
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 719–732

June 16-21, 2024 ©2024 Association for Computational Linguistics

V Attack: Taking advantage of Text Classifiers’ horizontal vision
e
r
t

Anonymous ACL submission

Abstract

Text classification systems have continuously001
improved in performance over the years. How-002
ever, nearly all current SOTA classifiers have a003
similar shortcoming, they process text in a hor-004
izontal manner. Vertically written words will005
not be recognized by a classifier. In contrast,006
humans are easily able to recognize and read007
words written both horizontally and vertically.008
Hence, a human adversary could write problem-009
atic words vertically and the meaning would010
still be preserved to other humans. We simulate011
such an attack, VertAttack. VertAttack identifies012
which words a classifier is reliant on and then013
rewrites those words vertically. We find that014
VertAttack is able to greatly drop the accuracy015
of 4 different transformer models on 5 datasets.016
For example, on the SST2 dataset, VertAttack017
is able to drop RoBERTa’s accuracy from 94 to018
13%. Furthermore, since VertAttack does not019
replace the word, meaning is easily preserved.020
We verify this via a human study and find that021
crowdworkers are able to correctly label 77%022
perturbed texts perturbed, compared to 81% of023
the original texts. We believe VertAttack offers024
a look into how humans might circumvent clas-025
sifiers in the future and thus inspire a look into026
more robust algorithms.027

1 Introduction028

Automatic text classifiers have seen a continual in-029

crease in helping websites moderate and monitor030

products or people. Though they are helpful to re-031

duce the work load of humans, they can be subject032

to problems like bias (Chuang et al., 2021; Zhou033

et al., 2021) and are vulnerable to adversarial at-034

tacks (Lei et al., 2022; Le et al., 2022). Research035

into text adversarial attacks has been on the rise in036

recent years. The reasons range from testing clas-037

sifiers’ robustness (Wang et al., 2022) to privacy038

concerns (Xie and Hong, 2022).039

Current state-of-the-art (SOTA) attacks largely040

fall into character based attacks and word-based041

Figure 1: Examples of texts perturbed by VertAttack.
Humans can still understand the vertically written words,
while classifiers struggle to read.

attacks. Character-based attacks change individ- 042

ual characters, by flipping character, introducing 043

or removing whitespace (Gröndahl et al., 2018), or 044

replacing characters with visually similar charac- 045

ters (Eger et al., 2019). Word-based attacks re- 046

place words with similar words which are less 047

known to the target classifier (Li et al., 2020; Wang 048

et al., 2022). One weakness of current SOTA at- 049

tacks is that they constrain themselves to horizontal 050

changes. That is, the final result is still read in a 051

left-to-right (English) manner. This is a disadvan- 052

tage because the attacker restricts themselves to the 053

same domain as the classifier which is also only 054

able to read text horizontally. 055

Humans have the ability to read text in multiple 056

directions, not just horizontally. Thus, a human 057

attacker who wants to communicate a message to 058

others, while avoiding a website automatically clas- 059

sifying that text, could write the words vertically 060

and the meaning would still be preserved. We sim- 061

1
719

ulate this with VertAttack.062

VertAttack exploits the current limitation of clas-063

sifiers’ inability to read text vertically. Specifically,064

VertAttack perturbs input text by changing infor-065

mation rich words from horizontally to vertically066

written. Our research makes the following contri-067

butions:068

1. Propose an attack (VertAttack) to mimic how069

humans may subvert automatic classifiers. This070

attack exploits current classifiers’ glaring weakness071

(inability to “read” vertical text).072

2. Test VertAttack on 5 datasets, against 4 differ-073

ent classifiers. We further examine transferability074

of our attack. We find that when VertAttack has075

blackbox access to the classifier, it is able to drop076

classification accuracy from 83 - 95% down to 1077

- 36%. We further compare VertAttack with two078

other text attacks, BERT-ATTACK and Textbugger.079

We find that, on average, VertAttack is able to drop080

classifiers’ accuracy to 36.6% accuracy, which is081

lower than BERT-ATTACK (47.5%) and Textbug-082

ger (63.2%).083

3. Verify VertAttack’s ability to be understood084

by humans via qualitative analysis. We find that085

humans are able to correctly classify 77% perturbed086

texts compared to 81% of the original texts.087

4. Investigate initial defenses in terms of whites-088

pace removal and find that if VertAttack a classifier089

reverses the algorithm it is able to mitigate the at-090

tack, but simpler whitespace preprocessing is not091

as effective.092

5. Enhance VertAttack by allowing it to add093

in chaff to further disguise the text. This chaff094

greatly affects the reversal defense. Furthermore,095

we investigate how VertAttack affects classifiers096

using OCR to extract text from images.097

The success of VertAttack shows a vulnerability098

in classifiers which humans may leverage to easily099

defeat them. We share code and perturbed texts for100

future research.101

2 Threat Model102

The examined threat model follows from prior re-103

search (Formento et al., 2023; Le et al., 2022; Deng104

et al., 2022). We assume blackbox knowledge of a105

classifier. That is, VertAttack has no internal knowl-106

edge of the classifier, but has access to the proba-107

bilities and label output by the model. VertAttack108

uses this for feedback (Section 4.1).109

With prior research, there is an assumption that110

the feedback classifier is the same as the target111

classifier. However, websites rarely share the exact 112

classifier used for moderating texts. Thus, we also 113

examine the cases of where the feedback classifier 114

differs from the target classifier as a transferability 115

problem. 116

3 Attack Goals 117

Based on prior research (Lei et al., 2022; Zang 118

et al., 2020; Li et al., 2019) VertAttack has 2 goals: 119

1. Modify text in such a way to cause an automated 120

classifier to fail (misclassify). 2. Ensure modified 121

retains the original meaning to humans. Thus, the 122

attack is similar to obfuscation from classifiers. 123

Some previous text attack research have made 124

the argument that attacks should be impercepti- 125

ble to humans (Dyrmishi et al., 2023). However, 126

this is not a unanimous requirement from text at- 127

tacks, as many do not include it as a prerequisite 128

(Alzantot et al., 2018; Ebrahimi et al., 2018; Eger 129

et al., 2019; Li et al., 2021a). Furthermore, this 130

would disqualify nearly all character-level attacks 131

since humans do not naturally substitute characters 132

in their writing (beyond mispellings). Finally, as 133

stated, VertAttack simulates how humans can attack 134

automated classifiers. Thus, we focus on the two 135

aforementioned goals. 136

4 Methodology 137

Our proposed attack, VertAttack, can be divided 138

into two main steps: 1) Word Selection, 2) Word 139

Transformation. A visualization of the method can 140

be seen in Figure 2. 141

4.1 Word Selection 142

Algorithm 1 Word Selection
Input: text
Output: j ← PositionToModify
ScoreOrig ← Classifier(text)
DropMax ← 0, i← 0, j ← 0
while i ̸= len(text) do

Scorew ← Classifier(text/w)
Dropw ← ScoreOrig − Scorew
if Dropw > DropMax then

DropMax ← Dropw
j ← i

end if
i← i+ 1

end while

First the attack finds which word most helps 143

2
720

I really hate this
restaurant, it
deserves no love.

