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Abstract

In this project, we demonstrate that phoneme-
based models for speech processing can
achieve strong crosslinguistic generalizability
to unseen languages. We curated the IPAPACK,
a massively multilingual speech corpora with
phonemic transcriptions, encompassing 115
languages from diverse language families, se-
lectively checked by linguists. Based on the
IPAPACK, we propose CLAP-IPA, a multilin-
gual phoneme-speech contrastive embedding
model capable of open-vocabulary matching
between arbitrary speech signals and phonemic
sequences. The proposed model was tested on
95 unseen languages, showing strong generaliz-
ability across languages. Temporal alignments
between phonemes and speech signals also
emerged from contrastive training, enabling ze-
roshot forced alignment in unseen languages.
We further introduced a neural forced aligner
IPA-ALIGNER by finetuning CLAP-IPA with
the Forward-Sum loss to learn better phone-
to-audio alignment. Evaluation results suggest
that IPA-ALIGNER can generalize to unseen
languages without adaptation.

1 Introduction

The diversity of human speech presents a
formidable challenge to multilingual speech pro-
cessing systems. Recently, accumulating evidence
indicates that scaling up the multilingual data can
tremendously improve the performance of multi-
lingual speech processing (Conneau et al., 2020;
Babu et al., 2021; Radford et al., 2023; Pratap et al.,
2023). However, it remains incredibly difficult, if
not impossible, to gather large-scale data from ev-
ery language in the world. It is becoming increas-
ingly critical to develop speech processing systems
that generalize to arbitrary unseen languages.

Despite the seeming diversity, sounds of human
speech are highly constrained by the anatomical
structure of the human vocal tract, which is uni-
versally shared by all humans (Gick et al., 2013).

Typological research has also shown that most, if
not all, human speech can be represented by around
150 phonemes and diacritics (Moran et al., 2014;
Gordon, 2016). The limited degrees of freedom in
human articulation have enabled phoneticians and
linguists to craft universal symbolic representations
of human speech, that is, the International Pho-
netic Alphabet (IPA) (International Phonetic As-
sociation, 1999).

Prior studies have shown that phoneme-based
ASR models generalize to unseen languages (Li
et al., 2020; Xu et al., 2022; Glocker et al., 2023).
In this project, we aim to provide yet another posi-
tive answer to this central question: can we build
multilingual speech processing systems that gen-
eralize to arbitrary languages through the use of
universal IPA symbols? Specifically, we focus on
two classic tasks in speech processing, key word
spotting (KWS) and forced alignment. KWS is a
task of identifying specific keywords in streaming
speech, whereas forced alignment refers to align-
ing intervals of a speech signal to a given sequence
of phonetic symbols. Both tasks are relevant in
many practical applications such as voice assistant,
speech synthesis, language documentation, etc. Yet
neither task has been tackled with general systems
that generalize to all languages.

This study represents an attempt to build cross-
linguistically generalizable systems for KWS and
forced alignment. First, we present the IPAPACK,
a multilingual speech corpora in 115 languages
with phonemic transcriptions, totaling over 1000
hours and carefully checked by trained linguists.
Secondly, with the IPAPACK, we proposed Con-
trastive Language-Audio Pretraining with Interna-
tional Phonetic Alphabet (CLAP-IPA), a phoneme-
to-speech retrieval model with contrastive pretrain-
ing on phoneme-speech pairs. Evaluations on 95
unseen languages suggest that CLAP-IPA is capa-
ble of performing zero-shot open-vocabulary KWS
in any language without adaption, including lan-
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guages not seen during training.
Thirdly, we also introduce a multilingual forced

alignment model, IPA-ALIGNER, that works for
arbitrary languages. We noticed that alignments be-
tween phonemes and speech signals emerge from
CLAP-IPA, even with only sequence-level con-
trastive learning. Crosslinguistic zero-shot forced
alignment can be achieved with CLAP-IPA. After
finetuning CLAP-IPA with an alignment loss, we
propose IPA-ALIGNER that can provide crosslin-
guistic word-level and phone-level alignment gen-
eralizable to unseen languages. Finally, our anal-
ysis indicates that phonemes, being shared across
all languages, enhance knowledge transfer within
training data, serving as more effective modeling
units than texts in current multilingual tasks.

We envision that our dataset and models will
benefit more downstream tasks and applications
in multilingual speech processing. To facilitate
future research, we will release our dataset, scripts,
and pre-trained models at: https://github.com/
lingjzhu/clap-ipa.

2 Backgrounds

2.1 Spoken keyword detection and retrieval
Most research in keyword spotting focuses predom-
inantly on English (e.g., Chen et al., 2014; Tang
and Lin, 2018; Rybakov et al., 2020; Berg et al.,
2021). In recent years, there has been increased
interest in building multilingual keyword detection
systems that can adapt to new words or new lan-
guages through few-shot learning (Mazumder et al.,
2021a; Lei et al., 2023; Reuter et al., 2023). While
texts are the primary modeling units in most sys-
tems, studies are showing the effectiveness of using
IPA symbols to achieve open-vocabulary general-
ization (Tanaka et al., 2001; Shin et al., 2022; Lee
and Cho, 2023; Reuter et al., 2023).

Another approach for keyword matching is
based on contrastive learning frameworks, no-
tably CLAP (Wu et al., 2023) and the subsequent
CLARA (Noriy et al., 2023). Contrastive learn-
ing also enables keyword retrieval systems based
on semantics rather than the surface acoustic form
(Duquenne et al., 2021; Khurana et al., 2022; Zhu
et al., 2022a). The contrastive learning paradigm
has also been applied successfully to build open-
vocabulary KWS systems (Nishu et al., 2023).

Nevertheless, existing multilingual KWS sys-
tems face limitations in terms of limited supported
languages, and cannot achieve zero-shot adapta-

tion. Built on these prior efforts, we scaled up the
phoneme-based open-vocabulary KWS models to
more languages to achieve crosslinguistic general-
ization.

2.2 Forced alignment
Forced alignment is another classic task in speech
processing for segmenting speech into utterances,
words, or phonemes. It is widely used for down-
stream tasks where phone or word durations are
needed, including speech synthesis, speech assess-
ment, language documentation, and speech cor-
pora construction. Currently, some of the most
popular forced alignment systems are still based
on Hidden Markov Models (HMM), including the
Montreal Forced Aligner (MFA) (McAuliffe et al.,
2017), WebMAUS (Kisler et al., 2012) and Forced
Alignment and Vowel Extraction (FAVE) (Rosen-
felder et al., 2011). Recently, since neural net-
works gradually dominate speech processing, re-
search in performing forced alignment with deep
neural models is also gaining momentum (Kelley
and Tucker, 2018; Kürzinger et al., 2020; Schulze-
Forster et al., 2020; Teytaut and Roebel, 2021; Tey-
taut et al., 2022; Zhu et al., 2022c). Neural models
usually exhibit stronger performance over HMM-
based systems. However, forced alignment systems
are mostly set up to work in monolingual settings.
Scant attention has been paid to the building of mul-
tilingual forced alignment systems that can work
for multilingual languages simultaneously.

3 Dataset curation

Most speech corpora are distributed as audio-text
pairs. In comparison, phonemically transcribed
speech corpora are rare. Unlike text transcription,
transcribing speech signals into IPA, or phone-
mic transcriptions often require years of exper-
tise in phonetics, making it hard to create high-
quality phonemic datasets at scale. However, these
IPA symbols provide a universal representation of
speech sounds such that any language can be tran-
scribed symbolically. So IPA symbols can be used
as a proxy to train multilingual speech processing
systems. As a first step, we created large-scale
phonemic transcriptions for public speech corpora,
encompassing 115 languages across language fam-
ilies. The transcription can be automated through
grapheme-to-phoneme conversion (G2P), a pro-
cess of converting orthographic transcriptions into
phonemic transcriptions through pronunciation dic-
tionaries and/or statistical models.
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Train (hrs) Dev (hrs) Test (hrs) Total (hrs) Languages Avg. Dur (hrs)

VoxCommunis (Ahn and Chodroff, 2022) 803.84 - - 803.84 38 21.15

IPAPACK

FLEURS-IPA 544.02 73.46 162.06 779.54 77 10.12
MSWC-IPA 485.35 64.08 64.11 613.44 36 17.04
DORECO-IPA 13.70 - 5.29 18.99 44 0.44

Table 1: Descriptive statistics of the IPAPACK and a selected subset of VoxCommunis (Ahn and Chodroff, 2022).

3.1 Phonemic transcriptions
We primarily made use of three existing mul-
tilingual speech datasets, FLEURS (Conneau
et al., 2023), Multilingual Spoken Words Corpus
(MSWC) (Mazumder et al., 2021b) and DoReCo
(Paschen et al., 2020).

FLEURS We used two multilingual G2P systems,
Epitran (Mortensen et al., 2018) and CharsiuG2P
(Zhu et al., 2022b), to create phonemic transcrip-
tions. As these two systems cover an overlapping
but slightly different set of languages, combining
them allowed us to maximize the diversity of lan-
guages. Before preprocessing, we removed any
texts with Arabic numbers or code-switching, as
G2P systems cannot process them correctly.

Yet some Asian languages do not explicitly mark
word boundaries with spaces. For Mandarin Chi-
nese, G2PW (Chen et al., 2022) was used to create
the Pinyin romanizations, which were then mapped
to IPA symbols. For Thai, we used PyThaiNLP
(Phatthiyaphaibun et al., 2016) to perform word
segmentation and G2P. For Japanese, the word seg-
mentation was first performed with Fugashi (Mc-
Cann, 2020) before G2P was applied.

MSWC As MSWC is a word-level speech corpus,
creating phonemic transcriptions was straightfor-
ward. CharsiuG2P and Epitran were deployed to
transcribe the orthographic words to phonemic se-
quences. To strike a balance between diversity and
quantity, we limited the maximum frequency to 50
to prevent high-frequency words from dominating
the dataset. For words with more than 50 samples,
only 50 of them will be randomly selected from the
pool. After filtering, we ended up with 2.3 million
spoken words, amounting to around 613 hours.

