
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 7347–7373

June 16-21, 2024 ©2024 Association for Computational Linguistics

Improving Factual Accuracy of Neural Table-to-Text Output by Addressing
Input Problems in ToTTo

Barkavi Sundararajan and Somayajulu Sripada and Ehud Reiter
Department of Computing Science, University of Aberdeen

{b.sundararajan.21, yaji.sripada, e.reiter}@abdn.ac.uk

Abstract

Neural Table-to-Text models tend to halluci-
nate, producing texts that contain factual errors.
We investigate whether such errors in the output
can be traced back to problems with the input.
We manually annotated 1,837 texts generated
by multiple models in the politics domain of the
ToTTo dataset. We identify the input problems
that are responsible for many output errors and
show that fixing these inputs reduces factual
errors by between 52% and 76% (depending
on the model). In addition, we observe that
models struggle in processing tabular inputs
that are structured in a non-standard way, par-
ticularly when the input lacks distinct row and
column values or when the column headers are
not correctly mapped to corresponding values.

1 Introduction

Table-to-Text generation refers to the task of gen-
erating natural language descriptions from tabular
data (Parikh et al., 2020; Chen et al., 2020a,b) and
is widely used in several application domains such
as medical diagnosis (Pauws et al., 2018), financial
(Zhu et al., 2023) and weather reporting (Sripada
et al., 2002; Gkatzia et al., 2017; Upadhyay and
Massie, 2022) and sports summaries (Thomson
et al., 2020). Neural language models are known to
generate fluent texts (Ji et al., 2023) but may gener-
ate outputs that are factually incorrect or unrelated
to the provided input data. Such undesirable gener-
ation is called ‘hallucination’ (Wang and Sennrich,
2020; Raunak et al., 2021; Ji et al., 2023).

Previous studies on Table-to-Text tasks adopt
traditional seq2seq methods to generate table de-
scriptions (Wiseman et al., 2017; Puduppully et al.,
2019; Rebuffel et al., 2019). Recently, Trans-
former based models (Devlin et al., 2019; Raffel
et al., 2020; OpenAI, 2023) have shown remarkable
progress in language generation from textual input
(Badaro et al., 2023), however tabular data still
needs more improvement to control hallucinations

(Rebuffel et al., 2021). Neural models struggle
with tabular data, especially when the inputs do not
have distinct cell values from rows and columns
mapped along with their respective headers. These
input problems lead the model to generate more
factual errors (Kasner and Dušek, 2024).

Using the ToTTo tabular dataset (Parikh et al.,
2020), we identify and address input problems that
are responsible for factual errors. Some common
tabular input problems in the ToTTo are i. ‘non-
atomic’ cell values, where a column contains mul-
tiple values such as leader name, party name and %
of votes in one cell rather than a single indivisible
value, ii. missing important cell values in the input
(see Table 1) and iii. nested column headers and
row headers in the Wikipedia tables1 that lead to
incorrect mapping of the cell values.

Table 1 presents a sample from ToTTo. Only the
highlighted cells from Table 1a are passed to the
model (as shown in Table 2). Passing Norton’s %
of votes and her party name (compare Table 1b to
Table 1a) eliminates the hallucinated % of votes
(see output for Table 1b); this correction is based
on the input problem described in Sec. 5.2.

In this paper, we score the quality of output texts
by manually annotating output errors instead of
using automatic evaluation metric scores such as
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
PARENT (Dhingra et al., 2019) and BLEURT (Sel-
lam et al., 2020). We conducted a pilot study, where
we fine-tuned T5-base and T5-large models (Raf-
fel et al., 2020), analysing 1,677 politics domain
texts from the ToTTo dataset through manual error
analysis adopted from Thomson and Reiter (2020).
These manual error annotations allowed us to iden-
tify patterns of errors in the generated text which
were then traced back to input problems.

Our approach is summarised as follows:
1https://en.wikipedia.org/wiki/Wikipedia:

Manual_of_Style/Accessibility/Data_tables_
tutorial#Column_headers:_bad_example

7347

https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Accessibility/Data_tables_tutorial#Column_headers:_bad_example
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Accessibility/Data_tables_tutorial#Column_headers:_bad_example
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Accessibility/Data_tables_tutorial#Column_headers:_bad_example

(a) Original cells highlighted in Yellow as Input
1996 United States House of Representatives election
Party Candidate Votes %
Democratic Eleanor Holmes

Norton (inc.)
134,996 90.00

Republican Sprague Simonds 11,306 7.54

LLAMA 2-13B Output for tabular input a:
Eleanor Holmes Norton (inc.) won with 7.54%U of the vote.
Sprague Simonds was the Republican candidate and received
22.38%U of the vote.

(b) Corrected Tabular data by including relevant cells
1996 United States House of Representatives election
Party Candidate Votes %
Democratic Eleanor Holmes

Norton (inc.)
134,996 90.00

Republican Sprague Simonds 11,306 7.54

LLAMA 2-13B Output for tabular input b:
Democratic Party candidate Eleanor Holmes Norton won
with 90% of the vote. Republican Party candidate Sprague
Simonds received 7.54%.

Table 1: ToTTo example: Highlighted cells in yellow are passed as input to the model. Passing the appropriate
cells (i.e., % votes and party name) as input, as shown in Table 1b fixes the factual errors. Compare the Table 1b
output (with no errors) to the Table 1a output (with NUMBER errors denoted by a superscript U).

<page_title> 1996 United States House of Representatives election </page_title> <table> <cell> Eleanor Holmes Norton (inc.)
<col_header> Candidate </col_header> </cell> <cell> Republican <col_header> Party </col_header> </cell> <cell> Sprague
Simonds <col_header> Candidate </col_header> </cell> <cell> 7.54 <col_header> % </col_header> </cell> </table>

Table 2: Linearized Input from (a) and (b) is passed as input to LLAMA 2-13B model. For example, we present
the Linearized Input for Table 1a here. The corresponding input for Table 1b is not shown, but it will include all
related cells highlighted in yellow in (b).

I. We systematically correct the tabular inputs
for the politics domain in ToTTo to adhere to
a standard form to ensure the generation of
factual texts from neural models. The correc-
tion procedure is elaborated in Sec. 5.2 and is
supplemented by pseudocode in App. D.

(a) We apply this correction to a larger sub-
set of 210 samples, resulting in a 62% de-
crease in factual errors for T5-base and a
57% decrease for T5-large in the gener-
ated text (Sec. 6.1).

(b) We conduct experiments on LLAMA 2-
7B and LLAMA 2-13B models (Touvron
et al., 2023) with 40 challenging samples
selected from the previous 210 samples.
Tailoring zero-shot prompts for specific
input and error annotation on 160 texts
showed that correcting input reduces fac-
tual errors by 52% in LLAMA 2-7B and
76% in LLAMA 2-13B (Sec. 6.2).

II. The manual error annotation methodology
adopted from Thomson and Reiter (2020) is
detailed in App. B; this builds on the work of
Sundararajan et al. (2022) for ToTTo politics
domain outputs2. The inter-annotation agree-
ment on the error annotation was good, with a
Fleiss’ Kappa of 0.622 (Sec. 7).

2Error annotation guidelines and sample annotations from
our human evaluation is available at https://github.com/
BarkaviSJ/totto_politics_human_annotations

1.1 Table to Text dataset, ToTTo

ToTTo is an open-domain English language dataset
(Parikh et al., 2020), where the input X is taken
from Wikipedia table T , which includes the table’s
metadata (such as title) and a set of highlighted
cells, along with their headers. This structured in-
formation is flattened to create a linearized text
representation of the table, as mentioned in Table 2.
This crowdsourced dataset is paired with a natural
language description, denoted as output Y , com-
prising a sequence of tokens y1, y2, . . . , yn, which
provides a coherent summary of the content present
in the input table X .

These input-output pairs from the ToTTo dataset
can be used for fine-tuning or prompting the neural
language models. As shown in Table 1a, the Input
X is often observed to be problematic and fixing
these problems is the main focus of this paper.

2 Related Work

Prior work on ToTTo: Wang et al. (2022) pro-
posed a framework, LATTICE, that preserves the
structural information of the cell values (tokens)
within the same rows or columns, and by remov-
ing the attention mechanism flow for other unre-
lated tokens. Hu et al. (2023) incorporates content
planning and generation from Su et al. (2021) and
synthetically added noisy cells in their fine-tuning
regime. While these approaches are model agnos-
tic and improved automatic metric scores such as

7348

https://github.com/BarkaviSJ/totto_politics_human_annotations
https://github.com/BarkaviSJ/totto_politics_human_annotations

BLEU (Papineni et al., 2002), PARENT (Dhingra
et al., 2019) and BLEURT (Sellam et al., 2020) by
few points in the leaderboard 3, the fundamental
problem with the tabular input remains.

Chen et al. (2022) acknowledged that the tar-
get cells in the ToTTo tabular input are not always
highlighted in their work titled ‘Table Structure
Understanding and Text Deliberation Approach’.
They used a template to extract all facts from the
raw table for 1.2K training samples (only for the
inputs with rows and columns fewer than 8) and
employed hierarchical multi-head attention to cap-
ture the structural information in their fine-tuning
process. Though this approach promises to retain
the facts from raw tables, it only addresses simpler
tables with fewer than 8 rows and columns, still
has limitations for longer tables, complex tabular
structures and non-atomic tabular cells.

Our focus on correcting inputs aiming to achieve
factually correct outputs aligns with the work of
Dušek et al. (2019) on the E2E dataset (Novikova
et al., 2017). Their study also demonstrated that
improving inputs in an NLG dataset helps in im-
proving model outputs.

Error Analysis: While the automatic metric
scores such as BLEU, PARENT and BLEURT help
evaluate the model’s performance at a high level,
relying solely on these metrics will not address
specific weaknesses i.e., lower metric scores do
not provide insights into specific error types in the
output. We follow guidelines from van Miltenburg
et al. (2021) to perform error analysis in NLG sys-
tems and investigate errors in the output at a more
granular level by adopting the manual error anno-
tation approach from Thomson and Reiter (2020);
Sundararajan et al. (2022); Thomson et al. (2023).

Maynez et al. (2020) also emphasized auto-
matic metrics are not sufficient to study the hal-
lucination problem and provided a detailed study
on intrinsic and extrinsic hallucination in abstrac-
tive summarization. We studied hallucination
in our evaluation scheme by annotating differ-
ent categories of errors in the output tokens (sin-
gle token or group of tokens). Mapping our
adopted methodology to Maynez et al. (2020)’s
work, intrinsic is the main error category oc-
curring when generated outputs are not faith-
ful to the given input. It includes WORDW,
NAMEN, DATE_DIMENSIOND, NUMBERU,

3https://github.com/google-research-datasets/
ToTTo

CONTEXTC and OTHERO) from our error cate-
gories. Extrinsic refers to our ADDITIONA cate-
gory (see App. B.3).

