
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 7434–7448

June 16-21, 2024 ©2024 Association for Computational Linguistics

DUQGen: Effective Unsupervised Domain Adaptation of Neural
Rankers by Diversifying Synthetic Query Generation

Ramraj Chandradevan, Kaustubh D. Dhole, Eugene Agichtein
Department of Computer Science

Emory University
Atlanta, USA-30307

{rchan31,kdhole,yagicht}@emory.edu

Abstract

State-of-the-art neural rankers pre-trained on
large task-specific training data such as MS-
MARCO, have been shown to exhibit strong
performance on various ranking tasks with-
out domain adaptation, also called zero-shot.
However, zero-shot neural ranking may be sub-
optimal, as it does not take advantage of the
target domain information. Unfortunately, ac-
quiring sufficiently large and high quality tar-
get training data to improve a modern neural
ranker can be costly and time-consuming. To
address this problem, we propose a new ap-
proach to unsupervised domain adaptation for
ranking, DUQGen, which addresses a critical
gap in prior literature, namely how to automat-
ically generate both effective and diverse syn-
thetic training data to fine tune a modern neural
ranker for a new domain. Specifically, DUQ-
Gen produces a more effective representation
of the target domain by identifying clusters of
similar documents; and generates a more di-
verse training dataset by probabilistic sampling
over the resulting document clusters. Our ex-
tensive experiments, over the standard BEIR
collection, demonstrate that DUQGen consis-
tently outperforms all zero-shot baselines and
substantially outperforms the SOTA baselines
on 16 out of 18 datasets, for an average of 4%
relative improvement across all datasets. We
complement our results with a thorough anal-
ysis for more in-depth understanding of the
proposed method’s performance and to identify
promising areas for further improvements.

1 Introduction

Large Language Models (LLMs) have enabled new
state-of-the-art performance in neural ranking (Yan
et al., 2019; Kamps et al., 2020; Hu et al., 2022;
Nogueira et al., 2020a). An effective approach
has been to train the LLMs on a large-scale gen-
eral ranking task such as MS-MARCO passage or
document ranking (Bajaj et al., 2016) or Wikipedia
retrieval (Sun and Duh, 2020), to learn task-specific

Figure 1: DUQGen: an unsupervised domain-
adaptation framework for neural ranking.

features, which are often shared across other do-
mains and datasets. The resulting rankers can then
be used, without any adaptation (or in a zero-shot
way) for a wide range of ranking tasks. For exam-
ple, the BEIR (Thakur et al., 2021) benchmark had
demonstrated SOTA or near-SOTA performance of
several zero-shot neural rankers on a diverse set of
retrieval tasks.

However, when switching to specialized do-
mains such as finance or scientific documents, zero-
shot ranking performance should benefit from addi-
tional information for the target domain. For train-
ing modern neural rankers, acquiring sufficiently
large and high-quality target training data of query-
document pairs, to improve a modern neural ranker,
can be costly and time-consuming. Hence, there
has been significant interest in various approaches
to domain adaptation for neural rankers, with vary-
ing degrees of supervision, including unsupervised
approaches using synthetically generated queries,
documents, or both query-document pairs (Sachan
et al., 2022; Bonifacio et al., 2022; Jeronymo et al.,
2023; Dai et al., 2022; Askari et al., 2023).

Unfortunately, most of the previously reported
results did not exceed the ranking performance
compared to the current SOTA zero-shot models,
as evaluated on the BEIR benchmark (Thakur et al.,
2021). In other words, to the best of our knowledge,

7434



no previously reported unsupervised ranking adap-
tation method demonstrated consistent improve-
ments over large neural SOTA zero-shot rankers.

In this work, we investigate whether it possi-
ble to improve the ranking performance of a pre-
trained SOTA neural ranker for a given target do-
main, through unsupervised domain adaptation
(UDA). To address this question, we first identify a
critical requirement for the synthetic training data
to be effective for ranking adaptation: that the gen-
erated training data should be both representative of
the target domain, and sufficiently diverse to force
changes to the ranking model at the appropriate
representation level, without causing over-fitting or
catastrophic forgetting (i.e., degrading performance
on the original ranking tasks).

Specifically, we propose a new method DUQ-
Gen, which stands for Diversified Unsupervised
Query Generation. DUQGenintroduces a general
approach for ranking domain adaptation, which fo-
cuses on selecting representative and diverse set
of documents and query pairs for training a neural
ranker. DUQGen only requires access to a (part of)
target document collection to be searched, and can
improve any pre-trained neural ranker. DUQGen
is illustrated in Figure 1, and introduces the follow-
ing innovations compared to previous unsupervised
ranking adaptation approaches: (1) representing
the target document collection as document clus-
ters; (2) diversifying the synthetic query generation
by probabilistic sampling over the resulting docu-
ment clusters; and (3) prompting a large LLM for
query generation with in-context examples to gen-
erate queries from the selected documents. As we
show experimentally, these innovations are respon-
sible for consistent improvements over the previous
SOTA baselines for ranking adaptation on almost
all BEIR benchmarks, as well as consistent im-
provements over zero-shot performance of SOTA
neural rankers. In summary, our contributions in-
clude:

1. DUQGen, a general and effective unsuper-
vised approach for domain adaption of neu-
ral rankers via synthetic query generation for
training.

2. A novel and general method for creating rep-
resentative and diverse synthetic query data
for a given collection via clustering and prob-
abilistic sampling.

3. Comprehensive experiments demonstrating

that DUQGen consistently outperforms all
SOTA baselines on 16 out of 18 BEIR datasets,
and thorough analysis of the components
of DUQGen responsible for the improve-
ments. We release all our code and models
publicly1.

Next, we describe prior work on domain adapta-
tion of neural rankers in more detail, to place our
contributions in context.

2 Related Work

In this section, we discuss the prior works that help
to establish the problem and navigate the solution.

2.1 Neural Rankers

Recently, transformer-based pre-trained language
models have demonstrated impressive effectiveness
in neural rankers (Lin et al., 2021b). A neural
ranker returns an order list of documents given a
query, where a relevancy score between query and
document dense embedding representations is used
for sorting. Extensive studies have been conducted
on both dense retrievers and re-rankers (Mitra and
Craswell, 2018). In comparison to encoder-based
rankers (MonoBERT and DuoBERT) (Nogueira
et al., 2019), encoder-decoder (Nogueira et al.,
2020b) and decoder-based (Ma et al., 2023) rankers
exhibit notably superior performance with a larger
margin. While ColBERT (Khattab and Zaharia,
2020), Contriever (Izacard et al., 2021), and
GTR (Ni et al., 2022) perform competitively as
dense retrievers, MonoT5-3B (Nogueira et al.,
2020b) is widely adapted for re-ranking purposes.

2.2 Unsupervised Domain Adaptation for
Neural Rankers

Despite the remarkable ranking performances
demonstrated by recent pre-trained language mod-
els in zero-shot settings, they often encounter catas-
trophic failures in real-world deployment scenar-
ios. The main factor contributing to these fail-
ures is Domain-Shift (Zhu and Hauff, 2022) or Do-
main Divergence (Ramesh Kashyap et al., 2021).
Domain-Shift has been a subject of exploration
for decades, including recent investigations in do-
main adaptation (Lupart et al., 2023). Tradition-
ally, it is assumed that the source and target do-
mains share samples drawn from the same dis-
tribution. Previous studies have addressed this

1https://github.com/emory-irlab/DUQGen

7435

https://github.com/emory-irlab/DUQGen 


issue by quantifying domain divergence through
various measures, such as geometric measures,
information-theoretic measures, and higher-order
measures (Ramesh Kashyap et al., 2021). Ulti-
mately, these measures contribute to the develop-
ment of novel solutions for domain adaptation in
neural rankers.

