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Abstract

Previous work on multimodal sentence em-
bedding has proposed multimodal contrastive
learning and achieved promising results. How-
ever, by taking the rest of the batch as neg-
ative samples without reviewing when form-
ing contrastive pairs, those studies encoun-
tered many suspicious and noisy negative ex-
amples, significantly affecting the methods’
overall performance. In this work, we pro-
pose KDMCSE (Knowledge Distillation Mul-
timodal contrastive learning of Sentence Em-
beddings), a novel approach that enhances the
discrimination and generalizability of multi-
modal representation and inherits the knowl-
edge from the teacher model to learn the differ-
ence between positive and negative instances
and via that, can detect noisy and wrong neg-
ative samples effectively before they are cal-
culated in the contrastive objective. Further-
more, to overcome the limitation of modeling
the variation within negative pairs, we intro-
duce a new contrastive objective, AdapACSE
(Adaptive Angular Margin Supervised Con-
trastive Learning for Multimodal sentence em-
beddings), that enhances the discriminative rep-
resentation by strengthening the margin within
the angular space while capturing varying se-
mantics within the negative. Experimental re-
sults on widely used Semantic Textual Simi-
larity (STS) benchmarks demonstrate the ef-
fectiveness of our approach. The source code
is available at https://github.com/
duyngtr16061999/KDMCSE.

1 Introduction

Learning sentence embeddings, which involves
translating sentences into consistent-length vec-
tors that capture their semantic connections, re-
mains a pivotal task in the NLP field. While pre-
trained language models like BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) have wit-
nessed immense success, studies indicate that the
default sentence embeddings from these PLMs,

B.1 A small crowd of people jumping into the air
B.2 A group of people are jumping in sync 

A.1 Four people are jumping from the top of a flight of stairs
A.2 Three young men and a young woman wearing sneakers are leaping
in midair at the top of a flight of concrete stairs

(A) (B)

Figure 1: Example image-caption pairs in Flickr. Solid
lines of the same color talk about the same instance, and
a dot line means the additional information that does
not occur in the other caption.

without specific fine-tuning, may not perform as
well as simply averaging Glove vectors (Penning-
ton et al., 2014) in capturing semantic similar-
ity (Reimers and Gurevych, 2019). Consequently,
recent works (Li et al., 2020; Zhang et al., 2020; Su
et al., 2021) are geared towards refining sentence
embeddings from PLMs without supervision.

While text-centric models have made significant
strides, their depth of understanding of sentence se-
mantics remains a point of contention. True seman-
tic understanding often stems from associations
in the real world rather than mere textual statis-
tics (Wang et al., 2019; Bender and Koller, 2020;
Bisk et al., 2020; Wei et al., 2022). Numerous
recent studies have explored the enhancement of
language representations through visual informa-
tion (Tan and Bansal, 2020b; Tang et al., 2021;
Nguyen et al., 2023b). The recent multimodal
contrast in sentence embedding learning (Zhang
et al., 2022a) offers an encouraging direction. This
method augments SimCSE with a multimodal con-
trastive objective, which seeks congruence between
sentences and their associated images within a uni-
fied space. However, samples drawn randomly
from grounded datasets during training can present
semantic differences, subtle similarities, or over-
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The small dog stands inside of a suitcase on a bed

People are in a restaurant eating

A woman is preparing food at the store

There is a woman sitting at a table by the kitchen

Two chefs in white are working in the kitchen,
while a woman sits at a nearby counter

0.92

0.83

0.49

0.03

CLIP
scoreT

a

c

b

d

Figure 2: Example image-caption pairs in Flickr. The
green caption is a true annotation of the image while 4
red captions is randomly picked from the dataset. The
scores on the right are the cosine similarity between
its caption representation and image representation ex-
tracted from CLIP model.

lapping attributes. For example, in Figure 1, two
captions B.1 and B.2 describe the second image
B, but also correctly represent the first image A.
Due to their inherent noise, such samples can hin-
der the learning process. Mitigating this issue re-
quires preemptively filtering out these semantically
similar samples before loss calculation, ensuring
a noise-reduced training environment. In addition,
comparing two captions, A.1 and A.2, for the left
image reveals that the latter offers a more compre-
hensive description, detailing aspects such as the
individual’s gender, attire, sneakers, and even the
material of the stairs (concrete). Thus, using only
visual images cannot capture the depth of language
representations.

Furthermore, MCSE did not consider the distinc-
tions between negative sample pairs while focusing
on constructing pairs of positive and negative rep-
resentations. As shown in Figure 2, although none
of the captions perfectly describes the image, their
levels of discrimination vary between pairs. On
the contrary, the caption c registers a score of 0.49,
hinting at its partial relevance to the image. Caption
d, with a very weak score of 0.03, is completely
unrelated. Consequently, within the feature space,
both captions c and d should be substantially dis-
tanced from the accurate depiction. Furthermore,
the gap between the true caption and caption d
should considerably exceed that between the true
caption and the caption c.