LLM prompts: Empirical evaluation of prompt-
ing strategies on the three large language models
(LLMs) by Sivarajkumar et al. (2023) in clinical
NLP found that tailoring task-specific prompt is
crucial for achieving accuracy. In a study on Text-
to-SQL, Chang and Fosler-Lussier (2023) investi-
gated zero-shot prompting strategies, highlighting
the significance of table representation. Their find-
ings indicated that normalized database prompts
outperformed unnormalized ones; this motivates
our initial step of correcting tabular inputs to a
standard form. In our work, we leveraged a recent
LLM, LLAMA 2 (Touvron et al., 2023) and tailored
our zero-shot prompt (Kojima et al., 2022) specific
to the content of each table.

3 Pilot Study

3.1 Methodology

We only look at the politics domain on the ToTTo
validation set. We build upon the work of Sun-
dararajan et al. (2022) to identify the causes of
output errors in T5 models. In this paper, we go
beyond error annotations to fix these errors in our
main study, both in T5 and LLAMA 2 models (de-
tailed in Sec. 5).

The error categories mentioned in Sundarara-
jan et al. (2022) are: WORDW, NAMEN,
DATE_DIMENSIOND, NUMBERU, OTHERO,
CONTEXTC, NOT_CHECKABLENC and
NON_ENGLISHNE. In this work, we excluded
NOT_CHECKABLENC and introduced a new
error category, ADDITIONA, which is used when
the generated text has added words or phrases that
diverge from the input. Definitions for all error
categories are provided in App. B.3.

3.2 Insights from our Pilot Study

For the pilot study, we fine-tuned both the T5-base
(T5-b) and the T5-large (T5-l) models on the ToTTo
dataset by following the baseline approach (Kale
and Rastogi, 2020). The hyperparameters and fine-
tuning details for these two models are shown in
App. A.

Our analysis (presented in Table 3) shows that:
No Error: 47% of the samples from T5-b and

60% of the samples from T5-l are error-free.
Omissions: Omissions occur when the gener-

ated text fails to mention some information from

7349

https://github.com/google-research-datasets/ToTTo
https://github.com/google-research-datasets/ToTTo

Category T5-base (T5-b) T5-large (T5-l)
Count % Count %

No Error 358 47 450 60
Omissions 272 36 218 29

Errors 124 17 86 11

Total Count 754 754

Table 3: Pilot Study analysis: T5-b and T5-l Models
in ToTTo Politics Domain. ‘Errors’ category is the
main focus of our work; ‘omissions’ are excluded.

the input (González Corbelle et al., 2022) without
making any factual errors. If the output has errors
and omissions, we classify it as an error. The T5-b
had 36% omissions and T5-l had 29%.

Errors: Our analysis revealed that T5-b made
factual errors in 17% and T5-l made factual errors
in 11% of the total samples.

Hypothesis: Based on the insights from this
analysis, we hypothesize that when tabular input
data is structured in non-standard ways, models
struggle to interpret these ambiguous inputs leading
to generate factually inaccurate output. We test this
hypothesis by addressing input problems related to
non-standard tabular structures.

4 Input Problems

Due to the practical challenges involved in improv-
ing the tabular input for the entire dataset, which
includes unique headers and tabular structures for
each input, our focus is on analyzing a subset of
samples containing errors. We examined 124 er-
ror samples from the T5-b and 86 error samples
from T5-l models within the ToTTo politics do-
main, as identified in Table 3. We aim to segregate
the errors originating from non-standard or illog-
ical nested table structures. We categorize these
input problems into two broad categories, as briefly
elaborated upon in Sec. 4.1 and Sec. 4.2.

4.1 Generic Input Problems

Non-atomic tabular cell values: When a table
cell contains multiple atomic values (see Table 4).
Examples of such non-atomic forms include mul-
tiple leaders’ names, votes, term dates, or elec-
tion years all in a single cell. We further cate-
gorize these problems into ‘single record lacking
atomicity’ and ‘multiple records lacking atomicity’
(shown in Fig. 2 in App. F) to demonstrate how the
models struggle when records of multiple leaders
lack atomicity.

Complex table type: When a table contains
election results in sentence form, models struggle
to interpret and generate meaningful texts because
the sentence form data lacks the needed context
(see Table 11 in App. F).

Insufficient input: In some cases, the neces-
sary cells are not highlighted in the tabular input,
resulting in incorrect outputs. Our analyses in Ta-
ble 1 and Table 5 demonstrate that outputs become
factually correct when relevant cells are included.

Longer table input: Models often struggle to
generate accurate texts for lengthy table inputs,
especially when the data is not in a standard form
and lacks clear cell relationships.

4.2 Politics Domain-Specific Input Problems

Politics specific headers: In ToTTo, the use of
symbols, for example, ‘+’ or ‘-’ instead of having
clear semantic terms like ‘swing percentage’ or ‘%
change compared to previous election’ as column
headers caused 5% of errors. This lack of semantic
guidance in the input made it difficult for models
to accurately generate the correct output text (see
Table 10 in App. F).

List of leader names in the input: In the pol-
itics domain, we observed a specific issue when
input data contains a list of leader names. Models
tend to favour the leader whose name appears first
in the list (for example, either from the table title
or as the first leader in highlighted cells), even if
they have lost the election (see Table 13, Table 14,
Table 15 in App. F). This becomes even more chal-
lenging when leader names are associated either
with missing values (opponent leader’s name or
vote count) in other columns in the input or when
the tabular cell values are non-atomic.

The manual fixes we applied to each of these
input problems with examples are detailed in
Sec. 5.2.

5 Main Study

5.1 LLAMA 2 Models

In our main study, in addition to T5 models, we
included LLAMA 2-7B (L-7B) and LLAMA 2-
13B (L-13B) models to test our hypothesis on
non-standard tabular inputs. We received official
model weights from Meta4 and then quantized our

4We downloaded weights from https://ai.meta.com/
resources/models-and-libraries/llama-downloads/
and quantized our models by following the installation instruc-
tions from https://github.com/ggerganov/llama.cpp.

7350

https://ai.meta.com/resources/models-and-libraries/llama-downloads/
https://ai.meta.com/resources/models-and-libraries/llama-downloads/
https://github.com/ggerganov/llama.cpp

(a) Input Table with Original Cells highlighted in Yellow
Page Title: 2014 United States Senate elections
Section Title: Elections leading to the next Congress

State Candidates
Alaska Dan Sullivan (Republican) 48.0% Mark Begich

(Democratic) 45.8% Mark Fish (Libertarian) 3.7%
Ted Gianoutsos (Independent) 2.0%

Virginia Mark Warner (Democratic) 49.1% Ed Gillespie (Re-
publican) 48.3% Robert Sarvis (Libertarian) 2.4%

(b) Input Table with Corrected Cells highlighted in Yellow
State Candidates Party % votes
Alaska Dan Sullivan Republican 48.0%

Alaska Mark Begich Democratic 45.8%

Virginia Mark Warner Democratic 49.1%

Virginia Ed Gillespie Republican 48.3%

(c) Outputs Before and After Input Data Correction
T5-base before fix: Alaska: Dan Sullivan (R) defeated Mark Begich
(D) 45.8% toW 3.7%U and Ted Gianoutsos (Independent) 2.0%, and
Virginia: Mark Warner won 49.1% toW 2.4%U.
T5-base after fix: Alaska was won by Dan Sullivan (R) with 48.0% of
the vote, and Virginia was won by Mark Warner (D) with 49.1% of the
vote.
LLAMA 2-7B before fix: 2014 United States Senate elections were
held on November 4A, 2014. The Republican Party gained control
of the Senate for the first time since 2006. The Democrats lost their
majority in the Senate and Republicans won a net gain of eight seats
to take control of the chamber with a 54-46 majority. The Republi-
cans also took control of the House of Representatives, giving them
full control of Congress for the first time since 2010.A

LLAMA 2-7B after fix: In the United States Senate elections of 2014,
Dan Sullivan (Republican) won in Alaska with 48.0% of votes against
Mark Begich (Democratic) who got 45.8%. In Virginia, Mark Warner
(Democratic) won with 49.1% of votes against Ed Gillespie (Republican)
who got 48.3%.

Table 4: Fixing Multiple leaders’ votes that are not atomic, as detailed in Sec. 5.2.1. ‘Before fix’ shows the
errors produced by models with Table 4a as input and ‘After fix’ shows both models did not produce any factual
error with Table 4b as input. The error tokens in outputs are annotated with respective error code in superscript (W
for WORD, U for NUMBER and A for ADDITION errors).

LLAMA 2 models. We ran experiments using the
full model weights and the model with 4-bit in-
teger quantization for the ToTTo dataset (politics
domain). Both produced comparable output qual-
ity with no difference in errors for the quantized
models. Therefore, we finalized our experiments
with 4-bit quantized models to save computational
resources and used them for local inference on a
MacOS CPU. We set the temperature to 0.0 as it
produced fewer errors. Further details on data cor-
rections for these models are discussed in Sec. 5.4.

5.2 Manual Fixes for Input Problems

We followed a systematic procedure to apply man-
ual fixes to specific input problems, as discussed
from Sec. 5.2.1 to Sec. 5.2.6. A supplementary
pseudocode for these fixes is also provided in
App. D. The algorithm 1 takes tabular data and
title (metadata) from ToTTo as input parameters to
execute six functions to gather insights and return
with corrected tabular data. The first two functions,
DATASIZEMANAGEABLEFORLONGTABLE and
IDENTIFYLEADERNAMEORDER do not correct
the tabular input but provide insights on the input
problems leading to factual errors in the outputs.
The other four functions correct the input problems
as shown in algorithm 4, algorithm 5, algorithm 6
and algorithm 7.

5.2.1 Non-Atomic Cell Values
Correction: We corrected the input to store indi-
vidual leader data, including votes, party, and elec-
tion details, as a separate column variable. In Ta-
ble 4a, when the ‘candidates’ column is not atomic,
all models made errors for this tabular data. The
corrections involved separating each leader’s party
and votes into separate columns (see Table 4b). We
passed the leading two leaders’ data, excluding
the remaining leaders, in separate rows for the re-
spective states (Alaska and Virginia). After input
correction, T5-b and L-7B outputs in Table 4 were
error-free. While some models omitted other candi-
date and election details, all models corrected the
previous factual errors after the correction.