Solutions addressing domain divergence typi-
cally fall into two categories: (1) representation
learning; and (2) data selection. Representation
learning approaches primarily address UDA, with
a focus on learning domain-invariant representa-
tions (Bousmalis et al., 2016; Cohen et al., 2018)
or pre-training a zero-shot ranker. On the other
hand, data selection assumes that not all samples
contribute equally to domain representation (Ax-
elrod et al., 2011), highlighting the importance of
identifying effective target domain samples. Im-
proper selection of target data during fine-tuning
has the potential to undermine the impact of source
pre-training. Our research centers on the issue of
improper representation of the target domain lead-
ing to diminished performances in neural rankers.
Therefore, DUQGen aims to identify representa-
tive and diverse target samples that can be effective
during the fine-tuning process.

2.3 Synthetic IR Data Generation
The increasing power of Large Language mod-
els have prompted numerous studies to focus on
utilizing LLMs for the creation of high-quality
training data. Several previous works have ex-
plored unsupervised synthetic data generation for
fine-tuning ranking models, including GPL (Wang
et al., 2022), InPars (Bonifacio et al., 2022), InPars-
v2 (Jeronymo et al., 2023), DocGen-RL (Askari
et al., 2023), GenQ (Thakur et al., 2021), and
Promptagator (Dai et al., 2022). These frameworks
use random document sampling or random seed
queries to start their pipelines, which leaves room
for improvement.

Each of the previously mentioned works uti-
lizes distinct strategies employed alongside their
data synthesis processes. GPL(Wang et al., 2022),
for instance, combines a T5-based (Raffel et al.,
2020) query generator with a pseudo-labeling cross-
encoder to enhance robust learning. InPars and
InPars-v2 methods utilize GPT-3 and GPT-J query
generators along with different filtering strate-
gies to eliminate low-quality synthetic queries.
DocGen-RL introduces an RL-driven guided ap-
proach combined with document synthesis using

BLOOM (Scao et al., 2022). GenQ, on the other
hand, fine-tunes TAS-B (Hofstätter et al., 2021)
with queries generated from an MS-MARCO fine-
tuned T5-base generator. Promptagator employs
a pipeline similar to InPars, but with improved
components, such as a random million document
samples, a 137B FLAN query generator, and a
strong consistency filter to prune 8 million syn-
thetic queries through a relatively complicated and
expensive process. Notably, none of the methods
mentioned above take into consideration the signif-
icance of identifying domain-representative docu-
ments or diversifying the resulting queries. Con-
sequently, the fine-tuned performances appears to
fall short of zero-shot performances in many cases.

The quality of the generated training queries sig-
nificantly affects the end retrieval performances.
Despite the utilization of strong query generators
(BLOOM and GPT-3), the domain query represen-
tation can still be improved. For instance, InPars
employed a prompt containing in-context examples
from MS-MARCO training data, yet it still main-
tains a domain representation gap during in-context
generation. Furthermore, their query generation
did not address the need for diversity among the
generated training samples. Additionally, they in-
corporated a complex filtering step to prune the
generated queries, which we show can be avoided.
These methods fine-tuned rankers using large-scale
synthetic data, ranging from 100k to 1M exam-
ples. In contrast, we argue that judicious selection
of training samples can obviate the necessity for
such large-scale generation, reducing the required
amount of synthetic training data by a factor of
x1000.

3 Methodology

DUQGen, shown in Figure 1, consists of four
components – domain document selection, domain
query generation, negative pairs mining, and fine-
tuning. We now cover each component in detail.

3.1 Domain Document Selection

We propose to represent a target domain with clus-
ters and each clusters with its sampled documents.
Therefore, in this section we describe them in
three stages, namely collection document cluster-
ing, probabilistic document sampling, and diversi-
fied document selection.

7436



3.1.1 Collection Document Clustering
Representing a large-scale target collection of doc-
uments with limited training data is challenging.
Therefore, we propose to divide the collection into
portions, and then sample documents within each
portion. We use a clustering approach for the col-
lection representation. Moreover, we can achieve
diverse topical documents to represent the domain.
We start with the full collection of documents and
apply a preprocessing step, where we discard short
span documents, filtering out noisy documents.
Then we use a SOTA text encoder, viz. Contriever
(Izacard et al., 2021), to encode each of the docu-
ments. Using the document embeddings vDi , we
apply clustering (e.g., K-Means) technique, where
K is a hyper-parameter to tune.

3.1.2 Probabilistic Document Sampling
Representing each cluster within large data col-
lections is challenging since the resultant clusters
can often be of imbalanced sizes. Let’s take kth

cluster size as ck and collection size as C, where
(1 ≤ ck ≤ C). We ideally want to sample
more number of documents from larger size clus-
ters in proportion to the cluster size. If clusterk
and Di represent kth cluster and its ith document,
the probability of selecting Di from clusterk is
Pr(Di|clusterk) ∝ ck∀Di ∈ clusterk.

We intend to sample N number of synthetic
training examples from K number of clusters,
where N ≥ K. Therefore, we design a stratified
expression to determine the document sample size
Nk for kth cluster, given by

N0
k = 1 +

⌊ck
C
(N −K)

⌋

P = N −
K∑

k=1

N0
k

Nk =

{
N0

k + 1 if k ∈ argsorttop−P (ck)

N0
k if k ̸∈ argsorttop−P (ck)

where N0
k and P are intermediate sample size

and integer number. ⌊∗⌋ operation finds the floor
integer value.

Now that we determined the sample size for each
clusters, we define our sampling approach. Let’s
take di as the similarity (e.g. cosine similarity)
between document Di and its corresponding cluster
centroid. We define an exponential value edi as
the representative of how close Di is to its cluster

centroid. Therefore, Pr(Di|clusterk) becomes
the normalized softmax given by:

Pr(Di|clusterk) =
edi/T∑ck
j=1 e

dj/T
(1)

di = cosine(vDi ,
1

ck

ck∑

j=1

vDj ) (2)

where T is the softmax temperature and vDi is the
ith document embedding. Intuitively, a document
likelihood to be selected to generate an associated
query is proportional to the document similarity to
its cluster centroid.

3.1.3 Diversified Document Selection
Now we sample Nk number of documents from
each cluster clusterk and pool them to obtain the
required training size documents N . Different sam-
ple sets can be drawn from the aforementioned
sampling approach with different choices of ran-
dom seed values. Therefore, to improve selection
robustness in the sampling process, we apply a
diversity measure, namely Maximal Marginal Rele-
vance (MMR) (Carbonell and Goldstein, 1998). We
first iterate the sampling process m times (m = 5)
to obtain different sample sets. Then we apply
MMR on the pooled documents from m sets to
select top-Nk documents for clusterk as shown:

argmax
Di∈R\S

[
λSim1(Di, Dk)

−(1− λ) max
Dj∈S

Sim2(Di, Dj)
] (3)

where Dk is the document closest to the cluster
centroid, λ is a trade-off weight (to be tuned) be-
tween similarity to cluster centroid and diversity,
R is the pooled documents, S is a subset of doc-
uments already selected from R, and Sim1 and
Sim2 that can be same or different, but we used
the cosine similarity for both instances.

3.2 Synthetic Query Generation
Query generation is an essential component in an
unsupervised data generation pipeline for ranking
models. Queries represent a target domain w.r.t.
the user’s information need and the domain-task by
taking different types, such as questions, headlines,
keywords, or claims. Therefore, we use a LLM
to generate a synthetic in-domain query for each
sampled document. We few-shot prompt the LLM
to generate such training queries similar to the ex-
isting work of Bonifacio et al. (2022). However,

7437



Figure 2: Prompt template with in-context examples for
synthetic query generation for the SCIDOCS dataset.

our contribution lies in showing that the in-domain
few-shot examples (query-document pairs) help to
achieve high-quality of queries compared to out-of-
domain generic MS-MARCO examples. On each
domain, we create a handful (e.g., 3) human gener-
ated queries for the few-shot example documents
with minimal human effort, and an example prompt
is shown in Figure 2.

