 58.07 48.35 53.22 46.76 30.00 25.39
KnowLA (ConceptNet) 58.39 48.19 53.22 46.81 30.19 25.29
KnowLA (Wikidata) 57.90 47.39 53.21 46.64 29.39 25.42

Table 1: Multi-choice QA results on CommonsenseQA, SIQA, and BBH. For KnowLA, the rank of LoRA is r = 16.
The percentage of trainable parameters are similar in Tables 2 and 3.

choice QA, we use ConceptNet and WordNet. For
TriviaQA, we use Wikidata and Wikipedia.

For KG embeddings, we follow (Zhang et al.,
2019) and pre-train entity embeddings with TransE
(Bordes et al., 2013) as the external knowledge.
The maximum number of relevant entities selected
for each textual token in a question is set to 5. Fur-
thermore, we evaluate the side effects and addi-
tional latency of KnowLA. See Appendix B and
Appendix C for more details.

4.4 Experiments on Multi-choice QA

To evaluate the effectiveness and robustness of
KnowLA, we compare it to Llama 2 and Alpaca2
(r = 16, 32) on multi-choice QA. In addition to
accuracy, we follow (Shwartz et al., 2020) and com-
pute scores using cross entropy, which indicate the
confidence of a model for correct answers. We use
three KGs: WordNet, ConceptNet, and Wikidata.
We also consider randomly initialized vectors as a
baseline of KG embeddings.

Table 1 presents the results. Our KnowLA vari-
ants show the best performance across the three
datasets. Furthermore, Alpaca2 (r = 32) outper-
forms Alpaca2 (r = 16), because more trainable
parameters usually lead to better performance.

KAPING generally performs better than Con-
triever on CommonsenseQA. This indicates that
the RAG methods rely on the quality of prompts
retrieved from the knowledge sources. Both KAP-
ING and Contriever are inferior to Alpaca2 (r =
32) on CommonsenseQA and SIQA, as invalid
prompts may cause damage to the performance.

KnowLA is different from RAG methods. RAG
methods retrieve text information to augment the in-
put of LLMs, while KnowLA uses KG embeddings

to improve the effectiveness of PEFT. KnowLA
works in the finetuning phase of LLMs and does
not change the input of LLMs. Our method with
LoRA (r = 16) achieves better performance than
all baselines, indicating that it can effectively work
with PEFT to inject knowledge. Specifically, when
combined with ConceptNet, it achieves an accu-
racy increase from 56.92% to 58.39% on Com-
monsenseQA, from 52.61% to 53.22% on SIQA,
and from 28.93% to 30.19% on BBH. Since Con-
ceptNet stores rich conceptual knowledge and more
relation types compared to WordNet, its entity em-
beddings can better enhance Llama 2’s reasoning
ability. Furthermore, ConceptNet recognizes more
relevant entities in the question than Wikidata. This
suggests that extensive entity coverage in KnowLA
brings a significant performance increase.

Additionally, the performance of KnowLA (ran-
dom) is inferior to that of KnowLA with KGs, high-
lighting the greater utility of entity knowledge for
LLMs. Based on the scores of each model on the
correct answers, it can be seen that after incorporat-
ing KnowLA, all models assign higher confidence
to the correct answers. Therefore, KnowLA can
offer a certain degree of improvement for LLMs in
commonsense reasoning.

4.5 Experiments on Closed-book QA

We evaluate KnowLA using WebQuestionSP and
TriviaQA. Following the answer matching strategy
in (Tan et al., 2023), we use the subtree labels pro-
vided by the constituent tree to extract all noun
phrases from the textual answers, calculate their
similarities, and determine the correctness of an-
swers exceeding a certain threshold (e.g., 0.5).

The accuracy results are shown in Table 2. We
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Case 1: Who is featured on Puff Daddy's Can't Hold Me
Down?
Answer:Mase
Alpaca2: Puff Daddy's 1997 single "Can't Hold Us
Down" features R&B singers Faith Evans and 112. It was
released as the second single from Puff Daddy's debut
album, No Way Out.
KnowLA (ConceptNet): The song "Can't Hold Me
Down" by Puff Daddy features R&B singer Faith Evans
and rapper Mase. The song was released in 1997 as the lead
single from Puff Daddy's debut studio album, NoWay Out.
KnowLA (WordNet): The song "Can't Hold Me Down"
by Puff Daddy features R&B singer Faith Evans, rapper
Mase, and R&B singer 112. It was released in 1997 as the
lead single from Puff Daddy's debut album, No Way Out.

