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Abstract
Recent advances in named entity recognition
(NER) have pushed the boundary of the task
to incorporate visual signals, leading to many
variants, including multi-modal NER (MNER)
or grounded MNER (GMNER). A key chal-
lenge to these tasks is that the model should be
able to generalize to the entities unseen during
the training, and should be able to handle the
training samples with noisy annotations. To
address this obstacle, we propose SCANNER
(Span CANdidate detection and recognition for
NER), a model capable of effectively handling
all three NER variants. SCANNER is a two-
stage structure; we extract entity candidates
in the first stage and use it as a query to get
knowledge, effectively pulling knowledge from
various sources. We can boost our performance
by utilizing this entity-centric extracted knowl-
edge to address unseen entities. Furthermore,
to tackle the challenges arising from noisy an-
notations in NER datasets, we introduce a novel
self-distillation method, enhancing the robust-
ness and accuracy of our model in process-
ing training data with inherent uncertainties.
Our approach demonstrates competitive perfor-
mance on the NER benchmark and surpasses
existing methods on both MNER and GMNER
benchmarks. Further analysis shows that the
proposed distillation and knowledge utilization
methods improve the performance of our model
on various benchmarks.

1 Introduction

Named entity recognition (NER) is a fundamen-
tal task in natural language processing to identify
textual spans that correspond to named entities in
the given text, and classify them into pre-defined
categories, such as persons, locations, and organi-
zations (Li et al., 2020). The extracted information
can be utilized for various downstream tasks, in-
cluding entity linking and relation extraction.

* Work done as an intern at NAVER Cloud.
† To be corresponded with.
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Leonardo DiCaprio and Kate Moss on their way to 
an art show in New York City ( 1993 )
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Result
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New York City (LOC)      (None)

Figure 1: Illustrations of NER, MNER, and GMNER
tasks. The NER task aims to identify named entities
from the given text. MNER extends this task to utilize
additional image informations. GMNER additionally
requires the model to predict entity bounding boxes in
the given image, if they are present.

The rapid growth of the amount of multi-modal
contents on social media platforms has given rise to
the multi-modal variants of NER. The most promi-
nent example is multi-modal NER (MNER; Zhang
et al. (2018)) , which extends traditional NER to
identifying named entities in the text based on ad-
ditional image input paired with the text (Fig. 1b).
Another recent example is the grounded MNER
(GMNER; Yu et al. (2023)); here, one addition-
ally aims to predict the bounding boxes of named
entities appearing in the given image (Fig. 1c).

A major challenge in NER, MNER, and GM-
NER tasks is the presence of unseen entities in the
test datasets, which are not found in the training
datasets. Traditional models often struggle with
low performance on these unseen entities (see Ta-
ble 1). To tackle this problem effectively, it is im-
portant to use knowledge about unseen entities in a
way that boosts ability of the model to generalize
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Datasets Methods Seen entities Unseen entities

CoNLL2003 BERT-base 93.78 80.90
Ours (w/o Knowledge) 96.29 89.68

Twitter-2015 BERT-base 79.81 57.81
Ours (w/o Knowledge) 87.18 73.84

Twitter-2017 BERT-base 93.81 67.76
Ours (w/o Knowledge) 95.68 82.96

Table 1: A comparison of test F1 scores for the named
entities that have appeared at least once in the training
dataset, versus the entities that have not appeared.

RT @TheLilKimNews : Lil Kim is set to be perform
at Kroger during the MTV VMAs !
h�p://t.co/�2UFNZPfG

Image

Text

Candidate entity result of the stage1: Kroger

Object
Knowledge
Extractor

Image Captioner

Wiki Knowledge
Extractor

Entity Recognition Module

Result
GT: Organiza�on
Baseline: Location
SCANNER (Ours) : Organiza�on

Figure 2: ‘Kroger’ is an unseen entity that is hard to
recognize as an Organization or Location. By our knowl-
edge base model, it brings to successful prediction.

and perform well across different types of data. In
this paper, we introduce SCANNER, which stands
for Span CANdidate detection and recognition for
Named Entity Recognition. Our approach is de-
signed to effectively use knowledge about unseen
entities, addressing NER, MNER, and GMNER
tasks with improved robustness. SCANNER adopts
a two-stage structure, comprising a span candidate
detection module and entity recognition module.
The span candidate detection module identifies
named entity candidates within sentences. Follow-
ing this, the entity recognition module uses these
candidates as queries to extract relevant knowledge
from various sources, effectively recognizing the
class of the entity candidate. As illustrated in Fig. 2,
we were able to accurately identify ‘Kroger’ as
an ‘organization’ by utilizing object knowledge.
SCANNER effectively gathers and uses knowledge
from various sources, boosting its performance in
the challenging NER, MNER, and GMNER bench-
marks. Notably, the GMNER challenge involves
the intricate process of identifying entities and de-
termining their bounding boxes within images. The
architecture of SCANNER, leveraging its compre-
hensive knowledge, is effective in addressing the
GMNER task. The effectiveness of SCANNER in
the GMNER task is highlighted by establishing a
new baseline that is over 21% higher than the pre-