DoReCo The original DoReCo data were dis-
tributed as hour-long recordings, so we segmented
them into individual utterances based on the sen-
tence boundaries in the provided annotations.
For DoReCo, all languages were transcribed as
phonemes using X-SAMPA (Wells, 1995) nota-
tions. We simply converted the X-SAMPA tran-

scription to IPA symbols, as there is a one-to-one
mapping between these two systems. Utterances
with incomplete transcriptions or loud background
noises were discarded.

3.2 Dataset validation
As G2P systems are based on rules or pronuncia-
tion dictionaries, they reflect how a word should be
pronounced rather than how a word is pronounced.
Given the high variability (e.g., phonetic reduction,
coarticulation) in speech signals, it is not always
possible for the G2P phonemic transcriptions to
exactly match the audio. We were aware that a
true transcription does not always exist for every
utterance (Ladefoged and Halle, 1988; Ladefoged,
1990). Even trained phoneticians often disagree
on the phonemic transcriptions of the same utter-
ance, due to factors including psycho-acoustic con-
straints, phonetic training, and their mother tongue
(Pitt et al., 2005; Heselwood, 2013).

Two authors (trained phoneticians) listened to
at least ten random samples in each language to
determine the transcription quality. We applied a
relatively relaxed standard for the generated tran-
scriptions: as long as the speech signal approxi-
mately matches more than 80% of the transcription,
it is considered valid. While we made our best
efforts to validate the transcription quality, we ac-
knowledge that there are still transcription errors
in the dataset. A summary of the IPAPACK is pre-
sented in Table 1. To augment our current dataset,
we also included a filtered subset of VoxCommuis
Corpus (Ahn and Chodroff, 2022), which is a mul-
tilingual speech corpora created in a similar work-
flow, though with slightly different pronunciation
dictionaries and G2P tools. Detailed information
on individual languages of the VoxCommuis Cor-
pus is at Appendix A

4 Method

4.1 Contrastive learning for KWS
Here we adopt the same contrastive learning frame-
work as CLAP (Wu et al., 2023), as it has been
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proven to be one of the most effective strategies
for learning high-quality cross-modal representa-
tions. There are two separate encoders to pro-
cess phoneme sequence P ∈ RN×1 and speech
MFCC features S ∈ RT×K , transforming them
into phoneme embedding and speech embedding.
In this study, we use the SigLIP loss, a sim-
pler sigmoid-based loss that is shown to be as
effective as the softmax-based CLIP loss (Zhai
et al., 2023). Given two normalized embeddings
xi ∈ RD = fS(Pi) and yi ∈ RD = fT (Si), it is
defined as follows.

L = − 1

|B|

|B|∑

i=1

|B|∑

j=1

log
1

1 + ezij(−txi·yj+b)
︸ ︷︷ ︸

Lij

(1)

where t and b are learnable parameters that were
updated during training. zij is the ground truth
label, zij = 1 for positive pairs and zij = −1 for
negative pairs. Following the recommendation by
Zhai et al. (2023), we initialized t = log 10 and
b = −10.

Speech encoder The speech encoder has the same
transformer encoder architecture as the Whisper’s
encoder. The weights were initialized with Whis-
per’s pre-trained encoder weights, whereas the de-
coder was discarded. The original Whisper encoder
does not accept attention masks, but these padding
tokens can bias the model during pooling. So at-
tention masks were also passed to the speech en-
coder and the final fixed-dimensional embedding
through mean pooling on non-padded hidden states.
For speech data augmentation, SpecAugment (Park
et al., 2019) was applied during training using the
default hyperparameters in Whisper training.

Phoneme tokenizer We trained a specialized to-
kenizer to encode all base IPA symbols and dia-
critics, including tonal notations, stress marks, and
tie bars for affricates. Upon inspection, we no-
ticed that the IPA transcriptions were inconsistent
across languages. For example, tie bars were in-
consistently labeled (e.g., [tS] vs. [�tS]) and stress
marks tend to be a language-specific phenomenon
(Gordon and Roettger, 2017). Yet we did not per-
form normalization on these idiosyncratic labels to
preserve the diversity of our data. The phoneme
tokenizer was trained using the unigram algorithm
(Kudo, 2018) with sentencepiece package 1. The

1https://github.com/google/sentencepiece

tokenizer was trained on all phonemic transcrip-
tions in our datasets, with a vocabulary of 450 and
byte-fallback for unknown characters.

Phoneme encoder For the phoneme encoder, we
used the BERT architecture (Devlin et al., 2019)
with mean pooling of the final hidden states as the
fixed-dimensional representation. The phoneme en-
coder was pre-trained on a corpus of phonemic tran-
scriptions using standard masked language mod-
eling (MLM) as detailed in (Devlin et al., 2019).
Given that phoneme sequences are of less complex-
ity than texts, the masking probability was set to
30%. The training data were pooled from diverse
sources, including the IPAPACK, pronunciation dic-
tionaries in CharsiuG2P (Zhu et al., 2022b), and
Vox Communis (Ahn and Chodroff, 2022). The
final pretraining corpus consists of 11 million sam-
ples in more than 110 languages. We pre-trained
three phoneme encoders of different sizes, match-
ing hyperparameters including the number of lay-
ers, hidden dimensions, and the number of attention
heads to the corresponding Whisper encoder (tiny,
base and small).

4.2 Forced alignment

We noticed that phoneme-to-speech alignment
emerged from CLAP-IPA on the pairwise cosine
similarity matrix computed with the token-wise
hidden states of phone and speech encoders. We
introduce a simple algorithm to derive the align-
ment between phonetic units and speech signals,
with control over the temporal resolution of speech
frames and the granularity of phonetic sequences.

Adaptive average pooling While we expect the
forced aligned units to be natural phonetic units
like phonemes and words, due to tokenization, the
hidden states of phone encoders correspond to a
character or byte unit rather than a natural pho-
netic unit. A sequence of phonemes or words of
length N ′ might be tokenized into a character or
byte sequence of length N,N ≥ N ′. We define an
adaptive average-pooling mask Mp ∈ RN ′×N to
downsample the hidden representations. Through
this pooling mask, consecutive hidden states be-
longing to one phoneme or one word were aver-
aged to one fixed dimensional vector, such that
each output hidden state after pooling corresponds
to a natural phonetic unit (see Fig 1). This ensures
that our forced alignment algorithm works for any
level of phonetic units.

We can also define a similar adaptive average-
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Figure 1: Illustration of adaptive average-pooling of
phoneme representations, MpHp = H′

p.

pooling mask for speech representations Ms ∈
RT ′×T to downsample them from length T to T ′.
For word-level alignments that don’t require high
temporal resolution, we can compress the length of
the speech hidden states by controlling the pooling
window length and frameshift.

Zeroshot forced alignment Given two sequences
of hidden states Hs ∈ RT×D and Hp ∈ RN×D

produced by the speech encoder and phone en-
coders, adaptive average-pooling masks Mp ∈
RN ′×N and Ms ∈ RT ′×T are used to transform
them into more compact representations H′

s ∈
RT ′×D and H′

p ∈ RN ′×D.

H′
s = Normalize(MsHs,dim=-1)

H′
p = Normalize(MpHp,dim=-1)

D = H′
sH

′⊤
p /τ

where τ is the fixed temperature parameter and
was set to 0.05 by default. The pairwise similarity
matrix D ∈ RT ′×N ′

is used to derive the tempo-
ral monotonic alignment between phonetic units
and speech frames through dynamic time warp-
ing (DTW), even if CLAP-IPA had never between
trained on alignment labels.

Finetuning To further enhance the performance
of forced alignment, we introduce IPA-ALIGNER

by finetuning CLAP-IPA with the Forward-Sum
Loss, which has been shown to be effective in
learning monotonic alignments between speech
and phonemes (Shih et al., 2021; Badlani et al.,
2022; Zhu et al., 2022c).

L = LForwardSum(D)

This alignment learning loss function relies on the
forward-sum algorithm in classic HMMs to maxi-
mize the likelihood of text sequence given speech
sequences, while enforcing the monotonic con-
straint of alignment (see Shih et al. (2021) for de-
tailed derivations). The Forward-Sum loss requires

a good prior alignment to converge to meaningful
results, so we did not report failure results from
randomly initialized models.

During finetuning, we only average-pooled the
phoneme representations at the phoneme and kept
the original speech representations (by setting Ms

to the identity matrix I). In inference, for phoneme
alignment, we pooled the phoneme representations
at the phoneme-level and kept the original speech
representations. For word alignment, the phoneme
representations were pooled at the word-level and
the speech representations were average-pooled
with a window length of 3 and a frameshift of 2.

5 Experiments

5.1 Training details
We trained three variants of models, CLAP-IPA-
tiny, CLAP-IPA-base and CLAP-IPA-small, all of
them were matched to the default encoder pa-
rameters of Whisper (Radford et al., 2023). The
speech encoder and phoneme encoder were sym-
metric. Our training dataset included the training
set of IPAPACK plus the VoxCommunis speech cor-
pora (Ahn and Chodroff, 2022). By default, all
models were trained with paired speech record-
ings and their phonemic transcriptions. For IPA-
ALIGNER, we finetuned CLAP-IPA-tiny, CLAP-
IPA-base and CLAP-IPA-small on the same data
excluding MSWC-IPA. All detailed hyperparame-
ters can be found in Appendix B.

For controlled comparison, we also trained two
base models, CLAP-IPA-TEXT and CLAP-IPA-
PHONE on the same FLEURS-IPA and MSWC-IPA

subset either with only phonemic or text transcrip-
tions. These two models were matched in total
parameters, training data, and all other hyperpa-
rameters during training. In another controlled
experiment, we trained CLAP-IPA-FLEURS and
CLAP-IPA-VC either only on the FLEURS-IPA or
the VoxCommunis, which would allow us to exam-
ine the impact of data size and language diversity.

