@inproceedings{khatuya-etal-2024-parameter,
title = "Parameter-Efficient Instruction Tuning of Large Language Models For Extreme Financial Numeral Labelling",
author = "Khatuya, Subhendu and
Mukherjee, Rajdeep and
Ghosh, Akash and
Hegde, Manjunath and
Dasgupta, Koustuv and
Ganguly, Niloy and
Ghosh, Saptarshi and
Goyal, Pawan",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.410/",
doi = "10.18653/v1/2024.naacl-long.410",
pages = "7391--7403",
abstract = "We study the problem of automatically annotating relevant numerals (GAAP metrics) occurring in the financial documents with their corresponding XBRL tags. Different from prior works, we investigate the feasibility of solving this extreme classification problem using a generative paradigm through instruction tuning of Large Language Models (LLMs). To this end, we leverage metric metadata informationto frame our target outputs while proposing a parameter efficient solution for the task using LoRA. We perform experiments on two recently released financial numeric labeling datasets. Our proposed model, **FLAN-FinXC**, achieves new state-of-the-art performances on both the datasets, outperforming several strong baselines. We explain the better scores of our proposed model by demonstrating its capability for zero-shot as well as the least frequently occurring tags. Also, even when we fail to predict the XBRL tags correctly, our generated output has substantial overlap with the ground-truth in majority of the cases."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khatuya-etal-2024-parameter">
<titleInfo>
<title>Parameter-Efficient Instruction Tuning of Large Language Models For Extreme Financial Numeral Labelling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Subhendu</namePart>
<namePart type="family">Khatuya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajdeep</namePart>
<namePart type="family">Mukherjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akash</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manjunath</namePart>
<namePart type="family">Hegde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koustuv</namePart>
<namePart type="family">Dasgupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Niloy</namePart>
<namePart type="family">Ganguly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saptarshi</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pawan</namePart>
<namePart type="family">Goyal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We study the problem of automatically annotating relevant numerals (GAAP metrics) occurring in the financial documents with their corresponding XBRL tags. Different from prior works, we investigate the feasibility of solving this extreme classification problem using a generative paradigm through instruction tuning of Large Language Models (LLMs). To this end, we leverage metric metadata informationto frame our target outputs while proposing a parameter efficient solution for the task using LoRA. We perform experiments on two recently released financial numeric labeling datasets. Our proposed model, **FLAN-FinXC**, achieves new state-of-the-art performances on both the datasets, outperforming several strong baselines. We explain the better scores of our proposed model by demonstrating its capability for zero-shot as well as the least frequently occurring tags. Also, even when we fail to predict the XBRL tags correctly, our generated output has substantial overlap with the ground-truth in majority of the cases.</abstract>
<identifier type="citekey">khatuya-etal-2024-parameter</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.410</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.410/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>7391</start>
<end>7403</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Parameter-Efficient Instruction Tuning of Large Language Models For Extreme Financial Numeral Labelling
%A Khatuya, Subhendu
%A Mukherjee, Rajdeep
%A Ghosh, Akash
%A Hegde, Manjunath
%A Dasgupta, Koustuv
%A Ganguly, Niloy
%A Ghosh, Saptarshi
%A Goyal, Pawan
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F khatuya-etal-2024-parameter
%X We study the problem of automatically annotating relevant numerals (GAAP metrics) occurring in the financial documents with their corresponding XBRL tags. Different from prior works, we investigate the feasibility of solving this extreme classification problem using a generative paradigm through instruction tuning of Large Language Models (LLMs). To this end, we leverage metric metadata informationto frame our target outputs while proposing a parameter efficient solution for the task using LoRA. We perform experiments on two recently released financial numeric labeling datasets. Our proposed model, **FLAN-FinXC**, achieves new state-of-the-art performances on both the datasets, outperforming several strong baselines. We explain the better scores of our proposed model by demonstrating its capability for zero-shot as well as the least frequently occurring tags. Also, even when we fail to predict the XBRL tags correctly, our generated output has substantial overlap with the ground-truth in majority of the cases.
%R 10.18653/v1/2024.naacl-long.410
%U https://aclanthology.org/2024.naacl-long.410/
%U https://doi.org/10.18653/v1/2024.naacl-long.410
%P 7391-7403
Markdown (Informal)
[Parameter-Efficient Instruction Tuning of Large Language Models For Extreme Financial Numeral Labelling](https://aclanthology.org/2024.naacl-long.410/) (Khatuya et al., NAACL 2024)
ACL
- Subhendu Khatuya, Rajdeep Mukherjee, Akash Ghosh, Manjunath Hegde, Koustuv Dasgupta, Niloy Ganguly, Saptarshi Ghosh, and Pawan Goyal. 2024. Parameter-Efficient Instruction Tuning of Large Language Models For Extreme Financial Numeral Labelling. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 7391–7403, Mexico City, Mexico. Association for Computational Linguistics.