Text Dataset

[The [Oval]ORG]ORG CoNLL2003

[The [World Cup]MISC]MISC Twitter-2015

[Taste of [Toronto]LOC]MISC Twitter-2015

[Mrs. [Brozik]PER]PER Twitter-2017

[[Robert Downey ]PER Jr]PER Twitter-2017

Table 2: Examples of gold annotation and potential
alternatives. The gold annotations are marked in blue
[*], whereas the alternative annotations are in red [*].

vious standard, as measured by the F1 score. Ad-
ditionally, we introduce the novel self-distillation
method, called as Trust Your Teacher. The NER
task faces challenges with noisy annotations (Wang
et al., 2019; Zhu and Li, 2022), particularly at entity
boundaries where exact span matching is crucial
and ambiguity often leads to increased noise (see
Table 2). Our distillation method, which softly uti-
lizes both the prediction of the teacher model and
ground truth (GT) logit, addresses the challenges
of noisy annotations.

Our approach demonstrates competitive perfor-
mance on NER and surpasses existing methods on
both MNER and GMNER. Further analysis shows
that the proposed distillation and knowledge uti-
lization methods improve the performance of our
model on various benchmarks.

The contributions of SCANNER are summarized
in three key aspects:

• We propose a new distillation method that
softly blends the predictions of the teacher
model with ground truth annotations to en-
hance data quality and model training.

• We develop SCANNER, a two-stage struc-
tured model that effectively utilizes knowl-
edge to improve performance, particularly in
recognizing unseen entities.

• The SCANNER model shows competitive per-
formance in NER benchmarks and demon-
strates higher performance than existing meth-
ods in MNER and GMNER benchmarks.

2 Related work

Prior works on MNER typically operates by first
extracting the NER-related features from the im-
age, and then combining these features with text
features to recognize name entities. Roughly, ex-
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isting works fall into two categories according to
how they extract image features.
Textual features. Several works extract the textual
metadata from the given image and utilize them as
features for the subsequent NER task (Wang et al.,
2022b,a; Li et al., 2023b). For instance, ITA (Wang
et al., 2022b) extracts object tags, image captions,
and OCR results from the given image. Similarly,
Li et al. (2023b) also extracts image captions, but
additionally utilizes large language model as an
implicit knowledge source to further refine the fea-
tures. MoRe (Wang et al., 2022a) takes a slightly
different approach, using an image-based retrieval
system to retrieve textual descriptions of the closest
images in the database.
Visual encoders. Another line of work attempts to
extract the image features using a visual encoder,
such as pre-trained ResNets, ViTs, or CLIP vision
encoder (Wang et al., 2022e; Zhang et al., 2023;
Chen et al., 2023). The extracted features are then
combined with the text features extracted from a
separate text encoder, which often involves addi-
tional alignment via cross-modal attention (Chen
et al., 2022; Lu et al., 2022; Wang et al., 2022e;
Zhang et al., 2023; Chen et al., 2023). Notably,
PromptMNER (Wang et al., 2022d) calculates the
similarity between visual features and various text
prompts to extract visual cues that are loosely re-
lated to the input text.

In this paper, we take a different path and extract
the image features conditioned on the information
extracted from the given text. Up to our knowledge,
even though it has related works in NER (Wang
et al., 2021, 2022c; Tan et al., 2023), it is the first
such attempt in the context of MNER, which is a
more challenging task.

In addition, a new task has been introduced,
which not only incorporates image inputs but also
actively addresses the task of grounding entity lo-
cations within images (Yu et al., 2023).

3 Method

In this section, we first introduce the architecture
of the proposed method, which comprises the span
candidate detection module and the named entity
recognition module (Sec. 3.1). Then, we describe
the named entity recognition module, which per-
forms entity recognition and visual grounding in
the image for each entity candidate (Sec. 3.2).
Finally, we explain a novel distillation method,
named Trust Your Teacher, which is designed to

Entity
Recognition

ModuleInput sentence

Entity candidate

Object Knowledge
Extractor

Wiki Knowledge
Extractor

Image Captioner

Span
Candidate
Detection
Module

STAGE1 STAGE2

Input Im
age

Figure 3: The overall architecture of the proposed
SCANNER method. The two-stage structure allows
for efficient extraction and utilization of knowledge, as
knowledge is extracted only for those entity candidates
that were filtered through in stage 1.

robustly train our model even in the presence of
noisy dataset annotations (Sec. 3.3).