3.3 Negative Pairs Mining

After obtaining the domain specific documents
and queries, we should generate both positive and
negative query-document pairs. First, the posi-
tive query-document pairs can be easily generated
by mapping the synthetic queries with their cor-
responding original (seed) documents. Second,
the negative query-document pairs can be gen-
erated from hard negative mining, described in
the standard practices (Izacard et al., 2021; Xiong
et al., 2020; Karpukhin et al., 2020). We parse
the synthetic queries to any first-stage retrievers,
such as BM25 (Robertson and Zaragoza, 2009),
ColBERT (Khattab and Zaharia, 2020), or Con-
triever (Izacard et al., 2021), to get top-x docu-
ments. Then we pick the bottom-numneg docu-
ments from the top-x to map against the synthetic
queries, where 1:numneg is the positive:negative
document pair ratio.

3.4 Fine-tuning with our Synthetic Data

Our domain adaptation framework can be applied
on any ranking models with any weights initializa-

tion. To establish a strong competitor, we leverage
the task pre-trained model (on MS-MARCO), and
sequentially fully fine-tune with our own gener-
ated synthetic data. We also adapt the same hyper-
parameter settings used in the MS-MARCO pre-
training stage for fair deliverable.

4 Experiments

In this section, we provide details of our experimen-
tal setup to demonstrate the effectiveness of DUQ-
Gen.

4.1 Datasets and Metrics

We employed all 18 datasets from BEIR collec-
tion, ranging on diverse retrieval tasks, to assess
the effectiveness of our domain adaptation frame-
work on standard out-of-distribution datasets. Uti-
lizing the multi-field index from Pyserini (Lin et al.,
2021a) for all datasets, we retrieved the top-100
and top-200 documents from lexical and dense first-
stage retrievers respectively. Subsequently, we re-
stricted re-ranking to top-100 BM25 documents
and top-200 dense retriever documents. Since we
evaluate our approach on both first-stage retrieval
and re-ranking, we measured both nDCG@10 and
R@100.

4.2 Ranking Models

We fine-tuned ColBERT2 (Khattab and Zaharia,
2020) and MonoT5-3B3 (Nogueira et al., 2020b),
namely DUQGen-retriever and DUQGen-
reranker, to show the effectiveness in both
dense retrieval and re-ranking. During evaluation,
we tested two multi-stage ranking pipelines:
(1) DUQGen-reranker: a fine-tuned MonoT5-3B
re-ranking BM25 top-100 and (2) DUQGen-
retriever + DUQGen-reranker: a fine-tuned
MonoT5-3B re-ranking a fine-tuned ColBERT
top-200 documents.

4.3 Baselines

We chose strong competitive rankers as baselines to
highlight the effectiveness of our proposed domain
adapted ranker.

BM25: Traditional lexical sparse retrieval. We
replicated the BM25 scores from scratch.

Zero-shot (ZS) Models: A fine-tuned ranker on
MS-MARCO dataset, includes MonoT5-3B and
ColBERT.

2https://github.com/stanford-futuredata/ColBERT
3castorini/monot5-3b-msmarco-10k

7438



InPars (Bonifacio et al., 2022): An unsuper-
vised training data generation framework for rank-
ing. Synthetic queries are generated from randomly
selected documents using few-shot prompting GPT-
3 Curie model. Language model likelihood is used
as a filtering step to pick top-10k high-quality syn-
thetic queries before fine-tuning any ranker. Based
on the reasons provided by Askari et al. (2023), we
do not compare against InPars-v2.

DocGen-RL (Askari et al., 2023): An RL-driven
framework to generate documents from queries.
Also an iterative approach, based on expand, high-
light, and generate stages, generates documents
from queries to prepare training data.

Promptagator++ (Dai et al., 2022): As the
SOTA methods closest to our work, we evaluate
against Promptagator++. This methods operates by
randomly selecting 1 million documents from the
target collection. It utilizes 8-shot prompting with
a 137 billion-parameter FLAN model (Wei et al.,
2022) to create 8 queries per document. Follow-
ing consistency filtering, 1 million queries are se-
lected to train a GTR-Base dual-encoder and cross-
encoder (Ni et al., 2022).

We directly utilized the scores reported by au-
thors for DocGen-RL and Promptagator++. For
the remaining baselines, we employed their corre-
sponding HuggingFace (Wolf et al., 2020) models
to re-run the inference.

4.4 Tools and Implementation
Various tools were employed for distinct stages
in our pipeline, utilizing Contriever (Izacard et al.,
2021) for text encoding, Faiss (Johnson et al., 2019)
for k-Means clustering, and Llama2-7B-Chat (Tou-
vron et al., 2023) for query generation, Pyserini for
BM25 baseline and hard negative mining, and Py-
Torch for standard fine-tuning. Throughout our ex-
periments, documents were represented using their
title along with the text. Initially, collection doc-
uments were filtered for noise by excluding those
with a character length less than 300 (can vary
across datasets). Greedy decoding with a tempera-
ture of 0.0 was employed for the LLM to generate
queries.

4.5 Hyper-Parameter Tuning
In our methodology section, we introduced several
hyper-parameters, all of which underwent tuning
to determine the optimal values. These include the
temperature T = 1 (Equation 1), MMR weight
λ = 1.0, number of clusters K = 1000, and

training sample size N = 1000 for ColBERT and
N = 1000 and 5000 for MonoT5-3B fine-tuning.
We tuned the varying number of in-context exam-
ples and found the optimal performance with 3-
shot prompting (also used in InPars). Addition-
ally, through tuning different prompt templates,
we discovered that a simple InPars-style template,
displayed in Figure 2, consistently yields superior
retrieval performance across datasets. For the pro-
cess of hard negative mining, we set the first stage
retriever hits x = 100 and the number of negatives
per positive pair numneg = 4.

We fine-tuned MonoT5-3B using a batch size
of 8, gradient accumulation steps of 16, learning
rate of 2e−5, AdamW optimizer with weight decay
of 0.01 and warm-up ratio of 0.1, and epochs of
1. To fine-tune ColBERT, we adapted its official
pre-training hyper-parameters, including a batch
size of 32, a learning rate of 3e−6, and a maximum
sequence length of 300.

The scale and quality of synthetic data depend on
the training examples, N , and number of clusters,
K, which we optimize in the subsequent subsec-
tions.

4.5.1 Clustering Optimization
To represent target domain, we employed K-Means
algorithm, where K denotes the number of clus-
ters. We identified the optimal K for each dataset
through an unsupervised method, known as the El-
bow method (Thorndike, 1953). The elbow method
computes the Sum of Squared Error (SSE) for each
value of K, where SSE is calculated as the sum
of cosine distances between every collection doc-
ument and its closest cluster centroid. The opti-
mal K consistently aligns at a fixed point of 1000
across all evaluation datasets, irrespective of varia-
tions in corpus size, domain properties, or domain-
divergence from MS-MARCO.

4.5.2 Optimal Training Sample Size Discovery
By fixing the optimum number of clusters K at
1000, we determined an optimal training sample
size N , that proved effective across all datasets.
To tune for N , we utilized FiQA and NQ as dev
datasets, referencing prior work (InPars-v2) which
demonstrated improved performance on FiQA and
a declined performance on NQ compared to the
zero-shot scores. Table 2 displays nDCG@10
values for various instances of N , with K fixed
at 1000. Our analysis led us to select optimum
N = 1000 for ColBERT and both N = 1000

7439



Datasets (→) covid nfc bio nq hotpot fiqa signal news robust arg touché stack quora dbp scidocs fever climate scifact avg

Models (↓) Retriever

BM25 .656 .325 .465 .329 .603 .236 .330 .398 .407 .315 .367 .299 .789 .313 .158 .753 .213 .665 .423
Zero-shot ColBERT .706 .305 .480 .523 .590 .318 .270 .390 .392 .404 .209 .350 .853 .392 .144 .771 .184 .672 .442
DUQGen-retriever .751 .325† .497† .530† .614† .336† .271 .399 .411† .425† .234† .363† .857† .401 .155† .805† .196† .688† .459