Classifier

1. Word Selection

_ really hate this
restaurant, it
deserves no love.

I really hate this
restaurant, it
deserves no _

…

2. Word Transformation

I really h this restaurant, it
 a
 t
 e
deserves no love.

Check transformed text
I really h this restaurant, it
 a
 t
 e
deserves n love.
 o

Classifier
Incorrect?

Yes:
output
final text

No:
Continue
modifying

3. Check and Repeat

Figure 2: VertAttack basic overview. A word to transform is first selected from the input text and then transformed
vertically. The classifier assists in providing feedback in the form of class probabilities. The process is repeated
until the classifier misclassifies the text.

the classifier. We employ a greedy search method144

(Algorithm 1). In previous work this has been145

referred to as word importance (Jin et al., 2020) or146

greedy selection (Hsieh et al., 2019). The method147

removes one word1 at a time and checks the change148

in classification probability from the original text.149

Each word is removed and then replaced until all150

probabilities are calculated. The word that causes151

the highest drop in probability is chosen as the152

word to be transformed.153

4.2 Word Transformation154

Algorithm 2 Word Transformation
Input: text, perturbpositions
Output: textm
#lines ← max length of words to be modified
k ← 0
while k < #lines do

i← 0
while i ̸= len(text) do

if i ∈ perturbpositions then
append text[i][k]

else
append word on first line
or pad spaces equal to word length

end if
append space
i← i+ 1

end while
Add newline char to textm
k ← k + 1

end while

Once a word is selected it is then transformed155

vertically (Algorithm 2). First, the number of lines156

needed (ie. length of word) for each selected word157

1Here a word is defined as a token separated by whitespace.

is calculated. Next, we iterate through each word 158

of the original text. If a word is a non-selected 159

word, then it is simply added to the final text. If the 160

word is a selected word, then only the character of 161

the corresponding line is chosen. For example, if 162

“happy” is selected, and the line number is 2, then 163

“a” is added to the final text. For all lines that only 164

consist of whitespace and the vertical characters, 165

the required whitespace is calculated by the length 166

of each non-selected word. 167

Finally, we add a width constraint to the algo- 168

rithm for practicality. The transformation is only 169

run on that width (number of words) at a time and 170

all text is combined at the end. For example, if 171

there are 100 words and the width constraint is 10, 172

then only 10 are modified at a time. 173

Once the transformations are applied, the classi- 174

fier is queried again to see if the transformed text 175

causes the classifier to misclassify. If so, the final 176

text is produced. If not, then the algorithm repeats, 177

however, this time the words that have been se- 178

lected already are removed as candidates during 179

the selection step. 180

5 Experimental Setup 181

To test the effectiveness of VertAttack, we evaluate 182

the attack against several transformer classifiers 183

across datasets examined in previous attack papers2 184

(Li et al., 2020; Jin et al., 2020; Ren et al., 2019; 185

Wang et al., 2022). 186

5.1 Datasets 187

We examine 4 binary task datasets and one multi- 188

class task dataset. Following prior research (Li 189

2The majority of attacks were run on 56-core 256G proces-
sors. VertAttack was limited to 1 hour for each attacked text,
after 1 hour the attack was noted as failure and no perturba-
tions were made to the text.

3
721

et al., 2020), we randomly sampled up to 1000 ex-190

amples for each dataset to attack. (QNLI contained191

872 examples so all were used):192

1. AG News - a collection of news articles di-193

vided into 4 categories (World, Sports, Business,194

Sci/Tech). Average text length is 38 words.195

2. SST-2 - Stanford Sentiment Treebank, con-196

tains movie reviews labeled for sentiments (posi-197

tive/negative) by humans. Average text length is198

20 words.199

3. CoLA - Corpus of Linguistic Acceptability,200

contains English sentences labeled grammatical201

correctness. Average text length is 8 words.202

4. QNLI - Stanford Question Answering Dataset,203

contains question/answer pairs. A classifier must204

determine whether the context sentence contains205

the answer to the question. Note that we restrict206

VertAttack to modify the context sentence only. Av-207

erage text length is 28 words.208

5. Rotten Tomatoes (RT) - contains movie re-209

views from Rotten Tomatoes. Each review is la-210

beled as positive or negative. Average text length211

is 21 words.212

5.2 Classifiers213

We examine a combination of up to 4 classifiers214

per dataset. At least 3 classifiers are examined per215

dataset to measure how well the attack transfers.216

We look at a combination of transformer models3217

(Morris et al., 2020):218

1. BERT (base-uncased) - a fine-tuned version219

of BERT (Devlin et al., 2019) on the corresponding220

dataset. For example, for AG News, the bert-base-221

uncased model was fine-tuned on the AG News222

training data.223

2. Albert - a fine-tuned version of the AL-224

BERT model (Lan et al., 2019). ALBERT has225

a smaller memory footprint than BERT, since it226

shares weights across layers.227

3. RoBERTa - a fine-tuned version of the228

RoBERTa model (Liu et al., 2019). RoBERTa has229

seen stronger classification results in recent years230

than BERT, due to choices made during pretrain-231

ing.232

4. DistilBERT - a fine-tuned version of Distil-233

BERT (Sanh et al., 2020). DistilBERT is a lighter,234

faster version of BERT which was pretrained using235

BERT as a teacher for self-supervision.236

3We leverage pretrained models via TextAttack:
https://github.com/QData/TextAttack

Classifiers
Feedback BERT Albert Rob. Disti.

A
G

Orig. 94.2 94.2 94.7 -
BERT 4.7 43.7 25.9 -
Albert 60.2 8.0 31.2 -
Rob. 86.9 79.3 20.2 -

SS
T-

2

Orig. 92.4 92.7 94 -
BERT 12.5 46.7 53.0 -
Albert 53.6 13.4 57.7 -
Rob. 50.2 51.3 13.4 -

C
oL

A

Orig. 81.2 82.9 85.7 82.5
BERT 5.5 29.9 35.4 33.1
Albert 31.6 14.8 20.3 33.7
Rob. 32.4 31.8 1.2 33.5
Disti. 31.6 31.6 45.6 15.5

Q
N

L
I Orig. 90.4 - 91.7 86

BERT 33.5 - 67.5 60.8
Rob. 62.8 - 32.4 63.1
Disti. 64.4 - 67.8 35.6

R
T

Orig. 85.4 84.8 88.6 -
BERT 6.7 48.2 46.3 -
Albert 46 14.7 45.2 -
Rob. 56.3 40.2 25.8 -

Table 1: VertAttack results on datasets, accuracy is
shown. The second column indicates which classifier
was used to give feedback to VertAttack. Orig. = orig-
inal accuracy without any attack. Rob. = RoBERTa,
Disti. = Distilbert.