5.2.2 Complex Table Type
Correction: Complex tabular structures were gen-
erally difficult to correct because the election re-
sults are in sentence form e.g., see ‘Results’ column
in Table 11 in App. F. We could only make correc-
tions to the ‘non-atomic’ cell values in ‘candidates’
column. Three models generated ‘the incumbent
senator Coe I. Crawford lost renomination to Ed-
win S. Johnson, a Democrat candidateC.’ Losing
renomination is when the current senator did not
lose the seat to the opponent, but rather failed to
be nominated in the primary to stand for reelection.
This resulted in CONTEXTC error, specifically
when the models made unsupported assumptions

7351

(a) Input Table with Original Cells highlighted in Yellow

Page Title: Minnesota Amendment 2
Section Title: Results

Choice Votes % Votes
Referendum failed No 1,588,752 53.84

Yes 1,362,030 46.16

(b) Input Table with Corrected Cells highlighted in Yellow

Choice Votes % Votes
Referendum failed No 1,588,752 53.84

Yes 1,362,030 46.16

(c) Outputs Before and After Input Data Correction

T5-base before fix The Minnesota Amendment 2 was approvedW by
53.84 percent of voters, with a turnout ofC 46.16 percent.

T5-base after fix: Minnesota Amendment 2 was defeated by 53.84
percent of voters, while 46.16 percent voted in favor of the measure.

LLAMA 2-7B before fix: 53.84% of Minnesota voters voted forW

Amendment 2.

LLAMA 2-7B after fix: 53.84% of the voters voted no on Amendment
2, while 46.16% voted yes.%.

Table 5: Fixing Insufficient input problems, as detailed in Sec. 5.2.3. ‘Before’ shows WORD and CONTEXT
errors due to missing choices of votes. ‘After’ shows these errors are resolved when these cell values are provided.

about the given input data, as defined in App. B.
Even after correction, all models except L-13B
made this CONTEXTC error (see Table 11d).

5.2.3 Insufficient Input
Correction: This is a data annotation problem be-
cause it is related to how the ToTTo dataset was cre-
ated by pairing the sentence description and high-
lighting only a subset of cells from the Wikipedia
table as Input (X). This problem is straightforward
to fix by including the missing cells or headers
from the tabular data.

In Table 5, when the choices for the Minnesota
Amendment (i.e., ‘Referendum failed No’ and ‘Yes’
cells) were not included, all models incorrectly
generated the favour of votes (‘approved’, ‘for’)
and made an unsupported assumption regarding
the turnout percentage. As shown in Table 5, all
models corrected the errors after including the vote
choices.

5.2.4 Longer Table Input
Correction: When dealing with straightforward
tabular data, it was easier to correct the input either
by i. correcting the cell values to ensure atomic-
ity and/or ii. including the missing cells. However,
this longer tabular input not only had over 100 rows
but also included complex structures with nested
column headers and row headers which posed diffi-
culties in correcting the input.

Large models such as L-13B and T5-l could pro-
cess tables with fewer than 20 rows for straightfor-
ward inputs. However, T5-b and L-7B struggled to
produce factual information even for 20 rows. In
our correction procedure, we chose an upper limit
of 20 rows and 10 columns to simplify the longer
tabular input. A simplified example of this problem
with fewer rows is shown in Table 16 in App. F.

5.2.5 ToTTo: Politics Specific

Correction: We included appropriate semantic
cues in the headers to help the model differenti-
ate between the generic percentage of votes and
the swing percentage of votes. For other errors,
we expanded the abbreviation of coalition party
names to avoid errors. In Table 10 from App. F, the
original input only had ± in the header, resulting
in errors from all models including L-13B. After
explicitly including ‘± seats compared to the previ-
ous election’, both LLAMA 2 models corrected the
previous error. However, both fine-tuned T5 mod-
els committed mistakes even after this correction.

Specific Semantic Generation Issue: In some
cases, the model cannot determine whether a min-
ister was ‘shortest-lived’ or ‘longest-lived’ only
based on their lifespan, birth, and death years from
the input. It may require additional context to pro-
duce accurate text. One such example is shown
in Table 12. All models with the original data
produced incorrect WORDW. After we included
the ‘Total time in office’ cell and customized the
prompt for LLAMA 2, both LLAMA 2 models cor-
rected the WORDW error. However, both T5 mod-
els did not show any improvement after including
this detail. This could be due to the strong influ-
ence of the patterns learned from the fine-tuning
process for similar tabular structures.

5.2.6 List of Leader Names

Correction: We did not change the order of the
leader’s name in the title, but we addressed missing
vote counts and leader names to map the relations
for each record as shown in Table 13, Table 14, and
Table 15 in the App. F.

In Table 14, the title leader ‘Chuck DeVore’ lost
the election among four other party nominees. Both

7352

T5 models made errors by focusing on ‘Chuck De-
Vore’ as the main candidate, resulting in WORDW

and CONTEXTC errors. NUMBERU errors are
present in all models due to missing votes. After
including the votes and party details for all candi-
dates, both LLAMA 2 models corrected all errors.
However, both T5 models still made errors stating
the title leader either defeated or being defeated by
all candidates, possibly due to the learned patterns
during fine-tuning on the ToTTo dataset.

In Table 15, the title leader, ‘Joseph Haslet’ ran
as a candidate for Governor office in 1804 and 1807
but lost both elections. All models incorrectly gen-
erated Haslet won in both years. The correction is
only limited to passing the party name and mod-
ifying the header from ‘Subject’ to ‘Candidate’.
Despite this change, all models continued to gen-
erate errors. Both T5 models struggled to generate
the right winning candidate in 5 out of 11 samples
(Fig. 2a) for this input with the same set of headers.

5.3 T5 Models on Corrected Data
Based on the insights gathered from different input
problems in Sec. 4, we followed the procedure
and manually corrected the original tabular input
for 210 samples (taken from 124 and 86 ‘errors’
category samples in Table 3). We ran both T5-b
and T5-l models on the corrected data.

5.4 LLAMA 2 Models on Corrected Data
From the corrected data, as described in Sec. 5.3,
we selected 40 challenging samples from the pre-
vious 210 samples as inputs to the LLAMA 2-7B
(L-7B) and LLAMA 2-13B (L-13B) models. These
samples were chosen to cover each of the input
problem types described in Sec. 4, guaranteeing
a thorough analysis. Within these 40 samples, 21
are associated with general input problems and the
remaining 19 are specific to the politics input prob-
lems, as shown in Fig. 2c and Fig. 2d (in App. F).

We studied the zero-shot capabilities of L-7B
and L-13B models for the 40 challenging samples.
For each sample, we employed different prompts
tailoring to the content of the tabular input (Kojima
et al., 2022). Two common prompts we used are
shown in App. C. For each sample and each of L-
7B, and L-13B, we examined the outputs before
and after correcting the tabular input.

6 Results and Discussion

We manually annotated the outputs from all mod-
els working on corrected input data, following the

same procedure outlined in Sec. 3.1 and defined in
App. B. In this section, we summarize the results
of the total input data corrections and discuss them.
The previous section also described and discussed
error analysis locally while presenting individual
corrections.

6.1 Error Reductions in T5 Models

The input corrections significantly reduced factual
errors, as evident in Table 6, which provides a com-
parison of error counts ‘before’ and ‘after’ input
data fixes for each error category. It should be
noted that no prompt or instruction was provided
to these two fine-tuned T5 models.

Category T5-base (T5-b) T5-large (T5-l)
Before After Before After

WORD 62 20 31 12
NAME 13 3 12 2
DATE_DIMENSION 7 1 6 1
NUMBER 12 1 5 0
OTHER 5 2 2 0
CONTEXT 13 3 16 4
ADDITION 2 1 2 1
NON-ENGLISH 20 20 21 21

Total errors 134 51 95 41

Error reduction 62% 57%

Table 6: Count of individual error annotations for
210 samples. The table compares the error counts be-
tween ‘before’ and ‘after’ applying input correction.
Each sample can contain multiple errors.

6.2 Error Reductions in LLAMA 2 Models

In Table 7, we present the error analysis of 40 dif-
ficult samples, validated using L-7B and L-13B
models with tailored prompts for each input. Out-
puts were manually error annotated, and the table
compares the error counts before and after input
correction. The L-7B and L-13B models showed re-
ductions of 52% and 76% in errors, after address-
ing tabular input issues. The T5-b and T5-l models
demonstrated error reductions of 46% and 53%
respectively for the 40 difficult samples considered,
which was shown for comparison purposes. The in-
sights gathered from the individual error categories
after input correction are mentioned below.

• WORDW errors, predominantly incorrect
verbs and prepositions, were most common
among all models. Post-correction, the L-
13B model reduced this error category by
77%, while the T5-b, T5-l, and L-7B models

7353

Category T5-base (T5-b) baseline T5-large (T5-l) baseline LLAMA 2-7B (L-7B) LLAMA 2-13B (L-13B)
Before After Before After Before After Before After

WORD 27 18 21 12 23 15 22 5
NAME 7 3 6 2 2 1 3 0
DATE_DIM 2 1 1 1 2 0 1 0
CONTEXT 8 3 7 2 6 2 4 0
NUMBER 4 1 1 0 7 1 6 1
OTHER 0 0 0 0 5 0 1 0
ADDITION 0 0 0 0 5 5 7 5

Total errors 48 26 36 17 50 24 45 11

Error
reduction(%)

46% 53% 52% 76%

Table 7: Individual error count for the 40 challenging samples selected from the previous 210 in Table 6. It
shows the comparison of the errors annotated for original data versus corrected data in T5 and LLAMA 2 models.

Category T5-base (T5-b) baseline T5-large (T5-l) baseline LLAMA 2-7B (L-7B) LLAMA 2-13B (L-13B)
Before After Before After Before After Before After

No error
(Higher is better)

0 12 3 16 2 17 5 23

Omissions 0 6 3 8 2 4 4 8

Table 8: Comparison of ‘No error’ and ‘Omissions’ unique count for the same 40 samples. i. Increase in ‘No
error’ count indicates error-free outputs after addressing input problems. ii. Some outputs stopped making factual
errors after correction but instead omitted part of the input content, resulting in a higher omission count post-fix.

achieved reductions of 33%, 42%, and 34%,
respectively.

• Input correction led to a reduction in NAMEN

and CONTEXTC errors across all models.

• The original input data exhibited more NUM-
BERU errors in LLAMA 2 models compared
to T5, which were significantly reduced af-
ter correction. Both LLAMA 2 models com-
pletely resolved DATE_DIMENSIOND and
OTHERO errors.