To address the aforementioned limitation of
noisy negative sampling and complexity of linguis-

tic representation, we present KDMCSE: a Knowl-
edge Distillation Multimodal Contrastive Learning
framework for Sentence Embeddings that utilizes
CLIP (Radford et al., 2021) as the teacher model
for both image and text modalities. Our approach
harnesses images for multimodal objectives and
textual representations derived from the CLIP text
encoder. Relying solely on images falls short of
capturing the nuances in sentence representation.
Emulating the representation of the CLIP’s tex-
tual encoder - especially when paired with image
matching - can augment the richness of linguis-
tic representations, transcending a mere alignment
with visual features.

Moreover, in response to the identified challenge
of diversity among negative pairs, we introduce
AdapACSE: Adaptive Angular Margin Contrastive
Learning. This method bolsters discriminative rep-
resentation by amplifying the margin within the
angular space, specifically accounting for the vari-
ous semantics present in negative samples. Lever-
aging the teacher model, CLIP, we produce soft
labels that signify the similarity between samples.
Instead of merely utilizing feature representations
as positive or negative samples during the multi-
modal objective, we employ CLIP’s soft labels to
intensely penalize samples exhibiting low similar-
ity and provide leniency to pairs exhibiting certain
resemblances.

Our contributions can be summarized as follows.

• We propose a novel multimodal framework for
sentence embedding KDMCSE: Knowledge
Distillation Multimodal Contrastive learning
for Sentence Embedding. The knowledge of
the teacher model is transferred to the student
model through multimodal contrastive learn-
ing, spanning both text and visual modalities.

• We introduce self-supervised contrastive
learning: AdapACSE that improves the dis-
criminative representation of samples with
varying degrees of similarity.

• We evaluate our approach using standard se-
mantic textual similarity (STS) benchmarks
and SentEval transfer tasks. Our method out-
performs the performance of earlier state-of-
the-art approaches.

2 Related Work

Sentence Representation Learning In previ-
ous research, sentence representations were typ-
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ically learned by extending the principles of
word2vec (Mikolov et al., 2013), predicting neigh-
boring sentences (Kiros et al., 2015a; Hill et al.,
2016; Logeswaran and Lee, 2018) or aggregat-
ing n-gram embeddings (Pagliardini et al., 2018),
the pre-trained transformer-based model BERT (Li
et al., 2020; Reimers and Gurevych, 2019) and its
enhancements BERT-Flow (Li et al., 2020) and
BERT-Whitening (Su et al., 2021). More recently,
various studies have embraced the contrastive learn-
ing framework for learning sentence representation.
These studies have proposed different methods to
form contrastive pairs, either through various data
transformation techniques (Yan et al., 2021; Zhang
et al., 2020; Giorgi et al., 2021) or through encoders
with distinct structures or parameters (Carlsson
et al., 2021; Kim et al., 2021). A notable exam-
ple is SimCSE (Gao et al., 2021), which employs
dropout as a data augmentation strategy. Many
studies in the field of sentence contrastive learning
have made a significant contribution by focusing on
the mining of challenging negative samples (Wang
et al., 2022b; Zhou et al., 2022; Zhang et al., 2022b;
Wang et al., 2022a; Wei et al., 2023; He et al.,
2023).

Deep Metric Learning Objectives Contrastive
learning (Chopra et al., 2005) has gained traction
across multiple domains (Nguyen and Luu, 2021;
Nguyen et al., 2022, 2024, 2023a; Wu et al., 2020,
2022, 2023a,b, 2024; Wei et al., 2024). Renowned
training objectives such as N-Pair Loss (Sohn,
2016), Triplet Margin Loss (Balntas et al., 2016),
and ArcCon (Zhang et al., 2022c) are deeply rooted
in metric learning principles. In supervised tasks,
objectives that leverage softmax have shown effi-
cacy, especially when they integrate class centers
and impose penalties on the distances between deep
features and their corresponding centers. Among
these, Center loss (Wen et al., 2016), SphereFace
(Liu et al., 2017), CosFace (Wang et al., 2018),
and ArcFace (Deng et al., 2018) stand out and are
frequently used in computer vision and natural lan-
guage processing applications. Nonetheless, these
loss functions primarily aim at classification tasks,
rendering them unsuitable for regression labels. Ar-
cCSE (Zhang et al., 2022c) presents training objec-
tives using additional margin tailored to enhance
the discriminative prowess in pairwise relations
and capture the entailment dynamics within triplet
sentence structures.