5.2 Evaluation datasets
We evaluated the crosslinguistic generalizability of
our models on several evaluation datasets covering
a wide range of topologically diverse languages.
Whenever possible, we made our best effort to in-
clude baseline models to contextualize our model
performance. This was not always possible, be-
cause evaluating multilingual KWS and multilin-
gual forced alignment on unseen languages are new
tasks and in some cases we were not able to find
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Method LibriPhrase-Easy LibriPhrase-Hard
EER(%) ↓ AUC(%) ↑ EER(%) ↓ AUC(%) ↑

CMCD (Shin et al., 2022) 8.42 96.7 32.90 73.58
PhonMatchNet (Lee and Cho, 2023) 2.80 99.29 18.82 88.52

CED (Nishu et al., 2023) 1.7 99.84 14.4 92.7

CLAP-IPA-TEXT 6.0 98.31 31.14 74.8
CLAP-IPA-PHONE 1.3 99.88 23.03 84.58

CLAP-IPA-FLEURS 0.95 99.94 22.98 84.82
CLAP-IPA-VC 0.81 99.55 21.55 85.91

CLAP-IPA-tiny 0.68 99.96 20.85 86.58
CLAP-IPA-base 0.63 99.97 20.04 88.25
CLAP-IPA-small 0.56 99.97 18.62 88.82

Table 2: Evaluation results on the English-only Libriphrase.

Model MSWC-IPA FLEURS-IPA UCLAPHONETICCORPUS DORECO-IPA
Hit@1 ↑ mAP ↑ Hit@1 ↑ mAP ↑ Hit@1 ↑ mAP ↑ Hit@1 ↑ mAP ↑

CLAP-IPA-TEXT 13.51 12.7 8.48 10.22 - - - -
CLAP-IPA-PHONE 79.28 68.74 86.4 87.4 - - - -

CLAP-IPA-FLEURS 83.48 77.16 98.59 98.53 51.57 62.53 73.91 79.32
CLAP-IPA-VC 84.38 75.64 63.52 63.21 50.05 61.41 90.56 93.01

CLAP-IPA-tiny 82.58 76.32 98.85 98.86 51.71 62.62 95.46 96.84
CLAP-IPA-base 82.60 77.31 99.20 99.27 52.17 63.90 96.54 97.77
CLAP-IPA-small 81.98 75.35 97.61 97.98 55.05 65.93 91.46 94.41

Table 3: Evaluation results on unseen languages.

open-source models for comparison. However, we
hope that our models and results will become a
baseline that spur more future research in this di-
rection.

Libriphrase To compare with existing models, we
first tested on a popular English KWS dataset, Lib-
riphrase (Shin et al., 2022), as an out-of-domain
evaluation dataset, since our models were not
trained on their training sets. We used Equal Error
Rate (EER) and the Area under Curve (AUC)
scores to compare model performance, consistent
with prior studies.

Unseen languages We also evaluated all models
on five unseen languages with typological diversity
from FLEURS-IPA and MSWC-IPA. We isolated
five language from MSWC-IPA and FLEURS-IPA,
namely, Vietnamese (vie), Tamil (tam), Hausa
(hau), Georgian (geo) and Odia (ori). For
FLEURS-IPA, the test sets of these five languages
were directly used. However, for MSWC-IPA, due
to data scarcity, we pooled all training, validation,
and tests of these five languages together to form
a larger and more challenging benchmark. We fur-
ther evaluated 95 (81 unseen) languages from the
UCLA phonetic Corpus (Li et al., 2021) and 14
unseen languages from DORECO-IPA. Hit@1 and
Mean Average Precision (mAP) were used to mea-

sure the cross-linguistic retrieval performance of
all models. To avoid duplication, we only reported
results on phoneme-to-speech retrieval, as the re-
sults of speech-to-phoneme and speech-to-speech
retrieval were in the same range.

Word and phoneme boundaries To evaluate the
performance of forced alignment, we made use of
F1 and R-Value, which were used in prior studies
(Räsänen et al., 2009; Kreuk et al., 2020; Zhu et al.,
2022c). If the predicted boundary is within the
tolerance interval of the true boundary, it is con-
sidered a hit, otherwise a miss. Since each bound-
ary marked the onset and the offset of consecutive
phones, we only evaluated the phone onsets with a
tolerance of 20ms and word onsets with a tolerance
of 100ms. We used TIMIT (Garofolo et al., 1993)
as the English benchmark. DORECO-IPA also con-
tains phoneme-level and word-level alignments, so
we partitioned the DORECO-IPA into seen and un-
seen evaluation sets. Yet IPA-ALIGNER was never
trained on any segmentation labels.

6 Results

In this section, we summarize the main results for
KWS and forced alignment.

KWS Evaluation results in Table 2 suggests that
CLAP-IPA performs on par with the state-of-
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Method
TIMIT-Word TIMIT-Phone

F1 ↑ R-Val ↑ F1 ↑ R-Val ↑
FAVE - - 58.0 64.0
MFA - - 63.0 68.0

Gentle - - 48.0 56.0
WebMAUS - - 70.0 75.0

W2V2-FC-20ms - - 48.0 56.0
W2V2-FS-20ms - - 48.0 55.0

ZEROSHOT

CLAP-IPA-tiny 84.37 86.66 40.46 49.92
CLAP-IPA-base 78.61 81.73 36.16 46.59
CLAP-IPA-small 74.18 77.95 35.26 46.17

FINETUNED

IPA-ALIGNER-tiny 86.84 88.75 57.31 63.66
IPA-ALIGNER-base 86.55 88.51 60.86 66.67
IPA-ALIGNER-small 82.33 84.76 52.54 59.53

Table 4: Evaluation of forced alignment on TIMIT. Base-
line results were retrieved from Zhu et al. (2022c). The
temporal resolution is 10ms for FAVE, MFA, Gentle,
and WebMAUS and 20ms for the rest of the models.

the-art models on LibrisPhrase-Easy, while not
trained on the Libriphrase training set. Yet CLAP-
IPA failed to outperform state-of-the-art CED
(Nishu et al., 2023) in LibriPhrase-Hard, suggest-
ing that language-specific finetuning is still neces-
sary to maximize performance. Generally speak-
ing, phoneme-based models are more effective than
text-based models.

For unseen languages, Table 3 indicates that
phoneme-based models do generalize successfully
to unseen languages across datasets. In contrast,
the text-based model performs poorly in unseen lan-
guages, suggesting that orthographic texts are not
very useful for crosslinguistic speech processing.
Utterance-level retrieval appears to be much easier
than word-level retrieval, a pattern quite consistent
across datasets. Model size correlates with perfor-
mance in seen languages but not with crosslinguis-
tic generalizability.

Forced alignment While not trained on forced
alignment explicitly, CLAP-IPA shows some ca-
pabilities for crosslinguistic forced alignment even
in zero-shot predictions on both seen and unseen
languages (see Table 4 and Table 5). After fine-
tuned with the ForwardSum loss, IPA-ALIGNER

can perform competitively in English with some
widely used HMM-based forced aligners, even
though TIMIT was not part of its training dataset.
For low-resource languages, IPA-ALIGNER also
achieves good performance, regardless of whether
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Figure 2: Illustration of forced alignment in an Evenki
utterance. CLAP-IPA exhibits vague monotonic align-
ment without finetuning (Top). After finetuning, IPA-
ALIGNER learns salient monotonic alignment between
speech and phonemes (Bottom).

the language has been seen during training or not.

7 Discussions

In this section, we provide more in-depth answers
to our research questions with the major findings
of our experiments.

Can phoneme-based models generalize cross-lin-
guistically? The evaluation results for CLAP-IPA

and IPA-ALIGNER in Table 3 and Table 5 indicate
that phoneme-based model exhibits strong gener-
alization capabilities cross-linguistically in both
KWS and forced alignment, even to unseen lan-
guages in zero-shot predictions.

Generally speaking, all CLAP-IPA models per-
form better on utterance-level datasets (FLEURS-
IPA and DORECO-IPA) than on word-level datasets
(MSWC-IPA and UCLA Phonetic Corpus), because
the longer the phoneme sequence, the more likely
that it is distinct in a pool of candidates. For
utterance-level datasets, CLAP-IPA models achieve
near-perfect scores on unseen languages (see Ta-
ble 3), indicating that phonemic representations do
enable cross-linguistic generalization.

Table 6 shows that the similarity assigned by
CLAP-IPA-small was highly consistent with hu-
man perception. The top-ranked crosslinguistic
candidates were extremely similar in articulatory
features and syllable structure to the query.

For forced alignment, even the zero-shot predic-
tions using CLAP-IPA can perform segmentation
in unseen languages, especially at the word level.
Interestingly, there were no significant differences
between performance over seen and unseen lan-
guages. Though this result could be biased by the
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Method Seen-Word Seen-Phone Unseen-Word Unseen-Phone
F1 ↑ R-Val ↑ F1 ↑ R-Val ↑ F1 ↑ R-Val ↑ F1 ↑ R-Val ↑

ZEROSHOT

CLAP-IPA-tiny 67.19 72.17 33.8 44.74 68.53 73.27 35.26 45.91
CLAP-IPA-base 57.19 63.9 29.09 41.30 58.35 64.91 32.03 42.59
CLAP-IPA-small 51.48 59.43 28.59 40.85 59.94 66.18 30.24 42.43

FINETUNED

IPA-ALIGNER-tiny 74.18 77.99 47.08 54.93 76.33 79.82 48.96 56.55
IPA-ALIGNER-base 78.30 91.47 48.04 55.70 80.71 83.52 50.32 57.67
IPA-ALIGNER-small 72.24 76.37 44.89 52.97 73.63 77.52 46.46 54.38

Table 5: Evaluation of forced alignment on DORECO-IPA. The word boundary metrics were calculated with 100ms
tolerance, whereas the phone boundary was computed with 20ms tolerance.