Case 2: In Lewis Carroll's poem The Hunting of the Snark,
what did the elusive, troublesome snark turn into to fool hunters?
Answer: Boojum
Alpaca2: The elusive, troublesome snark was able to fool the
hunters by transforming itself into a variety of shapes and forms.
The snark was able to take the shape of a dragon, a boa constrictor,
a rhinoceros, a hippopotamus, a crocodile, and a camel.
KnowLA (ConceptNet): The snark was able to fool hunters by
transforming into a variety of shapes and forms. The snark first
turned into a Boojum, a creature that could only be seen by
those who believed in it.
KnowLA (Wikidata): The snark was able to fool the hunters
by transforming into a variety of shapes and forms. The snark
was able to take the shape of a beetle, a butterfly, a snake, a
fish, a bird, and a mouse, all in an attempt to escape the hunters.

Figure 2: Examples of Alpaca2 and KnowLA for TriviaQA.

Methods WebQuestionSP TriviaQA

Alpaca2 (r = 16) 67.55 68.70
Alpaca2 (r = 32) 67.43 67.97

Contriever (Wikipedia) - 68.71
KAPING (Wikidata) 67.11 66.05

KnowLA (Random) 67.68 69.34
KnowLA (WordNet) 67.43 69.27
KnowLA (ConceptNet) 68.12 69.40
KnowLA (Wikidata) 67.49 68.92

Table 2: Closed-book QA results on WebQuestionSP
and TriviaQA. For KnowLA, r = 16.

find that Alpaca2 (r = 16) obtains better perfor-
mance than Alpaca2 (r = 32). The reason may be
that more parameters in LoRA are prone to over-
fitting in the closed-book QA tasks. Moreover,
Contriever (Wikipedia) only slightly exceeds Al-
paca2 (r = 16) and performs better than KAPING.
This is because KAPING cannot guarantee the cor-
rectness of the extracted triples.

According to the results, KnowLA combined
with WordNet improves the results from 68.70% to
69.27% on TriviaQA, while combined with Con-
ceptNet, the performance is further enhanced to
69.40%. This indicates that the parameterized en-
tity embeddings can enrich the textual representa-
tions. The experimental results demonstrate that
the knowledge-enhanced textual representations af-
ter finetuning with LoRA can help mitigate the
hallucination problem of Llama 2 to some extent.

On WebQuestionSP, KnowLA (WordNet) and
KnowLA (Wikidata) produce similar results. Also,
the two Alpaca2 models with different ranks per-
form similarly. This suggests that the reasoning
ability of Alpaca2 is good on this task, and the per-

Methods BLEU Rouge-1 Rouge-2 Rouge-L

Alpaca2 (r = 16) 0.1657 0.4094 0.2831 0.3892
Alpaca2 (r = 32) 0.1637 0.4048 0.2802 0.3851

KnowLA (Random) 0.1677 0.4110 0.2850 0.3897
KnowLA (WordNet) 0.1714 0.4143 0.2874 0.3927
KnowLA (ConceptNet) 0.1747 0.4190 0.2922 0.3975
KnowLA (Wikidata) 0.1703 0.4135 0.2895 0.3931

Table 3: Results on TruthfulQA. For KnowLA, r = 16.

formance does not change significantly after knowl-
edge enhancement with KnowLA. We attribute this
bottleneck to the model size and the training data
of Llama 2 and Alpaca2.

4.6 Experiments on TruthfulQA

We use TruthfulQA to measure whether KnowLA
is truthful in generating answers to questions. Here,
we evaluate the content generated by the models
based on the best answer provided by TruthfulQA,
using the commonly used metrics BLEU, Rouge-1,
Rouge-2, and Rouge-L. Table 3 shows the results.

Alpaca2 (r = 32) still underperforms Alpaca2
(r = 16). This further substantiates our conclusion
that larger parameters do not necessarily guarantee
the accuracy and reliability of the model’s output.
KnowLA (ConceptNet) performs best among these
models, which indicates that the integration of our
KnowLA with LoRA can mitigate the hallucination
problem of Llama 2 to some extent and generate
content of better quality.