5.3 Metrics 237

To calculate the effectiveness of VertAttack, we 238

examine 1 quantitative metric and 1 qualitative. 239

For quantitative, we measure accuracy: 240

Accuracy =
#correctly_classified

#total_examples
(1) 241

For qualitative, we measure human ability to un- 242

derstand the text. Specifically, we leverage crowd- 243

workers as judges for the perturbed texts. We ask 244

3 crowdworkers to label each text (for class) and 245

take the majority vote as a decision. 246

6 VertAttack Results 247

Our main VertAttack results are found in Table 1. 248

The second column indicates which classifier is 249

leveraged for feedback for VertAttack. We examine 250

attacks where the feedback and target classifier are 251

the same (diagonal rows), as well as transferability 252

of attacks (non diagonal). Note that the former is 253

the standard measurement in most attack papers. 254

We make the following observations: 255

VertAttack causes large drops to classifier accu- 256

racy. Our results demonstrate the effectiveness of 257

VertAttack across datasets and classifiers. Specif- 258

ically, when examining the cases where the feed- 259

back classifier is the same as the target classifier, 260

4
722

BERT Albert Rob. Disti.
Same 76.1 75.9 72.3 58.7
Diff. 35.7 43.3 45.4 39.06
All 48.3 53.3 53.8 44.7

Table 2: Average drops of VertAttack against the corre-
sponding classifier across all datasets. Three averages
are shown: “Same” indicates the average of the attacks
where the feedback classifier was the same as the at-
tacked. “Diff.” indicate the set of attacks where the
feedback classifier differed from the attacked.“All” is
the average for all drops against the classifier. Bold
values indicate lowest drops.

we see up to 90 point drops. In AG News, VertAt-261

tack is able to drop BERT from 94.2% to 4.7%,262

Albert from 94.2 to 8.0, and RoBERTa from 94.7263

to 20.2, which averages to 83 points. Similar drops264

from VertAttack are seen in the other datasets as265

well: SST-2 averages 80 points, CoLA averages266

74 points, QNLI averages 56 points, and Rotten267

Tomatoes averages 71 points. Overall, these results268

support VertAttack’s strength in fooling classifica-269

tion systems.270

VertAttack’s attacks transfer to other classifiers.271

Though not as strong, we find VertAttack to be suc-272

cessful even in cases of transferability. In the most273

effective case (the CoLA datasets), the transfer at-274

tacks cause an average drop of 51 points (max: 65,275

min: 40.1). These drops are detrimental to text clas-276

sifiers’ effectiveness and reliability. Slightly lesser277

drops are seen for SST-2, AG News, and Rotten278

Tomatoes which causes drops around 40 points on279

average. Finally, classifiers on the QNLI dataset280

see drops of 25 when the feedback classifier differs.281

In even the final cases, the attacks is a hinderance to282

classification methods and highlight their inability283

to process text as effectively as humans.284

QNLI models most resilient to attack. Unlike285

the other datasets, which saw at least 1 classifier286

drop below 20% classification accuracy, QNLI clas-287

sifiers dropped to only 32% in the lowest. This288

might be due to the difficulty of attacking multi-289

text inputs. We limited VertAttack to only attack290

the hypothesis and not the premise. We would most291

likely see a drop in accuracy if premise is allowed292

to be attacked as well, but we restricted to the hy-293

pothesis for a more realistic model where a user is294

proposing a hypothesis to a model’s premise.295

BERT and DistilBert show strength as most296

robust classifiers examined. To investigate re-297

silience against VertAttack, we calculate three av-298

erages for each classifier, seen in Table 2: 1. The299

VertAttack
Actual
+ -

Pr
ed

. + 41 16
- 7 36

Original
Actual
+ -

Pr
ed

. + 40 11
- 8 41

Table 3: Confusion Matrices of human study results.
Participants labeled 100 perturbed RT texts as positive
(+) or negative (-) sentiment. Each text received 3 votes,
a majority vote was taken.