Query Output Type Retrieved candidates (ranked from high to low)

étá Most similar Ètá, éta, lāta, étá, ı̀tà, ait:a, mÈtá, met”a, >ptá, aita, ÈtÉ, atsa, àtá, eit@
Most dissimilar bÕt

˙
i, tju:riS, sorNgi, aBu"Ru, mbúruù, sumbuN, buluz, S̀ıZ̀ıZ, tSungu

Table 6: Sample ranked phonemic sequences by CLAP-IPA-small, given the speech query [étá].
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Figure 3: Correlation of model performance on individual languages with training hours by language. Languages
are represented by their ISO 639-3 codes. While trained the exact same data, the phoneme-based model outperforms
the text-based model in every single language, suggesting that phoneme-based modeling enables knowledge transfer
across languages.

smaller number of unseen languages compared to
seen languages (14 vs. 30), it still suggests that
IPA-ALIGNER can perform crosslinguistic forced
alignment without much adaptation. Finetuning
the IPA-ALIGNER brings continued improvement
over the zero-shot scenarios (see Fig 2).

Does the phoneme-based model generalize
better cross-linguistically than the text-based
model? Text-based models are struggling to gen-
eralize to unseen languages, as these unseen lan-
guages have their distinct writing systems (e.g,
Vietnamese and Tamil) that are not seen in train-
ing languages. Comparison between the text-based
and phoneme-based models in Table 2 and Table 3
clearly shows that it is the use of phonemes as mod-
eling units that brings strong crosslinguistic gener-

alizability, since they can represent all languages
using the same set of symbols.

Do the training hours of individual languages
predict the performance of multilingual mod-
els? The number of training hours for individual
languages does not predict the performance of lan-
guage in phoneme-based models. All languages
benefit from the multilingual knowledge transfer in
phoneme-based modeling.

It has been reported that there is a strong corre-
lation between text-based multilingual ASR perfor-
mance in individual languages and their training
hours (Radford et al., 2023; Rouditchenko et al.,
2023). We also confirm that, for text-based models,
there is a moderate correlation between Hit@1 and
the number of training hours (Spearman’s ρ : 0.42;
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p ≤ 0.0002). However, this correlation was not sig-
nificant for the phoneme-based model (Spearman’s
ρ : 0.14; p = 0.22). In Figure 3, the phoneme-
based model outperforms the text-based model in
every language by a large margin, especially for
languages with less training data.

Since the orthography varies across languages
and is usually not an accurate reflection of pro-
nunciation, many low-resource languages are not
reaping the full benefits of large-scale multilingual
data in this cross-modal task in text-based mod-
els. Close inspection shows that the text-based
model generalizes well to Hausa (Latin alphabet)
but significantly underperforms in languages with
non-Latin alphabet, such as Tamil, Vietnamese,
Japanese, Arabic, and Cantonese.

In contrast, the phoneme-based model achieves
near-perfect performance in retrieval in almost all
seen and unseen languages (see Figure 3), making
them extremely useful in low-resource and zero-
resource scenarios. The efficiency of IPA repre-
sentations in multilingual settings has also been
observed in ASR (Feng et al., 2023).

Does multilingual models always hold advan-
tages over monolingual models? At least in the
current study, multilingual models might not hold
an apparent advantage over well-engineered mono-
lingual models in high-resource languages. As
shown in Table 2 and Table 4, compared to other
state-of-the-art KWS and forced alignment models,
CLAP-IPA and IPA-ALIGNER was not able to out-
perform well-engineered monolingual models. Our
multilingual models have not been trained on the
training set of LibriPhrase or TIMIT, so some of the
performance gaps might be caused by domain mis-
match. Even with zero adaptations, multilingual
models achieve close performance to monolingual
models, suggesting that our approach is promising
and may reach better results if scaled up.

Should we scale up the number of languages
or number of training hours? We compared
CLAP-IPA only trained on VoxCommunis (Ahn
and Chodroff, 2022) or FLEURS-IPA. VoxCommu-
nis has almost twice as many hours as FLEURS-IPA

with roughly half of the languages. In Table 2
and 3, CLAP-IPA-VC trained on more hours of
speech generally has similar performance as CLAP-
IPA-FLEURS trained on a subset of the IPAPACK

across metrics, which suggests that creating high-
quality data is effective in achieving good perfor-
mance. But this finding also suggests that we can

achieve good crosslinguistic generalizability with
fewer languages but longer hours using phoneme
modeling. Given the empirical data distributions
in real-life settings, scaling up training hours in a
dozen of languages is much easier than scaling up
the number of languages. The practical implica-
tion is that we might be able to build multilingual
speech processing systems for many low-resource
or zero-resource languages with large-scale data in
a dozen relatively high-resource languages.

Is it feasible to scale up the creation of
good-quality phonemic transcriptions in world
languages? Despite our attempt, there are still mul-
tiple challenges for creating phonemic transcrip-
tions. During our dataset construction, we were
unable to process many languages due to the lack
of pronunciation dictionaries, text transcriptions,
or relevant NLP tools, especially the lack of good
word segmentation tools for some East/Southeast
Asian languages like Khmer. While available large-
scale speech corpora nowadays encompass more
than 1000 languages (Salesky et al., 2020; Pratap
et al., 2023), textual or phonemic labels cannot
be easily obtained for most of them, limiting their
usage in many research applications.

Even for high-resource languages, preprocess-
ing multilingual texts and normalizing the Unicode
encodings for IPA symbols usually take tremen-
dous effort, not to mention verifying these phone-
mic transcriptions for audio recordings. It re-
mains unclear how biases or noises in G2P pre-
dictions will propagate to downstream multilingual
tasks. Our endeavor marks a small step in creating
good-quality phonemic transcriptions for more lan-
guages. However, there is still much work to be
done to include a broader array of languages world-
wide and to improve the quality of transcriptions.

8 Conclusions

With the carefully curated IPAPACK, we show that
using IPA symbols as modeling units can effec-
tively enable CLAP-IPA and IPA-ALIGNER to gen-
eralize to unseen languages, highlighting the bene-
fits of incorporating linguistic knowledge into deep
learning methods. We believe that the IPAPACK

has great potential to benefit more tasks in mul-
tilingual speech processing, such as multilingual
phoneme recognition, speech synthesis, and docu-
menting endangered languages. In the future, we
will continue to expand our dataset and models to
include more diverse languages.
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9 Ethical statement

Data Governance We adhered strictly to ethi-
cal practices in curating our datasets. The orig-
inal FLEURS (Conneau et al., 2023), MSWC
(Mazumder et al., 2021b), DoReCo (Paschen et al.,
2020) and VoxCommunis (Ahn and Chodroff,
2022) corpora are distributed under the Creative
Commons licenses. Therefore, we are permitted
to re-process and re-distribute the original dataset
with proper attributions. Some languages in the
DoReCo corpus are under a Creative Commons
Non-Commercial license. We reserved these lan-
guages to the test set in our corpora, such that
our models have not been trained on data under
commercially restrictive licenses. As required, we
have also cited every individual language from the
DoReCo Corpus in Table 11.

Potential Impact We believe that our dataset and
models will contribute to the endeavor of build-
ing fair and inclusive speech processing systems
for all languages and facilitating the documenta-
tion of endangered languages. However, we are
aware that multilingual keyword-spotting technol-
ogy could potentially be misused as surveillance
tools for monitoring speech recordings in more lan-
guages, posing risks to users.

10 Limitations

Our study is still limited in several aspects. First,
while we tried our best to inspect a subset of our
dataset, it was impossible for us to examine all
datasets in great detail. As a result, the constructed
dataset might still be flawed in terms of audio qual-
ity and transcription quality (and many unicode
errors). Secondly, the proposed models are still
not optimized in terms of computational efficiency.
Since most KWS applications are running on mo-
bile devices with limited computational power, the
proposed models still have too many model parame-
ters to run efficiently on mobile devices. Moreover,
speech sequences are usually much longer than
text sequences. Self-attention with quadratic com-
plexity might not be the most suitable architecture
for processing speech. More efforts are needed to
make such multilingual models efficient.

Thirdly, the number of languages studied in our
paper is still limited and might be biased towards
languages that are relatively high-resource. They
are not representative of the global language land-
scape. There are many more low-resource or en-

dangered languages we are not able to include due
to the lack of various resources. To promote lin-
guistic inclusion and fairness, we will continue to
improve the language diversity of our research in
the future.
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Rohan Badlani, Adrian Łańcucki, Kevin J Shih, Rafael
Valle, Wei Ping, and Bryan Catanzaro. 2022. One
tts alignment to rule them all. In ICASSP 2022-2022
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6092–6096.
IEEE.

Axel Berg, Mark O’Connor, and Miguel Tairum Cruz.
2021. Keyword Transformer: A Self-Attention
Model for Keyword Spotting. In Proc. Interspeech
2021, pages 4249–4253.

Natalia Bogomolova, Dmitry Ganenkov, and Nils Nor-
man Schiborr. 2022. Tabasaran DoReCo dataset. In
Frank Seifart, Ludger Paschen, and Matthew Stave,
editors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Niclas Burenhult. 2022. Jahai DoReCo dataset. In
Frank Seifart, Ludger Paschen, and Matthew Stave,
editors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Guoguo Chen, Carolina Parada, and Georg Heigold.
2014. Small-footprint keyword spotting using deep
neural networks. In 2014 IEEE international con-
ference on acoustics, speech and signal processing
(ICASSP), pages 4087–4091. IEEE.

Yi-Chang Chen, Yu-Chuan Steven, Yen-Cheng Chang,
and Yi-Ren Yeh. 2022. g2pW: A Conditional
Weighted Softmax BERT for Polyphone Disambigua-
tion in Mandarin. In Proc. Interspeech 2022, pages
1926–1930.

Alexander Yao Cobbinah. 2022. Baïnounk Gubëeher
DoReCo dataset. In Frank Seifart, Ludger Paschen,
and Matthew Stave, editors, Language Documen-
tation Reference Corpus (DoReCo) 1.2. Leibniz-
Zentrum Allgemeine Sprachwissenschaft & labora-
toire Dynamique Du Langage (UMR5596, CNRS &
Université Lyon 2), Berlin & Lyon.

Alexis Conneau, Alexei Baevski, Ronan Collobert,
Abdelrahman Mohamed, and Michael Auli. 2020.
Unsupervised cross-lingual representation learn-
ing for speech recognition. arXiv preprint
arXiv:2006.13979.

Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang,
Vera Axelrod, Siddharth Dalmia, Jason Riesa, Clara
Rivera, and Ankur Bapna. 2023. Fleurs: Few-shot
learning evaluation of universal representations of
speech. In 2022 IEEE Spoken Language Technology
Workshop (SLT), pages 798–805. IEEE.

Andrew Cowell. 2022. Arapaho DoReCo dataset. In
Frank Seifart, Ludger Paschen, and Matthew Stave,
editors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Paul-Ambroise Duquenne, Hongyu Gong, and Holger
Schwenk. 2021. Multimodal and multilingual em-
beddings for large-scale speech mining. Advances in
Neural Information Processing Systems, 34:15748–
15761.

Chris Lasse Däbritz, Nina Kudryakova, Eugénie Stapert,
and Alexandre Arkhipov. 2022. Dolgan DoReCo
dataset. In Frank Seifart, Ludger Paschen, and
Matthew Stave, editors, Language Documentation
Reference Corpus (DoReCo) 1.2. Leibniz-Zentrum
Allgemeine Sprachwissenschaft & laboratoire Dy-
namique Du Langage (UMR5596, CNRS & Univer-
sité Lyon 2), Berlin & Lyon.

Christian Döhler. 2022. Komnzo DoReCo dataset. In
Frank Seifart, Ludger Paschen, and Matthew Stave,
editors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Siyuan Feng, Ming Tu, Rui Xia, Chuanzeng Huang, and
Yuxuan Wang. 2023. Language-Universal Phonetic
Representation in Multilingual Speech Pretraining
for Low-Resource Speech Recognition. In Proc. IN-
TERSPEECH 2023, pages 1384–1388.

Diana Forker and Nils Norman Schiborr. 2022. Sanzhi
Dargwa DoReCo dataset. In Frank Seifart, Ludger
Paschen, and Matthew Stave, editors, Language Doc-
umentation Reference Corpus (DoReCo) 1.2. Leibniz-
Zentrum Allgemeine Sprachwissenschaft & labora-
toire Dynamique Du Langage (UMR5596, CNRS &
Université Lyon 2), Berlin & Lyon.

Michael Franjieh. 2022. Fanbyak DoReCo dataset. In
Frank Seifart, Ludger Paschen, and Matthew Stave,
editors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Alexandro Garcia-Laguia. 2022. Northern Alta
DoReCo dataset. In Frank Seifart, Ludger Paschen,

760

https://doi.org/10.21437/Interspeech.2021-1286
https://doi.org/10.21437/Interspeech.2021-1286
https://doi.org/10.34847/nkl.ad7f97xr
https://doi.org/10.34847/nkl.6a71xp0p
https://doi.org/10.21437/Interspeech.2022-216
https://doi.org/10.21437/Interspeech.2022-216
https://doi.org/10.21437/Interspeech.2022-216
https://doi.org/10.34847/nkl.a332abw8
https://doi.org/10.34847/nkl.a332abw8
https://doi.org/10.34847/nkl.36f5r1b6
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.34847/nkl.f09eikq3
https://doi.org/10.34847/nkl.f09eikq3
https://doi.org/10.34847/nkl.c5e6dudv
https://doi.org/10.21437/Interspeech.2023-617
https://doi.org/10.21437/Interspeech.2023-617
https://doi.org/10.21437/Interspeech.2023-617
https://doi.org/10.34847/nkl.81934177
https://doi.org/10.34847/nkl.81934177
https://doi.org/10.34847/nkl.02084446
https://doi.org/10.34847/nkl.efea0b36
https://doi.org/10.34847/nkl.efea0b36


and Matthew Stave, editors, Language Documen-
tation Reference Corpus (DoReCo) 1.2. Leibniz-
Zentrum Allgemeine Sprachwissenschaft & labora-
toire Dynamique Du Langage (UMR5596, CNRS &
Université Lyon 2), Berlin & Lyon.

John S Garofolo, Lori F Lamel, William M Fisher,
Jonathan G Fiscus, and David S Pallett. 1993. Darpa
timit acoustic-phonetic continous speech corpus cd-
rom. nist speech disc 1-1.1. NASA STI/Recon techni-
cal report n, 93:27403.

Bryan Gick, Ian Wilson, and Donald Derrick. 2013.
Articulatory phonetics. John Wiley & Sons.

Jost Gippert. 2022. Svan DoReCo dataset. In Frank
Seifart, Ludger Paschen, and Matthew Stave, edi-
tors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Kevin Glocker, Aaricia Herygers, and Munir Georges.
2023. Allophant: Cross-lingual Phoneme Recogni-
tion with Articulatory Attributes. In Proc. INTER-
SPEECH 2023, pages 2258–2262.

Matthew Gordon and Timo Roettger. 2017. Acoustic
correlates of word stress: A cross-linguistic survey.
Linguistics Vanguard, 3(1):20170007.

Matthew K Gordon. 2016. Phonological typology, vol-
ume 1. Oxford University Press.

Richard Griscom. 2022. Asimjeeg Datooga DoReCo
dataset. In Frank Seifart, Ludger Paschen, and
Matthew Stave, editors, Language Documentation
Reference Corpus (DoReCo) 1.2. Leibniz-Zentrum
Allgemeine Sprachwissenschaft & laboratoire Dy-
namique Du Langage (UMR5596, CNRS & Univer-
sité Lyon 2), Berlin & Lyon.

Valentin Gusev, Tiina Klooster, Beáta Wagner-Nagy,
and Alexandre Arkhipov. 2022. Kamas DoReCo
dataset. In Frank Seifart, Ludger Paschen, and
Matthew Stave, editors, Language Documentation
Reference Corpus (DoReCo) 1.2. Leibniz-Zentrum
Allgemeine Sprachwissenschaft & laboratoire Dy-
namique Du Langage (UMR5596, CNRS & Univer-
sité Lyon 2), Berlin & Lyon.

Tom Güldemann, Martina Ernszt, Sven Siegmund, and
Alena Witzlack-Makarevich. 2022. N||ng DoReCo
dataset. In Frank Seifart, Ludger Paschen, and
Matthew Stave, editors, Language Documentation
Reference Corpus (DoReCo) 1.2. Leibniz-Zentrum
Allgemeine Sprachwissenschaft & laboratoire Dy-
namique Du Langage (UMR5596, CNRS & Univer-
sité Lyon 2), Berlin & Lyon.

Geoff Haig, Maria Vollmer, and Hanna Thiele. 2022.
Northern Kurdish (Kurmanji) DoReCo dataset. In
Frank Seifart, Ludger Paschen, and Matthew Stave,
editors, Language Documentation Reference Corpus

(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Andrew Harvey. 2022. Gorwaa DoReCo dataset. In
Frank Seifart, Ludger Paschen, and Matthew Stave,
editors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Berry Heselwood. 2013. Phonetic Transcription in The-
ory and Practice. Edinburgh University Press.

IPA International Phonetic Association. 1999. Hand-
book of the International Phonetic Association: A
guide to the use of the International Phonetic Alpha-
bet. Cambridge University Press.

Olga Kazakevich and Elena Klyachko. 2022. Evenki
DoReCo dataset. In Frank Seifart, Ludger Paschen,
and Matthew Stave, editors, Language Documen-
tation Reference Corpus (DoReCo) 1.2. Leibniz-
Zentrum Allgemeine Sprachwissenschaft & labora-
toire Dynamique Du Langage (UMR5596, CNRS &
Université Lyon 2), Berlin & Lyon.

Matthew C. Kelley and Benjamin V. Tucker. 2018.
A Comparison of Input Types to a Deep Neural
Network-based Forced Aligner. In Proc. Interspeech
2018, pages 1205–1209.

Sameer Khurana, Antoine Laurent, and James Glass.
2022. Samu-xlsr: Semantically-aligned multimodal
utterance-level cross-lingual speech representation.
IEEE Journal of Selected Topics in Signal Processing,
16(6):1493–1504.

Soung-U Kim. 2022. Jejuan DoReCo dataset. In Frank
Seifart, Ludger Paschen, and Matthew Stave, edi-
tors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Thomas Kisler, Florian Schiel, and Han Sloetjes. 2012.
Signal processing via web services: the use case
webmaus. In Digital Humanities Conference 2012.

Felix Kreuk, Joseph Keshet, and Yossi Adi. 2020. Self-
Supervised Contrastive Learning for Unsupervised
Phoneme Segmentation. In Proc. Interspeech 2020,
pages 3700–3704.

Manfred Krifka. 2022. Daakie DoReCo dataset. In
Frank Seifart, Ludger Paschen, and Matthew Stave,
editors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

761

https://doi.org/10.34847/nkl.9ba054c3
https://doi.org/10.21437/Interspeech.2023-772
https://doi.org/10.21437/Interspeech.2023-772
https://doi.org/10.34847/nkl.f77c7m72
https://doi.org/10.34847/nkl.f77c7m72
https://doi.org/10.34847/nkl.cdd8177b
https://doi.org/10.34847/nkl.cdd8177b
https://doi.org/10.34847/nkl.f6c37fi0
https://doi.org/10.34847/nkl.f6c37fi0
https://doi.org/10.34847/nkl.ca10ez5t
https://doi.org/10.34847/nkl.a4b4ijj2
https://doi.org/10.3366/edinburgh/9780748640737.001.0001
https://doi.org/10.3366/edinburgh/9780748640737.001.0001
https://doi.org/10.34847/nkl.5e0d27cu
https://doi.org/10.34847/nkl.5e0d27cu
https://doi.org/10.21437/Interspeech.2018-1115
https://doi.org/10.21437/Interspeech.2018-1115
https://doi.org/10.34847/nkl.06ebrk38
https://doi.org/10.21437/Interspeech.2020-2398
https://doi.org/10.21437/Interspeech.2020-2398
https://doi.org/10.21437/Interspeech.2020-2398
https://doi.org/10.34847/nkl.efeav5l9


Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. arXiv preprint arXiv:1804.10959.

Ludwig Kürzinger, Dominik Winkelbauer, Lujun Li,
Tobias Watzel, and Gerhard Rigoll. 2020. Ctc-
segmentation of large corpora for german end-to-end
speech recognition. In International Conference on
Speech and Computer, pages 267–278. Springer.