3.1 SCANNER Architecture

The primary focus of this paper is to perform
MNER using both knowledge extracted from
within images and external knowledge, even for en-
tities not encountered during training. To achieve
this, as illustrated in Fig. 3, we propose a two-stage
architecture, known for its efficiency in extracting
and searching for knowledge from various sources.
In the first stage, we extract named entity candi-
dates, and in the second stage, we efficiently search
and extract only knowledge relevant to these candi-
dates. This acquired knowledge is then utilized for
entity recognition.
Stage 1: Span Candidate Detection Module. In
the first stage of SCANNER, the transformer en-
coder (Liu et al., 2019) is employed to detect entity
candidates from the input text. During this phase,
we utilizes BIO (Beginning, Inside, Outside) tag-
ging to classify each token in the input text, de-
termining whether it corresponds to the beginning,
inside, or outside of an entity span. The classifica-
tion process is guided by cross-entropy loss.
Stage 2: Entity Recognition Module. In Stage 2,
SCANNER performs named entity recognition and
visual grounding for each entity candidate detected
in Stage 1. It utilizes each entity candidate as a
query to extract and leverage the necessary knowl-
edge for the tasks. During this process, SCAN-
NER efficiently searches and extracts knowledge
by focusing on the initially detected entity candi-
dates rather than the entire input text. SCANNER
utilizes both internal (image-based) and external
(e.g., Wikipedia) knowledge sources to perform
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Object detector &
Captioning model

An Image of Steve Kerr

American basketball
 player and coach (born 1965)

Search
Wikipedia 

Entity candidate: Steve Kerr

Captioning model

two basketball players talking
to each other on the court.

CLIP

Object knowledge extractor

Image Input

object knowledge 2 : object man, caption "person is listed or ranked 2 on the list the greatest spurs players of all time."

object knowledge 1 : object head, caption "person is listed or ranked 4 on the list the best hairstyles for bald men."

object knowledge 3 : object hair, caption "an older man with a white beard standing in front of a crowd."

head

hair

man

The entity is [mask] for {entity} in this sentence.{original sentence} {wikipedia knowledge} {image caption} [obj] {object knowledge 1} [obj] {object knowledge 2} ...

RoBERTa

INPUT embedding : mask obj 1 obj 2

Model output

Entity is People Overlap score 0.2 Overlap score 0.8

CLIP scores

Arrange object order based on CLIP score
Image captionerWikipedia knowledge extractor

object regions, classes, captions

Figure 4: An illustration of the entity recognition module (stage 2). Based on the entity candidates (extracted in
stage 1), SCANNER utilizes various knowledge sources such as Wikipedia, image captioner, and object knowledge
extractor. The knowledge collected from these sources are then processed by RoBERTa to give the final prediction.

MNER on unseen entities, not encountered in train-
ing. Detailed information about these modules will
be provided in Section 3.2.

3.2 Entity Recognition Module

For each entity candidate identified by the span
candidate detection module, the entity recogni-
tion module processes a text prompt that includes
both the entity candidate and associated knowl-
edge. This knowledge, extracted from images and
external knowledge sources, allows for performing
MNER on unseen entities that were not encoun-
tered during training. Our methodology involves
extracting this knowledge from a variety of sources,
utilizing the identified entity candidates as the basis
for the extraction process. Then, this module classi-
fies the class of each entity candidate and performs
grounding to determine which object in the image
corresponds to the entity. A detailed illustration is
shown in Fig. 4.

3.2.1 Prompt construction with knowledge
The entity recognition module extracts and utilizes
useful knowledge from various sources when con-
structing the text prompt corresponding to the in-
put. The knowledge applied for constructing text
prompts in our method includes the following.
Wikipedia knowledge. Initially, information is
searched using the entity candidate as a query in

external knowledge source, which is Wikipedia.
This information can be valuable for classifying
the type of entity for each candidate and, more-
over, enables the model to classify unseen entities
that were not encountered during training. As il-
lustrated in Fig. 4, for entity candidates like ‘Steve
Kerr’, it enhances entity recognition performance
by providing valuable information for classification
as an American basketball player and coach.
Image caption. To effectively utilize visual infor-
mation, image captioning results are also used. We
use the BLIP-2 (Li et al., 2023a) to extract synthetic
captions for the whole image.
Object knowledge. In addition to global informa-
tion about the image, object-level information is
also beneficial for entity recognition. To achieve
this, results obtained from the object detector are
employed as knowledge. Initially, object classes
are converted into text format and used as knowl-
edge. Then, synthetic captions for each object
region are also utilized in conjunction with class
names. This information is structured as details
corresponding to each object, along with a special
token denoted as [obj], as shown in Fig. 4. Addi-
tionally, during this process, the visual-language
similarity between each object and entity candidate
is calculated, and objects are arranged in order of
high similarity, which is then included in the text
prompt. One of the problems with existing meth-
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ods for the MNER task is that the model sometimes
references objects in the image that are irrelevant
to the entity, leading to incorrect recognition. By
arranging the object details in the text prompt ac-
cording to the visual-language similarity order with
the entity, our model can focus more on the object
regions that are highly related to the entity. In this
paper, CLIP (Radford et al., 2021) is employed for
visual-language similarity, specifically calculating
the similarity between the text representation of the
entity candidate and the visual representation of
each Region of Interest (RoI).

All such knowledge mentioned above is con-
verted into a textual format and integrated with
the text prompt for entity recognition and visual
grounding.

The text prompt, structured to include entity can-
didates, the entire input text sentence, and extracted
knowledge, is presented as "The entity is [mask]
for {entity} in this sentence. {original sentence}
{Wikipedia} {image caption} [obj] {object 1} [obj]
{object 2} ...".