classifier used by VertAttack for feedback is the 300

same as the target classifier (Same), 2. The classi- 301

fier used by VertAttack is different than the target 302

classifier (Diff.), 3. Inclusion of both 1 and 2 (All). 303

Each score corresponds to the drop in accuracy 304

against VertAttack. Thus, for resiliency, classifiers 305

would like to have a lower drop in accuracy. We 306

can see that DistilBert has the lowest drops in two 307

cases (Same, All), while BERT has the lowest for 308

the third (Diff.). However, BERT is examined in 309

all 5 datasets, while DistilBert is only examined in 310

2. Thus, no final decision can be noted on most 311

resilient between the two. 312

7 Human Study 313

To investigate humans’ understanding of VertAt- 314

tack’s texts, we employed human crowdworkers to 315

label a sampled set of texts which were perturbed 316

by VertAttack. Specifically, we randomly sampled 317

100 of the 1000 texts from the Rotten Tomatoes 318

dataset. We then asked crowdworkers to read the 319

text and decide the sentiment of the text (positive 320

or negative). For each text, we employed 3 crowd- 321

workers4, and took the majority vote of the labels. 322

It should be noted that no instructions to read the 323

texts vertically were given. More information on 324

the instructions can be found in Appendix A. 325

The confusion matrix of results is in Table 3. 326

Humans were able to identify sentiment correctly, 327

77% of the time, far greater than the 7 - 26% of the 328

automated classifiers. This confirms that unlike the 329

automated classifiers, humans are well prepared to 330

read text in non-traditional manners. 331

For comparison, we also ran the same study with 332

on the original, unperturbed 100 texts. This is also 333

in Table 3 under the “Original” subtable. Humans 334

are able to do slightly better on the unperturbed 335

texts achieving an accuracy of 81%. However, Ver- 336

tAttack’s percentage is only 4 points below (77%). 337

This highlights that human misclassifications on 338

4Amazon Mechanical Turk

5
723

VertAttack’s texts have more to do with the diffi-339

culty of some of the texts rather than due to pertur-340

bation.341

8 Comparisons with other attacks342

To further investigate how VertAttack performs343

in the adversarial text space, we compare to two344

other attacks, BERT-ATTACK (Li et al., 2020) and345

Textbugger (Li et al., 2019)5. BERT-Attack is sim-346

ilar to VertAttack as it is a word based attack. To347

select a word, BERT-ATTACK finds the impor-348

tance score of a word by masking each word (one349

at a time) and comparing to the original logits. For350

replacement, BERT-ATTACK relies on BERT to351

give suggestions via its MLM training. Textbugger352

is a character based attack which tests inserting,353

deleting, swapping, or substituting characters. We354

run both attacks on the same 1000 examples from355

the Rotten Tomatoes dataset. The results can be356

seen in Table 4.357

Overall, we find that BERT-ATTACK causes358

greater drops when the feedback classifier is the359

same as the attacked classifier, but VertAttack trans-360

fers better. Textbugger is weaker in both cases.361

Specifically, when the feedback classifier is the362

same (diagonal values), BERT-ATTACK causes363

classifiers to average 9.5% accuracy compared to364

VertAttack’s 15.7% and Textbugger’s 33.5%. How-365

ever, for transferability (non diagonal values), Ver-366

tAttack causes classifiers to average 47% accuracy,367

19 points less than BERT-ATTACK’s average of368

66.5% and 31 points less than Textbugger’s aver-369

age of 78.1. Furthermore, when taking the overall370

averages (all cells) VertAttack drops classifiers to371

36.6% accuracy while BERT-ATTACK averages372

47.5% and Textbugger averages 63.2%.373

9 Malicious Use - Offensive Language374

To confirm the main results and demonstrate how375

VertAttack may be used maliciously, we apply Ver-376

tAttack to “offensive” texts. We take a subset of377

OLID’s (Zampieri et al., 2019) test set, labeled OFF378

(offensive). This results in 260 texts. We leveraged379

pretrained classifiers from Huggingface 6, trained380

on OLID training data. We examine 3 variations381

of transformer models, BERT, Albert, and XLNet382

(Yang et al., 2019). The full results are in Table 5.383

5TextAttack was leveraged to simulate these attacks:
github.com/QData/TextAttack

6https://huggingface.co/mohsenfayyaz

Classifiers
BERT Albert RoBERTa

Original 85.4 84.8 88.6

V
er

tA
. BERT 6.7 48.2 46.3

Albert 46 14.7 45.2
RoBERTa 56.3 40.2 25.8

B
er

tA
. BERT 22.9 52.3 74.8

Albert 79 1.9 78.7
RoBERTa 66.6 47.3 3.6

Te
xt

b. BERT 46.2 52.3 74.8
Albert 85.8 16.1 91.6

RoBERTa 74.1 56.9 38.2

Table 4: VertAttack compared with BERT-Atttack and
Textbugger. The second column indicates which clas-
sifier was used to give feedback to the attacks. Bold
values indicate stronger attacks against that classifer.
Italic values indicate strongest transfer attack.

Classifiers
Feedback BERT Albert XLNet
Original 76.7 78.3 78.3
BERT 1.3 23.8 27.5
Albert 20 0 26.7
XLNet 12.9 17.1 0.8

Table 5: VertAttack results on OLID dataset, on the OFF
labeled (Offensive Language). Accuracy is shown. The
second column indicates which classifier was used to
give feedback to VertAttack.

VertAttack is able to greatly reduce the classi- 384

fication accuracy for all three models. When the 385

feedback classifier is the same as the target, the 386

accuracy drops to 1% or lower. When the classi- 387

fiers differ, the accuracy is also low, in the range 13 388

- 28%. These results demonstrate how the attack 389

can cause issues on popular social media websites 390

which leverage automated classifiers to help curb 391

offensive language. 392

10 Effect on OCR + Classifier 393

To guarantee the preservation of whitespace, we 394

can write text to an image (as done in the human 395

study). The question arises of how a classifier 396

which leverages OCR to extract text from images 397

would fare. We test this by first converting the 398

modified text into an image using the PIL library7. 399

Next, we use Tesseract OCR8 to extract the text 400

from the image and classify it. We test this on Rot- 401

ten Tomatoes. The feedback and target classifiers 402

use the text segmenter (Section 11). The results can 403

be found in Table 6. We include a simple majority 404

class baseline for comparison. 405

For OCR, we see accuracy increase in the cases 406

7https://pypi.org/project/Pillow/
8https://github.com/tesseract-ocr/tesseract

6
724

Classifiers
Feedback BERT Albert RoBERTa
Original 85.4 84.8 88.6

N
on

e BERT 6.7 48.7 50
Albert 47.7 13.6 48.7

RoBERTa 44.8 45.5 9.4

O
C

R BERT 40.5 47.3 48.2
Albert 48.4 35.7 49.2

RoBERTa 45.6 44.1 37.7
Maj. Class 53.3

Table 6: Accuracy results on RT dataset when images
containing VertAttack modified text are converted to
text (via OCR) and classified. “None” refers to the orig-
inal accuracy with no conversion to image and back
via OCR. Second column indicates which classifier was
used for attack feedback. “Maj. Class” indicates a sim-
ple baseline which always predicts the majority class.

when the target and feedback classifier are the same.407

For example, Albert classification changes from408

13.6 to 35.7. When feedback and target classi-409

fiers differ, the accuracy is similar to the original410

attacked accuracy. All accuracies are below the411

simple majority class baseline of 53.3. Thus, even412

though OCR increase accuracy, it is still detrimen-413

tal for a classifier. Furthermore, VertAttack could414

be further modified to target a classifier which in-415

cludes OCR in the pipeline.416

11 Initial Defenses417

We investigate some initial steps automated clas-418

sifiers might take to mitigate VertAttack’s effec-419

tiveness. Since VertAttack introduces whitespace,420

simple solutions might be to reduce that whites-421

pace. Thus, we look at three different approaches.422

First, we simply remove extraneous whitespace and423

limit at most 1 space between each token, denoted424

as Simple. Second, we leverage a text segmenta-425

tion library9 to remove whitespace and re-combine426

words, denoted as Segment. Finally, we assume the427

classifier has learned the algorithm for VertAttack428

and thus reverses it. That is, the classifier attempts429

to recombine vertical characters into words before430

classification. This is denoted as Reverse. The full431

algorithm can be found in the appendix (Appendix432

C).433

11.1 Simple + Segment434

For the first two approaches, we run them on the435

original attacked Rotten Tomato (RT) texts (from436

Table 1). We then modify VertAttack to have this in-437

formation during its attacks as feedback, as chang-438

9grantjenks.com/docs/wordsegment/

Classifiers
Feedback BERT Albert RoBERTa
Original 85.4 84.8 88.6

VertAttack - None

Si
m

pl
e BERT 6.7 48.7 50.0

Albert 46.0 29.7 47.6
RoBERTa 56.3 38.1 59.8

Se
g.

BERT 37.8 49.6 53.8
Albert 45.4 49.2 51.1

RoBERTa 62.3 43.8 62.8
VertAttack - Simple

Si
m

pl
e BERT 6.7 48.7 50

Albert 47.7 13.6 48.7
RoBERTa 44.8 45.5 9.4

VertAttack - Segmenter

Se
g.

BERT 10.0 44.7 53.6
Albert 49.3 4.7 53.6

RoBERTa 41.7 41.8 8.2

Table 7: VertAttack results on RT dataset with different
whitespace preprocessing present, accuracy is shown.
First column indicates which method the classifier used:
Simple - remove all extraneous spaces in input text,
Seg. - leverage word segmenter to process the input text.
Second column indicates which classifier was used to
give feedback to VertAttack. “VertAttack - X” indicates
which method VertAttack used with classifier feedback.