Peter Ladefoged. 1990. The revised international pho-
netic alphabet. Language, 66(3):550–552.

Peter Ladefoged and Morris Halle. 1988. Some ma-
jor features of the international phonetic alphabet.
Language, 64(3):577–582.

Yong-Hyeok Lee and Namhyun Cho. 2023. Phon-
MatchNet: Phoneme-Guided Zero-Shot Keyword
Spotting for User-Defined Keywords. In Proc. IN-
TERSPEECH 2023, pages 3964–3968.

Lei Lei, Guoshun Yuan, Hongjiang Yu, Dewei Kong,
and Yuefeng He. 2023. Multilingual customized key-
word spotting using similar-pair contrastive learning.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing.

Xinjian Li, Siddharth Dalmia, Juncheng Li, Matthew
Lee, Patrick Littell, Jiali Yao, Antonios Anastasopou-
los, David R Mortensen, Graham Neubig, Alan W
Black, et al. 2020. Universal phone recognition with
a multilingual allophone system. In ICASSP 2020-
2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 8249–
8253. IEEE.

Xinjian Li, David R Mortensen, Florian Metze, and
Alan W Black. 2021. Multilingual phonetic dataset
for low resource speech recognition. In ICASSP
2021-2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
6958–6962. IEEE.

Mark Mazumder, Colby Banbury, Josh Meyer, Pete
Warden, and Vijay Janapa Reddi. 2021a. Few-Shot
Keyword Spotting in Any Language. In Proc. Inter-
speech 2021, pages 4214–4218.

Mark Mazumder, Sharad Chitlangia, Colby Banbury,
Yiping Kang, Juan Manuel Ciro, Keith Achorn,
Daniel Galvez, Mark Sabini, Peter Mattson, David
Kanter, et al. 2021b. Multilingual spoken words cor-
pus. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks
Track (Round 2).

Michael McAuliffe, Michaela Socolof, Sarah Mihuc,
Michael Wagner, and Morgan Sonderegger. 2017.
Montreal forced aligner: Trainable text-speech align-
ment using kaldi. In Interspeech, volume 2017, pages
498–502.

Paul McCann. 2020. fugashi, a tool for tokenizing
Japanese in python. In Proceedings of Second Work-
shop for NLP Open Source Software (NLP-OSS),

pages 44–51, Online. Association for Computational
Linguistics.

Alexis Michaud. 2022. Yongning Na DoReCo dataset.
In Frank Seifart, Ludger Paschen, and Matthew Stave,
editors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Steven Moran, Daniel McCloy, and Richard Wright.
2014. Phoible online.

David R Mortensen, Siddharth Dalmia, and Patrick
Littell. 2018. Epitran: Precision g2p for many lan-
guages. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018).

Ulrike Mosel. 2022. Teop DoReCo dataset. In Frank
Seifart, Ludger Paschen, and Matthew Stave, edi-
tors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Kumari Nishu, Minsik Cho, Paul Dixon, and Devang
Naik. 2023. Flexible keyword spotting based on
homogeneous audio-text embedding. arXiv preprint
arXiv:2308.06472.

Kari A Noriy, Xiaosong Yang, Marcin Budka, and
Jian Jun Zhang. 2023. Clara: Multilingual con-
trastive learning for audio representation acquisition.
arXiv preprint arXiv:2310.11830.

Carmel O’Shannessy. 2022a. Light Warlpiri DoReCo
dataset. In Frank Seifart, Ludger Paschen, and
Matthew Stave, editors, Language Documentation
Reference Corpus (DoReCo) 1.2. Leibniz-Zentrum
Allgemeine Sprachwissenschaft & laboratoire Dy-
namique Du Langage (UMR5596, CNRS & Univer-
sité Lyon 2), Berlin & Lyon.

Carmel O’Shannessy. 2022b. Warlpiri DoReCo dataset.
In Frank Seifart, Ludger Paschen, and Matthew Stave,
editors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Pavel Ozerov. 2022. Anal DoReCo dataset. In Frank
Seifart, Ludger Paschen, and Matthew Stave, edi-
tors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V
Le. 2019. Specaugment: A simple data augmen-
tation method for automatic speech recognition. In-
terspeech 2019.

762

https://doi.org/10.21437/Interspeech.2023-597
https://doi.org/10.21437/Interspeech.2023-597
https://doi.org/10.21437/Interspeech.2023-597
https://doi.org/10.21437/Interspeech.2021-1966
https://doi.org/10.21437/Interspeech.2021-1966
https://doi.org/10.18653/v1/2020.nlposs-1.7
https://doi.org/10.18653/v1/2020.nlposs-1.7
https://doi.org/10.34847/nkl.abe65p95
https://doi.org/10.34847/nkl.9322sdf2
https://doi.org/10.34847/nkl.7452803q
https://doi.org/10.34847/nkl.7452803q
https://doi.org/10.34847/nkl.042dv614
https://doi.org/10.34847/nkl.0dbazp8m


Ludger Paschen, François Delafontaine, Christoph
Draxler, Susanne Fuchs, Matthew Stave, and Frank
Seifart. 2020. Building a time-aligned cross-
linguistic reference corpus from language documenta-
tion data (doreco). In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
2657–2666.

Wannaphong Phatthiyaphaibun, Korakot Chaovavanich,
Charin Polpanumas, Arthit Suriyawongkul, Lalita
Lowphansirikul, and Pattarawat Chormai. 2016.
PyThaiNLP: Thai Natural Language Processing in
Python.

Mark A Pitt, Keith Johnson, Elizabeth Hume, Scott
Kiesling, and William Raymond. 2005. The buck-
eye corpus of conversational speech: Labeling con-
ventions and a test of transcriber reliability. Speech
Communication, 45(1):89–95.

Maïa Ponsonnet. 2022. Dalabon DoReCo dataset. In
Frank Seifart, Ludger Paschen, and Matthew Stave,
editors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Vineel Pratap, Andros Tjandra, Bowen Shi, Paden
Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky,
Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi,
et al. 2023. Scaling speech technology to 1,000+
languages. arXiv preprint arXiv:2305.13516.

Juan Diego Quesada, Stavros Skopeteas, Carolina Pasa-
monik, Carolin Brokmann, and Florian Fischer. 2022.
Cabécar DoReCo dataset. In Frank Seifart, Ludger
Paschen, and Matthew Stave, editors, Language Doc-
umentation Reference Corpus (DoReCo) 1.2. Leibniz-
Zentrum Allgemeine Sprachwissenschaft & labora-
toire Dynamique Du Langage (UMR5596, CNRS &
Université Lyon 2), Berlin & Lyon.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International Conference on Machine
Learning, pages 28492–28518. PMLR.

Sabine Reiter. 2022. Cashinahua DoReCo dataset. In
Frank Seifart, Ludger Paschen, and Matthew Stave,
editors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Paul M Reuter, Christian Rollwage, and Bernd T Meyer.
2023. Multilingual query-by-example keyword spot-
ting with metric learning and phoneme-to-embedding
mapping. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 1–5. IEEE.

Sonja Riesberg. 2022. Yali (Apahapsili) DoReCo
dataset. In Frank Seifart, Ludger Paschen, and
Matthew Stave, editors, Language Documentation
Reference Corpus (DoReCo) 1.2. Leibniz-Zentrum
Allgemeine Sprachwissenschaft & laboratoire Dy-
namique Du Langage (UMR5596, CNRS & Univer-
sité Lyon 2), Berlin & Lyon.

Hiram Ring. 2022. Pnar DoReCo dataset. In Frank
Seifart, Ludger Paschen, and Matthew Stave, edi-
tors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Françoise Rose. 2022. Mojeño Trinitario DoReCo
dataset. In Frank Seifart, Ludger Paschen, and
Matthew Stave, editors, Language Documentation
Reference Corpus (DoReCo) 1.2. Leibniz-Zentrum
Allgemeine Sprachwissenschaft & laboratoire Dy-
namique Du Langage (UMR5596, CNRS & Univer-
sité Lyon 2), Berlin & Lyon.

Ingrid Rosenfelder, Josef Fruehwald, Keelan Evanini,
and Jiahong Yuan. 2011. Fave (forced alignment and
vowel extraction) program suite. URL http://fave.
ling. upenn. edu.

Andrew Rouditchenko, Sameer Khurana, Samuel
Thomas, Rogerio Feris, Leonid Karlinsky, Hilde
Kuehne, David Harwath, Brian Kingsbury, and
James Glass. 2023. Comparison of Multilingual
Self-Supervised and Weakly-Supervised Speech Pre-
Training for Adaptation to Unseen Languages. In
Proc. INTERSPEECH 2023, pages 2268–2272.

Oleg Rybakov, Natasha Kononenko, Niranjan Subrah-
manya, Mirkó Visontai, and Stella Laurenzo. 2020.
Streaming Keyword Spotting on Mobile Devices. In
Proc. Interspeech 2020, pages 2277–2281.

Okko Johannes Räsänen, Unto Kalervo Laine, and
Toomas Altosaar. 2009. An improved speech seg-
mentation quality measure: the r-value. In Proc.
Interspeech 2009, pages 1851–1854.

Elizabeth Salesky, Eleanor Chodroff, Tiago Pimentel,
Matthew Wiesner, Ryan Cotterell, Alan W Black,
and Jason Eisner. 2020. A corpus for large-scale pho-
netic typology. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4526–4546, Online. Association for
Computational Linguistics.