• ADDITIONA errors are more common in
LLAMA 2 models than in T5. Despite includ-
ing the prompt ‘Use only the information men-
tioned in the input table data’ and correcting
the tabular data, both L-7B and L-13B models
still produced five ADDITION errors each.

Table 8 shows two rows of data from our analysis
of the 40 challenging samples. The first row shows
that corrected data leads to an increased number of
samples with ‘no error’ (Higher is better). How-
ever, the second row shows that omissions have
increased after input corrections. We observed that
the models omitted part of the information either
when the corrected tabular data had multiple col-
umn variables for more than two records or when
the tabular structure was complex. In the case of

fine-tuned models, it learned to omit some informa-
tion during the fine-tuning process. In our future
work, we plan to study the reasons why this is hap-
pening.

6.3 Model-Specific Results for Different Input
Problems

In App. E, Fig. 2 presents how the four models
are performing before (left bars) and after input
corrections (right bars) for each input problem type.

Non-atomic cell values: T5-l and L-13B models
corrected over 90% of the errors for this problem
type, single record and multiple records lacking
atomicity (see red and green bars in Fig. 2, App. F).
T5-b and L-7B models corrected over 60% of the
errors but still struggled with a few samples even
after correction. For example, Fig. 2b shows that
T5-large was making more errors for the input prob-
lem type labelled ‘Multiple records lacking atomic-
ity’ before correction (in red) and made significant
reductions after correction (in green).

Complex table: Due to the limitations in some
tabular inputs, which require additional context,
T5-b could not fix the errors. T5-l omitted the error
for one sample, while L-7B and L-13B models
partially fixed this input problem (see Fig. 2).

Insufficient input: This data annotation prob-
lem fixed all factual errors in T5-b, T5-l and L-13B

7354

ERROR ALL AGREE WORD NAME DATE_DIM NUMBER OTHER CONTEXT ADDITION NO ERROR TOTAL

WORD 17 0 0 0 2 0 9 3 0 31
NAME 3 0 0 0 0 0 2 0 0 5
DATE_DIM 1 0 0 0 0 0 2 0 0 3
NUMBER 2 2 0 0 0 0 0 0 0 4
OTHER 2 0 0 0 0 0 0 0 1 3
CONTEXT 7 9 2 2 0 0 0 6 0 26
ADDITION 12 1 0 0 0 0 5 0 0 18
NO ERROR 15 0 0 0 0 1 0 0 0 16

Fleiss’ kappa overall agreement for three annotators, k = (pa − pe)/(1 − pe) = 0.622

Table 9: Fleiss‘ Kappa coefficient: overall agreement on 60 samples among three annotators. ‘All agree’
column signifies unanimous agreement on error types, while other columns show unique error selections.

after correction except for L-7B which added addi-
tional information for one sample.

Longer table input: Large models such as L-
13B, L-7B and T5-l corrected factual errors for
straightforward inputs, especially for tables with
fewer than 20 rows. However, T5-b struggled the
most to produce factual information.

Politics specific semantic issue: For the cor-
rected input, L-13B fixed the factual mistakes for 5
out of 8 samples and L-7B fixed factual errors for
4 out of 8 samples. Both T5 models corrected 3 out
of 8 samples (see Fig. 2).

List of leader names: T5 models struggled the
most to correct factual errors for this problem. Af-
ter correction, the L-7B model corrected three sam-
ples but produced factual errors for the remaining
eight samples. L-13B made factual errors only for
two samples (see Fig. 2).

While some models struggle with specific inputs,
particularly regarding leader name order, tables
requiring additional context for complex tabular
structures, and semantic issues with symbols, our
overall results indicate that correcting tabular in-
puts improves model outputs.

7 Inter-Annotation Experiment

One of the authors manually annotated errors in
1,508 outputs before input correction and 169 prob-
lematic outputs after correction (a total of 1,677
from both T5 models). Similarly, the annotation
for both LLAMA 2 models covered 160 outputs
before and after input correction.

Two additional annotators annotated 60 outputs
each, generated by four different models both be-
fore and after input correction. We provided them
with a detailed document that included definitions
of error categories, guidelines, tabular inputs and
output texts for error annotation5. Annotators fol-

5We release our error annotations from our human

lowed the guidelines and marked the errors. Each
annotator spent approximately 3 hours to complete
this experiment.

The annotated errors are shown in a confusion
matrix in Table 9, where the ‘all agree’ column
shows all annotators agreed on the same error type
and other columns show how often each annota-
tor selected a different error type. Although the
correct token was usually chosen, disagreements
primarily occurred in choosing CONTEXT, ADDI-
TION and WORD error types, as shown in red in
Table 9. This might be due to the potential simi-
larities in the definitions of CONTEXT errors and
ADDITION errors (see App. B.3). While WORD
error is comparatively straightforward, one anno-
tator chose CONTEXT errors instead of WORD
errors for a few outputs. Cases where an annotator
did not mark any errors were in the minority. The
inter-annotation agreement on error category classi-
fication for 60 outputs, as shown by a Fleiss’ kappa
of 0.622, indicates substantial agreement between
the three annotators.

8 Conclusion

This paper presented a study that quantitatively
demonstrates that fixing input problems such as
insufficient data and data records containing non-
atomic content improves the factual accuracy of
output text by as high as 76% for one of the study
models. Correcting inputs also seems to improve
the number of entirely error-free output texts. How-
ever, we still need to investigate why errors cate-
gorised as ‘omissions’ increase after input correc-
tions. In our future work, we aim to explore other
tabular datasets for problems with input data and
study the generalization of the fixes explored in the
current work.

evaluation on https://github.com/BarkaviSJ/totto_
politics_human_annotations.

7355

https://github.com/BarkaviSJ/totto_politics_human_annotations
https://github.com/BarkaviSJ/totto_politics_human_annotations

Limitations

We acknowledge some limitations in this work.
First, we only looked at ToTTo and our scope of
corrections to tabular input is limited to errors iden-
tified within the politics domain of the ToTTo val-
idation set. Second, we did not extend the cor-
rection of tabular input for the politics domain to
the training split of the ToTTo dataset due to the
time-consuming process of handling different table
headers and metadata. Third, our experiment re-
sults are restricted to two specific models (T5 and
LLAMA 2) and may not generalize to other models.

In our future work, we aim to simplify the def-
initions of the ‘context’ and ‘addition’ error cate-
gories, as the annotation experiment revealed dis-
agreement in choosing these error types for some
samples, despite annotators marking the same error
token.

Ethics Statement

This work seeks to address input problems in non-
standard tabular structures to reduce factual errors
in the output text. We utilized the open-source
dataset, ToTTo and maintained the same ground-
truth generation as the original dataset. Our input
correction did not introduce any further social bias
to this dataset. We adopted an error annotation
methodology to annotate factual errors and one of
the authors performed manual error analysis for
this complete study. We sought consent from two
additional annotators, the annotators volunteered
to participate and annotated errors for 60 output
texts each. They had the right to withdraw from the
study at any point without facing any consequences.
We provided necessary guidelines, instructions and
examples for them to annotate errors.

Acknowledgements

We thank Craig Thomson and Adarsa Sivaprasad
for their hard work in helping with the annotations
in this paper. We thank the anonymous reviewers
for their detailed feedback and suggestions which
have significantly improved this work. We also
thank the NLG (CLAN) reading group at the Uni-
versity of Aberdeen for their invaluable feedback.

References
Gilbert Badaro, Mohammed Saeed, and Paolo Papotti.

2023. Transformers for tabular data representation:
A survey of models and applications. Transactions

of the Association for Computational Linguistics,
11:227–249.

Shuaichen Chang and Eric Fosler-Lussier. 2023. How
to prompt llms for text-to-sql: A study in zero-shot,
single-domain, and cross-domain settings.

Miao Chen, Xinjiang Lu, Tong Xu, Yanyan Li, Zhou
Jingbo, Dejing Dou, and Hui Xiong. 2022. To-
wards table-to-text generation with pretrained lan-
guage model: A table structure understanding and
text deliberating approach. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 8199–8210, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, and
William Yang Wang. 2020a. Logical natural lan-
guage generation from open-domain tables. CoRR,
abs/2004.10404.

Zhiyu Chen, Wenhu Chen, Hanwen Zha, Xiyou Zhou,
Yunkai Zhang, Sairam Sundaresan, and William Yang
Wang. 2020b. Logic2Text: High-fidelity natural lan-
guage generation from logical forms. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 2096–2111, Online. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In North American Chapter of the Association
for Computational Linguistics.

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-
Wei Chang, Dipanjan Das, and William Cohen. 2019.
Handling divergent reference texts when evaluating
table-to-text generation. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 4884–4895, Florence, Italy. Asso-
ciation for Computational Linguistics.

Ondřej Dušek, David M. Howcroft, and Verena Rieser.
2019. Semantic noise matters for neural natural lan-
guage generation. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,
pages 421–426, Tokyo, Japan. Association for Com-
putational Linguistics.

Dimitra Gkatzia, Oliver Lemon, and Verena Rieser.
2017. Data-to-text generation improves decision-
making under uncertainty. IEEE Computational In-
telligence Magazine, 12(3):10–17.

Javier González Corbelle, Alberto Bugarín-Diz, Jose
Alonso-Moral, and Juan Taboada. 2022. Dealing
with hallucination and omission in neural natural lan-
guage generation: A use case on meteorology. In
Proceedings of the 15th International Conference
on Natural Language Generation, pages 121–130,
Waterville, Maine, USA and virtual meeting. Associ-
ation for Computational Linguistics.

7356

https://doi.org/10.1162/tacl_a_00544
https://doi.org/10.1162/tacl_a_00544
http://arxiv.org/abs/2305.11853
http://arxiv.org/abs/2305.11853
http://arxiv.org/abs/2305.11853
https://doi.org/10.18653/v1/2022.emnlp-main.562
https://doi.org/10.18653/v1/2022.emnlp-main.562
https://doi.org/10.18653/v1/2022.emnlp-main.562
https://doi.org/10.18653/v1/2022.emnlp-main.562
http://arxiv.org/abs/2004.10404
http://arxiv.org/abs/2004.10404
https://doi.org/10.18653/v1/2020.findings-emnlp.190
https://doi.org/10.18653/v1/2020.findings-emnlp.190
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://doi.org/10.18653/v1/P19-1483
https://doi.org/10.18653/v1/P19-1483
https://doi.org/10.18653/v1/W19-8652
https://doi.org/10.18653/v1/W19-8652
https://doi.org/10.1109/MCI.2017.2708998
https://doi.org/10.1109/MCI.2017.2708998
https://aclanthology.org/2022.inlg-main.10
https://aclanthology.org/2022.inlg-main.10
https://aclanthology.org/2022.inlg-main.10

Hanxu Hu, Yunqing Liu, Zhongyi Yu, and Laura Perez-
Beltrachini. 2023. Improving user controlled table-
to-text generation robustness. In Findings of the As-
sociation for Computational Linguistics: EACL 2023,
pages 2317–2324, Dubrovnik, Croatia. Association
for Computational Linguistics.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1–38.