BM25 Top-100 + Re-ranker

Zero-shot MonoT5-3B .830 .373 .559 .579 .718 .462 .321 .473 .566 .316 .311 .421 .848 .408 .193 .849 .278 .760 .515
InPars .803 - - .313 - .352 - - .510 - - - - .351 - - - - -
DocGen-RL - - - .517 .663 - - - - - - - - - - .720 - - -
DUQGen-reranker(1k) .862†∗ .382† .588† .593†∗ .748†∗ .458∗ .333 .483 .591†∗ .393† .320 .439† .895† .422†∗ .200† .890†∗ .310† .757 .537
DUQGen-reranker(5k) .836†∗ .376 .590† .588†∗ .740†∗ .465∗ .300 .449 .571∗ .427† .269 .439† .894† .421†∗ .202† .891†∗ .288† .761 .528

Dense Retriever Top-200 + Re-ranker

GTR (base) retriever .539 .308 .271 .495 .535 .349 .261 .337 .437 .511 .205 .357 .881 .347 .149 .660 .241 .600 .416
Promptagator++ .762 .370 - - .736 .494 - - - .630 .381 - - .434 .201 .866 .203 .731 .528$

DUQGen-retriever .751 .325 .497 .530 .613 .336 .270 .399 .411 .425 .234 .363 .857 .403 .154 .805 .196 .688 .459
+ DUQGen-reranker(1k) .851 .402 .594 .671 .769 .511 .275 .477 .636 .511 .331 .462 .898 .484 .203 .901 .309 .758 .558
+ DUQGen-reranker(5k) .817 .398 .602 .661 .768 .517 .253 .422 .609 .575 .262 .463 .896 .482 .202 .903 .284 .762 .549

Table 1: Main results comparing nDCG@10 scores between DUQGen and baselines on BEIR datasets. The
best scores across each ranking setting are highlighted in bold. Avg score marked by $ calculated across only 11
datasets. DUQGen-reranker(1k) and (5k) represent the MonoT5-3B fine-tuned with 1k and 5k training examples
correspondingly. Statistical significance reported using two-tailed paired t-test with Bonferroni correction (p < 0.05),
against Zero-shot counterparts (†) and best of InPars or DocGen-RL (∗). Promptagator++ was fine-tuned on GTR
base, thus we reported GTR scores for comparison.

N FiQA NQ

MonoT5-3B

(ZS) 0 .4617† .5792

1k .4581 .5934
5k .4646 .5880†

10k .4553 .5777

ColBERT

(ZS) 0 .3183 .5228

1k .3356† .5301
5k .3388 .5233†

10k .3306 .5171

Table 2: Ranking performances evaluated on nDCG@10
across the scale of training sample size N on dev
datasets. Bold and † indicate the best and second-best
scores across benchmarks for each ranker.

and 5000 for MonoT5-3B fine-tuning across the
datasets.

5 Results and Discussion

In this section, we present our main experimental
results and delve into the key observations. We
first describe our primary findings, reported using
nDCG@10 in Table 1 comparing between base-
lines and our approach within each ranking setting.
Second, we report the first-stage retrieval perfor-
mances, measured using R@100 in Table 3.

5.1 Re-ranking Results
In Table 1, it is evident that DUQGen consis-
tently surpasses the SOTA baselines in most cases,
exhibiting notable improvements in performance.
Specifically, DUQGen consistently and substan-
tially outperforms both InPars and DocGen-RL re-
rankers, showcasing average relative enhancements

of 26% and 17% respectively across the evaluation
datasets they share. When compared to Promptaga-
tor++, DUQGen demonstrates an average relative
improvement of 4% across the shared evaluation
datasets. Remarkably, DUQGen surpasses Promp-
tagator++ in performance, utilizing merely 1000
LLM calls and fine-tuning with only 1000 training
pairs, in contrast to Promptagator++’s requirement
of generating 8 million queries using a 137B LLM
and fine-tuning with 1 million training pairs. This
highlights the effectiveness of our efficient and ro-
bust approach compared to the complex, resource-
intensive, and exhaustive training methods based
on reinforcement learning.

In many instances, the performance of the SOTA
baselines degraded, compared to zero-shot counter-
parts. For instance, both InPars and DocGen-RL
consistently demonstrate performance decreases
relative to the zero-shot MonoT5-3B, with Avg.
decrements of 18% and 11% respectively across the
evaluation datasets they share (DocGen-RL also un-
derperforms compared to zero-shot MonoT5-base,
as shown in Table 6). On the other hand, DUQGen
consistently surpasses all zero-shot models across
all BEIR datasets, whether trained with 1,000 or
5,000 synthetic training examples.

Interestingly, training DUQGen-reranker with
only 1,000 synthetic examples exhibited a slight
performance improvement compared to training
with 5,000 synthetic examples on 13 out of 18
datasets, indicating the sample efficiency of our
approach. In the future, it may be feasible to au-

7440



Datasets (→)
Models (↓) co

vi
d

nf
c

bi
o

nq ho
tp

ot

fiq
a

si
gn

al

ne
w

s

ro
bu

st

ar
g

to
uc

hé

st
ac

k

qu
or

a

db
p

sc
id

oc
s

fe
ve

r

cl
im

at
e

sc
ifa

ct

av
g

BM25 .498 .250 .714 .760 .740 .540 .370 .422 .375 .942 .538 .606 .973 .398 .356 .931 .436 .908 .598
Zero-shot ColBERT .473 .255 .664 .911 .747 .598 .278 .369 .311 .885 .436 .625 .989 .458 .345 .934 .447 .878 .589

DUQGen-retriever .544† .272† .691† .915 .769† .615† .291 .380† .321† .906† .474† .645† .990 .493† .356† .948† .465† .899† .610

Table 3: Comparison of R@100 scores across baselines and DUQGen. The best scores for each dataset are
highlighted in bold. Statistical significance reported using two-tailed paired t-test with Bonferroni correction (p <
0.05), against Zero-shot counterpart (†).

LLM Prompt Size FiQA NQ

(Zero-shot) No LLM - .3702 .5404

LLAMA-2 7B Chat
ms-marco 7B .3736 .5371
in-domain 7B .3811 .5444

LLAMA-2 13B Chat

in-domain

13B .3912 .5370
BLOOM-3B 3B .3380 .5193

BLOOM-7B1 7.1B .3634 .5172
gpt-3.5-turbo 20B .3742 .5466

Table 4: nDCG@10 performances across different
LLMs for query generation (K = 1, N = 5000) with
MonoELECTRA re-ranker fine-tuned on the genera-
tions

tomatically determine the minimum training size
(N ) for each dataset or task.

5.2 First-Stage Retrieval Results

In Table 3, similar to nDCG@10 scores, R@100
also demonstrates more substantial improvements
for larger domain-shifts (7.1%4 on TREC-COVID
and 3.8%4 on Touché-2020) and limited improve-
ments for smaller domain-shifts (.4%4 on NQ). On
average, DUQGen enhances zero-shot ColBERT
by 2.1%4 on BEIR datasets.

6 Analysis

In this section, we report our analysis of DUQ-
Gen’s performance, which includes examining the
need for clustering, confirming the choice of the
query generator, and validating the quality of the
generated queries.

6.1 Effect of Clustering for Domain
Adaptation

We employ clustering to represent the target do-
main and number of training samples to force di-
versity during fine-tuning. However, we question
whether clustering genuinely contributes to the
process and, if so, how it influences the overall
performance. Additionally, we take the training

4denotes absolute precentage improvement.

sample size N , into account. In Table 5, we il-
lustrate the combined effect of both the K and N
on MonoELECTRA top-100 BM25 re-ranking per-
formances, measured in nDCG@10. MonoELEC-
TRA is used in the analysis Sections 6.1 and 6.2
in order to measure the amplified performance im-
provements in a smaller model, as described in the
previous section.

Table 5 confirms our decision to select N =
5000 for MonoELECTRA. Notably, this figure
highlights that the most substantial and consistent
improvements occur around the values of {K=1000,
N=5000} across both datasets. Performances with-
out clustering (K = 1) often fall below zero-shot in
both datasets, especially NQ exhibiting the poorest
performances.

6.2 Effect of Query Generators

We conducted an ablation study on query genera-
tion to assess how the quality of generated queries
impacts overall retrieval performance. Table 4 dis-
plays the performances of MonoELECTRA fine-
tuned with queries generated by various LLMs,
including LLAMA2-Chat (7B and 13B), BLOOM
(3B and 7B), and GPT-3.5-turbo (Brown et al.,
2020).