Visually Grounded Representation Learning
Numerous studies have underscored the advantages
of integrating NLP models with visual insights to
improve textual representation learning (Lazaridou
et al. (2015); Kiela et al. (2018)). Based on the
Skip-Thought model of Kiros et al. (2015b), Bor-
des et al. (2019) created a unified space that har-
moniously accommodates both visual and textual
dimensions. Recent pioneering efforts by Tan and
Bansal (2020a), Tang et al. (2021) and (Nguyen
et al., 2023b) have laid the foundation for vast
language models using multimodal guidance, aim-
ing to improve language understanding. Similarly,
MCSE by Zhang et al. (2022a) suggested sentence
embedding learning using a multimodal contrastive
objective to align sentences with their respective
images coherently. Distinguishing our work from
Zhang et al. (2022a), we present an innovative an-
gular margin contrastive learning framework, build-
ing upon the cutting-edge multimodal contrastive
learning proposed by Zhang et al. (2022a). By
weaving in this new contrastive technique, our goal
is to push the envelope in STS by leveraging multi-
modal semantic data.

3 Method

3.1 Background: Unsupervised SimCSE and
Multimodal Contrastive Learning MCSE

The idea of unsupervised SimCSE is to use dropout
noise as a simple, yet effective, data augmentation
strategy. Given a collection of sentences {xi}mi=1,
we construct a positive pair for each input xi by
encoding it twice using different dropout masks:
hz
i = gϕ(fθ(xi, z)) and hz′

i = gϕ(fθ(xi, z
′)),

where z and z′ denote different dropout masks1,
fθ(·) is a pre-trained language encoder such as
BERT, and gϕ(·) is a projection head2 on top of the
[CLS] token. The training objective is:

ℓSi = − log
esim(h

zi
i ,h

z′i
i )/τ

∑N
j=1 e

sim(h
zi
i ,h

z′
j

j )/τ

, (1)

where N is the size of the mini-batch, τ is a tem-
perature parameter, and sim(h1,h2) is the cosine

similarity hT
1 h2

∥h1∥·∥h2∥ . After training, the [CLS] to-
ken outputs of the language encoder are taken as
the sentence embeddings.

1The standard dropout masks in Transformers are used.
2There is a MLP pooler layer over [CLS] in BERT’s

implementation. Gao et al. (2021) use it with reinitialization.
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It is 4 KMs away from Budaun railway station

It was written by Adamson and produced by Moran

The investigation exacerbated tensions

Some people are standing in the street .

Three boys are racing against each other .

Men in hooded robes are playing in a band

CLIP encoderText encoder Projection head Positive sampleForward Negative sample
with soft label

Negative sample

Figure 3: The overall architecture of KDMCSE. The upper part is the original SimCSE, the below part is the
multimodal contrastive learning approach with knowledge distillation from CLIP model.

To take advantage of visual and textual informa-
tion, MCSE (Zhang et al., 2022a) adopt SimCSE as
the textual baseline and extend it with a multimodal
contrastive learning objective:

szi = gϕ1(fθ(xi, z)), vi = gϕ2(f
v(yi)) , (2)

where fv(·) is a pre-trained image encoder. gϕ1(·)
and gϕ2(·) are two projection heads for text and
image modalities. They define the multimodal con-
trastive learning objective as:

ℓMi = −
∑

z∈{zi,z′i}
log

esim(szi ,vi)/τ
′

∑N
j=1 e

sim(szi ,vj)/τ ′
, (3)

3.2 Knowledge Distillation Multimodal
Contrastive learning for Sentence
Embedding

In addition to the multimodal objective, we present
a Knowledge Distillation framework designed to
harness both visual and textual insights from the
vision-language model CLIP. An overview of our
KDMCSE model can be found in Figure 3. Given
a set of sentence-image pairs represented as D =
{xi, yi}mi=1, we initially project the sentence xi and
the image yi into a shared or grounded space.

szi = gϕg(fθ(xi, z)), (4)

ti = gϕt(t̂i), t̂i = CLIPtext(xi) , (5)

vi = gϕv(v̂i), v̂i = CLIPvisual(yi) , (6)

where CLIPtext, CLIPvisual are a pre-trained text
and image CLIP encoder, v̂i and t̂i are the visual

and text representation extracted from CLIP, gϕg(·)
is the projection heads for the language student
model to project the sentence representation into
grounded space, gϕt(·) and gϕv(·) are distinct pro-
jection heads of the teacher model for the text and
image modality, respectively. During training, we
freeze the pre-trained CLIP model.

Threshold Filtering During training, negative
samples were randomly taken from data in Eq.3.
We not only transfer CLIP’s knowledge of the text
and visual representation of each sample, but also
leverage the similarity within samples in a batch.
We calculate the cosine similarity:

αm,n
i,j =

mi · nj

∥mi∥2 ∥nj∥2
, m, n ∈ {v̂, t̂} (7)

where m,n are the defined modality (text or vi-
sual). Thus, as shown in Figure 4, we can generate
four similarity mappings: text-text, visual-visual,
text-visual, and visual-text. As we strive to align
the sentence representation generated by the lan-
guage encoder (text) with the information gleaned
from the teacher model encompassing both sen-
tence (text) and image (visual) data, we exclusively
employ ’text-text’ and ’text-visual’ pairings for our
soft labels. We define a threshold filter function to
remove noisy negative samples:

φm,n
i,j =

{
0 if αm,n

i,j < threshold

1 else
(8)

where threshold is a fixed hyperparameter during
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Threshold Filtering AdapACSE

Ignore sample Push away Pull close togetherSimilarity score (from 0.0 to 1.0)
0.0 1.0

Figure 4: The overall framework of knowledge distillation with Adaptive Angular margin contrastive learning.
The pipeline first calculates the soft-label similarity scores between text and visual representation, then we apply
threshold filtering to remove the noisy negative pairs, and finally, we transfer the soft-label matrices into our
proposed AdapACSE to flexibly find the margin. sâ is the positive sample for sa, vb and vc are its negative
counterparts. In particular, the difference in pairs sa − vc is more pronounced than in sa − vb. As a result, the
margin (depicted as a dashed line) for c (in orange) is greater than for b (in cyan).

training. The proposed contrastive objective with
Threshold Filtering is defined as follows:

ℓmi = −
∑

z∈{zi,z′i}
log

esim(szi ,mi)/τ
′

∑N
j=1 φ

t,m
i,j esim(szi ,mj)/τ ′

,

(9)
where m is the modality (text or visual), m ∈
{t, v}, mi is the projected representation of CLIP
model, mi ∈ {vi, ti}.

3.3 Adaptive Angular margin Contrastive
learning

Previous studies (Zhang et al., 2022c) introduced
the ArcCSE objective. This was designed to in-
crease the discriminative capacity between pairs
and encapsulate the entailment relationship among
triplet sentences. ArcCSE adds an additive angu-
lar margin mc between positive pairs hzi and hz

′
i .

Compared to Eq.1, it further pushed hi towards the
area where θi,i′ becomes smaller and θj,i becomes
larger, increasing the compactness of sentence rep-
resentations with the same semantics and enlarging
the discrepancy of different semantic representa-
tions. ArcCSE is defined as:

ℓArcCSE
i = −log

e
ϕ
(
θ
i,i

′+mc

)
/τ

e
ϕ
(
θ
i,i

′+m
)
/τ

+
∑n

j ̸=i e
ϕ(θj,i)/τ

(10)

where ϕ is the cos function, angular θi,j is denoted
as follows:

θi,j = arccos

(
hTi hj

∥hi∥ ∗ ∥hj∥

)
(11)

where hi is the vector representation, in this work,
hi ∈ {vi, ti, szi }.

There are distinct differences among the negative
pairs, especially when we observe that the exam-
ples marked in red in Figure 2 serve as negative
samples for the green caption. In this grounded
space, the distance between the samples becomes
crucial. We have refined the contrastive objective to
harness the knowledge from the teacher model and
to capture the magnitude of the differences between
negative pairs. To address this challenge, we intro-
duce a novel training objective, Adaptive Angular
margin Contrastive Loss, AdapACSE, which is an
adaptation of Eq.10. Instead of fixing margin mc

for all samples in the data, we adapt it to be flexible
depending on its negative samples. This new ob-
jective improves sentence representation learning
by an adaptive margin, mc∆i,j , between negative
pairs hi and hj . Thus, if the ∆i,j is large and the
two samples i, j are much different, the margin is
also large to push the representation away, and vice
versa. Our approach is illustrated in the right part
of Figure 4, we formalize this objective function as
AdapACSE:

ℓAdapACSE
i =

−log
eϕ(θi,i∗)/τ

eϕ(θi,i∗)/τ +
∑n

j ̸=i e
ϕ(θi,j−mc∆i,j)/τ

(12)
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where ∆i,j = |1− αi,j | is the cosine distance be-
tween two samples i and j. Together with the
threshold filtering contrastive learning, we rewrite
the AdapACSE objective to be:

ℓAdapACSE′
i = ℓm

′
i =

−log
eϕ(θi,i∗)/τ

eϕ(θi,i∗)/τ +
∑n

j ̸=i φ
t,m
i,j eϕ(θi,j−mc∆i,j)/τ

(13)

Finally, we define our KDMCSE objective as
follows:

ℓKDMCSE
i =

ℓv
′

i + ℓt
′
i

2
(14)

where ℓv
′

i and ℓv
′

i are AdapACSE Eq. 13 with t, v
are text and visual modalities, respectively.

4 Experiments Setup

4.1 Dataset
We employ Flickr30k (Young et al., 2014) and MS-
COCO (Lin et al., 2014) as our multimodal datasets.
Flickr30k contains 29, 783 training images and MS-
COCO has 82, 783 training images. Every image
in these collections comes with multiple captions,
usually five captions. As in Gao et al. (2021), we
utilize Wiki1M for our text-based dataset, consist-
ing of 106 sentences extracted randomly from En-
glish Wikipedia.

4.2 Implementation
Language Encoder - Student model We have
implemented our work in the Hugging Face Trans-
formers library3 as described by (Wolf et al.,
2020). We load our language encoder from
the checkpoints of bert-base-uncased and
roberta-base. Then, we fine-tune these foun-
dation models with our introduced contrastive ob-
jective. To evaluate sentence embeddings, we
use the 768-dimensional outputs of the [CLS]
token preceding the MLP pooler layer from the
transformer-based models.