Mihir Kale and Abhinav Rastogi. 2020. Text-to-text
pre-training for data-to-text tasks. In Proceedings of
the 13th International Conference on Natural Lan-
guage Generation, pages 97–102, Dublin, Ireland.
Association for Computational Linguistics.

Zdeněk Kasner and Ondřej Dušek. 2024. Beyond
reference-based metrics: Analyzing behaviors of
open llms on data-to-text generation. arXiv preprint
arXiv:2401.10186.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199–22213.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906–1919, On-
line. Association for Computational Linguistics.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The E2E dataset: New challenges for end-
to-end generation. In Proceedings of the 18th An-
nual SIGdial Meeting on Discourse and Dialogue,
pages 201–206, Saarbrücken, Germany. Association
for Computational Linguistics.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Man-
aal Faruqui, Bhuwan Dhingra, Diyi Yang, and Dipan-
jan Das. 2020. ToTTo: A controlled table-to-text
generation dataset. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1173–1186, Online. As-
sociation for Computational Linguistics.

Steffen C. Pauws, Albert Gatt, Emiel J. Krahmer, and
Ehud Reiter. 2018. Making effective use of health-
care data using data-to-text technology. In Data Sci-
ence for Healthcare.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. Proceedings of the AAAI Conference on
Artificial Intelligence, 33(01):6908–6915.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Vikas Raunak, Arul Menezes, and Marcin Junczys-
Dowmunt. 2021. The curious case of hallucinations
in neural machine translation. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1172–1183,
Online. Association for Computational Linguistics.

Clément Rebuffel, Marco Roberti, Laure Soulier, Geof-
frey Scoutheeten, Rossella Cancelliere, and Patrick
Gallinari. 2021. Controlling hallucinations at word
level in data-to-text generation. Data Mining and
Knowledge Discovery, 36:318 – 354.

Clément Rebuffel, Laure Soulier, Geoffrey Scoutheeten,
and Patrick Gallinari. 2019. A hierarchical model
for data-to-text generation. Advances in Information
Retrieval, 12035:65 – 80.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Sonish Sivarajkumar, Mark Kelley, Alyssa Samolyk-
Mazzanti, Shyam Visweswaran, and Yanshan Wang.
2023. An empirical evaluation of prompting strate-
gies for large language models in zero-shot clin-
ical natural language processing. arXiv preprint
arXiv:2309.08008.

Somayajulu Sripada, Ehud Reiter, Jim Hunter, and Jin
Yu. 2002. Sumtime-meteo: Parallel corpus of natu-
rally occurring forecast texts and weather data. Com-
puting Science Department, University of Aberdeen,
Aberdeen, Scotland, Tech. Rep. AUCS/TR0201.

Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang,
and Nigel Collier. 2021. Plan-then-generate: Con-
trolled data-to-text generation via planning. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 895–909, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Barkavi Sundararajan, Somayajulu Sripada, and Ehud
Reiter. 2022. Error analysis of ToTTo table-to-text

7357

https://doi.org/10.18653/v1/2023.findings-eacl.175
https://doi.org/10.18653/v1/2023.findings-eacl.175
https://aclanthology.org/2020.inlg-1.14
https://aclanthology.org/2020.inlg-1.14
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://api.semanticscholar.org/CorpusID:257532815
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://api.semanticscholar.org/CorpusID:51966859
https://api.semanticscholar.org/CorpusID:51966859
https://doi.org/10.1609/aaai.v33i01.33016908
https://doi.org/10.1609/aaai.v33i01.33016908
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.naacl-main.92
https://doi.org/10.18653/v1/2021.naacl-main.92
https://api.semanticscholar.org/CorpusID:231802211
https://api.semanticscholar.org/CorpusID:231802211
https://api.semanticscholar.org/CorpusID:209439426
https://api.semanticscholar.org/CorpusID:209439426
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2021.findings-emnlp.76
https://doi.org/10.18653/v1/2021.findings-emnlp.76
https://doi.org/10.18653/v1/2022.gem-1.43

neural NLG models. In Proceedings of the 2nd
Workshop on Natural Language Generation, Eval-
uation, and Metrics (GEM), pages 456–470, Abu
Dhabi, United Arab Emirates (Hybrid). Association
for Computational Linguistics.

Craig Thomson and Ehud Reiter. 2020. A gold standard
methodology for evaluating accuracy in data-to-text
systems. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
158–168, Dublin, Ireland. Association for Computa-
tional Linguistics.

Craig Thomson, Ehud Reiter, and Somayajulu Sripada.
2020. SportSett:basketball - a robust and maintain-
able data-set for natural language generation. In Pro-
ceedings of the Workshop on Intelligent Information
Processing and Natural Language Generation, pages
32–40, Santiago de Compostela, Spain. Association
for Computational Lingustics.

Craig Thomson, Ehud Reiter, and Barkavi Sundararajan.
2023. Evaluating factual accuracy in complex data-
to-text. Computer Speech & Language, 80:101482.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Upadhyay and Stewart Massie. 2022. Content
type profiling of data-to-text generation datasets. In
Proceedings of the 29th International Conference
on Computational Linguistics, pages 5770–5782,
Gyeongju, Republic of Korea. International Com-
mittee on Computational Linguistics.

Emiel van Miltenburg, Miruna Clinciu, Ondřej Dušek,
Dimitra Gkatzia, Stephanie Inglis, Leo Leppänen,
Saad Mahamood, Emma Manning, Stephanie Schoch,
Craig Thomson, and Luou Wen. 2021. Underreport-
ing of errors in NLG output, and what to do about it.
In Proceedings of the 14th International Conference
on Natural Language Generation, pages 140–153,
Aberdeen, Scotland, UK. Association for Computa-
tional Linguistics.

Chaojun Wang and Rico Sennrich. 2020. On exposure
bias, hallucination and domain shift in neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3544–3552, Online. Association for
Computational Linguistics.

Fei Wang, Zhewei Xu, Pedro Szekely, and Muhao Chen.
2022. Robust (controlled) table-to-text generation
with structure-aware equivariance learning. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5037–5048, Seattle, United States. Association for
Computational Linguistics.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Fengbin Zhu, Moxin Li, Junbin Xiao, Fuli Feng, Chao
Wang, and Tat Seng Chua. 2023. Soargraph: Nu-
merical reasoning over financial table-text data via
semantic-oriented hierarchical graphs. In Compan-
ion Proceedings of the ACM Web Conference 2023,
WWW ’23 Companion, page 1236–1244, New York,
NY, USA. Association for Computing Machinery.

7358

https://doi.org/10.18653/v1/2022.gem-1.43
https://aclanthology.org/2020.inlg-1.22
https://aclanthology.org/2020.inlg-1.22
https://aclanthology.org/2020.inlg-1.22
https://aclanthology.org/2020.intellang-1.4
https://aclanthology.org/2020.intellang-1.4
https://doi.org/https://doi.org/10.1016/j.csl.2023.101482
https://doi.org/https://doi.org/10.1016/j.csl.2023.101482
https://aclanthology.org/2022.coling-1.507
https://aclanthology.org/2022.coling-1.507
https://aclanthology.org/2021.inlg-1.14
https://aclanthology.org/2021.inlg-1.14
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2022.naacl-main.371
https://doi.org/10.18653/v1/2022.naacl-main.371
https://doi.org/10.18653/v1/D17-1239
https://doi.org/10.1145/3543873.3587598
https://doi.org/10.1145/3543873.3587598
https://doi.org/10.1145/3543873.3587598

Appendices
A Model fine-tuning specifications

The first model, T5-base (T5-b), was fine-tuned
on the full ToTTo training set of 120,761 samples
on a commodity server with a GeForce RTX 2080
GPU. The training took around seven days. The
second model, T5-large (T5-l), was fine-tuned on a
subset of 50,000 ToTTo samples on a secure cloud
instance with an NVIDIA A100 GPU, complet-
ing in around 48 hours. Both models were fine-
tuned using a constant learning rate of 0.0001, with
the encoder’s maximum length set to 512 tokens
and the decoder’s maximum length set to 128 to-
kens for ToTTo’s generation task (Kale and Ras-
togi, 2020). Single-precision floating-point format
(FP32) was employed for training on their respec-
tive GPU servers. The batch size, beam size and
training steps for each model are shown in Fig. 1.

Models Batch
size

Beam
Size

Training
steps

T5-base 2 10 180,000
T5-large 4 5 9,000

Figure 1: Model Specifications

B Inter-Annotation Procedure for
Participants

B.1 Overview

The Input Data from the ToTTo dataset, includes
the Page title, Section Title and a Table with high-
lighted cells in yellow. These key parameters are
conditionally used for training the neural models
to summarize a meaningful and factual Text (as
Output) focusing on: (i). highlighted cells in the
table (ii). their corresponding header values (iii)
The main Title and (iv) The Section Title.

For each of these tabular input data, we pro-
vided outputs generated by different neural lan-
guage models to annotators. Our goal is to evaluate
whether the neural outputs remain faithful and pro-
duce factually accurate information based on the
four parameters from the tabular input. The com-
plete table, including the non-highlighted cells, is
provided to offer a clearer understanding of the
error annotation task.

B.2 Domain
The inputs provided are specific to the domain of
politics, sourced from Wikipedia tables (as part of
the open-domain ToTTo dataset). The political data
within these tables is not limited to a single demog-
raphy. Instead, it encompasses various details from
the election processes across multiple countries,
including:

• Election specifics such as Presidential, state,
by-elections, council, district, Legislative As-
sembly, and other elections unique to particu-
lar countries.

• Information about Governors, Mayors, Min-
isters, and Ambassadors (about Foreign Af-
fairs).

• Details regarding the Speaker of the Assem-
bly.

The first item related to election details is pre-
dominantly used in this error annotation task.

B.3 Error Annotation guidelines
We are only interested if the highlighted cell values
from the table were used to produce a factually
correct sentence. Please also pay attention to the
non-highlighted cells in the same row as the high-
lighted cells, as this might be required in some
inputs to generate a meaningful sentence. Other
non-highlighted values in the table are not expected
to be used for your evaluation. Please read through
the output texts and annotate cases for the error cat-
egories as mentioned below. Each error is denoted
with a superscript for better readability.