ing the preprocessing method during classification 439

puts the attack at a natural disadvantage since the 440

feedback is no longer as reliable. The full results 441

of these experiments are in Table 7. 442

We observe that when VertAttack includes a pre- 443

processing method for feedback that is different 444

than what the attacked classifier uses (“VertAttack - 445

None”), the attack suffers. For example, examining 446

the diagonal results, the simple preprocessing is 447

able to raise Albert’s classification accuracy from 448

14.7 to 29.7. The word segmentation approach 449

raises it even higher (to 49.2). Similar results are 450

seen across the table. The transferability results 451

(feedback classifier differs from final classifier) 452

also generally increase, but not nearly as strong. 453

This follows as VertAttack is modifying texts based 454

on a classifier that differs in preprocessing and 455

hence the attack becomes a transferability prob- 456

lem itself. 457

When VertAttack has the same method in its 458

feedback classifier, then the approaches are not 459

as fruitful (“VertAttack - Simple”, “VertAttack - 460

Segmenter”). Again with Albert (on the diagonal), 461

we actually see a decrease in classification accu- 462

racy from 14.7 to 13.6 for Simple and down to 463

4.7 for Segmentation. This indicates the impor- 464

tance of the feedback classifier as it can strongly 465

affect VertAttack’s perception of a strong attack 466

and the importance of whitepace preprocessing for 467

7
725

Classifiers
Feedback BERT Albert RoBERTa
Original 85.4 84.8 88.6

R
ev

er
se BERT 84.4 84.2 88.4

Albert 82.6 84.3 87.8
RoBERTa 86 82.6 87.3

Table 8: VertAttack results on RT dataset when the clas-
sifier reverse-engineers VertAttack, accuracy is shown.

classifiers if the attacker is not prepared.468

11.2 Reverse469

The Reverse preprocessing results can be found470

in Table 8. As can be observed, the algorithm is471

able to strongly combat VertAttack, increasing the472

accuracy from 6 - 24 to 84 - 87. However, we473

observe that it is not able to mitigate it entirely, as474

some texts are entirely written vertically and the475

algorithm is not able to distinguish when new lines476

of words begin. We next introduce an augmentation477

to VertAttack to combat the Reverse algorithm.478

12 Enhancing VertAttack with Chaff479

As demonstrated, if the classifier knows this type480

of attack is occurring, it can strongly mitigate it481

by reversing the algorithm. Thus, we enhance Ver-482

tAttack by introducing chaff. Specifically, rather483

than inserting only whitespace vertically, an alpha-484

bet character has a chance of being inserted. This485

occurs at a probability p. For example, if p = 10,486

then there is a 10% probability that rather than487

whitespace, a character is inserted in the vertical488

lines. Note that to preserve readability we do not489

allow this for whitespace next to perturbed words490

(nor original whitespace). The full algorithm can491

be found in Appendix C.492

We test chaff for p = {5, 10, 20, 30, 60}. The493

main results against the Reverse algorithm (Section494

11.2) are in Table 9. The entire results can be495

found in Appendix D, which also includes the chaff496

against no prepocessing as well.497

This enhancement hinders the ability to reverse498

the attack. Reverse is not able to identify non-499

perturbed characters. We see that accuracy drops500

from 84 to ... in the case of BERT. Similar trends501

are seen for Albert and RoBERTa as well. We see502

drop increase as p increases. This points to the503

reverse algorithm becoming less able to avoid the504

random inserted text.505

We verify that readability is maintained, follow-506

ing the same process in the main human study (Sec-507

tion 7). The results can be seen in the Appendix508

Classifiers
Feedback BERT Albert RoBERTa
Original 85.4 84.8 88.6

p = 10%

N
on

e BERT 6.0 49.1 46.3
Albert 46.3 17.0 44.4

RoBERTa 57.33 42.0 24.4

R
ev

er
se BERT 64.8 70.7 71.6

Albert 68.2 64.7 76.2
RoBERTa 73.7 71.5 67.4

p = 30%

N
on

e BERT 5.8 49.2 47.6
Albert 44.7 19.6 44.3

RoBERTa 55.5 42.3 23.7

R
ev

er
se BERT 39.8 59.3 58.2

Albert 58.1 40.1 64.5
RoBERTa 63.8 65.8 40.5

Table 9: Results on RT dataset when chaff is added.
“None” means no preprocessing is used and “Reverse” is
the classifier attempting to reverse engineer VertAttack.