Besides, we observe that KnowLA (ConceptNet)
outperforms KnowLA (WordNet) in all evaluation
tasks, and KnowLA (WordNet), in turn, surpasses
KnowLA (Wikidata). This further indicates that
the commonsense knowledge within ConceptNet
is more suitable for both LoRA and Llama 2.
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4.7 Case Study

Figure 2 presents some improved results of Al-
paca2 by incorporating WordNet, ConceptNet, and
Wikidata in KnowLA. In Case 1, we discover that
after integrating ConceptNet and WordNet with
KnowLA, the response precisely describes the cor-
rect answers. The contents generated by KnowLA
(ConceptNet) and KnowLA (WordNet) are very
similar. The content generated by Alpaca2 not
only misses significant answers but also misinter-
prets the song “Can’t Hold Me Down” in the ques-
tion. Therefore, we believe that KnowLA helps the
model better understand questions.

By examining the answers of the three models
in Case 2, it can be observed that Alpaca2 does not
provide an accurate and relevant response, which is
similar to the content generated by KnowLA (Wiki-
data). They both generate deceptive answers. How-
ever, after incorporating ConceptNet, KnowLA ac-
curately provides the correct answer in the response.
According to Table 2, we believe that the enhance-
ment is not accidental. Moreover, by examining the
token-to-entity linking results, we find that the an-
swer entity “Boojum” does not exist in ConceptNet.
Therefore, we conclude that KnowLA can stimu-
late the underlying reasoning abilities of LLMs by
working with LoRA.

4.8 Why Knowledgeable Adaptation Works?

We delve into why KnowLA collaborates effec-
tively with LoRA, focusing on space alignment of
KGs and LLMs, and knowledge recall in LLMs.

Perspective of Space Alignment. Our KnowLA
incorporates pre-trained KG embeddings into a pre-
trained LLM for instruction tuning with LoRA. We
hereby investigate whether the two heterogeneous
representation spaces of the KG and the LLM are
aligned, to understand how KnowLA works. The
results are illustrated in Figure 3, where the last
column represents the “sentinel” entity. We first
acquire the representations of the input tokens in
a specific layer, e.g., the 32nd layer. Then, we re-
trieve the top five similar entity embeddings in the
KG for each token. Next, to establish the relevance
of each token and its corresponding entities, we
calculate the attention weights between them. A
larger weight suggests a stronger semantic correla-
tion between the token and the mapped entity.

In the case of Llama 2 (depicted in the left part
of Figure 3), the similarities between entity em-
beddings and token representations appear to be

Figure 3: The similarity heatmap between the output
representations of text tokens and their corresponding
entity embeddings. The x-axis denotes the top-5 similar
entities with tokens on the y-axis. (a) The left heatmap
presents the similarity of Llama 2 without finetuning,
and (b) the right heatmap presents the similarity after
finetuning with our KnowLA (ConceptNet).

random, lacking any discernible patterns. However,
after applying KnowLA, the results show improved
accuracy specifically for the most relevant entities
(i.e., e1 on the x-axis). For token “underrated”, the
relevant entities in ConceptNet are “underrated”,
“underrate”, etc. After finetuning, the token “un-
derrated” exhibits the highest correlation with the
entity “underrated”. This observation indicates that
KnowLA can effectively align the KG and the LLM
through instruction tuning with LoRA.

Perspective of Knowledge Recall. We study the
role of KnowLA in activating an LLM’s knowledge.
According to (Li et al., 2023; Geva et al., 2021;
Meng et al., 2022), the feed-forward network (FFN)
layers, which constitute two-thirds of an LLM’s
parameters, primarily capture its own knowledge.
So, we explore the impact of KnowLA on the FFN
layers to see how KnowLA affects these layers in
activating knowledge stored in the LLM.