NAMEN

• When names of the Party, Leader, place (Elec-
torate), Ambassador etc., are wrong (mostly
nouns).

• Annotation includes both single tokens or mul-
tiple tokens to include the complete names.

• Example Output text: Urban AhlinN is
the Deputy Speaker of the Riksdag. Re-
marks: NAME error because the correct
deputy speaker was Tobias Billström as per
the tabular data.

• Example Output text: Kansas was won by
Mitt Romney, Paul Ryan, Barack ObamaN,
and Joe BidenN, with Romney winning

7359

59.66% of the popular vote, six electoral votes
and 38.05 percent. In this example, Barack
Obama and Joe Biden are two NAME errors
because they did not win the election.

• In general, WednesdayN instead of Tuesday
is a NAME error but MayD instead of April
is a DATE_DIMENSION error.

NUMBERU

• When the number of seats and/or the number
of votes and/or % of votes are incorrect. A
single token is marked as an error.

• When the A-party won with a majority of
5.5%. But the correct one is 4.4%. 5.5%U is
a NUMBER error.

• Output: The voter turnout was 8,90%, with
10,052 votes. Remarks: The actual turnout
was 81.90%U. Please note: the error here is
NOT with the comma used as decimal (as it
is an acceptable decimal operator for interna-
tional use); Error because the number 81.90
was incorrect.

DATE_DIMENSIOND

• When the Date and/or Month and/or Year are
wrong in the generated text, it is annotated as
one error.

• Example Output text: Cletus Avoka was the
Minister for the Interior in the Mills govern-
ment from 2009 to 2012D. Remarks: 2010 is
the right end term of the year.

• As a general note, if the Output text did not
capture Month and/or Date, but has the correct
year, then this is NOT an ERROR. It could
go to OMISSION with remarks, Omission of
Date and Month.

WORDW

• When incorrect words such as verbs, prepo-
sitions, adjectives, adverbs and conjunctions
are found in the output.

• Single token is marked as a WORD error in
most cases. Multiple tokens are annotated
when the auxiliary verb (was), an extension of
a prepositional phrase (along with) and others
are incorrect.

• Example Output text: Carly Fiorina defeated
Republican Tom Campbell with 56.4% of the
vote to DeVore’s 19.3%, along withW Al
Ramirez and Tim Kalemkarian. Remarks: Fio-
rina independently defeated all the leaders, so
‘along with’ is wrong.

• Example Output text: Ling wonW the 2016
senate district against Democrat Josh New-
man, with 49.6 percent of the vote. Remarks:
Ling lost the election as per the tabular data.

• Some of the common WORD errors found in
this data are won, defeated, lost, succeeded,
adjectives such as current governor other
prepositions (since, in and so on).

CONTEXTC

• When the model’s output presents informa-
tion that contradicts or makes unsupported as-
sumptions about the given input data. Group
of tokens/span of text are annotated as CON-
TEXT error.

• It can sometimes be tricky to check for this
type of error. Please follow the below se-
quence before marking this error.

– In case of simple misrepresentation
based on the information in the in-
put data, it would be easier to
mark the token as NAME, NUMBER,
DATE_DIMENSION or WORD error.

– In the case of a complex table structure,
the outputs are likely to mess up com-
pletely with the overall information in
the provided input data. In this case, it is
hard to mark individual errors. Please go
ahead and mark the group of tokens/ span
of text and annotate it as a CONTEXT
error.

– For example, the output is: In the
2006 election for mayor of Florence
PendletonC, Michael D. Brown received
62,415 votes while Philip Pannell re-
ceived 21,552 votes and write-in candi-
datesC received 1,363 votes. Annotation
remarks:

* for mayor of Florence PendletonC

- the name of a person is misrepre-
sented as electorate (jurisdiction) in
the output.

7360

* write-in candidatesC - this implies
there was more than one write-in can-
didate.

ADDITIONA

• When the model’s outputs have added words,
phrases, or details that either diverge from the
input’s main topic or are unsupported by the
given context.

• Single or group of tokens are annotated as
ADDITION error.

• Example Output text: 2007 Algerian legisla-
tive election was held on May 17, 2007A.
The results were as follows: 24 political par-
ties won a total of 389 seats in the National
Assembly. Remarks: The date and month are
additional information, that are not provided
in the input. This is marked as an ADDITION
error. Other details in the output are correct.

OTHERO

• When the output repeats the same input mul-
tiple times producing garbage data. In some
cases, when the table data has the political
party name in the abbreviation, it produces
garbage output. For example, when the tab-
ular data has a party name in abbreviation, it
tries to produce a strange output. Output text:
GSSSDULSVDHSSO gained 5.31% of the
vote

• When the output is incomplete for longer ta-
ble input or when the output repeats the same
input multiple times without producing a com-
plete text.

• When punctuation symbols are placed in inap-
propriate places, for example, an apostrophe
is missed for the Name of the Leader or Place.

NON-ENGLISHNE

• when the Unicode characters in non-English
names are either replaced with special char-
acters or when these Unicode characters are
omitted.

• For example, Pawe GraNE is a member of
Sejm. Remarks: Paweł Graś is the correct
name here.

C LLAMA 2 prompts

The below prompt is for the corrected tabular data
when the input table has party name, candidate and
votes.

‘Given the input table data, the task is to:
(i). Identify the party name, candidate
name, and the number of votes received
by each candidate.
(ii). Determine the winner based on
the highest number of votes. Then, put
together the gathered information from
(i) and (ii) into a single coherent sen-
tence. Input table data: <Linearized table
data>’

Below is one of the prompts used for the original
table data without mentioning any specific fields.

‘The task is to summarize the informa-
tion from the given input table data into
a single coherent sentence. Use only the
information mentioned in the input table
data. Input table data is: <Linearized
table data>’

D Steps for Correcting ToTTo Tabular
Input

In addition to the correction procedure detailed in
Sec. 5.2, which provides examples of the correc-
tions applied to each tabular input problems, we
present a supplementary pseudocode in this section.
In algorithm 1, we have a generic function that
takes tabular data and title (metadata) from ToTTo
as input parameters. This main algorithm executes
six different functions.

The first two functions, DATASIZEMANAGE-
ABLEFORLONGTABLE and IDENTIFYLEADER-
NAMEORDER provide insights on the input prob-
lems leading to factual errors in the outputs but do
not correct the tabular input. The other four func-
tions, namely CORRECTNONATOMICCELLS, UP-
DATEHEADERS, ADDRESSMISSINGVALUES, and
REPLACESYMBOLS correct the input problems as
presented in algorithm 4, algorithm 5, algorithm 6,
and algorithm 7. We provide brief descriptions for
each algorithm in the caption and comments.

E Input Problem Types for four models

Fig. 2 shows how each of the four models is per-
forming before and after data corrections for each
of the problem types. The left bars for each input

7361

Algorithm 1 Manual Correction Procedure for ToTTo Tabular Input (elaborated in Sec. 5.2). This
main function takes tabular data and title details as input parameters and returns the corrected tabular data.
In all functions, we excluded row and column indices for simplicity and readability.

function MAINCORRECTIONPROCEDURE(tabularData, title)
if not DATASIZEMANAGEABLEFORLONGTABLE(tabularData) then

return "Please simplify the tabular data with fewer records", null
end if
leaderName, recordedData← IDENTIFYLEADERNAMEORDER(tabularData, title)
correctionsMade← false
correctionsMade← CORRECTNONATOMICCELLS(tabularData) or correctionsMade
correctionsMade← UPDATEHEADERS(tabularData) or correctionsMade
correctionsMade← ADDRESSMISSINGVALUES(tabularData) or correctionsMade
correctionsMade← REPLACESYMBOLS(tabularData) or correctionsMade
if correctionsMade then

return (tabularData, "Leader Data: " + recordedData) ▷ Returns corrected input and leader
data

else
return (tabularData, "Leader Data: " + recordedData) ▷ Returns original input (if no

issues) and leader data
end if

end function

Algorithm 2 Verify the number of rows and columns in Longer Tabular Input (discussed in Sec. 5.2.4).
This function validates the maximum allowable number of rows and columns for the tabular data and
returns true or false to the main function.

function DATASIZEMANAGEABLEFORLONGTABLE(tabularData)
maxRows← 20
maxCols← 10
return (length(tabularData) ≤ maxRows) and (length(tabularData[0]) ≤ maxCols)

end function

7362

Algorithm 3 Identify Leader Name Order in Title and Table Rows (discussed in Sec. 5.2.6). This
function verifies three main scenarios for the order of leader names in the input. It returns a tuple with
title information for leader name and a list of leader names from tabular input depending on the scenario.
Description for each scenario is briefly commented.

function IDENTIFYLEADERNAMEORDER(tabularData, title)
leaderNameFromTitle← ExtractLeaderNameFromTitle(title)
leaderNamesFromRows← []
for each row in tabularData do

for each cell in current row do
if leader_name is found in cell then

Add leader_name to leaderNamesFromRows ▷ Record leader’s names from rows
end if

end for
end for

▷ Scenario 1: Leader’s name found in title
if leaderNameFromTitle is not None then

recordedData← [] ▷ To store sequential order of leader names
Add leaderNameFromTitle to recordedData
for each leader_name in leaderNamesFromRows do

Add leader_name to recordedData
end for
return (leaderNameFromTitle, recordedData)

▷ for e.g., this could return ("b", ["a", "b", "c"])
else

▷ Scenario 2: Leader’s name not found in title
if length of leaderNamesFromRows > 0 then ▷ if leader’s name is in at least one row

recordedData← "Leader name not in title"
for each leader_name in leaderNamesFromRows do

Add leader_name to recordedData
end for
return (leaderNameFromTitle, recordedData)

▷ for e.g., this could return (None, ["Leader name not in title", "a", "b", "c"])
else

▷ Scenario 3: Leader name neither in title nor in rows
return (leaderNameFromTitle, "Leader name not in table")

▷ for e.g., this could return (None, ["Leader name not in table"])
end if

end if
end function

7363

Algorithm 4 Correct Non-Atomic Cells (discussed in Sec. 5.2.1). If a non-atomic cell is found, the
CorrectCell function separates multiple atomic values into individual columns. We follow our manual
correction procedure in CellIsNonAtomic and CorrectCell. The function returns the corrected tabular
data along with a flag indicating if any corrections were made.