(Table 11). We observe some slight drop in human 509

classification when chaff is increased, but text is 510

understood by at least 1 human in 83% of texts. 511

This enhancement further demonstrates VertAt- 512

tack as a strong representation of how humans can 513

adjust to combat automatic classifiers. 514

13 Conclusion 515

We presented a new attack which exploits current 516

classifiers’ inability to understand text written ver- 517

tically. Mimicking a human, VertAttack perturbs 518

text by rewriting words in a vertical manner which 519

humans are able to understand, but classifiers are 520

not. We find drops in classification up to 86 points. 521

Furthermore, VertAttack produces texts which 522

humans can understand. Human crowd workers 523

verified this by labeling 77% perturbed texts cor- 524

rectly, compared to 81% of non perturbed texts. 525

When compared to other attacks, VertAttack 526

causes stronger drops when transferability of at- 527

tacks is included. VertAttack drops classifiers to 528

36.6% accuracy compared to 46.5% of BERT- 529

Attack and 63.2% of Textbugger. 530

We explored initial results on how VertAttack 531

affects classifiers with OCR. We found that these 532

classifiers are more robust, but still vulnerable. 533

Finally, We investigated initial defenses against 534

VertAttack and found that the methods are able to 535

mitigate the attack as long as VertAttack does not 536

enhance with chaff. 537

VertAttack causes strong drops and maintains 538

meaning. Our hope is VertAttack may inspire future 539

research into addressing this limitation of classi- 540

fiers be robust against attacks inspired by humans. 541

8
726

14 Limitations542

Here we note some limitations with our method543

and with our experiments. These limitations should544

be kept in mind when working and expanding on545

VertAttack so that they addressed or noted:546

Websites are not guaranteed to preserve format-547

ting of text produced by VertAttack. VertAttack548

produces text in which targeted words are vertically549

perturbed. It does this by adding in multiple new-550

lines characters and padded whitespace to preserve551

readability. However, not all websites are guaran-552

teed to preserve this additional whitespace. Some553

may completely remove extra newlines which will554

cause the produced text to greatly drop in readabil-555

ity. One solution to this is leveraging a module556

to write the text into an image (as seen in the ex-557

amples (Figure 1). With an image, the formatting558

of text will be honored and readable to humans.559

Furthermore, this adds another layer to the attack560

as text would first need to be processed from the561

image for classification. However, not all websites562

allow images, and thus it is a noted limitation to be563

remedied in the future.564

Our attacks focused exclusively on transformer565

classification models. Though transformers are566

the current kings of classification, not all websites567

might have the resources to employ these types of568

models and thus investigation into simpler models569

may be useful to confirm VertAttack’s effectiveness.570

However, generally non-transformer models have571

struggled against adversarial attacks and in the past,572

and there seems to be no reason why they would573

fare any better against VertAttack.574

Greedy word selection is time consuming. The575

selection method is the least efficient part of Ver-576

tAttack. As noted, many previous attacks have577

leveraged a similar method (Section 4.1). This is578

due to lack of classifier knowledge in blackbox ap-579

proaches, thus most tokens need to be checked in580

selection. However, there do exist more efficient581

approaches. For example, some style transfer algo-582

rithms use attention mechanisms to find the most583

important words (Wu et al., 2019). Thus, VertAt-584

tack could be further improved by improving the585

selection algorithm.586

15 Ethical Considerations587

By simulating adversarial attacks, such as VertAt-588

tack, concerns can arise over ethical implications.589

For example, introducing such a method might al-590

low malicious users to more easily introduce harm-591

ful texts into websites and other spaces. This is 592

a further concern as, for research, we make code 593

and algorithms publicly available. This needs to be 594

considered when introducing and studying any ad- 595

versarial attack. However, we believe that in spite 596

of the above possible wrongful uses, VertAttack can 597

be helpful in studying both robustness and future 598

understanding tasks of text classification systems. 599

This is further emphasized as humans can naturally 600

perform this attack and there is no dataset which 601

collects these attacks done by humans. Hence, Ver- 602

tAttack provides a way to simulate and further study 603

such attacks. Through this simulation, classifiers, 604

defenses, and other related NLP systems can ben- 605

efit in a public space. Our hope is not that this 606

algorithm is ever used for malicious purposes, but 607

to improve the aforementioned systems. Thus, we 608

believe the benefits to outweigh any risks. 609

References 610

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, 611
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang. 612
2018. Generating natural language adversarial exam- 613
ples. 614

Yung-Sung Chuang, Mingye Gao, Hongyin Luo, James 615
Glass, Hung-yi Lee, Yun-Nung Chen, and Shang- 616
Wen Li. 2021. Mitigating biases in toxic language 617
detection through invariant rationalization. arXiv 618
preprint arXiv:2106.07240. 619

Chuyun Deng, Mingxuan Liu, Yue Qin, Jia Zhang, 620
Hai-Xin Duan, and Donghong Sun. 2022. ValCAT: 621
Variable-length contextualized adversarial transfor- 622
mations using encoder-decoder language model. In 623
Proceedings of the 2022 Conference of the North 624
American Chapter of the Association for Computa- 625
tional Linguistics: Human Language Technologies, 626
pages 1735–1746, Seattle, United States. Association 627
for Computational Linguistics. 628

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 629
Kristina Toutanova. 2019. BERT: Pre-training of 630
deep bidirectional transformers for language under- 631
standing. In Proceedings of the 2019 Conference of 632
the North American Chapter of the Association for 633
Computational Linguistics: Human Language Tech- 634
nologies, Volume 1 (Long and Short Papers), pages 635
4171–4186, Minneapolis, Minnesota. Association for 636
Computational Linguistics. 637

Salijona Dyrmishi, Salah Ghamizi, and Maxime Cordy. 638
2023. How do humans perceive adversarial text? 639
a reality check on the validity and naturalness of 640
word-based adversarial attacks. In Proceedings of the 641
61st Annual Meeting of the Association for Compu- 642
tational Linguistics (Volume 1: Long Papers), pages 643
8822–8836, Toronto, Canada. Association for Com- 644
putational Linguistics. 645

9
727

http://arxiv.org/abs/1804.07998
http://arxiv.org/abs/1804.07998
http://arxiv.org/abs/1804.07998
https://doi.org/10.18653/v1/2022.naacl-main.125
https://doi.org/10.18653/v1/2022.naacl-main.125
https://doi.org/10.18653/v1/2022.naacl-main.125
https://doi.org/10.18653/v1/2022.naacl-main.125
https://doi.org/10.18653/v1/2022.naacl-main.125
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2023.acl-long.491
https://doi.org/10.18653/v1/2023.acl-long.491
https://doi.org/10.18653/v1/2023.acl-long.491
https://doi.org/10.18653/v1/2023.acl-long.491
https://doi.org/10.18653/v1/2023.acl-long.491

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing646
Dou. 2018. Hotflip: White-box adversarial examples647
for text classification.648

Steffen Eger, Gözde Gül Şahin, Andreas Rücklé, Ji-Ung649
Lee, Claudia Schulz, Mohsen Mesgar, Krishnkant650
Swarnkar, Edwin Simpson, and Iryna Gurevych.651
2019. Text processing like humans do: Visually652
attacking and shielding NLP systems. In Proceed-653
ings of the 2019 Conference of the North American654
Chapter of the Association for Computational Lin-655
guistics: Human Language Technologies, Volume 1656
(Long and Short Papers), pages 1634–1647, Min-657
neapolis, Minnesota. Association for Computational658
Linguistics.659

Brian Formento, Chuan Sheng Foo, Luu Anh Tuan, and660
See Kiong Ng. 2023. Using punctuation as an ad-661
versarial attack on deep learning-based NLP systems:662
An empirical study. In Findings of the Association663
for Computational Linguistics: EACL 2023, pages664
1–34, Dubrovnik, Croatia. Association for Computa-665
tional Linguistics.666

Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro Conti,667
and N. Asokan. 2018. All you need is "love": Evad-668
ing hate speech detection. Proceedings of the 11th669
ACM Workshop on Artificial Intelligence and Secu-670
rity.671

Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei672
Wei, Wen-Lian Hsu, and Cho-Jui Hsieh. 2019. On673
the robustness of self-attentive models. In Proceed-674
ings of the 57th Annual Meeting of the Association for675
Computational Linguistics, pages 1520–1529, Flo-676
rence, Italy. Association for Computational Linguis-677
tics.678

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter679
Szolovits. 2020. Is bert really robust? a strong base-680
line for natural language attack on text classification681
and entailment. In Proceedings of the AAAI con-682
ference on artificial intelligence, volume 34, pages683
8018–8025.684

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,685
Kevin Gimpel, Piyush Sharma, and Radu Soricut.686
2019. Albert: A lite bert for self-supervised learn-687
ing of language representations. arXiv preprint688
arXiv:1909.11942.689

Thai Le, Jooyoung Lee, Kevin Yen, Yifan Hu, and Dong-690
won Lee. 2022. Perturbations in the wild: Leveraging691
human-written text perturbations for realistic adver-692
sarial attack and defense. In Findings of the Asso-693
ciation for Computational Linguistics: ACL 2022,694
pages 2953–2965, Dublin, Ireland. Association for695
Computational Linguistics.696

Yibin Lei, Yu Cao, Dianqi Li, Tianyi Zhou, Meng Fang,697
and Mykola Pechenizkiy. 2022. Phrase-level textual698
adversarial attack with label preservation. In Find-699
ings of the Association for Computational Linguis-700
tics: NAACL 2022, pages 1095–1112, Seattle, United701
States. Association for Computational Linguistics.702

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris 703
Brockett, Ming-Ting Sun, and Bill Dolan. 2021a. 704
Contextualized perturbation for textual adversarial 705
attack. In Proceedings of the 2021 Conference of 706
the North American Chapter of the Association for 707
Computational Linguistics: Human Language Tech- 708
nologies, pages 5053–5069, Online. Association for 709
Computational Linguistics. 710

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting 711
Wang. 2019. Textbugger: Generating adversarial text 712
against real-world applications. Proceedings 2019 713
Network and Distributed System Security Symposium. 714