In comparison to the zero-shot re-ranking scores,
LLAMA-2 7B was deemed the optimal choice
for our query generator. LLAMA-2 7B with 3-
shot in-domain prompts exhibits higher improve-
ments on both dev datasets, surpassing gpt-3.5-
turbo. While LLAMA-2 13B demonstrates supe-
rior performance to 7B on FiQA, it falls below the
zero-shot performance in NQ, attributed to its large
model capacity and sensitivity to prompts (Zhao
et al., 2021). BLOOM generates short queries lack-
ing context, despite having sufficient contextual
query examples from 3-shot examples. GPT-3.5-
turbo generates high-quality queries, resulting in
improved performance over zero-shot, but tends
to be unstable with few-shot prompts, suggesting

7441



10k
.391 .391 .399 .396 .398 .389

(+2%) (+2%) (+3%) (+3%) (+3%) (+2%)

5k
.381 .390 .395 .392 .387

-
(+1%) (+2%) (+3%) (+2%) (+2%)

1k
.382 .385 .390 .384

- -
(+1%) (+2%) (+2%) (+1%)

500
.381 .381 .381

- - -
(+1%) (+1%) (+1%)

Number of
Training

Examples
(N)

100
.359 .371

- - - -
(-1%) (+0%)

1 100 500 1k 5k 10k
Number of Clusters (K)

Zero-shot MonoELECTRA score on FiQA is 0.370

10k
.532 .547 .542 .546 .540 .546

(-1%) (+1%) (+0%) (+1%) (+0%) (+1%)

5k
.544 .542 .544 .551 .543

-
(+0%) (+0%) (+0%) (+1%) (+0%)

1k
.546 .547 .550 .548

- -
(+1%) (+1%) (+1%) (+1%)

500
.537 .548 .548

- - -
(-0%) (+1%) (+1%)

Number of
Training

Examples
(N)

100
.539 .546

- - - -
(-0%) (+1%)

1 100 500 1k 5k 10k
Number of Clusters (K)

Zero-shot MonoELECTRA score on NQ is 0.540

Table 5: Fine-tuned MonoELECTRA re-ranking performances in nDCG@10 for different values of K and N on
FiQA (left) and NQ (right). (+%) and (-%) indicate integer rounded superior or inferior performance percentage
against zero-shot scores.

potential for further prompt engineering to enhance
performance on each dataset. Our second main con-
tribution involves using in-domain 3-shot prompts
to generate queries over the ms-marco prompt,
showcasing notable improvements on LLAMA-2
7B model.

6.3 Examples of DUQGen Queries

(a)

(b)

Figure 3: Example queries generated by DUQGen on
(a) Quora and (b) TREC-Covid datasets. Pr denotes the
Pr(Di|clusterk) where Di and clusterk refer to ith

document and kth cluster.

So far, we have evaluated the effectiveness
of DUQGen using quantitative measures and are
now shifting our focus to examining the actual
queries produced by our method. Figure 3 presents
ten example queries generated from the Quora
and TREC-Covid datasets, each representing dis-
tinct tasks and domains. In Figure 3, the synthetic
queries are sampled across different clusters with
different probability scores Pr(Di|clusterk). For
instance, in Figure 3a, we observe that in the Quora
duplicate question retrieval task, each cluster cor-
responds to sub-topics of the target domain rep-

resentation, such as monetary bank transfers, re-
ligion, exams in India, energy, and programming
languages. Within each cluster, diverse queries are
sampled using different probabilistic scores to aid
in learning the domain representation. Additionally,
the generated queries contain sufficient context or
entities to retrieve pertinent information from its re-
spective collection. This analysis of the generated
queries further validates the effectiveness of our
approach in generating a diverse and representative
set of high-quality queries.

7 Conclusions

We proposed a general unsupervised domain adap-
tation method DUQGen, which can be used to
fine-tune any ranking model for a given target do-
mains. DUQGen introduced significant innova-
tions over the previously reported unsupervised do-
main adaptation methods. Specifically, DUQGen
proposes representing the target domain collection
with document clustering; an effective method to
diversify the synthetically generated queries, and
an effective prompting strategy for using an LLM
to generate more effective and representative syn-
thetic training data. We experimentally demon-
strated that DUQGen is both scalable and effective,
as it uses only a few thousands of synthetic train-
ing examples, while consistently improves over the
SOTA zero-shot rankers, and significantly outper-
forms the SOTA methods for unsupervised domain
adaptation methods in most cases. We comple-
mented the strong empirical performance of DUQ-
Gen with an in-depth analysis of the components
to quantify their contributions. Together, the pre-
sented techniques and experimental results signifi-
cantly advance neural ranking adaptation, establish
a new state-of-the-art in neural ranking, and sug-
gest promising directions for future improvements.

7442



8 Limitations

Our proposed methodology involves two pivotal
steps: (1) clustering; and (2) query generation.
First, we employ Contriever as our text encoder to
produce embeddings for clustering. While we an-
ticipate that it will produce high-quality document
representation and prove to be useful in our work,
we did not assess other document embeddings. Fu-
ture work could directly address the question of
choosing the appropriate embedding for clustering.

Secondly, we employed the Faiss library to im-
plement K-Means clustering. However, as the col-
lection size scales up over the millions, clustering
becomes impractical. Consequently, Faiss resorts
to sampling the collection and then training their
algorithm. This loss of information during sam-
pling could propagate as errors in the final retrieval
scores. However, given that large collections typ-
ically contain dense clusters, the process of sam-
pling for clustering in such cases may pose less
problem.

Akin to many previous studies (Zhao et al.,
2021), we often encountered a lack of robustness
of LLMs and their sensitivity to minor changes
in the prompt affecting subsequent retrieval per-
formance. Future work could explore strategies
to mitigate this robustness through techniques like
calibration (Zhao et al., 2021) and perform corre-
sponding studies to see the impact on reranking.

9 Ethical Considerations

Retrieval systems may give rise to a variety of ethi-
cal issues, such as the potential for bias, which can
result in the preferential treatment of specific per-
spectives, a lack of transparency due to the opaque
nature of deep learning models, obscuring the rea-
sons behind the ranking of documents, and, in
extreme cases, the facilitation of echo chambers.
Therefore, it is essential to conduct thorough test-
ing of these systems both prior to and during their
deployment.

As shown by our work, the performance of down-
stream retrievers can be rightly influenced by the
LLMs employed for generating synthetic queries.
Given that LLMs can produce content that is inac-
curate or entirely fabricated, there’s a risk that they
might generate problematic queries, especially if
applied to sensitive datasets. Although this issue
may appear less critical in a scenario such as ours
where the generated content is intended solely as
training material for a following retriever, there is

still a potential for generating harmful and toxic
queries. Such queries could lead the retriever to-
wards biased outcomes. Therefore, it is impera-
tive to assess these systems to mitigate these risks
against biases of the data generator.

Acknowledgements

The authors are thankful to Harshita Sahijwani
and Sergey Volokhin, and the reviewers and meta-
reviewers for their valuable comments and sug-
gestions. This work was supported in part by the
IARPA BETTER program (2019-19051600005).
The views and conclusions contained in this work
are those of the authors and should not be in-
terpreted as necessarily representing the official
policies, either expressed or implied, or endorse-
ments of ODNI, IARPA, or the U.S. Government.
The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.

References
Arian Askari, Mohammad Aliannejadi, Chuan Meng,

Evangelos Kanoulas, and Suzan Verberne. 2023. Ex-
pand, highlight, generate: RL-driven document gen-
eration for passage reranking. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 10087–10099, Singa-
pore. Association for Computational Linguistics.

Amittai Axelrod, Xiaodong He, and Jianfeng Gao. 2011.
Domain adaptation via pseudo in-domain data se-
lection. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
pages 355–362, Edinburgh, Scotland, UK. Associa-
tion for Computational Linguistics.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
et al. 2016. Ms marco: A human generated ma-
chine reading comprehension dataset. arXiv preprint
arXiv:1611.09268.

Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and
Rodrigo Nogueira. 2022. Inpars: Unsupervised
dataset generation for information retrieval. In Pro-
ceedings of the 45th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, SIGIR ’22, page 2387–2392, New York,
NY, USA. Association for Computing Machinery.

Konstantinos Bousmalis, George Trigeorgis, Nathan
Silberman, Dilip Krishnan, and Dumitru Erhan. 2016.
Domain separation networks.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind

7443

https://aclanthology.org/2023.emnlp-main.623
https://aclanthology.org/2023.emnlp-main.623
https://aclanthology.org/2023.emnlp-main.623
https://aclanthology.org/D11-1033
https://aclanthology.org/D11-1033
https://doi.org/10.1145/3477495.3531863
https://doi.org/10.1145/3477495.3531863
http://arxiv.org/abs/1608.06019


Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Jaime Carbonell and Jade Goldstein. 1998. The use of
mmr, diversity-based reranking for reordering doc-
uments and producing summaries. In Proceedings
of the 21st Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR ’98, page 335–336, New York, NY,
USA. Association for Computing Machinery.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In ICLR.

Daniel Cohen, Bhaskar Mitra, Katja Hofmann, and
W. Bruce Croft. 2018. Cross domain regularization
for neural ranking models using adversarial learning.
In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval,
SIGIR ’18, page 1025–1028, New York, NY, USA.
Association for Computing Machinery.

Zhuyun Dai, Vincent Y. Zhao, Ji Ma, Yi Luan, Jianmo
Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith B.
Hall, and Ming-Wei Chang. 2022. Promptagator:
Few-shot dense retrieval from 8 examples.

Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong
Yang, Jimmy Lin, and Allan Hanbury. 2021. Ef-
ficiently teaching an effective dense retriever with
balanced topic aware sampling. In Proceedings of
the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’21, page 113–122, New York, NY, USA. As-
sociation for Computing Machinery.

Xiaomeng Hu, Shi Yu, Chenyan Xiong, Zhenghao Liu,
Zhiyuan Liu, and Ge Yu. 2022. P3 ranker: Mitigating
the gaps between pre-training and ranking fine-tuning
with prompt-based learning and pre-finetuning. In
Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’22, page 1956–1962, New
York, NY, USA. Association for Computing Machin-
ery.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense infor-
mation retrieval with contrastive learning.

Vitor Jeronymo, Luiz Bonifacio, Hugo Abonizio,
Marzieh Fadaee, Roberto Lotufo, Jakub Zavrel, and
Rodrigo Nogueira. 2023. Inpars-v2: Large language
models as efficient dataset generators for information
retrieval.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Jaap Kamps, Nikolaos Kondylidis, David Rau, et al.
2020. Impact of tokenization, pretraining task, and
transformer depth on text ranking. In TREC.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
’20, page 39–48, New York, NY, USA. Association
for Computing Machinery.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021a. Pyserini: A Python toolkit for reproducible
information retrieval research with sparse and dense
representations. In Proceedings of the 44th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR
2021), pages 2356–2362.

Jimmy Lin, Rodrigo Nogueira, and Andrew Yates.
2021b. Pretrained transformers for text ranking: Bert
and beyond.

Simon Lupart, Thibault Formal, and Stéphane Clinchant.
2023. Ms-shift: An analysis of ms marco distribution
shifts on neural retrieval. In Advances in Information
Retrieval, pages 636–652, Cham. Springer Nature
Switzerland.

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and
Jimmy Lin. 2023. Fine-tuning llama for multi-stage
text retrieval.

Bhaskar Mitra and Nick Craswell. 2018. An introduc-
tion to neural information retrieval. Foundations and
Trends® in Information Retrieval, 13(1):1–126.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo
Hernandez Abrego, Ji Ma, Vincent Zhao, Yi Luan,
Keith Hall, Ming-Wei Chang, and Yinfei Yang. 2022.
Large dual encoders are generalizable retrievers. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
9844–9855, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and
Jimmy Lin. 2020a. Document ranking with a pre-
trained sequence-to-sequence model. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 708–718.

7444

http://arxiv.org/abs/2005.14165
https://doi.org/10.1145/290941.291025
https://doi.org/10.1145/290941.291025
https://doi.org/10.1145/290941.291025
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://doi.org/10.1145/3209978.3210141
https://doi.org/10.1145/3209978.3210141
http://arxiv.org/abs/2209.11755
http://arxiv.org/abs/2209.11755
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3477495.3531786
https://doi.org/10.1145/3477495.3531786
https://doi.org/10.1145/3477495.3531786
https://doi.org/10.48550/ARXIV.2112.09118
https://doi.org/10.48550/ARXIV.2112.09118
http://arxiv.org/abs/2301.01820
http://arxiv.org/abs/2301.01820
http://arxiv.org/abs/2301.01820
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
http://arxiv.org/abs/2010.06467
http://arxiv.org/abs/2010.06467
http://arxiv.org/abs/2310.08319
http://arxiv.org/abs/2310.08319
https://www.microsoft.com/en-us/research/publication/introduction-neural-information-retrieval/
https://www.microsoft.com/en-us/research/publication/introduction-neural-information-retrieval/
https://doi.org/10.18653/v1/2022.emnlp-main.669


Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and
Jimmy Lin. 2020b. Document ranking with a pre-
trained sequence-to-sequence model. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 708–718, Online. Association
for Computational Linguistics.

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and
Jimmy Lin. 2019. Multi-stage document ranking
with bert.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Abhinav Ramesh Kashyap, Devamanyu Hazarika, Min-
Yen Kan, and Roger Zimmermann. 2021. Domain
divergences: A survey and empirical analysis. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1830–1849, Online. Association for Computa-
tional Linguistics.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Found. Trends Inf. Retr., 3(4):333–389.

Devendra Singh Sachan, Mike Lewis, Mandar Joshi,
Armen Aghajanyan, Wen tau Yih, Joëlle Pineau, and
Luke Zettlemoyer. 2022. Improving passage retrieval
with zero-shot question generation. In Conference on
Empirical Methods in Natural Language Processing.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ili’c, Daniel Hesslow, Ro-
man Castagn’e, Alexandra Sasha Luccioni, Franc-
cois Yvon, Matthias Gallé, Jonathan Tow, Alexan-
der M. Rush, Stella Biderman, Albert Webson,
Pawan Sasanka Ammanamanchi, Thomas Wang,
Benoît Sagot, Niklas Muennighoff, Albert Villanova
del Moral, Olatunji Ruwase, Rachel Bawden, Stas
Bekman, Angelina McMillan-Major, Iz Beltagy, Huu
Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz
Suarez, Victor Sanh, Hugo Laurenccon, Yacine Jer-
nite, Julien Launay, Margaret Mitchell, Colin Raf-
fel, Aaron Gokaslan, Adi Simhi, Aitor Soroa Etx-
abe, Alham Fikri Aji, Amit Alfassy, Anna Rogers,
Ariel Kreisberg Nitzav, Canwen Xu, Chenghao
Mou, Chris C. Emezue, Christopher Klamm, Colin
Leong, Daniel Alexander van Strien, David Ifeoluwa
Adelani, Dragomir R. Radev, Eduardo Gonz’alez
Ponferrada, Efrat Levkovizh, Ethan Kim, Eyal
Natan, Francesco De Toni, Gérard Dupont, Germán
Kruszewski, Giada Pistilli, Hady ElSahar, Hamza
Benyamina, Hieu Trung Tran, Ian Yu, Idris Abdul-
mumin, Isaac Johnson, Itziar Gonzalez-Dios, Javier
de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu,
Jonathan Chang, Jorg Frohberg, Josephine L. To-
bing, Joydeep Bhattacharjee, Khalid Almubarak,
Kimbo Chen, Kyle Lo, Leandro von Werra, Leon