function CORRECTNONATOMICCELLS(tabularData)
correctionsMade← false
for all row in tabularData do

for all cell in row do
if CellIsNonAtomic(cell) then

correctedCell← CorrectCell(cell) ▷ Separate multiple values into individual columns
tabularData[cell]← correctedCell ▷ Update the corrected cell value
correctionsMade← true

end if
end for

end for
return (tabularData, correctionsMade)

end function

Algorithm 5 Update Column and Row Headers to Atomic cells (discussed in Sec. 5.2.4). For each cell,
the tabular input has header_value as true or false. When the header value is true, we manually verify the
function HeaderIsIncorrect and correct the logic in UpdateHeader(cell). The function returns the
corrected tabular data with corrections made flag.

function CORRECTHEADERS(tabularData)
correctionsMade← false
for all row in tabularData do

for all cell in row do
if cell.header_value = true then

if HeaderIsIncorrect(cell) then
correctedHeader ← UpdateHeader(cell) ▷ Update column and row headers
tabularData[cell]← correctedHeader ▷ Update the corrected header
correctionsMade← true

end if
end if

end for
end for
return (tabularData, correctionsMade)

end function

7364

Algorithm 6 Address Missing cell Values (discussed in Sec. 5.2.3). For each row, we verify the missing
cell values in RowHasMissingValues and pass the right cell values in FillCellValues through a manual
process. The function returns the corrected tabular data with corrections made flag.

function ADDRESSMISSINGVALUES(tabularData)
correctionsMade← false
for all row in tabularData do

if RowHasMissingValues(row) then
correctedRow ← FillCellValues(row) ▷ Pass missing cells in the row
tabularData[row]← correctedRow
correctionsMade← true

end if
end for
return (tabularData, correctionsMade)

end function

Algorithm 7 Replace Politics Domain-Specific Symbols and Abbreviate Party Names with
Correct Semantics/words (discussed in Sec. 5.2.5). For all cells in the table, we verify
containsDomainSpecificSymbols and containsPartyAbbreviations functions and correct the val-
ues using substituteSymbolWithEquivalent and containsPartyAbbreviations through a manual
process. The function returns the corrected tabular data with corrections made flag.

function REPLACESYMBOLS(tabularData)
correctionsMade← false
for all cell in tabularData do

if containsDomainSpecificSymbols(cell) then
correctedV alue← substituteSymbolWithEquivalent(cell) ▷ Replace symbols with words
tabularData[cell]← correctedV alue ▷ Update the corrected cell value
correctionsMade← true

else if containsPartyAbbreviations(cell) then
correctedV alue← abbreviatePartyNames(cell) ▷ Abbreviate party names
tabularData[cell]← correctedvalue ▷ Update the corrected cell value
correctionsMade← true

end if
end for
return (tabularData, correctionsMade)

end function

7365

problem type represent output scores before data
correction, while the right bars represent scores af-
ter data correction. Colour coding of output scores
helps to identify and understand errors: green in-
dicates no error, red indicates an error, and yellow
indicates an omission.

The number of samples for each model differs
because we focus on outputs only when the model
had ‘errors’ or ‘omissions’ before correction. This
approach emphasizes the actual improvement in
corrections. For example, T5-large had errors in
37 samples before correction (left bar), the after-
correction (right bar) also shows improvements for
the same 37 samples.

F Input Data Corrections and Output
Text

In this section, the input tabular data with outputs
supplements the examples elaborated in Sec. 5.2
for each of the input problems as presented from
Table 10 to Table 16.

7366

(a) Input Table with Original Cells highlighted in Yellow

Page Title: 2012 Cardiff South and Penarth by-election
Section Title: By-election result
Party % ±
Conservative 19.9 8.4
Liberal Democrat 10.8 -11.5

(b) Input Table with Corrected Cells highlighted in Yellow
Page Title: 2012 Cardiff South and Penarth by-election
Section Title: By-election result
Party % ± % difference with previous

election
Conservative 19.9 8.4
Liberal Democrat 10.8 -11.5

(c) Outputs Before and After Input Data Correction
T5-large before fix: In the 2012 Cardiff South and Penarth by-election, the Liberal Democrats wonW 11.5% of the vote.

T5-large after fix: In the 2012 Cardiff South and Penarth by-election, the Liberal Democrats lost byW 11.5%.

LLAMA 2-13B before fix: 2012 Cardiff South and Penarth by-election was wonW by the Liberal Democrats with a marginW

of -11.5%.

LLAMA 2-13B after fix: 2012 Cardiff South and Penarth by-election saw Liberal Democrat candidate lose by 11.5% of the
vote compared to the previous election.

Table 10: ToTTo specific: Swing percentage difference with previous election, as detailed in Sec. 5.2.5. Before
fix represents the output generated from input Table 10a and after fix represents the output generated after explicitly
changing the header, as shown in input Table 10b.

7367

(a) T5-base: Error Analysis of 40 samples.

Sing
le

rec
ord

lac
kin

g ato
mici

ty

M
ult

ipl
e rec

ord
s lac

kin
g ato

mici
ty

Com
ple

x tab
le

typ
e

Ins
uffi

cie
nt

inp
ut

Lon
ge

r inp
ut

ToT
To sp

ec
ific

List
of

Lea
de

r na
mes

2

4

6

8

10

Input Problem Types: before data fix (left bar)
versus after data fix (right bar)

Sa
m

pl
es

co
un

t

No error
Omissions
Errors

(b) T5-large model: Error Analysis of 37 samples.

Sing
le

rec
ord

lac
kin

g ato
mici

ty

M
ult

ipl
e rec

ord
s lac

kin
g ato

mici
ty

Com
ple

x tab
le

typ
e

Ins
uffi

cie
nt

inp
ut

Lon
ge

r inp
ut

ToT
To sp

ec
ific

List
of

Lea
de

r na
mes

2

4

6

8

10

Input Problem Types: before data fix (left bar)
versus after data fix (right bar)

Sa
m

pl
es

co
un

t

No Error
Omissions
Errors

(c) LLAMA 2-7B: Error Analysis of 38 samples.

Sing
le

rec
ord

lac
kin

g ato
mici

ty

M
ult

ipl
e rec

ord
s lac

kin
g ato

mici
ty

Com
ple

x tab
le

typ
e

Ins
uffi

cie
nt

inp
ut

Lon
ge

r inp
ut

ToT
To sp

ec
ific

List
of

Lea
de

r na
mes

2

4

6

8

10

Input Problem Types: before data fix (left bar)
versus after data fix (right bar)

Sa
m

pl
es

co
un

t

No Error
Omissions
Errors

(d) LLAMA 2-13B: Error Analysis of 35 samples.

Sing
le

rec
ord

lac
kin

g ato
mici

ty

M
ult

ipl
e rec

ord
s lac

kin
g ato

mici
ty

Com
ple

x tab
le

typ
e

Ins
uffi

cie
nt

inp
ut

Lon
ge

r inp
ut

ToT
To sp

ec
ific

List
of

Lea
de

r na
mes

2

4

6

8

10

Input Problem Types: before data fix (left bar)
versus after data fix (right bar)

Sa
m

pl
es

co
un

t

No Error
Omissions
Errors

Figure 2: Comparison of different input problem types before (original data) and after data correction across
four models. It shows the count of unique samples for three categories: (i) errors, (ii) omissions, and (iii) no errors.

7368

(a) Input Table with Original Cells highlighted in Yellow

Page Title: 1914 United States Senate elections
Section Title: Races leading to the 64th Congress

State Incumbent Results Candidates
Senator Party

South
Dakota

Coe
I.Crawford

Republican Incumbent lost renomination.
New senator elected.

Democratic gain.

Edwin S. Johnson (Democratic) 48.32%
Charles H. Burke (Republican) 44.47%

(b) Outputs with Original Input before Input Data Correction
T5-base: In South Dakota, Republican Coe I. Crawford lost renomination to Democrat Edwin S. JohnsonC.
T5-large: South Dakota: Republican incumbent Coe I. Crawford lost his bid for the seat to Democratic challenger Edwin S.
JohnsonC.
LLAMA 2-7B: 1914 United States Senate elections in South Dakota were held on November 3A, 1914. Incumbent Republican
Senator Coe I. Crawford lost renomination to Democratic candidate Edwin S. JohnsonC. Johnson defeated Charles H.
DunniganN by a margin ofW 48.32% to 47.56%U. This was a Democratic gain from the previous election.
LLAMA 2-13B: 1914 United States Senate elections were held on November 3A, 1914 to elect members of the United States
Senate in various states. The Republican Party lost one seat and the Democratic Party gained one seat.

(c) Input Table with Corrected Cells highlighted in Yellow

Page Title: 1914 United States Senate elections
Section Title: Races leading to the 64th Congress
State Incumbent

Senator
Incumbent

Party
Results Candidate

Senator
Candidate

Party
Candidate

votes %
South

Dakota
Coe

I.Crawford
Republican Incumbent lost

renomination. New
senator elected.

Democratic gain.

Edwin S.
Johnson

Democratic 48.32%

South
Dakota

Coe
I.Crawford

Republican Incumbent lost
renomination. New

senator elected.
Democratic gain.

Charles H.
Burke

Republican 44.47%

(d) Outputs After Input Data Correction
T5-base: In South Dakota, Republican Coe I. Crawford lost renomination to Democrat Edwin S. JohnsonC.
T5-large: South Dakota: Republican incumbent Coe I. Crawford lost his bid for the seat to Democratic challenger Edwin S.
JohnsonC.
LLAMA 2-7B: 1914 United States Senate elections were held on November 3,A 1914. In South Dakota, Coe I. Crawford, the
Republican incumbent Senator lost renomination to Edwin S. JohnsonC, a Democratic candidate. Charles H., the Republican
candidate also ran for the seat but he was defeated by Johnson. Therefore, it is a Democratic gain in this election.
LLAMA 2-13B: 1914 United States Senate elections were held on November 3A, 1914 to elect members of the United States
Senate in various states. Races leading to the 64th Congress included South Dakota where Coe I. Crawford (Republican) lost
renomination and Edwin S. Johnson (Democratic) was elected.

Table 11: Complex Table input problems, as detailed in Sec. 5.2.2. Difficult to fix this complex input type, yet
LLAMA 2-13B produced most of the facts right except for ADDITION error. Lost renomination ‘to Democrat
candidate’ is a CONTEXT error, because the model made unsupported assumptions about the given input. Losing
renomination is when the current senator failed to be nominated in the primary to stand for reelection.