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, 715
and Xipeng Qiu. 2020. BERT-ATTACK: Adversar- 716
ial attack against BERT using BERT. In Proceed- 717
ings of the 2020 Conference on Empirical Methods 718
in Natural Language Processing (EMNLP), pages 719
6193–6202, Online. Association for Computational 720
Linguistics. 721

Zongyi Li, Jianhan Xu, Jiehang Zeng, Linyang Li, Xiao- 722
qing Zheng, Qi Zhang, Kai-Wei Chang, and Cho-Jui 723
Hsieh. 2021b. Searching for an effective defender: 724
Benchmarking defense against adversarial word sub- 725
stitution. ArXiv, abs/2108.12777. 726

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 727
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 728
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 729
Roberta: A robustly optimized bert pretraining ap- 730
proach. arXiv preprint arXiv:1907.11692. 731

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, 732
Di Jin, and Yanjun Qi. 2020. TextAttack: A frame- 733
work for adversarial attacks, data augmentation, and 734
adversarial training in NLP. In Proceedings of the 735
2020 Conference on Empirical Methods in Natu- 736
ral Language Processing: System Demonstrations, 737
pages 119–126, Online. Association for Computa- 738
tional Linguistics. 739

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. 740
2019. Generating natural language adversarial exam- 741
ples through probability weighted word saliency. In 742
Proceedings of the 57th Annual Meeting of the Asso- 743
ciation for Computational Linguistics, pages 1085– 744
1097, Florence, Italy. Association for Computational 745
Linguistics. 746

Jonathan Rusert, Zubair Shafiq, and Padmini Srinivasan. 747
2022. On the robustness of offensive language classi- 748
fiers. In Proceedings of the 60th Annual Meeting of 749
the Association for Computational Linguistics (Vol- 750
ume 1: Long Papers), pages 7424–7438, Dublin, 751
Ireland. Association for Computational Linguistics. 752

Victor Sanh, Lysandre Debut, Julien Chaumond, and 753
Thomas Wolf. 2020. Distilbert, a distilled version of 754
bert: smaller, faster, cheaper and lighter. 755

Boxin Wang, Chejian Xu, Xiangyu Liu, Yu Cheng, and 756
Bo Li. 2022. SemAttack: Natural textual attacks via 757
different semantic spaces. In Findings of the Associ- 758
ation for Computational Linguistics: NAACL 2022, 759

10
728

http://arxiv.org/abs/1712.06751
http://arxiv.org/abs/1712.06751
http://arxiv.org/abs/1712.06751
https://doi.org/10.18653/v1/N19-1165
https://doi.org/10.18653/v1/N19-1165
https://doi.org/10.18653/v1/N19-1165
https://aclanthology.org/2023.findings-eacl.1
https://aclanthology.org/2023.findings-eacl.1
https://aclanthology.org/2023.findings-eacl.1
https://aclanthology.org/2023.findings-eacl.1
https://aclanthology.org/2023.findings-eacl.1
https://doi.org/10.18653/v1/P19-1147
https://doi.org/10.18653/v1/P19-1147
https://doi.org/10.18653/v1/P19-1147
https://doi.org/10.18653/v1/2022.findings-acl.232
https://doi.org/10.18653/v1/2022.findings-acl.232
https://doi.org/10.18653/v1/2022.findings-acl.232
https://doi.org/10.18653/v1/2022.findings-acl.232
https://doi.org/10.18653/v1/2022.findings-acl.232
https://doi.org/10.18653/v1/2022.findings-naacl.83
https://doi.org/10.18653/v1/2022.findings-naacl.83
https://doi.org/10.18653/v1/2022.findings-naacl.83
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/2022.acl-long.513
https://doi.org/10.18653/v1/2022.acl-long.513
https://doi.org/10.18653/v1/2022.acl-long.513
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/2022.findings-naacl.14
https://doi.org/10.18653/v1/2022.findings-naacl.14
https://doi.org/10.18653/v1/2022.findings-naacl.14

pages 176–205, Seattle, United States. Association760
for Computational Linguistics.761

Xing Wu, Tao Zhang, Liangjun Zang, Jizhong Han, and762
Songlin Hu. 2019. Mask and infill: Applying masked763
language model for sentiment transfer. In Proceed-764
ings of the Twenty-Eighth International Joint Con-765
ference on Artificial Intelligence, IJCAI-19, pages766
5271–5277. International Joint Conferences on Arti-767
ficial Intelligence Organization.768

Shangyu Xie and Yuan Hong. 2022. Differentially pri-769
vate instance encoding against privacy attacks. In770
Proceedings of the 2022 Conference of the North771
American Chapter of the Association for Computa-772
tional Linguistics: Human Language Technologies:773
Student Research Workshop, pages 172–180, Hybrid:774
Seattle, Washington + Online. Association for Com-775
putational Linguistics.776

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-777
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.778
Xlnet: Generalized autoregressive pretraining for lan-779
guage understanding. In Advances in neural informa-780
tion processing systems, pages 5753–5763.781

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,782
Sara Rosenthal, Noura Farra, and Ritesh Kumar.783
2019. Predicting the Type and Target of Offensive784
Posts in Social Media. In Proceedings of NAACL.785

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu,786
Meng Zhang, Qun Liu, and Maosong Sun. 2020.787
Word-level textual adversarial attacking as combi-788
natorial optimization. In Proceedings of the 58th An-789
nual Meeting of the Association for Computational790
Linguistics, pages 6066–6080, Online. Association791
for Computational Linguistics.792

Xuhui Zhou, Maarten Sap, Swabha Swayamdipta, Yejin793
Choi, and Noah Smith. 2021. Challenges in auto-794
mated debiasing for toxic language detection. pages795
3143–3155.796

11
729

https://doi.org/10.24963/ijcai.2019/732
https://doi.org/10.24963/ijcai.2019/732
https://doi.org/10.24963/ijcai.2019/732
https://doi.org/10.18653/v1/2022.naacl-srw.22
https://doi.org/10.18653/v1/2022.naacl-srw.22
https://doi.org/10.18653/v1/2022.naacl-srw.22
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/v1/2020.acl-main.540
https://aclanthology.org/2021.eacl-main.274
https://aclanthology.org/2021.eacl-main.274
https://aclanthology.org/2021.eacl-main.274

Figure 3: Instructions shown to Amazon Mechanical Turk crowdworkers.