Multimodal encoder - Teacher model Our
teacher model is CLIP (Radford et al., 2021),
the model’s weights are initialized with pre-
trained clip-vit-base-patch32, where
ViT-B/32 Transformer architecture is built
as an image encoder and the patch size P is 32.

3https://github.com/huggingface/transformers

Because during training, the teacher model will not
be fine-tuned, we will pre-extract image and text
features v̂, t̂ to reduce the computation cost during
the training phase.

MLP Projection Heads We use 4 different MLP
modules g{θ1,θ2,θt,θv} to project different modali-
ties and objectives. For the pure textual objective
using the Wiki1M dataset, sentence embeddings
are projected into a 768-dimensional space. For
CLIP projection, both the sentence embeddings
(student and teacher models) and the image feature
vectors are projected into a shared 256-dimensional
space.

Parameter Settings In line with the experimen-
tal setup described by Zhang et al. (2022a), we ex-
plored two primary training scenarios: wiki+flickr
and wiki+coco. Mini-batches were drawn either
from the Wiki1M corpus or from the respective
caption datasets, with proportions reflecting their
relative sizes. Our parameter choices were largely
inspired by the guidelines provided by Gao et al.
(2021). Specifically, we set the temperature pa-
rameters τ and τ ′, to 0.05. For model assessment,
we performed evaluations on the STS-B dev set
after every 125 training iteration, preserving the
best performing checkpoint for our final evalua-
tion. Regarding the BERT encoder, we adopted
a learning rate of 3e − 5 and a batch size of 64.
For RoBERTa, these parameters were adjusted to
1e− 5 and 128, respectively. Our training was exe-
cuted on an A6000 GPU, with each experimental
run spanning roughly 5-6 hours and equivalent to
MCSE training time.

4.3 Evaluation

We evaluate our trained models on seven STS (Se-
mantic Textual Similarity) tasks, including STS
2012-2016 (Agirre et al., 2012, 2013, 2014, 2015,
2016), the STS Benchmark (Cer et al., 2017), and
SICK-Relatedness (Marelli et al., 2014). Each
dataset is made up of pairs of sentences with the
aim of assigning a similarity score to each pair. In
alignment with Gao et al. (2021), we present the
Spearman correlation (multiplied by 100) between
the official annotations and our predicted scores in
an "all" context. This means that we merge all sub-
sets for each task and then provide a comprehensive
Spearman correlation.
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.↑

w
ik

i SimCSE-BERT♢ 67.8±1.6 80.0±2.1 72.5±1.7 80.1±0.8 77.6±0.8 76.5±0.8 70.1±0.9 74.9±1.1

SimCSE-RoBERTa♢ 68.7±1.0 82.0±0.5 74.0±1.0 82.1±0.4 81.1±0.4 80.6±0.3 69.2±0.2 76.8±0.5
w

ik
i+

fli
ck

r
SimCSE-BERT♢ 69.9±1.7 79.8±1.5 72.9±0.9 81.9±0.8 77.8±0.9 76.6±1.1 68.4±0.8 75.3±0.9

MCSE-BERT♢ 71.4±0.9 81.8±1.3 74.8±0.9 83.6±0.9 77.5±0.8 79.5±0.5 72.6±1.4 77.3±0.5

KDMCSE-BERT 74.4∗±1.4 83.1∗±0.9 76.3∗±1.1 83.7±0.8 78.8∗±0.9 81.3∗±0.9 73.0∗±0.9 78.6∗±0.8

SimCSE-RoBERTa♢ 69.5±0.9 81.6±0.5 74.1±0.6 82.4±0.3 80.9±0.5 79.9±0.3 67.3±0.5 76.5±0.4

MCSE-RoBERTa♢ 71.7±0.2 82.7±0.4 75.9±0.3 84.0±0.4 81.3±0.3 82.3±0.5 70.3±1.3 78.3±0.1

KDMCSE-RoBERTa 73.6∗±0.7 83.8∗±0.6 77.4∗±0.4 84.0±0.3 81.5±0.7 82.3±0.6 71.2∗±0.4 79.1∗±0.3

w
ik

i+
co

co

SimCSE-BERT♢ 69.1±1.0 80.4±0.9 72.7±0.7 81.1±0.3 78.2±0.9 73.9±0.6 66.6±1.2 74.6±0.2

MCSE-BERT♢ 71.2±1.3 79.7±0.9 73.8±0.9 83.0±0.4 77.8±0.9 78.5±0.4 72.1±1.4 76.6±0.5

KDMCSE-BERT 73.2∗±1.2 80.5∗±1.0 75.4∗±0.9 83.2±0.3 79.7∗±0.8 79.7∗±0.7 73.7∗±1.4 77.9∗±1.2

SimCSE-RoBERTa♢ 66.4±0.9 80.7±0.7 72.7±1.1 81.3±0.9 80.2±0.8 76.8±0.6 65.7±0.7 74.8±0.5