3.2.2 Encoder and Objective

The prompts constructed for each entity candidate
are input into a transformer encoder model (Liu
et al., 2019). For entity recognition, the output
token representation of the [mask] token in the text
prompt xi for the i-th entity candidate is fed into a
linear layer to predict the probability distribution
ŷi. Given the ground truth y, the objective function
is to minimize the cross-entropy loss between the
predicted entity class distribution and the ground
truth logit:

Lc = −
N∑

i=1

yi log ŷi, (1)

where N is the total number of the entity candi-
dates.

Additionally, the visual grounding is performed
by feeding the output token representation of the
j-th [obj] token from the text prompt xi into a lin-
ear layer. This is followed by a sigmoid function,
which aids in predicting the overlap score ôij be-
tween the ground truth image region grounding
entity candidate i and object j. The objective func-
tion of visual grounding is calculated based on the
binary cross-entropy loss between the overlap score

and the ground truth Intersection over Union (IoU):

Lg = −
N∑

i=1

∑

j

oij log ôij

+ (1− oij) log(1− ôij),

(2)

where oij is the ground truth IoU between the
ground truth image region of the entity i and object
region j.

In training stage, we combine two losses as the
final loss of our model:

L = Lc + λLg, (3)

where λ is the weighting coefficient, we set λ to
1 for the GMNER task and to 0 for the NER and
MNER tasks in this paper.

3.3 Trust Your Teacher
We introduce the novel self-distillation method,
called as Trust Your Teacher (TYT). Our distil-
lation method, which softly utilizes both the pre-
diction of the teacher model and ground truth (GT)
logit, addresses the challenges of noisy annotations.
First, we train the teacher model using equation 1,
and then train the final student model using both
the predictions of the teacher model and the ground
truth labels. The most significant feature of our
proposed method is that it assesses the reliability
of each sample by utilizing the prediction of the
teacher model to determine if it is trustworthy or
noisy. Based on this assessment, the method sets
the weights between the model prediction and the
gt label, which are then reflected in the loss calcula-
tion. The objective of the our proposed distillation
method composes a cross-entropy loss with ground
truth and Kullback-Leibler Divergence (KLD) loss
with teacher predictions:

LTYT =
∑

i

ai LCE

(
yi, S(xi, θS)

)

+ (1− ai)LKLD

(
S(xi, θS), T (xi, θT )

)
,

(4)

where xi is the input sample, θS and θT are the
model parameters of the student and teacher, S and
T are the prediction distributions of the student and
teacher and ai is a balancing factor proposed in
this paper. In detail, ai determines whether to trust
the teacher model prediction or the ground truth,
and it represents the prediction score of the teacher
model for the ground truth class index, which is
T (xi, θT )[yi]. This implies that since the teacher
model is well-trained, if the score for the ground
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Figure 5: Experiments of text classification task in
MNLI datasets. ‘matched’ is in-domain, and ‘mis-
matched‘ is out-domain.

Methods
Twitter-2015 Twitter-2017 Twitter-GMNER

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1
Base 83.28 87.68 85.43 90.96 93.23 92.08 86.60 87.59 87.09
Half 83.36 87.69 85.47 90.31 92.92 91.60 87.00 87.96 87.47
Full 83.63 87.72 85.63 90.53 92.95 91.72 86.90 87.80 87.35
TYT 83.59 87.98 85.73 90.94 93.28 92.09 86.82 88.37 87.59

Table 3: Ablation study on the MNER dataset in first
stage. ‘Half’ is when ai is 0.5 and ‘Full’ is 0. In ‘TYT’,
ai is adjusted through the trust your teacher method.

truth class is high, then the sample is considered re-
liable and more weight is given to the cross-entropy
with the ground truth label. Conversely, if the score
is low, the sample is assumed to be an unreliable,
noisy sample, and more weight is placed on the
KLD loss with the prediction of the teacher model,
rather than the ground truth label.

To demonstrate the significant impact of our
TYT approach, we have carried out some experi-
ments. Fig. 5 illustrates our experiments on a text
classification task in MNLI dataset. We extract
about 30% of the train set for experimental effi-
ciency and intentionally added label noise at rates
of 10% and 20% to this subset. We then com-
pare the performance of the model trained with our
TYT method on the train set with added label noise
against the baseline that does not use distillation.
Fig. 5 indicates that using TYT demonstrates rel-
atively robust performance under moderate noise
conditions. Additionally, we compare our method
with the conventional soft distillation methods that
do not dynamically vary the ai parameter in the
entity detection task, stage 1 of MNER and GM-
NER. Table 3 shows that our method has better
performance on MNER and GMNER benchmarks,
and adaptively varying the ai is more effective than
keeping it fixed.

We apply the TYT to both stages 1 and 2. But in

NER, we only use it in stage 1. The loss from the
TYT is applied only to the classification loss and
not to the loss for visual grounding.

