@inproceedings{graf-etal-2024-two,
title = "Two Heads are Better than One: Nested {P}o{E} for Robust Defense Against Multi-Backdoors",
author = "Graf, Victoria and
Liu, Qin and
Chen, Muhao",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.40",
doi = "10.18653/v1/2024.naacl-long.40",
pages = "706--718",
abstract = "Data poisoning backdoor attacks can cause undesirable behaviors in large language models (LLMs), and defending against them is of increasing importance. Existing defense mechanisms often assume that only one type of trigger is adopted by the attacker, while defending against multiple simultaneous and independent trigger types necessitates general defense frameworks and is relatively unexplored. In this paper, we propose Nested Product of Experts (NPoE) defense framework, which involves a mixture of experts (MoE) as a trigger-only ensemble within the PoE defense framework to simultaneously defend against multiple trigger types. During NPoE training, the main modelis trained in an ensemble with a mixture of smaller expert models that learn the features of backdoor triggers. At inference time, only the main model is used. Experimental results on sentiment analysis, hate speech detection, and question classification tasks demonstrate that NPoE effectively defends against a variety of triggers both separately and in trigger mixtures. Due to the versatility of the MoE structure in NPoE, this framework can be further expanded to defend against other attack settings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="graf-etal-2024-two">
<titleInfo>
<title>Two Heads are Better than One: Nested PoE for Robust Defense Against Multi-Backdoors</title>
</titleInfo>
<name type="personal">
<namePart type="given">Victoria</namePart>
<namePart type="family">Graf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qin</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muhao</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Data poisoning backdoor attacks can cause undesirable behaviors in large language models (LLMs), and defending against them is of increasing importance. Existing defense mechanisms often assume that only one type of trigger is adopted by the attacker, while defending against multiple simultaneous and independent trigger types necessitates general defense frameworks and is relatively unexplored. In this paper, we propose Nested Product of Experts (NPoE) defense framework, which involves a mixture of experts (MoE) as a trigger-only ensemble within the PoE defense framework to simultaneously defend against multiple trigger types. During NPoE training, the main modelis trained in an ensemble with a mixture of smaller expert models that learn the features of backdoor triggers. At inference time, only the main model is used. Experimental results on sentiment analysis, hate speech detection, and question classification tasks demonstrate that NPoE effectively defends against a variety of triggers both separately and in trigger mixtures. Due to the versatility of the MoE structure in NPoE, this framework can be further expanded to defend against other attack settings.</abstract>
<identifier type="citekey">graf-etal-2024-two</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.40</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.40</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>706</start>
<end>718</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Two Heads are Better than One: Nested PoE for Robust Defense Against Multi-Backdoors
%A Graf, Victoria
%A Liu, Qin
%A Chen, Muhao
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F graf-etal-2024-two
%X Data poisoning backdoor attacks can cause undesirable behaviors in large language models (LLMs), and defending against them is of increasing importance. Existing defense mechanisms often assume that only one type of trigger is adopted by the attacker, while defending against multiple simultaneous and independent trigger types necessitates general defense frameworks and is relatively unexplored. In this paper, we propose Nested Product of Experts (NPoE) defense framework, which involves a mixture of experts (MoE) as a trigger-only ensemble within the PoE defense framework to simultaneously defend against multiple trigger types. During NPoE training, the main modelis trained in an ensemble with a mixture of smaller expert models that learn the features of backdoor triggers. At inference time, only the main model is used. Experimental results on sentiment analysis, hate speech detection, and question classification tasks demonstrate that NPoE effectively defends against a variety of triggers both separately and in trigger mixtures. Due to the versatility of the MoE structure in NPoE, this framework can be further expanded to defend against other attack settings.
%R 10.18653/v1/2024.naacl-long.40
%U https://aclanthology.org/2024.naacl-long.40
%U https://doi.org/10.18653/v1/2024.naacl-long.40
%P 706-718
Markdown (Informal)
[Two Heads are Better than One: Nested PoE for Robust Defense Against Multi-Backdoors](https://aclanthology.org/2024.naacl-long.40) (Graf et al., NAACL 2024)
ACL