7369

(a) Input Table with Original Cells highlighted in Yellow
Page Title: List of Japanese prime ministers by longevity
Section Title: Longevity of Japanese prime ministers
Prime Minister Total time

in Office
Date of
Death

Lifespan

Sanetomi Sanjō 60 days 28 Feb
1891

53 years,
352 days

(b) Input Table with Corrected Cells highlighted in Yellow
Page Title: List of Japanese prime ministers by longevity
Section Title: Longevity of Japanese prime ministers
Prime Minister Total time

in Office
Date of
Death

Lifespan

Sanetomi Sanjō 60 days 28 Feb
1891

53 years,
352 days

(c) Outputs Before and After Input Data Correction

T5-base and T5-large before and after fix (no improvement): Sanj SanetomiNE was the longest-livedW prime minister in
Japan at 53 years, 352 days.

LLAMA 2-7B before fix: The longest-servingW Japanese prime minister was Sanjō Sanetomi who served for 53 years and
352 days.
LLAMA 2-7B after data fix: Sanjō Sanetomi was the Japanese prime minister and served for a total of 60 days in office. He
died at age 53 years and 352 days.

LLAMA 2-13B before data fix: The longest-livedW Japanese prime minister was Sanjō Sanetomi, who served for 53 years
and 352 days.
LLAMA 2-13B after data fix: Sanjō Sanetomi was the prime minister of Japan for a total of 60 days. He lived for 53 years
and 352 days.

Table 12: ToTTo specific - WORD error made by all models before fix, as detailed in Sec. 5.2.5. After including
‘Total time in Office’, LLAMA 2 models fixed the ‘longest-lived’ word error and introduced other addition errors. We
then revised the prompt and fixed the addition errors. T5 models had no improvements after including information.

(a) Input Table with Original Cells highlighted in Yellow
Page Title: Ling Ling Chang
Section Title: 2016 Senate run
California’s 29th State Senate district election

Party Candidate % Votes
Democratic Josh Newman 50.4
Republican Ling Ling Chang 49.6

(b) Input Table with Corrected Cells highlighted in Yellow
Page Title: Ling Ling Chang
Section Title: 2016 Senate run
California’s 29th State Senate district election

Party Candidate % Votes
Democratic Josh Newman 50.4
Republican Ling Ling Chang 49.6

(c) Outputs Before and After Input Data Correction
T5-base and T5-large before fix: Chang defeatedW Democrat Josh Newman with 49.6% of the vote.

T5-base and T5-large after fix: Ling Ling Chang was defeated by Josh Newman, a Democrat, with 50.4% of the vote to
Chang’s 49.6%.

LLAMA 2-13B before fix: Ling Ling Chang wonW the 2016 Senate run with 49.6% of the vote.

LLAMA 2-13B after fix: Ling Ling Chang, who was running for the Senate seat in California, received 49.6% of votes while
Josh Newman, her opponent, received 50.4%.

Table 13: Fixing ToTTo specific input problems: List of leader names for two leaders. ‘Before’ shows WORD
errors due to missing vote percentages and party names for a leader. ‘After’ shows these errors are resolved by all
models when the missing values are provided. Key point is T5 model did not produce error even though the title
leader ‘Ling Ling Chang’ lost the election.

7370

(a) Input Table with Original Cells highlighted in Yellow

Page Title: Chuck DeVore
Section Title: As U.S. Senate Candidate
Party Candidate Votes %
Republican Carly Fiorina 1,315,429 56.4
Republican Tom Campbell 504,289 21.7
Republican Chuck DeVore 452,577 19.3
Republican Al Ramirez 42,149 1.8
Republican Tim Kalemkarian 19,598 0.8

(b) Input Table with Corrected Cells highlighted in Yellow

Page Title: Chuck DeVore
Section Title: As U.S. Senate Candidate
Party Candidate Votes %
Republican Carly Fiorina 1,315,429 56.4
Republican Tom Campbell 504,289 21.7
Republican Chuck DeVore 452,577 19.3
Republican Al Ramirez 42,149 1.8
Republican Tim Kalemkarian 19,598 0.8

(c) Outputs Before and After Input Data Correction
T5-base before fix: DeVore defeatedW Republican Tom Campbell with 56.4%U of the vote, Al Ramirez with 19.3%, and
Tim Kalemkarian with 19.3%C.
T5-base after fix: DeVore defeatedW Republican nominees Carly Fiorina (56.4%), Tom Campbell (21.7%), Al Ramirez
(1.8%) and Tim Kalemkarian (0.8%)C.

T5-large before fix: DeVore was defeated by Republican Tom Campbell (56.4%)U, Al Ramirez (19.3%), and Tim
Kalemkarian (21.7%)C.
T5-large after fix: DeVore was defeated in the U.S. Senate race by Republican nominees Carly Fiorina (56.4%), Tom
Campbell (21.7%), Al Ramirez (1.8%) and Tim Kalemkarian (0.8%).C

LLAMA 2-7B before fix: Chuck DeVore is a Republican candidate for the U.S. Senate in California. He received 19.3% of
the vote in the primary election, which was held on June 8th, 2010. The other candidates were Carly Fiorina (56.4%), Tom
Campbell (24.1%)U and Al Ramirez (10.2%)U. Tim Kalemkarian did not run for this officeC.
LLAMA 2-7B after fix: The number of votes for each leader is as follows: Carly Fiorina - 56.4% Tom Campbell - 21.7%
Chuck DeVore - 19.3% Al Ramirez - 1.8% Tim Kalemkarian - 0.8%. Carly Fiorina won the Republican primary for U.S.
Senate in California with 56.4 percent of the vote, followed by Tom Campbell at 21.7 percent and Chuck DeVore at 19.3
percent.

LLAMA 2-13B before fix: Carly Fiorina is the leading candidate for U.S. Senate with 56.4% of the vote, followed by Tom
Campbell with 20.3%U, Chuck DeVore with 19.3%, and Al Ramirez with 4.0%U.
LLAMA 2-13B after fix: The Republican Party candidate who won the most votes in the U.S. Senate election was Carly
Fiorina with 56.4% of the total votes.

Table 14: ToTTo specific input problems: List of Leader names for five leaders, as detailed in Sec. 5.2.6. All
models swapped the defeated leader names and/or % of votes, resulting in WORD, NUMBER and CONTEXT
errors. After including the party names and % of votes for all leaders, LLAMA 2 models corrected the errors.
Fine-tuned T5 models still made errors. This could be because of the pattern learned from the fine-tuned training
data of ToTTo.

7371

(a) Input Table with Original Cells highlighted in Yellow
Page Title: Joseph Haslet
Section Title: Almanac
Year Office Subject Party %

Votes
Opponent Party %

Votes
1804 Governor Joseph Haslet Republican 48% Nathaniel Mitchell Federalist 52%
1807 Governor Joseph Haslet Republican 48% George Truitt Federalist 52%

(b) Input Table with Corrected Cells highlighted in Yellow
Page Title: Joseph Haslet
Section Title: Almanac
Year Office Candidate Party %

Votes
Opponent Party %

Votes
1804 Governor Joseph Haslet Republican 48% Nathaniel Mitchell Federalist 52%
1807 Governor Joseph Haslet Republican 48% George Truitt Federalist 52%

(c) Outputs Before and After Input Data Correction

T5-base before fix: Joseph Haslet was electedW Governor in 1804, defeatingW Federalist Party candidate Nathaniel MitchellN

in the election of 1807.
T5-base after fix: Joseph Haslet was electedW Governor ofW the Republican Party in 1804 and 1807, defeatingW the Federalist
Party’s Nathaniel Mitchell and George Truitt.

T5-large before fix: Joseph Haslet was electedW Governor in 1804, defeatingW Federalist Party candidate Nathaniel Mitchell
in the election of 1807.
T5-large after fix: In 1804 and 1807, Republican Joseph Haslet defeatedW Federalist Nathaniel Mitchell and Federalist George
Truitt.

LLAMA 2-13B before fix: 1804, Joseph Haslet was electedW governor with 48% of the vote. In 1807, he was re-electedW

with 48% of the vote.
LLAMA 2-13B after fix: 1804: Joseph Haslet (Republican) wonW with 48% of the votes. 1807: George Truitt (Federalist)
won with 52% of the votes.

Table 15: ToTTo specific input problems: List of Leader names, as detailed in Sec. 5.2.6. Correction for this
input is including the party name and modifying the header ‘Subject’ to ‘Candidate’. All models generated Joseph
Haslet to be the winning candidate including the LLAMA 2 models that had specific instructions.

7372

(a) Input Table with Original Cells highlighted in Yellow

Page Title: List of members of the United States House of Representatives
in the 67th Congress by seniority
Section Title: List of Representatives by seniority
Rank Representative Party District Seniority date
Twenty-three non-consecutive terms
1 Joseph G. Cannon R IL-18 March 4, 1915
Fifteen consecutive terms
2 Frederick H. Gillett R MA-2 March 4, 1893
Fourteen non-consecutive terms
3 Henry A. Cooper R WI-1 March 4, 1921
One term
4
5
433
434
435 Adam M. Wyant PA-22 WI-1 March 4, 1921
Members joining the House, after the start of the Congress
...

(b) Outputs with Original Input before Input Data Correction

T5-large before fix: The 435th member of the United States House of Representatives in the 65th Congress was a member
who joined the House after the start of CongressC.

LLAMA2-13B before fix: List of Representatives by seniority The table below lists the 100.O

(c) Input Table with Corrected Cells highlighted in Yellow

Page Title: List of members of the United States House of Representatives in the 67th Congress
by seniority
Section Title: List of Representatives by seniority
Rank Representative Party District Seniority date Term details
1 Joseph G. Cannon R IL-18 March 4, 1915 Twenty-three non-consecutive terms
2 Frederick H. Gillett R MA-2 March 4, 1893 Fifteen consecutive terms
3 Henry A. Cooper R WI-1 March 4, 1921 Fourteen non-consecutive terms
4 One term
5 One term
433 One term
434 One term
435 Adam M. Wyant PA-22 WI-1 March 4, 1921 One term

(d) Outputs After Input Data Correction

T5-large after fix: There are 435 members of the United States House of Representatives in the 65th Congress.

LLAMA2-13B after fix: The table shows that there are 435 representatives in the 65th Congress, and they are ranked according
to their seniority.

Table 16: Longer Table input problems, as detailed in Sec. 5.2.4.
(a). Original tabular input had 435 rows with term details and other details from nested headers (irrelevant details).
(b). The fine-tuned T5-large model hallucinated the output text with the irrelevant header information (nested header issue).
LLAMA 2-13B also struggled to produce the right text and generated incomplete output. LLAMA 2-7B produced longer garbage
output.
(c). First, we fixed the nested header by creating a separate column. Then, we only passed 20 records (first 10 rank and 426 to
435 rank) along with title information. We did not pass the irrelevant term details to the corrected data.
(d). This simplified input records with relevant header details (Rank) fixed the errors in both models.

7373