4 Experiment

4.1 Dataset

Our methodology’s efficacy was assessed using
widely used datasets for each task. We utilize
CoNLL2003 (Tjong Kim Sang and De Meulder,
2003) for NER, Twitter-2015 (Zhang et al., 2018)
and Twitter-2017 (Lu et al., 2018) for MNER, and
Twitter-GMNER (Yu et al., 2023) for GMNER.
Details are in appendix B.

4.2 Experimental Setups

Evaluation metrics. To evaluate our method, we
use Entity-wise F1, precision, and recall scores for
NER and MNER tasks. For the GMNER task, there
is an additional evaluation of the visual grounding.
For instances, where the visual grounding is un-
groundable, a prediction is correct if it is classified
as ‘None.’ For others, correctness hinges on the
IoU metric. A prediction is considered correct if
the IoU score between the predicted visual region
and the ground truth bounding boxes exceeds a
threshold of 0.5. We use F1, precision, and recall
scores, which are calculated based on the aggregate
correctness across entity, type, and visual region
predictions. Our primary focus is on the F1 score
in line with numerous preceding studies.
Implementation details. Following most re-
cent works, we implement our model utiliz-
ing RoBERTa-large in NER, XLM-RoBERTa-
large (Conneau et al., 2020) for MNER, GMNER
both in stage 1 and stage 2. For the object detec-
tor, we use VinVL (Zhang et al., 2021b) following
the settings with ITA (Wang et al., 2022b). To
address the requirements of visual-language sim-
ilarity and image caption, we use each of them
CLIP 1 and BLIP-2 2 models respectively. Detailed
hyper-parameter settings are shown in appendix A.
All experiments were done on a single GeForce
RTX 4090 GPU or NVIDIA H100 GPU, and we
report the average score from 5 runs with different
random seeds for each setting.

Also we applied several minor methods to en-
hance performance. In the second stage, we incor-
porated a ‘non-entity’ label to account for instances

1openai/clip-vit-large-patch14
2salesforce/blip2-opt-2.7b
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Methods
Twitter-2015 Twitter-2017

Single Type(F1) Overall Single Type(F1) Overall
PER LOC ORG OTH. Pre. Rec. F1 PER LOC ORG OTH. Pre. Rec. F1

Text

BERT-CRF† 85.37 81.82 63.26 44.13 75.56 73.88 74.71 90.66 84.89 83.71 66.86 86.10 83.85 84.96
BERT-SPAN† (Yamada et al., 2020) 85.35 81.88 62.06 43.23 75.52 73.83 74.76 90.84 85.55 81.99 69.77 85.68 84.60 85.14
RoBERTa-SPAN† (Yamada et al., 2020) 87.20 83.58 66.33 50.66 77.48 77.43 77.45 94.27 86.23 87.22 74.94 88.71 89.44 89.06

Vision-LLM (w/ zero-shot)

Gemini-pro-vision 73.12 65.53 35.80 20.72 48.24 64.88 55.34 84.36 71.65 61.24 22.02 64.02 69.90 66.83
GPT4-V 80.00 75.26 40.53 25.26 51.46 70.42 59.46 85.63 78.62 73.68 36.63 67.63 74.90 71.08

Text+Image

UMT (Yu et al., 2020) 85.24 81.58 63.03 39.45 71.67 75.23 73.41 91.56 84.73 82.24 70.10 85.28 85.34 85.31
UMGF (Zhang et al., 2021a) 84.26 83.17 62.45 42.42 74.49 75.21 74.85 91.92 85.22 83.13 69.83 86.54 84.50 85.51
MNER-QG (Jia et al., 2023) 85.68 81.42 63.62 41.53 77.76 72.31 74.94 93.17 86.02 84.64 71.83 88.57 85.96 87.25
R-GCN (Zhao et al., 2022) 86.36 82.08 60.78 41.56 73.95 76.18 75.00 92.86 86.10 84.05 72.38 86.72 87.53 87.11
ITA (Wang et al., 2022b) - - - - - - 78.03 - - - - - - 89.75
PromptMNER (Wang et al., 2022d) - - - - 78.03 79.17 78.60 - - - - 89.93 90.60 90.27
CAT-MNER (Wang et al., 2022e) 88.04 84.70 68.04 52.33 78.75 78.69 78.72 94.61 88.40 88.14 80.50 90.27 90.67 90.47
MoRe (Wang et al., 2022a) - - - - - - 79.21 - - - - - - 90.67
PGIM ‡ (Li et al., 2023b) 88.34 84.22 70.15 52.34 79.21 79.45 79.33 96.46 89.89 89.03 79.62 90.86 92.01 91.43
SCANNER (Ours) 88.24 85.16 69.86 52.23 79.72 79.03 79.38 95.18 88.52 88.45 79.71 90.40 90.67 90.54

± 0.27 ± 0.22 ± 0.31 ± 1.39 ± 0.56 ± 0.64 ± 0.14 ± 0.23 ± 0.26 ± 0.66 ± 2.98 ± 0.19 ± 0.53 ± 0.32

Table 4: Experiment results on the Twitter-2015 and Twitter-2017. The results for methods marked with † are
from Wang et al. (2022e). The methods marked with ‡ denotes that they utilize LLMs (of ChatGPT scale) as
knowledge sources.