MCSE-RoBERTa♢ 70.2±1.7 82.0±0.7 75.5±1.2 83.0±0.6 81.5±0.7 80.8±1.0 69.9±0.6 77.6±0.8

KDMCSE-RoBERTa 72.8∗±1.5 81.7±0.9 76.1∗±1.1 83.4∗±1.0 81.5±0.6 80.7±0.8 69.9±0.6 78.0∗±0.7

Table 1: Performance comparison on STS tasks. STS-B: STS Benchmark, SICK-R: SICK-Relatedness, Avg.:
average across 7 tasks. ♢ : results from (Zhang et al., 2022a). We train the models using a random seed of 5,
presenting the average and standard deviations of our findings. ∗: difference between MCSE and KDMCSE is
significant at α = 0.05 according to an independent t-test.

Model
alignment↓ uniformity↓

flickr coco flickr coco

MCSE-BERT 0.293 0.267 -2.491 -2.350
KDMCSE-BERT 0.245 0.261 -2.387 -2.383

MCSE-RoBERTa 0.209 0.195 -1.721 -1.418
KDMCSE-RoBERTa 0.174 0.149 -1.952 -1.748

Table 2: The alignment uniformity results of the models
when using the BERT and RoBERTa encoder. All mod-
els are trained in the wiki-flickr setting.

5 Experiments Results

5.1 Main Results

Following the methodology of previous studies, we
conducted our model five times using the same
hyperparameter settings. Averaged results are de-
lineated in Table 1. A collective overview of our re-
sults reveals that our model consistently matches or
exceeds the benchmarks set by baseline approaches.
MCSE advances beyond SimCSE in the majority
of STS evaluations. By integrating auxiliary vi-
sual and textual insights derived from the CLIP
teacher model, our KDMCSE model showcases
pronounced improvements in various downstream
tasks. Specifically, when trained on Wiki1M and
Flickr30k datasets, KDMCSE increases the per-
formance metrics for BERT (from 77.3 to 78.6)
and RoBERTa (from 78.3 to 79.1). Compared
to MCSE-RoBERTa, our model exhibits compa-
rable metrics on STS15 and STS-B, with a slight
advancement on STS16. In the context of the
wiki+coco dataset, KDMCSE-BERT notably sur-

passes other methods across most tasks, with scores
rising from 76.6 to 77.9 (STS15 being the excep-
tion with a modest increase). Our RoBERTa en-
coder, when trained with the KDMCSE framework,
showed higher average results (an increase from
77.6 to 78.0), where tasks such as STS12, STS14,
and STS15 registered significant improvements,
while others retained or slightly underperformed in
comparison.

5.2 Alignment and Uniformity
The concepts of alignment and uniformity are
closely linked to contrastive learning, serving as
potential metrics to evaluate the quality of the rep-
resentations derived (Wang and Isola, 2020). Align-
ment is a property that encourages encoders to
produce analogous representations for instances
that are alike. This can be quantified using the
expected distance between the embeddings of posi-
tively paired instances.

Lalign ≜ E
(x,x+) ∼ ppos

∥∥f(x)− f(x+)
∥∥2
2
. (15)

And the uniformity loss prefers a uniform distri-
bution in the hypersphere:

Luniform ≜ log E
x,y

i.i.d.∼ pdata

e−2∥f(x)−f(y)∥22 . (16)

To delve deeper into the mechanics of our
methodology, we assess alignment and uniformity
metrics using the STS-B development set. In our

739



Figure 5: Statistic of the maximum index of true cap-
tions when sorting the similarity score between image
and text of Flickr dataset.

comparison with MCSE, the results are presented
in Table 2. Evidently, when compared to MCSE for
both BERT and RoBERTa-based encoders, KDM-
CSE shows superior performance in both alignment
and uniformity metrics. This not only reaffirms the
foundational rationale of our method, but also sug-
gests that AdapACSE can effectively enhance the
caliber of sentence embeddings.

6 Analysis

6.1 Exploring the Impact of Angular Margin

In our AdapACSE loss function, the angular mar-
gin, represented as m, is critical to determining
the discriminative capability. We conducted an
experiment to better understand the impact of m
by varying it in steps of 0.025 radians from 0.025
radians to 0.225 radians. The performance met-
rics averaged on all tasks are depicted in Figure 7.
From the data, we discern an optimal performance
when m is set to 0.125. Any deviation from this
optimal point, be it an increase or decrease, results
in a performance drop. This aligns with our pre-
liminary hypotheses: A smaller value of m could
have a negligible effect, whereas an overly large m
could negatively skew the representations within
the fusion space.