We compute the differences between the hidden
state representations of the last token before and
after each FFN layer in the LLM. We analyze the
trends in differences of all 32 layers after inserting
KnowLA. We use the 100 questions from Trivi-
aQA as queries to explore the knowledge stored
in the FFN layers of Llama 2 (7B). The last to-
ken representation in each input aggregates infor-
mation from all tokens. According to (Li et al.,
2023), there is a positive correlation between the
similarity of hidden states and the consistency of
knowledge. Intuitively, we believe that higher dif-
ferences in representations indicate the model’s
ability to capture more information from the FFN
layers. Therefore, we extract the representations
of the last token before and after each FFN layer
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Figure 4: The heatmap indicates the capabilities of KnowLA and Llama 2 in capturing knowledge compared to
Alpaca2, which is measured by averaging the changes in cosine similarities of the last token representations from
100 queries across all FFN layers. The x-axis denotes the 32 layers of Llama 2.

and compute the cosine similarities for Llama 2,
KnowLA, and Alpaca2, which are denoted by s1,
s2, and s3, respectively. Given the token similari-
ties, we further evaluate the capacities of KnowLA
and Llama 2 in capturing hidden knowledge. The
capacities are measured by s3 − s2 and s3 − s1.

The results are shown in Figure 4. The red color
indicates that the representation of the last token,
after introducing KnowLA and undergoing the FFN
layers, exhibits a greater change compared to that
of Alpaca2. The blue color shows the opposite.
We think the representations with greater changes
capture more internal knowledge.

After introducing entity embeddings, KnowLA
enables the LLM to activate richer knowledge at
the FFN layers. In contrast, Llama 2 captures less
knowledge than Alpaca2. According to the work
(Geva et al., 2021), lower FFN layers tend to cap-
ture shallow knowledge patterns, while higher FFN
layers learn more semantic patterns. Our KnowLA
demonstrates enhanced knowledge activation capa-
bilities at the higher layers, and thus achieves su-
perior results over Alpaca2. By examining the dif-
ferences in similarity across the last 16 layers, we
find that KnowLA (ConceptNet) shows the greatest
similarity difference in the three KGs and performs
best on TriviaQA. This further emphasizes that the
introduction of ConceptNet substantially activates
more knowledge stored internally in Llama 2.

4.9 Impact of KG Embedding Models

The KG embedding learning models are used
to learn entity embeddings (Bordes et al., 2013;
Nickel et al., 2011; Sun et al., 2019; Chen et al.,
2023). We study the impact of embedding learn-
ing models for KnowLA. We obtain entity embed-
dings of ConceptNet by three representative KG
embedding models: RESCAL (Nickel et al., 2011),
TransE (Bordes et al., 2013), and RotatE (Sun et al.,
2019). We show the results of KnowLA with these
embeddings on the CommonsenseQA, SIQA, and
BBH datasets in Table 4.

CommonsenseQA SIQA BBH
Accuracy Score Accuracy Score Accuracy Score

RESCAL 58.39 46.71 52.10 44.91 27.50 25.96
TransE 58.39 48.19 53.22 46.81 30.19 25.29
RotatE 57.58 46.05 52.00 44.65 27.31 24.94

Table 4: Comparison of KG embedding learning models
on CommonsenseQA, SIQA, and BBH, which are pre-
trained on ConceptNet for Llama 2.

We can observe that the entity embeddings ob-
tained by TransE achieve favorable results. This is
attributed to the fact that the TransE embeddings
have a good generalization ability and are thus
more suitable for Llama 2. RotatE employs com-
plex vector representations for entities and obtains
subpar results on Llama 2. This suggests that align-
ing the complex space of entities with the semantic
space of Llama 2 during finetuning is challenging,
leading to a loss of original entity knowledge.

4.10 Robustness of KnowLA

We evaluate the robustness of KnowLA against
three factors: On the foundation model side, we
use LLaMA 1 as another LLM. On the instruction
data side, we finetune Llama 2 using the Vicuna
multi-round dialog data (Chiang et al., 2023) to
get Vicuna2 and KnowLA (Vicuna2). On the PEFT
method side, we use AdaLoRA (Zhang et al., 2023)
to replace LoRA and get Alpaca2 (AdaLoRA) and
KnowLA (AdaLoRA). On the rank side, we fine-
tune Llama 2 using the Alpaca data with rank r = 8
and get Alpaca2 (r = 8) and KnowLA (r = 8).