Methods
CoNLL2003

Pre. Rec. F1

W2NER (Li et al., 2022) 92.71 93.44 93.07
DiffusionNER (Shen et al., 2023a) 92.99 92.56 92.78
PromptNER (Shen et al., 2023b) 92.96 93.18 93.08
SCANNER (Ours) 93.07 93.44 93.26

± 0.20 ± 0.23 ± 0.21

Table 5: Experiment results on the CoNLL2003.

where the model erroneously predicts entity can-
didates not present in the dataset. That allowed
for more accurate handling of such cases. We aug-
mented it with non-entity data by dividing the train-
ing set into four folds in stage 1 and validating each
fold. Secondly, we employed adversarial weight
perturbation (AWP) (Wu et al., 2020) in stage 1 ,
which enhances the robustness and generalization
capabilities of the model. We initiated AWP from
an intermediate stage of our training process.

4.3 Experimental results in various NER tasks

Experimental results in NER. To evaluate the
effectiveness of our approach in NER, we primarily
compared our model against the existing methods
in Table 5. It shows that SCANNER exhibits a
competitive performance compared to the existing
NER methods.
Experimental results in MNER. In assessing the
effectiveness of SCANNER in MNER, we con-
ducted comparative analyses against various lead-
ing models in this task. The results, detailed in

Methods
Twitter-GMNER

Pre. Rec. F1

Text

HBiLSTM-CRF-None (Lu et al., 2018) 43.56 40.69 42.07
BERT-None (Devlin et al., 2019) 42.18 43.76 42.96
BERT-CRF-None 42.73 44.88 43.78
BARTNER-None (Yan et al., 2021a) 44.61 45.04 44.82

Text+Image

GVATT-RCNN-EVG (Lu et al., 2018) 49.36 47.80 48.57
UMT-RCNN-EVG (Yu et al., 2020) 49.16 51.48 50.29
UMT-VinVL-EVG (Yu et al., 2020) 50.15 52.52 51.31
UMGF-VinVL-EVG (Zhang et al., 2021a) 51.62 51.72 51.67
ITA-VinVL-EVG (Wang et al., 2022b) 52.37 50.77 51.56
BARTMNER-VinVL-EVG (Yu et al., 2023) 52.47 52.43 52.45
H-Index (Yu et al., 2023) 56.16 56.67 56.41
SCANNER (Ours) 68.34 68.71 68.52

± 0.73 ± 0.61 ± 0.67

Table 6: Experiment results on the Twitter-GMNER.
The reported figures for the baseline models are taken
from Yu et al. (2023).

Table 4, reveal that our model achieves superior
performance in Twitter-2015 and exhibits markedly
impressive results in Twitter-2017. Notably, while
PGIM shows outstanding performance on Twitter-
2017, it utilizes large language models (LLM) like
ChatGPT, which incurs API costs, a notable draw-
back. In contrast, our model does not rely on
LLM knowledge, freeing it from such disadvan-
tages and demonstrating better performance on
Twitter-2015. Additionally, we conduct experience
using the same LLM knowledge as PGIM, which
is in appendix C.
Experimental results in GMNER. To show our
effectiveness in GMNER, we make broad compar-
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RT @TheLilKimNews : Lil Kim is set to be perform
at Kroger during the MTV VMAs !
h�p://t.co/�2UFNZPfG

Image

Text

Candidate entity result of the stage1: Kroger

Image Captioner

Wiki Knowledge
Extractor

Result
GT: Organiza�on
Baseline: Location
SCANNER (w/o wiki) : Organiza�on
SCANNER (w/o Object) : Organiza�on
SCANNER (Ours) : Organiza�on

Filter and sort by CLIP model

Object Knowledge Extractor

RT @That70sLife : Kelso is my fav
h�p://t.co/hK90z0PnVX

Image

Text

Candidate entity result of the stage1: Kelso

Image Captioner

Wiki Knowledge
Extractor

Result
GT: Person
Baseline: Organization
SCANNER (w/o wiki) : Person
SCANNER (w/o Object) : Organization
SCANNER (Ours) : Person

Object Knowledge Extractor

Filter and sort by CLIP model

RT @ThatDudeMCFLY : Ask Siri what 0 divided by 0
is and watch her put you in your place .
h�p://t.co/qN1KX8YTVp

Image

Text

Candidate entity result of the stage1: Siri

Image Captioner

Wiki Knowledge
Extractor

Result
GT: Miscellaneous
Baseline: Person
SCANNER (w/o wiki) : Person
SCANNER (w/o Object) : Miscellaneous
SCANNER (Ours) : Miscellaneous

Object Knowledge Extractor

Filter and sort by CLIP model

Figure 6: Visualization results showing how various types of knowledge are brought in and utilized differently to
perform the MNER task. Knowledge highlighted in blue positively influences correct predictions.