Stefan Schnell. 2022. Vera’a DoReCo dataset. In Frank
Seifart, Ludger Paschen, and Matthew Stave, edi-
tors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Kilian Schulze-Forster, Clement SJ Doire, Gaël Richard,
and Roland Badeau. 2020. Joint phoneme alignment

763

https://doi.org/10.5281/zenodo.3519354
https://doi.org/10.5281/zenodo.3519354
https://doi.org/10.34847/nkl.fae299ug
https://doi.org/10.34847/nkl.ebc4ra22
https://doi.org/10.34847/nkl.a8f9q2f1
https://doi.org/10.34847/nkl.9d91nkq2
https://doi.org/10.34847/nkl.9d91nkq2
https://doi.org/10.34847/nkl.5ba1062k
https://doi.org/10.34847/nkl.cbc3b4xr
https://doi.org/10.34847/nkl.cbc3b4xr
https://doi.org/10.21437/Interspeech.2023-1061
https://doi.org/10.21437/Interspeech.2023-1061
https://doi.org/10.21437/Interspeech.2023-1061
https://doi.org/10.21437/Interspeech.2020-1003
https://doi.org/10.21437/Interspeech.2009-538
https://doi.org/10.21437/Interspeech.2009-538
https://doi.org/10.18653/v1/2020.acl-main.415
https://doi.org/10.18653/v1/2020.acl-main.415
https://doi.org/10.34847/nkl.3e2cu8c4


and text-informed speech separation on highly cor-
rupted speech. In ICASSP 2020-2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7274–7278. IEEE.

Frank Seifart. 2022a. Bora DoReCo dataset. In Frank
Seifart, Ludger Paschen, and Matthew Stave, edi-
tors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Frank Seifart. 2022b. Resígaro DoReCo dataset. In
Frank Seifart, Ludger Paschen, and Matthew Stave,
editors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Kevin J Shih, Rafael Valle, Rohan Badlani, Adrian Lan-
cucki, Wei Ping, and Bryan Catanzaro. 2021. Rad-tts:
Parallel flow-based tts with robust alignment learn-
ing and diverse synthesis. In ICML Workshop on
Invertible Neural Networks, Normalizing Flows, and
Explicit Likelihood Models.

Hyeon-Kyeong Shin, Hyewon Han, Doyeon Kim, Soo-
Whan Chung, and Hong-Goo Kang. 2022. Learning
Audio-Text Agreement for Open-vocabulary Key-
word Spotting. In Proc. Interspeech 2022, pages
1871–1875.

Stavros Skopeteas, Violeta Moisidi, Nutsa Tsetereli, Jo-
hanna Lorenz, and Stefanie Schröter. 2022. Urum
DoReCo dataset. In Frank Seifart, Ludger Paschen,
and Matthew Stave, editors, Language Documen-
tation Reference Corpus (DoReCo) 1.2. Leibniz-
Zentrum Allgemeine Sprachwissenschaft & labora-
toire Dynamique Du Langage (UMR5596, CNRS &
Université Lyon 2), Berlin & Lyon.

Kazuyo Tanaka, Yoshiaki Itoh, Hiroaki Kojima, and Na-
hoko Fujimura. 2001. Speech data retrieval system
constructed on a universal phonetic code domain. In
IEEE Workshop on Automatic Speech Recognition
and Understanding, 2001. ASRU’01., pages 323–326.
IEEE.

Raphael Tang and Jimmy Lin. 2018. Deep residual
learning for small-footprint keyword spotting. In
2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5484–
5488. IEEE.

Amos Teo. 2022. Sümi DoReCo dataset. In Frank
Seifart, Ludger Paschen, and Matthew Stave, edi-
tors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Yann Teytaut, Baptiste Bouvier, and Axel Roebel. 2022.
A study on constraining connectionist temporal classi-
fication for temporal audio alignment. In Interspeech
2022, pages 5015–5019. ISCA.

Yann Teytaut and Axel Roebel. 2021. Phoneme-to-
audio alignment with recurrent neural networks for
speaking and singing voice. In Proceedings of In-
terspeech 2021, pages 61–65. International Speech
Communication Association; ISCA.

Nick Thieberger. 2022. Nafsan (South Efate) DoReCo
dataset. In Frank Seifart, Ludger Paschen, and
Matthew Stave, editors, Language Documentation
Reference Corpus (DoReCo) 1.2. Leibniz-Zentrum
Allgemeine Sprachwissenschaft & laboratoire Dy-
namique Du Langage (UMR5596, CNRS & Univer-
sité Lyon 2), Berlin & Lyon.

Martine Vanhove. 2022. Beja DoReCo dataset. In
Frank Seifart, Ludger Paschen, and Matthew Stave,
editors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Alexandra Vydrina. 2022. Kakabe DoReCo dataset. In
Frank Seifart, Ludger Paschen, and Matthew Stave,
editors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

Claudia Wegener. 2022. Savosavo DoReCo dataset. In
Frank Seifart, Ludger Paschen, and Matthew Stave,
editors, Language Documentation Reference Corpus
(DoReCo) 1.2. Leibniz-Zentrum Allgemeine Sprach-
wissenschaft & laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Berlin &
Lyon.

John C Wells. 1995. Computer-coding the IPA: a pro-
posed extension of SAMPA.

Søren Wichmann. 2022. Texistepec Popoluca DoReCo
dataset. In Frank Seifart, Ludger Paschen, and
Matthew Stave, editors, Language Documentation
Reference Corpus (DoReCo) 1.2. Leibniz-Zentrum
Allgemeine Sprachwissenschaft & laboratoire Dy-
namique Du Langage (UMR5596, CNRS & Univer-
sité Lyon 2), Berlin & Lyon.

Alena Witzlack-Makarevich, Saudah Namyalo, Anatol
Kiriggwajjo, and Zarina Molochieva. 2022. Ruuli
DoReCo dataset. In Frank Seifart, Ludger Paschen,
and Matthew Stave, editors, Language Documen-
tation Reference Corpus (DoReCo) 1.2. Leibniz-
Zentrum Allgemeine Sprachwissenschaft & labora-
toire Dynamique Du Langage (UMR5596, CNRS &
Université Lyon 2), Berlin & Lyon.

Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Tay-
lor Berg-Kirkpatrick, and Shlomo Dubnov. 2023.

764

https://doi.org/10.34847/nkl.6eaf5laq
https://doi.org/10.34847/nkl.ffb96lo8
https://doi.org/10.21437/Interspeech.2022-580
https://doi.org/10.21437/Interspeech.2022-580
https://doi.org/10.21437/Interspeech.2022-580
https://doi.org/10.34847/nkl.ac166n10
https://doi.org/10.34847/nkl.ac166n10
https://doi.org/10.34847/nkl.5ad4t01p
https://doi.org/10.34847/nkl.ba4f760l
https://doi.org/10.34847/nkl.ba4f760l
https://doi.org/10.34847/nkl.edd011t1
https://doi.org/10.34847/nkl.d5aeu9t6
https://doi.org/10.34847/nkl.b74d1b33
https://doi.org/10.34847/nkl.c50ck58f
https://doi.org/10.34847/nkl.c50ck58f
https://doi.org/10.34847/nkl.fde4pp1u
https://doi.org/10.34847/nkl.fde4pp1u


Large-scale contrastive language-audio pretraining
with feature fusion and keyword-to-caption augmen-
tation. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 1–5. IEEE.

Qiantong Xu, Alexei Baevski, and Michael Auli.
2022. Simple and Effective Zero-shot Cross-lingual
Phoneme Recognition. In Proc. Interspeech 2022,
pages 2113–2117.

Xianming Xu and Bibo Bai. 2022. Sadu DoReCo
dataset. In Frank Seifart, Ludger Paschen, and
Matthew Stave, editors, Language Documentation
Reference Corpus (DoReCo) 1.2. Leibniz-Zentrum
Allgemeine Sprachwissenschaft & laboratoire Dy-
namique Du Langage (UMR5596, CNRS & Univer-
sité Lyon 2), Berlin & Lyon.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov,
and Lucas Beyer. 2023. Sigmoid loss for
language image pre-training. arXiv preprint
arXiv:2303.15343.

Jian Zhu, Zuoyu Tian, Yadong Liu, Cong Zhang,
and Chia-Wen Lo. 2022a. Bootstrapping meaning
through listening: Unsupervised learning of spoken
sentence embeddings. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2022,
pages 1134–1154, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Jian Zhu, Cong Zhang, and David Jurgens. 2022b.
ByT5 model for massively multilingual grapheme-
to-phoneme conversion. In Proc. Interspeech 2022,
pages 446–450.

Jian Zhu, Cong Zhang, and David Jurgens. 2022c.
Phone-to-audio alignment without text: A semi-
supervised approach. In ICASSP 2022-2022 IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 8167–8171. IEEE.

A Dataset statistics

Table 9, 12 , 10, and 11 provide tabulated sum-
maries of the detailed statistics of our curated
datasets.

B Training hyperparameters

For pre-training, we trained three variants of BERT
from scratch using only phonemic transcriptions.
We adopted the AdamW optimizer with an initial-
ized learning rate of 1e− 4 and cosine scheduling
with a warm-up step of 1000. All models were
trained for 60k iterations before stopping. All train-
ing processes were completed on a single V100
GPU of 32 GB.

All hyperparameters for CLAP-IPA models were
listed in Table 7. By default, all models were
trained on a single V100 with 32GB of memory.
The training time for CLAP-IPA in 100k steps
ranged from 17 hours for CLAP-IPA-tiny to 41
hours for CLAP-IPA-small.

All hyperparameters for IPA-ALIGNER models
were listed in Table 8. All models were trained on
a single V100 with 32GB of memory. The train-
ing time for IPA-ALIGNER before early stopping
ranged from 5 hours for CLAP-IPA-tiny to 12 hours
for CLAP-IPA-small.
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Hyperparameters CLAP-IPA-tiny CLAP-IPA-base CLAP-IPA-small

Hidden dimensions 384 512 768
Num. Layers 4 6 12
Num. Att. Heads 6 8 12
Intermediate size 1536 2048 3072
Parameters 16M 28.5M 96.2M
Initial learning rate 1e-4
Scheduler Cosine Scheduler
Warm-up steps 500
Total training steps 100k
FLEURS-IPA batch size 64 64 32
MSWC-IPA batch size 512 512 256
DORECO-IPA batch size 64 64 32
VoxCommunis batch size 64 64 32
Gradient checkpointing True
Mixed Precision float16
Max. Gradient Norm for Gradient Clipping 10

Table 7: Hyperparameters for training CLAP-IPA models.