Weber, Long Phan, Loubna Ben Allal, Ludovic Tan-
guy, Manan Dey, Manuel Romero Muñoz, Maraim
Masoud, María Grandury, Mario vSavsko, Max
Huang, Maximin Coavoux, Mayank Singh, Mike
Tian-Jian Jiang, Minh Chien Vu, Mohammad Ali
Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora
Kassner, Nurulaqilla Khamis, Olivier Nguyen, Omar
Espejel, Ona de Gibert, Paulo Villegas, Peter Hen-
derson, Pierre Colombo, Priscilla Amuok, Quentin
Lhoest, Rheza Harliman, Rishi Bommasani, Roberto
L’opez, Rui Ribeiro, Salomey Osei, Sampo Pyysalo,
Sebastian Nagel, Shamik Bose, Shamsuddeen Hassan
Muhammad, Shanya Sharma Sharma, S. Longpre,
So maieh Nikpoor, S. Silberberg, Suhas Pai, Syd-
ney Zink, Tiago Timponi Torrent, Timo Schick, Tris-
tan Thrush, Valentin Danchev, Vassilina Nikoulina,
Veronika Laippala, Violette Lepercq, Vrinda Prabhu,
Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin
Heinzerling, Chenglei Si, Elizabeth Salesky, Sab-
rina J. Mielke, Wilson Y. Lee, Abheesht Sharma, An-
drea Santilli, Antoine Chaffin, Arnaud Stiegler, Deba-
jyoti Datta, Eliza Szczechla, Gunjan Chhablani, Han
Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan
Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Sai-
ful Bari, Maged S. Al-Shaibani, Matteo Manica, Ni-
hal V. Nayak, Ryan Teehan, Samuel Albanie, Sheng
Shen, Srulik Ben-David, Stephen H. Bach, Taewoon
Kim, Tali Bers, Thibault Févry, Trishala Neeraj, Ur-
mish Thakker, Vikas Raunak, Xiang Tang, Zheng-
Xin Yong, Zhiqing Sun, Shaked Brody, Y Uri, Hadar
Tojarieh, Adam Roberts, Hyung Won Chung, Jae-
sung Tae, Jason Phang, Ofir Press, Conglong Li,
Deepak Narayanan, Hatim Bourfoune, Jared Casper,
Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia
Zhang, Mohammad Shoeybi, Myriam Peyrounette,
Nicolas Patry, Nouamane Tazi, Omar Sanseviero,
Patrick von Platen, Pierre Cornette, Pierre Franc-
cois Lavall’ee, Rémi Lacroix, Samyam Rajbhan-
dari, Sanchit Gandhi, Shaden Smith, Stéphane Re-
quena, Suraj Patil, Tim Dettmers, Ahmed Baruwa,
Amanpreet Singh, Anastasia Cheveleva, Anne-Laure
Ligozat, Arjun Subramonian, Aur’elie N’ev’eol,
Charles Lovering, Daniel H Garrette, Deepak R.
Tunuguntla, Ehud Reiter, Ekaterina Taktasheva, Eka-
terina Voloshina, Eli Bogdanov, Genta Indra Winata,
Hailey Schoelkopf, Jan-Christoph Kalo, Jekate-
rina Novikova, Jessica Zosa Forde, Xiangru Tang,
Jungo Kasai, Ken Kawamura, Liam Hazan, Ma-
rine Carpuat, Miruna Clinciu, Najoung Kim, New-
ton Cheng, Oleg Serikov, Omer Antverg, Oskar
van der Wal, Rui Zhang, Ruochen Zhang, Sebastian
Gehrmann, Shachar Mirkin, S. Osher Pais, Tatiana
Shavrina, Thomas Scialom, Tian Yun, Tomasz Lim-
isiewicz, Verena Rieser, Vitaly Protasov, Vladislav
Mikhailov, Yada Pruksachatkun, Yonatan Belinkov,
Zachary Bamberger, Zdenvek Kasner, Zdeněk Kas-
ner, Amanda Pestana, Amir Feizpour, Ammar Khan,
Amy Faranak, Ananda Santa Rosa Santos, Anthony
Hevia, Antigona Unldreaj, Arash Aghagol, Are-
zoo Abdollahi, Aycha Tammour, Azadeh HajiHos-
seini, Bahareh Behroozi, Benjamin Ayoade Ajibade,
Bharat Kumar Saxena, Carlos Muñoz Ferrandis,
Danish Contractor, David M. Lansky, Davis David,
Douwe Kiela, Duong Anh Nguyen, Edward Tan, Emi

7445

https://doi.org/10.18653/v1/2020.findings-emnlp.63
https://doi.org/10.18653/v1/2020.findings-emnlp.63
http://arxiv.org/abs/1910.14424
http://arxiv.org/abs/1910.14424
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.naacl-main.147
https://doi.org/10.18653/v1/2021.naacl-main.147
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://api.semanticscholar.org/CorpusID:248218489
https://api.semanticscholar.org/CorpusID:248218489


Baylor, Ezinwanne Ozoani, Fatim Tahirah Mirza,
Frankline Ononiwu, Habib Rezanejad, H.A. Jones,
Indrani Bhattacharya, Irene Solaiman, Irina Sedenko,
Isar Nejadgholi, Jan Passmore, Joshua Seltzer,
Julio Bonis Sanz, Karen Fort, Lívia Dutra, Mairon
Samagaio, Maraim Elbadri, Margot Mieskes, Marissa
Gerchick, Martha Akinlolu, Michael McKenna, Mike
Qiu, Muhammed Ghauri, Mykola Burynok, Nafis
Abrar, Nazneen Rajani, Nour Elkott, Nourhan Fahmy,
Olanrewaju Samuel, Ran An, R. P. Kromann, Ryan
Hao, Samira Alizadeh, Sarmad Shubber, Silas L.
Wang, Sourav Roy, Sylvain Viguier, Thanh-Cong
Le, Tobi Oyebade, Trieu Nguyen Hai Le, Yoyo
Yang, Zachary Kyle Nguyen, Abhinav Ramesh
Kashyap, Alfredo Palasciano, Alison Callahan, An-
ima Shukla, Antonio Miranda-Escalada, Ayush Ku-
mar Singh, Benjamin Beilharz, Bo Wang, Caio
Matheus Fonseca de Brito, Chenxi Zhou, Chirag
Jain, Chuxin Xu, Clémentine Fourrier, Daniel Le’on
Perin’an, Daniel Molano, Dian Yu, Enrique Man-
javacas, Fabio Barth, Florian Fuhrimann, Gabriel
Altay, Giyaseddin Bayrak, Gully Burns, Helena U.
Vrabec, Iman I.B. Bello, Isha Dash, Ji Soo Kang,
John Giorgi, Jonas Golde, Jose David Posada, Karthi
Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa
Shinzato, Madeleine Hahn de Bykhovetz, Maiko
Takeuchi, Marc Pàmies, María Andrea Castillo, Mar-
ianna Nezhurina, Mario Sanger, Matthias Samwald,
Michael Cullan, Michael Weinberg, M Wolf, Mina
Mihaljcic, Minna Liu, Moritz Freidank, Myung-
sun Kang, Natasha Seelam, Nathan Dahlberg,
Nicholas Michio Broad, Nikolaus Muellner, Pas-
cale Fung, Patricia Haller, R. Chandrasekhar, Renata
Eisenberg, Robert Martin, Rodrigo L. Canalli, Ros-
aline Su, Ruisi Su, Samuel Cahyawijaya, Samuele
Garda, Shlok S Deshmukh, Shubhanshu Mishra, Sid
Kiblawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Ku-
mar, Stefan Schweter, Sushil Pratap Bharati, Tanmay
Laud, Th’eo Gigant, Tomoya Kainuma, Wojciech
Kusa, Yanis Labrak, Yashasvi Bajaj, Y. Venkatraman,
Yifan Xu, Ying Xu, Yu Xu, Zhee Xao Tan, Zhongli
Xie, Zifan Ye, Mathilde Bras, Younes Belkada, and
Thomas Wolf. 2022. Bloom: A 176b-parameter
open-access multilingual language model. ArXiv,
abs/2211.05100.