Methods
Twitter-2015 Twitter-2017

Pre. Rec. F1 Pre. Rec. F1

SCANNER 79.72 79.03 79.38 90.40 90.67 90.54
- TYT -0.26 -0.17 -0.21 -0.24 -0.11 -0.18
- OBK +0.11 -0.60 -0.26 -0.23 -0.22 -0.22
- WKK -1.12 -0.14 -0.64 -0.51 -0.44 -0.48
- ICK -0.08 -0.54 -0.31 -0.29 -0.31 -0.29

Table 7: Ablation studies on MNER datasets. ‘-TYT’
is without trust your teacher method. ‘-OBK’ is with-
out object knowledge. ‘-WKK’ is without Wikipedia
knowledge.‘-ICK’ is without image caption knowledge.

isons with all existing methods. Text-only models
made to predict the visual groundings all ‘None’.
The Table 6 shows that our model achieves signifi-
cant performance improvements over prior research
and establishes a new powerful baseline for future
GMNER studies.

4.4 Ablation study

Ablation study in MNER. We conduct ablation
experiments on the MNER task to evaluate the ef-
fectiveness of the proposed method. These results
are shown in Table 7. We observe that removing
the Trust Your Teacher method led to a decrease
in performance. Our proposed distillation method
effectively alleviates the dataset noise issue, mak-

ing our model more robust to learning from noisy
dataset. Additionally, to verify the effectiveness of
the various types of knowledge used in our study,
we compare the results with experiments where
each type of knowledge was removed. We confirm
that the object knowledge, Wikipedia knowledge,
and image caption knowledge used in our paper all
contribute to the performance improvement of the
MNER task.

Case study. As shown in Fig. 6, all three types
of knowledge can be utilized as useful informa-
tion for named entity recognition. In the case of
the first image, knowledge from Wikipedia such
as "American retail company" and object knowl-
edge containing the logo information of "Kroger"
both help in predicting the "Kroger" entity as an
organization. For the image on the bottom left, im-
age caption and object knowledge aided in named
entity recognition. Moreover, in the image on the
bottom right, vision information like image caption
and object knowledge led to incorrect entity recog-
nition results, but it was corrected through external
knowledge from Wikipedia. Thus, the three types
of knowledge proposed in this paper complement
each other, enabling accurate MNER performance.

Effectiveness in unseen entity. Table 8 shows the
effectiveness of knowledge in unseen entities. As
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Datasets
w/o Knowledge w/ Knowledge
Seen Unseen Seen Unseen

CoNLL2003 96.29 89.68 96.35 89.70
Twitter-2015 87.18 73.84 87.50 75.45
Twitter-2017 95.68 82.96 95.90 83.71

Table 8: The result comparing the test F1 scores in
unseen entities of knowledge extracted and baseline.

SCANNER utilizes various knowledge in MNER,
it greatly increases performance in unseen entities.
In NER, lack of various knowledge causes there to
be no image, which slightly improves the perfor-
mance.

5 Conclusions

We introduce SCANNER, a novel approach for per-
forming NER tasks by utilizing knowledge from
various sources. To efficiently fetch diverse knowl-
edge, SCANNER employs a two-stage structure,
which detects entity candidates first, and performs
named entity recognition and visual grounding on
these candidates. Additionally, we propose the
novel distillation method, which robustly trains the
model against dataset noise, demonstrating supe-
rior performance in various NER benchmarks. We
believe that our method can be easily extended to
utilize knowledge from multiple sources that were
not covered in this paper.

Limitations

In this study, we extract knowledge from various
sources and utilize it to perform MNER tasks. By
leveraging several vision experts such as CLIP, and
also fetching external knowledge, our method takes
relatively longer inference time compared to ap-
proaches that do not use knowledge. However, the
use of vision experts and knowledge is essential for
a MNER model that functions well even with un-
seen entities, and we efficiently extract information
through a two-stage structure.
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A Hyper-parameter settings

Datasets
Stage 1

epochs batch size lr weight decay

CoNLL2003 5 8 5× 10−6 1
Twitter-2015 10 4 1× 10−5 2
Twitter-2017 10 8 1× 10−5 2
Twitter-GMNER 10 8 1× 10−5 2

Table 9: Hyper-parameter settings in Stage 1 were used
in the experiments for NER, MNER, and GMNER.

Datasets
Stage 2

epochs batch size lr weight decay max objects

CoNLL2003 20 8 3× 10−6 0.01 -
Twitter-2015 5 8 1× 10−5 0.01 15
Twitter-2017 7 8 5× 10−6 0.01 15
Twitter-GMNER 5 8 5× 10−6 2 18

Table 10: Hyper-parameter settings in Stage 2 were used
in the experiments for NER, MNER, and GMNER.

We conducted our experiments with hyper-
parameter settings as outlined in the follow-
ing Table 9 and Table 10, and we utilize
AdamW (Loshchilov. and Hutter, 2019) optimizer
for all tasks. ‘max objects’ refers to the maximum
number of object knowledge inputs. We performed
a grid search for the learning rate within the range
of [5× 10−6, 1× 10−5]. We tested batch sizes of
4, 8, and 16 to determine the optimal value, and we
explored weight decay within a range of [0.01, 2].