Table 5 lists the performance of the above mod-
els on the commonsense reasoning dataset Com-
monsenseQA. We can see that the three KnowLA
variants still outperform all baselines. This experi-
ment shows that KnowLA is robust and can bring
stable improvement when combined with different
LLMs, instruction data, PEFT methods, and ranks.
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Methods Accuracy Score

LLM side
Alpaca1 56.59 46.03
KnowLA (LLaMA 1) 57.74 46.81

Data side
Vicuna2 51.52 42.31
KnowLA (Vicuna2) 53.56 49.09

PEFT side
Alpaca2 (AdaLoRA) 57.58 46.67
KnowLA (AdaLoRA) 57.66 46.30

Rank side
Alpaca2 (r = 8) 56.92 46.25
KnowLA (r = 8) 57.74 46.93

Table 5: Results with different LLMs, instruction data,
PEFT methods, and ranks on CommonsenseQA

5 Conclusion

In this paper, we propose a knowledgeable adap-
tation method KnowLA. It works with LoRA and
injects entity embeddings into an LLM in the PEFT
process. Compared to Alpaca2, which is finetuned
with LoRA alone, KnowLA with Llama 2 shows
better performance on six benchmark datasets. We
show that pre-trained KG embeddings are compati-
ble with Llama 2. Moreover, we find that KnowLA
can align the KG space and the LLM space, and
activate the hidden knowledge related to input in
LLMs, thereby achieving improved performance.

Limitations

Currently, our work only incorporates one KG to
enhance PEFT. As KGs are incomplete by nature,
integrating multiple KGs into our method may fur-
ther improve performance with knowledge fusion
and transfer. Recent work (Huang et al., 2022) re-
veals that multi-source KG embeddings are more
expressive than the embeddings of a single KG. We
show preliminary results in Appendix E.1 and will
study multi-source KnowLA in future work.

We have not attempted other LLMs such as Chat-
GLM (Zeng et al., 2023) in this work. In the fu-
ture, we will consider how to efficiently inject KG
knowledge with smaller parameters. Additionally,
we have observed that, with the introduction of
random perturbations, Llama 2 seems to outper-
form Alpaca2 on some tasks. This discovery may
provide interesting directions for future research.

Ethical Considerations

LLMs may produce incorrect and potentially bi-
ased content. Experiments show that our method
can alleviate this problem to a certain extent, but
LLMs will inevitably generate offensive answers.
Therefore, extreme caution should be exercised if

deploying such systems in user-facing applications.
All datasets and models used in this work are pub-
licly available under licenses.
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A Datasets and KGs

The details of the datasets are described as follows:
• In CommonsenseQA (Talmor et al., 2019),

each sample consists of a question, five can-
didate answers, and a correct answer. To run
LLMs for CommonsenseQA, we adopt the
same setting as in (Shwartz et al., 2020) and
consider it as a text completion task. We test
the LLMs with the validation dataset.

• SIQA (Sap et al., 2019) is a QA dataset about
social commonsense, where each sample con-
sists of a question, three candidate answers,
and a correct answer. To evaluate prompt-
based methods, we do not use the provided
knowledge in the dataset. The settings are
the same as in CommonsenseQA. We test the
LLMs with the validation dataset.

• BBH (Suzgun et al., 2023) is a popular bench-
mark that focuses on tasks challenging for
LLMs. To compare scores of different meth-
ods on correct answers, we select 15 multiple-
choice QA datasets from this benchmark.

• WebQuestionSP (Yih et al., 2016) is a KBQA
dataset that enhances the WebQuestion dataset
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Datasets Alpaca2 (r = 16) KnowLA (ConceptNet)

Temporal sequences 14.80 15.20
Date understanding 72.00 73.20
Geometric shapes 9.20 19.20
Snarks 51.12 53.37
Logical deduction 35.20 36.40

Table 6: Results on knowledge-unrelated tasks

by annotating each answer with corresponding
SPARQL queries and removing ambiguous,
unclear, or unanswerable questions. In this
paper, we treat it as a closed-book QA task.

• TriviaQA (Joshi et al., 2017) includes 95K
question-answer pairs authored by trivia en-
thusiasts, which provide high-quality distant
supervision for answering the questions. In
this paper, we treat it as a closed-book QA task
and select 7,500 questions from TriviaQA to
test LLMs.

• TruthfulQA (Lin et al., 2022) is a benchmark
to measure whether a language model is truth-
ful in generating answers to questions.

The used KGs are introduced as follows:
• WordNet (Miller, 1995) is a lexical KG in

English. Nouns, verbs, adjectives, and ad-
verbs are arranged into synsets, each denoting
a separate notion.