6.2 Threshold Filtering selection

In this section, we will show how to define the
threshold hyperparameter during training. We
make statistics based on text-text and text-visual
similarity scores in the Flickr set, and select based
on that statistic. We perform two calculations: (1)
the histogram for the similarity threshold and (2)
the position of the largest true captions (the anno-
tation captions of that image) that align with the
image when sorted with all captions in the dataset
with that image. Looking at Figure 5, we see that

Figure 6: Statistic of the similarity score between image
and text of Flickr dataset.

Figure 7: Impact of angular margin m in AdapACSE.
The results are reported on average across 7 tasks, and
our experiments are conducted on BERT encoder and
in wiki-flickr setting.

most of the true captions of an image are in the
top 100 (out of about 150,000 captions). However,
there are still quite a few captions that, even though
they accurately describe that image when sorted,
can still be pushed to very far indexes (>200). This
may be because there are still many similar images
in the dataset, leading to captions that describe an-
other image, but are still correct for this image.
The image 6 shows that the scores are in a normal
distribution. We focus more clearly on samples
with high similarity and see that there are only
a few pairs with similarity higher than 0.8. and
decreases rapidly as it approaches 1.0. Based on
the above statistics, we have chosen a threshold of
about 0.85-0.9 to eliminate pairs in the contrastive
learning objective.

7 Conclusion

In this paper, we introduce KDMCSE, a novel ap-
proach to sentence embedding learning that trans-
fers knowledge from a vision and language model
with a multimodal contrastive objective to not only
align sentences and the corresponding image and
text representations of the teacher model but also
avoid noisy negative samples. Additionally, our
innovative contrastive objective, AdapACSE, ad-
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dresses the challenges associated with capturing nu-
anced differences within negative pairs, strengthen-
ing discriminative representation. Our framework
lays the groundwork for continued exploration in
this domain, fostering advancements in vision and
language applications.

8 Limitations

In this study, we shed light on the promising
enhancements of KDMCSE in STS benchmarks.
However, it is imperative to acknowledge its limita-
tions. In particular, there is a pronounced disparity
in both the distribution and volume of word tokens
when visual datasets are compared to traditional
language corpora. Taking the Book Corpus and
Wikipedia as instances, these standard language
repositories house billions of words, spanning mil-
lions of unique tokens. In contrast, MS COCO, a
frequently cited visual-grounded dataset, encom-
passes merely a million words and about a thousand
unique tokens. Another challenge encountered in
our methodology is the intricate correlation of the
hyperparameter in our contrastive objective, which
remains elusive. Its optimal configuration was de-
termined not through systematic understanding, but
rather through exhaustive fine-tuning across many
experiments. Furthermore, the characterization of
"semantic similarity" is highly dependent on the
specific task at hand. Although we have seen sig-
nificant advancements in STS benchmarks, there
remains a need to evaluate the disparity in perfor-
mance between text-only models and their mul-
timodal counterparts across diverse benchmarks.
This would provide a more holistic understanding
of the efficacy of sentence representations in varied
contexts.
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.↑

KDMCSE-BERT 74.4 83.1 76.3 83.7 78.8 81.3 73.0 78.6
KDMCSE without AdapACSE 73.8 81.3 75.4 83.2 79.0 80.5 74.1 78.2
KDMCSE without Threshold Filtering 73.4 82.7 76.6 83.9 78.8 80.8 72.9 78.4

Table 3: Ablation results on STS tasks. STS-B: STS Benchmark, SICK-R: SICK-Relatedness, Avg.: average across
7 tasks. The models are trained with the BERT encoder and in wiki-flickr setting.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.↑

Subset 1

MCSE 71.54 77.9 73.6 80.83 78.38 79.73 74.66 76.66
KDMCSE 73.00 78.53 74.93 82.14 79.88 81.37 74.08 77.7

Subset 2

MCSE 71.67 78.56 74.02 81.19 78.54 80.29 73.87 76.88
KDMCSE 73.35 79.51 75.58 83.43 80.07 81.89 73.78 78.23

Table 4: Ablation results on STS tasks. STS-B: STS Benchmark, SICK-R: SICK-Relatedness, Avg.: average across
7 tasks. The models are trained with the BERT encoder and in 1M image-text pairs subsets of the CC12 dataset.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.↑
MCSE-BERTCLIPText 72.60 81.86 75.28 83.28 78.74 80.77 72.78 77.90
KDMCSE-BERT 74.40 83.10 76.26 83.68 78.79 81.25 73.03 78.64

MCSE-BERTCLIPText 71.39 79.25 73.84 82.65 77.96 78.85 71.74 76.53
KDMCSE-BERT 73.38 80.71 75.55 83.36 79.91 79.85 73.92 78.10

Table 5: Ablation study on STS tasks. STS-B: STS Benchmark, SICK-R: SICK-Relatedness, Avg.: average across 7
tasks.. We train the MCSE models using additional CLIP text embeddings.