B Detailed dataset statistics

To demonstrate the superiority of our method for
various NER tasks, we conduct experiments on a
range of datasets. The overall dataset statistics are
shown in Table 11, and each task description is in
below.
NER dataset. CoNLL2003 (Tjong Kim Sang and
De Meulder, 2003), a dataset with four named en-
tities: PER, LOC, ORG, and MISC. We follow
the standard setting (Peters et al., 2017; Yan et al.,
2021b; Shen et al., 2023a): use both the train set
and dev set for training and evaluate with the test
set
MNER dataset. Twitter-2015 (Zhang et al., 2018)
and Twitter-2017 (Lu et al., 2018); collected from
social network service posts. Like CoNLL2003, it
consists of the same four named entity types. We
operate a train set for training and hyper-parameter
tuning using a dev set and evaluate it with the test
set.
GMNER dataset. Twitter-GMNER (Yu et al.,
2023), a dataset collected by extracting some of

Text Image Total

#Total #Train #Dev #Test #Groundable Entity

CoNLL2003 20,744 17,291 - 3,453 -
Twitter-2015 8,257 4,000 1,000 3,257 -
Twitter-2017 4,819 3,373 723 723 -
Twitter-GMNER 10,000 7,000 1,500 1,500 6,716

Table 11: Dataset statistics of NER, MNER, and GM-
NER benchmarks

Methods
Twitter-2015 Twitter-2017

Pre. Rec. F1 Pre. Rec. F1

MoRe (Wang et al., 2022a) - - 79.21 - - 90.67
PGIM (Li et al., 2023b) 79.21 79.45 79.33 90.86 92.01 91.43
SCANNER 79.72 79.03 79.38 90.40 90.67 90.54
SCANNER (w/ GPT knowledge) 79.24 80.97 80.10 90.22 92.23 91.22

Table 12: Comparison SCANNER w/ GPT knowledge
with previous leading baseline methods on Twitter-2015
and Twitter-2017 datasets.

the data from Twitter-2015 and Twitter-2017, and
employ bounding box annotation. We operate same
validate strategy as MNER.

C Compare with MoRe and PGIM

Using LLM knowledge. With the advancements
in LLM, we conducted experiments using GPT
knowledge in SCANNER instead of Wikipedia
knowledge. We utilize the same knowledge used
in PGIM, and the results are in Table 12. We can
observe that while applying GPT knowledge in
SCANNER increases time and API-related costs,
it also enhances performance. Notably, despite
the GPT knowledge being tailored for PGIM, its
performance in SCANNER is superior.
Time cost in retrieval knowledge. We conduct
time cost comparisons using retrieval knowledge.
As shown in Table 13, our entity-centric approach
for integrating Wikipedia information demonstrates
a speed advantage over MoRe’s BM25 and K-NN
based information retrieval and PGIM’s GPT-based
knowledge creation. This speed benefit arises from
our direct method of identifying entity candidates,
which allows for immediate retrieval of relevant
Wikipedia articles without any bottlenecks.

D Ablation study in GMNER

We conduct additional ablation experiments on the
Twitter-GMNER task to evaluate the effectiveness
of the proposed method. Effects of each method
are shown in Table 14, and ablation studies on the
number of object tokens are shown in Table 15.
These tables substantiate the efficacy of our pro-
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Methods Knowledge base Sentences / Sec.

MoRe Wiki (Text) 64.6
MoRe Wiki (Image) 650.1
PGIM GPT 0.92
SCANNER (Ours) Wiki (Text) 1,300.09

Table 13: Throughput of knowledge extractor. Perfor-
mance metrics for MoRe are sourced directly from the
MoRe paper, while those for PGIM and SCANNER are
obtained from our measurements on a Ryzen 7900 CPU.
Bigger is faster. For each 100 sentences, PGIM paid
$0.2 for using ChatGPT API.

Methods
Twitter-GMNER

Pre. Rec. F1

SCANNER 68.34 68.71 68.52
- TYT -0.46 -0.44 -0.45
- SOC -0.14 -0.16 -0.15
- WKK -0.11 -0.17 -0.14
- ICK -1.09 -1.09 -1.09

Table 14: Ablation studies on GMNER datasets. ‘-TYT’
is without trust your teacher method. ‘-SOC’ is without
sorting objects by clip. ‘-WKK’ is without Wikipedia
knowledge.‘-ICK’ is without image caption knowledge.

posed methodologies in the context of GMNER
and show that it is optimal when the number of
object tokens is 18.
Effect of CLIP knowledge. CLIP is a practical
module extracting entities from an image. As vi-
sualized in Fig 7, CLIP utilizes its knowledge and
attention to the entity location in the image and
improves the model’s capability in GMNER tasks.

Object tokens
Twitter-GMNER

Pre. Rec. F1

9 67.50 67.85 67.67
12 68.06 68.43 68.24
15 68.22 68.55 68.38
18 68.34 68.71 68.52
21 68.34 68.68 68.51

Table 15: Ablation studies on the number of object
tokens.
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Input: President Obama

Input: Nottingham Castle

Output

Output

Figure 7: A visualization of which location CLIP focuses on by using Grad-CAM (Selvaraju et al., 2017).
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