Shuo Sun and Kevin Duh. 2020. CLIRMatrix: A mas-
sively large collection of bilingual and multilingual
datasets for cross-lingual information retrieval. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4160–4170, Online. Association for Computa-
tional Linguistics.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

Robert L. Thorndike. 1953. Who belongs in the family?
Psychometrika, 18:267–276.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-

bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna
Gurevych. 2022. GPL: Generative pseudo labeling
for unsupervised domain adaptation of dense retrieval.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2345–2360, Seattle, United States. Association
for Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval.
ArXiv, abs/2007.00808.

Ming Yan, Chenliang Li, Chen Wu, Bin Bi, Wei
Wang, Jiangnan Xia, and Luo Si. 2019. Idst at
trec 2019 deep learning track: Deep cascade rank-
ing with generation-based document expansion and
pre-trained language modeling. In TREC.

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models.

Peide Zhu and Claudia Hauff. 2022. Unsupervised do-
main adaptation for question generation with Do-
mainData selection and self-training. In Findings
of the Association for Computational Linguistics:

7446

https://api.semanticscholar.org/CorpusID:253420279
https://api.semanticscholar.org/CorpusID:253420279
https://doi.org/10.18653/v1/2020.emnlp-main.340
https://doi.org/10.18653/v1/2020.emnlp-main.340
https://doi.org/10.18653/v1/2020.emnlp-main.340
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://api.semanticscholar.org/CorpusID:120467216
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2022.naacl-main.168
https://doi.org/10.18653/v1/2022.naacl-main.168
http://arxiv.org/abs/2109.01652
http://arxiv.org/abs/2109.01652
https://api.semanticscholar.org/CorpusID:220302524
https://api.semanticscholar.org/CorpusID:220302524
http://arxiv.org/abs/2102.09690
http://arxiv.org/abs/2102.09690
https://doi.org/10.18653/v1/2022.findings-naacl.183
https://doi.org/10.18653/v1/2022.findings-naacl.183
https://doi.org/10.18653/v1/2022.findings-naacl.183


NAACL 2022, pages 2388–2401, Seattle, United
States. Association for Computational Linguistics.

A Appendix

A.1 Effect on Model Sizes

Different model sizes and different ranker families
have been shown to exhibit different performances.
Therefore, we fine-tuned MonoELECTRA5 (Clark
et al., 2020), MonoT5-base6, MonoT5-3B, and Col-
BERT to show the effectiveness of our approach
against the model sizes. We pre-trained the Mo-
noELECTRA re-ranker on MS-MARCO using a
batch size of 32, learning rate of 2e−5, AdamW
optimizer with weight decay of 0.01 and warm-up
ratio of 0.1, regression loss, and a maximum se-
quence length of 512. We continued using the same
hyper-parameters for fine-tuning too. For MonoT5-
base fine-tuning we only changed the batch size to
8 and kept the remaining hyper-parameters same
as of MonoELECTRA.

The complete performances of DUQGen against
each zero-shot baseline measured in nDCG@10 is
reported in Table 6. DUQGen shows consistent
improvements over corresponding zero-shot base-
lines across almost all datasets and across all model
sizes. The larger the model size, the higher the per-
formance improvements are, for example, the aver-
age score across all datasets increases from .487 to
.528 between MonoELECTRA and MonoT5-3B. It
is important to note that the performance improve-
ments achieved by DUQGen are larger (4% Avg.)
in smaller models and smaller (1% Avg.) in larger
models. Fine-tuning on ColBERT shows consis-
tent improvements across all datasets with no drop
in performance. Thus showcasing the robustness
of our approach to deploying dense retrievers in
practical systems.

A.2 Running Time of DUQGen

DUQGen is a cost-effective and easily scalable
to a large corpus size. DUQGen needs to ap-
ply the pipeline only once per domain to generate
training data to fine-tune a ranker. Then, at infer-
ence time, no additional complexity overheard is
added. The training dataset generation process is
a sequence of three steps, each fully controllable
by a small set of parameters, and can be scaled to a
large document collection as our experiments show.
In fact, the evaluation datasets of NQ, FEVER,

5cross-encoder/ms-marco-electra-base
6castorini/monot5-base-msmarco-10k

BioASQ are 2.5 Million, 5.5 Million, and 14.9 Mil-
lion documents respectively. To give an idea of
the time complexity, single-pass clustering of the
full NQ collection required 8 minutes7 on a single
machine; query generation using LLama2-7B to
create N = 5, 000 synthetic training examples was
the slowest step which required 1.2 hours8, and can
be increased or reduced easily by modifying N. The
fine-tuning of the largest ranker model MonoT5-3B
required 38 minutes8.

A.3 Query Generation Prompts
Using additional prompts can be helpful in show-
casing the diversity of tasks in BEIR and highlight-
ing the minimal effort required for any domain us-
ing our approach. DUQGen can be utilized across
a wide range of retrieval tasks with significantly
reduced human effort, requiring only a few labeled
examples as demonstrations. Thus, in Figures 4a
and 4b, we present the additional prompts utilized
for dev datasets (NQ and FiQA) to exemplify the
diverse tasks and the minimal effort involved.

7run on Quadro RTX 8000 GPU with 48GB memory.
8run on NVIDIA H100 GPU with 80GB memory.

7447



Dense Retriever Re-ranker using BM25 Top-100

Size (→) 110M 110M 220M 3B

Ranker (→)
BM25

ColBERT MonoELECTRA MonoT5-base MonoT5-3B

Datasets (↓) Zero-shot
DUQGen-
retriever Zero-shot

DUQGen-
reranker(5k) Zero-shot

DUQGen-
reranker(5k) Zero-shot

DUQGen-
reranker(5k)

covid .656 .706 .751(+6%) .730 .761(+4%) .814 .853(+5%) .830 .836(+1%)
nfc .325 .305 .325(+6%) .280 .356(+27%) .357 .368(+3%) .373 .376(+1%)
bio .465 .480 .497(+4%) .502 .523(+4%) .531 .566(+7%) .559 .590(+6%)
nq .329 .523 .530(+1%) .540 .551(+2%) .540 .550(+2%) .579 .588(+2%)
hotpot .603 .590 .614(+4%) .691 .709(+3%) .698 .721(+3%) .718 .740(+3%)
fiqa .236 .318 .336(+5%) .370 .392(+6%) .391 .400(+2%) .462 .465(+1%)
signal .330 .270 .271(+0%) .297 .284(–4%) .316 .309(–2%) .321 .300(–6%)
news .398 .390 .399(+2%) .445 .411(–8%) .459 .470(+2%) .473 .449(-5%)
robust .407 .392 .411(+5%) .440 .479(+9%) .518 .538(+4%) .566 .571(+1%)
arg .315 .404 .425(+5%) .233 .327(+40%) .188 .383(+103%) .316 .427(+35%)
touché .367 .209 .234(+12%) .278 .261(–6%) .305 .347(+14%) .311 .269(–13%)
stack .299 .350 .363(+4%) .339 .387(+14%) .389 .405(+4%) .421 .439(+4%)
quora .789 .853 .857(+0%) .730 .873(+20%) .845 .888(+5%) .848 .894(+5%)
dbp .313 .392 .401(+2%) .278 .389(+40%) .395 .406(+3%) .408 .421(+3%)
scidocs .158 .146 .155(+6%) .162 .182(+12%) .171 .186(+9%) .193 .202(+5%)
fever .753 .771 .805(+4%) .816 .867(+6%) .826 .878(+6%) .849 .891(+5%)
climate .213 .184 .196(+7%) .246 .296(+21%) .251 .268(+7%) .278 .288(+3%)
scifact .665 .672 .688(+2%) .684 .727(+6%) .730 .746(+2%) .760 .761(+0%)

avg .423 .442 .459(+4%) .448 .487(+9%) .485 .516(+6%) .515 .528(+3%)

Table 6: Comparison of nDCG@10 scores across different model sizes and different ranking families. The best
scores are highlighted in bold. Blue and red colored percentage values indicate the relative improvements in
performance compared to the corresponding zero-shot baseline. Suffix (5k) refers to the training size used to
fine-tune corresponding models.

(a) (b)

Figure 4: Example prompts used for (a) NQ and (b) FiQA dataset.

7448