A Regularization

To validate the significance of our objectives, we select the best-performing models for each dataset
and gradually run with three settings: our KDMCSE, KDMCSE without AdapACSE, and KDMCSE
without threshold filtering. The results are presented in Table 3, indicating that the incorporation of all the
proposed approaches leads to the best performance in all tasks. The second line shows that not applying
threshold filtering can marginally harm performance. This result can be attributed to the fact that, during
training, noisy negative samples do not often appear in the batch. In the last row of the table, we show
that the removal of AdapACSE significantly affects the performance of both BERT and RoBERTa.

B Larger experiments on image-text paired data

To mitigate scalability and generalization concerns, we conducted extensive experiments using a signifi-
cantly larger dataset containing one million image-text pairs sourced from the CC12 dataset, equivalent in
sample size to Wiki1M. In Table 4, we present the results of these experiments. Our findings consistently
demonstrate that our KDMCSE model surpasses MCSE in terms of average performance (Avg) across
STS, across various subtasks within CC12M subsets.

C Impact of Adaptive Angular Margin Contrastive objective

To substantiate the significance of our objectives and ensure fairness in our comparisons, we carried out
experiments involving MCSE with the inclusion of additional text embeddings from the CLIP text encoder.
The results of these experiments are presented in Table 5. Our findings unequivocally indicate that our
proposed contrastive objectives have a positive impact on the model’s performance, thereby strengthening
our core objectives.
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D KDMCSE algorithm

To enhance the presentation of our method, we provide a detailed description of our implementation,
adhering to the pseudo code outlined in Algorithm 1.

Algorithm 1 Our KDMCSE algorithm

Input:
Collection of sentences (text-only dataset) D = {xi}ni=1

Collection of image-text pairs (multimodal dataset) DM = {xi, yi}nm
i=1

Paired sample step p =
⌈

|D|
|DM |

⌉

for t = 1, 2, 3, . . . , iter do
if not t|p then

Sample batch {xi}bs from D
// Forward through language model and projection
hz

i ,h
z′
i = gϕ(fθ(xi))

// Calculate loss
1
bs

∑bs
i ℓSi

else
Sample batch {xi, yi}bs from DM

sz
i = gϕg (fθ(xi, z))

ti = gϕt(t̂i), t̂i = CLIPtext(xi)
vi = gϕv (v̂i), v̂i = CLIPvisual(yi)
// Calculate cosine similarity

αt,t
i,j =

si · tj
∥si∥2 ∥tj∥2

αt,v
i,j =

si · vj

∥si∥2 ∥vj∥2
// Calculate soft-label (text-text, text-visual)

ttscore =
t̂i · t̂j∥∥t̂i
∥∥
2

∥∥t̂j
∥∥
2

tvscore =
t̂i · v̂j∥∥t̂i
∥∥
2
∥v̂j∥2

// Apply threshold filtering TF based on soft-label
TF (αt,t

i,j)

TF (αt,v
i,j )

// Calculate AdapACSE loss
1
bs

∑bs
i ℓKDMCSE

i

end if
end for

E Sentence embedding visualization

In this appendix, we provide visualization of sentence embedding of our KDMCSE and MCSE models,
illustrated in Figures 8, 9, 10, 11 and 12. We visualize sentence representations by repeatedly processing
three closely related sentences through the MCSE and KDMCSE models, employing various dropout
masks to produce diverse representations for each sentence. Subsequently, we normalize the embeddings
and apply t-SNE for dimensionality reduction, facilitating a clearer visualization of the data. For each
example, we take three captions: two captions are almost similar in semantics (labeled with orange and
blue), and the remaining caption (labeled with green) is different from the other two captions.
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(a) KDMCSE (b) MCSE

Figure 8: Sentence 1: A white and black dog and a brown dog in sandy terrain. Sentence 2: Brown , black and
white dog standing on a sandy slope. Sentence 3: Two girls stand up against a red wall.

(a) KDMCSE (b) MCSE

Figure 9: Sentence 1: An elderly man holding a pitchfork and doing some yard work. Sentence 2: An old bearded
man is tilling the soil with a simple wooden plow , with a wooden fence and an old barn in the background. Sentence
3: A man in a red shirt is performing an aerial trick with a skateboard on a sidewalk.
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(a) KDMCSE (b) MCSE

Figure 10: Sentence 1: A person wearing a blue shirt , rides a white horse along a dusty country road. Sentence 2:
A man in a blue tee-shirt , wearing a cap , is riding a white horse down a dirt road , in a rural setting of grass and
hills. Sentence 3: A man climbing a mountain.

(a) KDMCSE (b) MCSE

Figure 11: Sentence 1: A dog is jumping into a swimming pool after a duck. Sentence 2: A dog is jumping into a
pool to get a duck floating there. Sentence 3: A white curly-haired dog runs with a stick in its mouth.
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(a) KDMCSE (b) MCSE

Figure 12: Sentence 1: A tattooed woman in a black dress holds a drink while sitting at a table in a dimly-lit room.
Sentence 2: Scantily clad woman in black waits in a restaurant with other patrons. Sentence 3: Woman bending
down to pick up a tennis ball outside in front of a wall with graffiti on it.
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