12
730

A Human Study Details797

For the human study we leveraged Amazon Me-798

chanical Turk crowdworkers to annotate sentiment799

on Rotten Tomatoes text which were perturbed by800

VertAttack. The instructions provided to the partic-801

ipants can be seen in Figure 3. As can be seen, no802

instructions to read the text vertically were given.803

For each annotation of text, crowdworkers were804

paid $0.08. Each text received 3 annotations. As805

AMT does presents each text as a separate task, the806

3 annotators for 1 text were rarely the same annota-807

tors for another task, thus annotator agreement was808

not calculated.809

To present the texts, we leverage the PIL library810

in python to write the texts into simple images. An811

example of this can be seen in the example images812

(Figure 1). We chose to push the text onto images813

to avoid any website dependent presentation of the814

text (e.g. the worker viewer the text on a desktop815

versus on a phone).816

B Related Work817

Here we examine some of the other current SOTA818

attacks. We examine both word-based attacks and819

character-based attacks as VertAttack shares some820

characteristics with both.821

Word-Based Attacks: Like VertAttack, current822

black-box SOTA word-based attacks attack a classi-823

fier by receiving feedback from that classifier. This824

feedback is in the form of label probabilities (Hsieh825

et al., 2019), or the logits of the classifier (Li et al.,826

2021b). Black-box, word-based attacks follow sim-827

ilar steps to VertAttack. First, they choose tokens828

for replacement, and then they leverage a tool to829

choose a replacement. This could be a transformer830

model (Li et al., 2020), a lexicon like WordNet831

(Ren et al., 2019), or word embeddings (Hsieh et al.,832

2019). Unlike, VertAttack current word-based at-833

tacks only operate in the horizontal space. That is,834

all words chosen for replacement are substituted835

for that word in place. Their goal is to find words836

which a classifier does not know well enough to837

make a correct classification. Thus, VertAttack is838

set apart by operating in the vertical space. Fur-839

thermore, VertAttack does not replace the selected840

word, thus meaning is more easily preserved.841

Character-Based Attacks: Another common type842

of SOTA attack are character-based attacks which843

change text at the character level. These attacks844

generally aim to be more transferable than word845

attack and thus do not receive feedback from a clas-846

sifier. Instead, the changes are applied at a random 847

chance throughout the text. For example, whites- 848

pace might be removed (Gröndahl et al., 2018) 849

or added or standard, English characters might be 850

replaced with non-standard similar looking char- 851

acters (e.g “a” → “@”)(Eger et al., 2019). Both 852

cases try to cause classifiers to see words as out-of- 853

vocabulary. One downside is that character-level 854

attacks can be mitigated more easily with proper 855

preprocessing (Rusert et al., 2022). VertAttack is 856

similar, in that it focuses on the characters of a 857

word, however, VertAttack uses an internal classi- 858

fier for feedback. Furthermore, due to the posi- 859

tioning of the characters, VertAttack’s changes are 860

harder to correct with preprocessing of text. 861

C Reverse Algorithm 862

Algorithm 3 Reverse
Input: Perturbed Text
Output: Preprocessed Text

Split_Text← Text.Split(‘\n’)
DropMax ← 0, i← 0, j ← 0
Top_Line← 0
while i ≤ Split_Text.length() do

cur_line = Split_Text[i]
if length(word) ∈ cur_line > 1 then

update previous top line, add to final text
Top_Line← i

else
store characters at positions

end if
i← i+ 1

end while

The full reverse algorithm can be found in Al- 863

gorithm 3. The algorithm first splits by new line 864

characters. To combine vertically written charac- 865

ters, the algorithm appends them to the position in 866

an original text line. An original text line is deter- 867

mined by those lines which have more than single 868

characters. Note, the algorithm cannot just take 869

the top line as the only text line as the width con- 870

straint in VertAttack adds vertical lines throughout 871

the text. 872

D Chaff Full Results 873

Table 10 contains the results for all probabilities of 874

chaff. As can be observed, as p increases, the ef- 875

fectiveness of the reverse decreases. However, this 876

chaff does not add more to the original attack itself 877

13
731

0 20 40 60 80 100
Percentage Perturbed

0

20

40

60

80

100

Pe
rc

en
ta

ge
 C

or
re

ct
AG
CoLA
QNLI
RT
SST2

Figure 4: The classifiers’ ability to correctly classify text
as the amount of words perturbed increases. The classi-
fier examined is BERT, when VertAttack uses BERT for
feedback.

if the classifier is not trying to reverse engineer the878

algorithm.879

Table 11 compares human evaluations of adding880

in chaff at a rate of 30%. We see a drop in correct881

responses but at least 1 human is able to correctly882

identify the sentiment in at least 83% of the texts.883

E Analysis of Percentage of Words884

Perturbed885

For additional understanding of VertAttack, we886

seek to analyze how the number of words modified887

by VertAttack affects the classifiers. One might888

postulate that as VertAttack modifies more words889

the classifier does worse, as more and more of the890

original text is lost. However, through our analysis891

we find the opposite to be true.892

Figure 4 graphs BERT’s classification ability893

versus percentage of text perturbed across the 5894

examined datasets. Surprisingly, we see that as895

the percentage of words perturbed increases, the896

classifier is better equipped to make a correct clas-897

sification. This may partially be due to a limitation898

with VertAttack compared to some other attacks.899

Other attacks are able to bring in new words whose900

embeddings can cause additional confusion for the901

classifier, but VertAttack does not.902

Classifiers
Feedback BERT Albert RoBERTa
Original 85.4 84.8 88.6

p = 0%

N
on

e BERT 6.7 48.2 46.3
Albert 46.0 14.7 45.2

RoBERTa 56.3 40.2 25.8

R
ev

er
se BERT 84.4 84.2 88.4

Albert 82.6 84.3 87.8
RoBERTa 86 82.6 87.3

p = 5%

N
on

e BERT 6.4 48.3 46.1
Albert 46.8 15.9 44.9

RoBERTa 57.7 41.3 24.6

R
ev

er
se BERT 76.4 78.1 81.1

Albert 75.8 75.7 82.0
RoBERTa 77.9 76.3 78.6

p = 10%

N
on

e BERT 6.0 49.1 46.3
Albert 46.3 17.0 44.4

RoBERTa 57.33 42.0 24.4

R
ev

er
se BERT 64.8 70.7 71.6

Albert 68.2 64.7 76.2
RoBERTa 73.7 71.5 67.4

p = 20%
N

on
e BERT 5.9 48.4 46.6

Albert 45.3 18 45.2
RoBERTa 57.7 42.2 24.2

R
ev

er
se BERT 48.7 63.2 62.4

Albert 60.8 47.1 67.9
RoBERTa 67.1 69.7 50.2

p = 30%

N
on

e BERT 5.8 49.2 47.6
Albert 44.7 19.6 44.3

RoBERTa 55.5 42.3 23.7

R
ev

er
se BERT 39.8 59.3 58.2

Albert 58.1 40.1 64.5
RoBERTa 63.8 65.8 40.5

p = 60%

N
on

e BERT 6.2 48.5 47.4
Albert 45.2 21.0 43.7

RoBERTa 55.5 42.3 23.7

R
ev

er
se BERT 27.7 60.1 55.0

Albert 57.5 28.9 63.2
RoBERTa 59.7 64.1 35.9

Table 10: VertAttack results on RT dataset when chaff
is added in (described in Section 12). “None” means
no preprocessing is used and “Reverse” is the classifier
attempting to reverse engineer VertAttack.

of correct responses
>= 1 >= 2 =3

Original 94 81 49
VertAttack 92 77 47

Chaff p = 30 83 47 23

Table 11: Human results for all three text variations.
The values indicate the percentages of texts correctly
classified by at least X humans where X is indicated
in the column header. Original and VertAttack are the
same values from Table 3. Chaff p = 30 indicates that
chaff is added to the perturbed text at 30% rate.

14
732