• ConceptNet (Speer et al., 2017) is a multi-
lingual conceptual KG of things people know
and computers should know.

• Wikidata (Vrandecic and Krötzsch, 2014) is
a factual KG across diverse domains. It en-
compasses various entity types, including in-
dividuals, places, concepts, etc.

B Knowledge-Unrelated Tasks

We analyze the side effects of KnowLA on
knowledge-unrelated tasks. In this experiment, five
knowledge-unrelated tasks from BBH are picked.
The results in Table 6 show that even if these tasks
are knowledge-unrelated, our KnowLA can still im-
prove the LLM. This is due to the enhanced ability
of the LLM to activate its own knowledge.

C Additional Latency on Efficiency

Retrieving the embeddings of related entities dur-
ing each finetuning step would slow down the train-
ing process. We move it to the data processing step.
We use eight workers to process 50,538 training

Models Data processing Inference

Alpaca2 9 s 19.02 min.
KnowLA (ConceptNet) 16 s 19.20 min.

Table 7: Time overhead of Alpaca2 and KnowLA

Prompts
Alpaca2 KnowLA
(r = 16) (ConceptNet)

Below is an instruction that describes a
task, paired with an input that provides
further context. Choose a correct answer
that appears in the candidate answers.

56.92 58.39

Below is an instruction that describes a
task, paired with an input that provides
further context. Please answer the fol-
lowing question.

52.74 54.95

Below is an instruction that describes a
task, paired with an input that provides
further context. Give an answer that ap-
propriately completes the question.

53.73 56.10

Please answer the following question. 55.20 56.35

Table 8: Accuracy of KnowLA when using different
prompts on CommonsenseQA

samples in parallel. During inference, we compare
the overall inference time of KnowLA (Concept-
Net) and Alpaca2 on CommonsenseQA using an
A6000 GPU card. Table 7 shows the results.

Alpaca2 spends 9 seconds on data processing,
while KnowLA (ConceptNet) spends 16 seconds.
During inference, KnowLA (ConceptNet) takes
19 minutes and 12 seconds, while Alpaca2 takes
19 minutes and 1 second. We believe that the ad-
ditional latency caused by KnowLA is tolerable
compared to the performance boost.

D Robustness to Different Prompts

We try different prompts to evaluate the robust-
ness of KnowLA. Table 8 compares the accuracy
of Alpaca2 (r = 16) and KnowLA on Common-
senseQA with different prompts. KnowLA outper-
forms Alpaca2 on all prompts, indicating its good
robustness. We use the first prompt in the main
experiments due to its superior performance.

E Discussion on Extension of KnowLA

We hereby discuss the extension of KnowLA to
integrate multiple KGs for PEFT and incrementally
incorporate knowledge updates in a KG.

E.1 Multiple KGs

To leverage multiple KGs and try to benefit from
their potential knowledge transfer, we design a sim-
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Methods Accuracy Score

KnowLA (WordNet) 58.07 48.35
KnowLA (ConceptNet) 58.39 48.19
KnowLA (Wikidata) 57.90 47.39
KnowLA (multiple KGs) 57.61 47.24

Table 9: Results of multiple KGs on CommonsenseQA

ple baseline that merges different KGs into a large
graph using entity alignment (Sun et al., 2018) and
learns entity embeddings from this large KG. If
there is no entity alignment, we use entity embed-
dings from these KGs simultaneously. For bal-
anced training, we limit the maximum number of
related entities from each KG to two, and each
token has up to six entity embeddings.

In this experiment, we merge WordNet, Concept-
Net, and Wikidata. According to Table 9, the accu-
racy of this baseline on CommonsenseQA is 57.61,
which is slightly lower than the result of KnowLA
(ConceptNet). We think this straightforward base-
line may not effectively leverage knowledge trans-
fer between KGs. A more promising mechanism,
e.g., Mixture of Experts (Shen et al., 2024), is nec-
essary to combine multiple KGs. KnowLA is adapt-
able to integrate this improvement. We leave this
direction for future work.

E.2 Knowledge Updates
Knowledge updates for KnowLA require the sup-
port of incremental learning for KGs and LLMs.
When some new entities and triples are added to a
KG, only a small number of parameters need to be
re-trained to complete knowledge updates by using
lifelong KG embedding learning (Cui et al., 2023)
and continual PEFT (Wang et al., 2023).
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