Hyperparameters CLAP-IPA-tiny CLAP-IPA-base CLAP-IPA-small

Hidden dimensions 384 512 768
Num. Layers 4 6 12
Num. Att. Heads 6 8 12
Intermediate size 1536 2048 3072
Parameters 16M 28.5M 96.2M
Initial learning rate 1e-5
Scheduler Cosine Scheduler
Warm-up steps 100
Maximum training steps 10k
batch size 128
Gradient checkpointing True
Mixed Precision float16
Max. Gradient Norm for Gradient Clipping 10
Early stopping True
Stopping Criteria the highest F1 on the TIMIT training set

Table 8: Hyperparameters for training IPA-ALIGNER models.
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Language ISO 639-3 Family Train (hrs) Dev (hrs) Test (hrs) Avg.Phones Avg.Dur. (s)

Arabic ara Indo-European 0.79 0.11 0.11 6.57 (1.58) 1 (0)
Catalan cat Indo-European 61.38 8.12 8.07 7.51 (2.34) 1 (0)
Czech cze Indo-European 3.01 0.41 0.39 6.2 (1.92) 1 (0)
Dutch dut Indo-European 6.42 0.84 0.84 7.2 (2.79) 1 (0)
English eng Indo-European 125.61 16.29 16.52 6.84 (2.34) 1 (0)
Esperanto epo Constructed 8.48 1.13 1.12 6.95 (1.97) 1 (0)
Estonian est Uralic 2.51 0.34 0.33 6.35 (2.13) 1 (0)
French fra Indo-European 62.69 8.31 8.31 5.8 (2.03) 1 (0)
German ger Indo-European 83.23 10.99 10.96 8.81 (3.41) 1 (0)
Irish gle Indo-European 0.48 0.07 0.07 4.17 (1.45) 1 (0)
Greek gre Indo-European 0.71 0.1 0.1 5.71 (2.09) 1 (0)
Interlingua ina Constructed 0.53 0.06 0.05 5.8 (1.84) 1 (0)
Indonesian ind Austronesian 1.74 0.25 0.25 6.04 (1.88) 1 (0)
Italian ita Indo-European 18.42 2.46 2.43 7.35 (2.45) 1 (0)
Kyrgyz kir Turkic 1.52 0.23 0.21 6.89 (2.43) 1 (0)
Lithuanian lit Indo-European 0.7 0.04 0.06 6.88 (2.22) 1 (0)
Maltese mlt Afro-Asiatic 1.12 0.15 0.16 6.04 (2.75) 1 (0)
Mongolian mon Mongolic 1.48 0.2 0.21 5.5 (1.73) 1 (0)
Polish pol Indo-European 14.39 1.93 1.94 6.9 (2.09) 1 (0)
Portuguese por Indo-European 7.16 0.95 0.95 6.52 (2.07) 1 (0)
Romanian ron Indo-European 0.5 0.1 0.08 6.43 (2.31) 1 (0)
Russian rus Indo-European 18.48 2.46 2.44 8.48 (2.88) 1 (0)
Slovak slo Indo-European 0.08 0.01 0.01 6.28 (2.14) 1 (0)
Slovenian slv Indo-European 0.27 0.05 0.05 5.16 (1.56) 1 (0)
Spanish spa Indo-European 40.04 5.35 5.32 7.64 (2.49) 1 (0)
Swedish swe Indo-European 1.18 0.16 0.16 5.36 (1.93) 1 (0)
Tatar tat Turkic 3.76 0.5 0.48 6.18 (1.84) 1 (0)
Turkish tur Turkic 2.82 0.38 0.39 6.95 (2.27) 1 (0)
Ukrainian ukr Indo-European 1.87 0.25 0.26 6.76 (2.3) 1 (0)
Welsh wel Indo-European 13.6 1.8 1.81 5.76 (1.96) 1 (0)
Mandarin cmn Sino-Tibetan 0.4 0.05 0.05 8.68 (2.26) 1 (0)

Table 9: Statistics of languages in MSWC-IPA. All samples are padded to be clips of 1 second. (Avg.Phones:
average number of phonemes in each word; Avg.Dur.: average duration of each clip).
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Language ISO 639-3 Family Train (hrs) Avg. Dur (s) Avg. Phones

Abkhaz abk Northwest Caucasian 0.62 7.33 51.93
Bashkir bak Turkic 137.79 4.35 35.78
Belarusian bel Indo-European 132.21 5.48 49.15
Bulgarian bul Indo-European 3.5 5.05 47.74
Catalan cat Indo-European 2.08 5.39 44.35
Czech ces Indo-European 16.51 4.75 44
Chuvash chv Turkic 0.37 4.2 36.97
Greek ell Indo-European 1.57 3.99 29.13
Basque eus Language isolate 12.66 5.2 47.36
Guarani grn Tupian 1.81 3.97 26.91
Hausa hau Afro-Asiatic 1.71 4.27 32.1
Hindi hin Indo-European 2.73 3.75 33.69
Sorbian (Upper Sorbian) hsb Indo-European 1.48 6.61 55.01
Hungarian hun Uralic 25.06 4.76 37.62
Indonesian ind Austronesian 5.09 5.69 53.31
Italian ita Indo-European 192.69 5.24 49.13
Georgian kat Kartvelian 1.62 5.77 53.7
Kazakh kaz Turkic 0.29 4.93 33.95
Kurmanji (Kurdish) kmr Indo-European 2.83 4.47 28.16
Kyrgyz kir Turkic 2.25 4.67 43.42
Marathi mar Indo-European 3.66 5.97 52.99
Maltese ml Afro-Asiatic 2.41 4.48 36.88
Erzya myv Uralic 1.97 5.73 46.41
Dutch nld Indo-European 34.94 4.4 47.47
Punjabi pan Indo-European 0.96 5.29 26.53
Polish pol Indo-European 14.26 5.21 46.58
Portuguese por Indo-European 12.31 4.33 32.45
Romanian ron Indo-European 4.99 4.01 35.98
Russian rus Indo-European 24.41 5.44 56.61
Swedish swe Indo-European 5.84 3.84 31.24
Swahili swa Niger-Congo 52.8 5.44 47.43
Tamil tam Dravidian 61.39 6.57 55.43
Thai tha Kra-Dai 16.71 3.91 26.58
Turkish tur Turkic 0.98 3.19 30.43
Tatar tat Turkic 10.09 3.8 31.5
Uyghur uig Turkic 2.43 5.85 49.21
Ukrainian ukr Indo-European 4.22 4.67 39.54
Vietnamese vie Austroasiatic 4.6 4.53 25.54

Table 10: Detailed statistics of a selected subset of VoxCommunis (Ahn and Chodroff, 2022). (Avg.Phones: average
number of phonemes in each word; Avg.Dur.: average duration of each clip).
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Language ISO
693-3

Avg.
Dur (s)

Total dura-
tion (hrs)

Avg.
Phones

Family Split Citation

Komnzo tci 2.59 0.27 29.99 Yam train (Döhler, 2022)
Vera’a vra 3.55 0.57 43.03 Austronesian train (Schnell, 2022)
Sanzhi Dargwa na 4.85 0.17 44.82 Nakh-

Daghestanian
train (Forker and

Schiborr, 2022)
Urum uum 4.63 0.37 45.75 Turkic test (Skopeteas

et al., 2022)
Beja bej 2.32 0.36 24.97 Afro-Asiatic test (Vanhove,

2022)
Light Warlpiri na 3.47 0.47 32.75 Mixed Lan-

guage
train (O’Shannessy,

2022a)
Kamas xas 3.60 0.84 24.71 Uralic train (Gusev et al.,

2022)
Nafsan (South
Efate)

erk 6.10 0.36 50.83 Austronesian test (Thieberger,
2022)

Tabasaran tab 4.16 0.21 42.31 Nakh-
Daghestanian

train (Bogomolova
et al., 2022)

Savosavo svs 5.17 0.82 49.35 Isolate train (Wegener,
2022)

Sümi nsm 2.74 0.14 32.59 Sino-Tibetan train (Teo, 2022)
French (Swiss) fra 2.75 0.31 32.61 Indo-European test (Avanzi et al.,

2022)
Northern Alta aqn 2.78 1.04 25.94 Austronesian train (Garcia-Laguia,

2022)
Jejuan jje 2.59 0.03 24.43 Koreanic train (Kim, 2022)
Jahai jhi 3.61 0.45 32.74 Austroasiatic test (Burenhult,

2022)
Nisvai none 3.11 0.56 42.22 Austronesian test (Aznar, 2022)
Warlpiri wbp 3.64 0.94 30.84 Pama-Nyungan test (O’Shannessy,

2022b)
Fanbyak fnb 2.81 0.22 27.29 Austronesian train (Franjieh, 2022)
Bora boa 4.40 0.34 41.49 Boran train (Seifart, 2022a)
Yongning Na nru 4.23 0.30 33.15 Sino-Tibetan train (Michaud,

2022)
Dalabon ngk 2.46 0.08 23.46 Gunwinyguan train (Ponsonnet,

2022)
Sadu na 2.75 0.15 22.78 Sino-Tibetan train (Xu and Bai,

2022)
Teop tio 2.96 0.65 30.62 Austronesian train (Mosel, 2022)
Cashinahua cbs 3.58 0.73 33.55 Pano-Tacanan train (Reiter, 2022)
Dolgan dlg 4.24 0.69 43.55 Turkic test (Däbritz et al.,

2022)
Anal anm 3.02 0.37 26.43 Sino-Tibetan train (Ozerov, 2022)
Baïnounk
Gubëeher

bab 3.13 0.40 30.95 Atlantic-Congo train (Cobbinah,
2022)

Texistepec
Popoluca

poq 2.65 0.08 28.50 Mixe-Zoque train (Wichmann,
2022)

Daakie ptv 3.22 0.22 34.87 Austronesian train (Krifka, 2022)
Ning ngh 2.67 0.12 22.96 Tuu train (Güldemann

et al., 2022)
Ruuli ruc 3.13 0.32 34.99 Atlantic-Congo train (Witzlack-

Makarevich
et al., 2022)

Cabécar cjp 3.61 0.38 39.62 Chibchan test (Quesada et al.,
2022)

Evenki evn 3.89 0.66 31.71 Tungusic train (Kazakevich
and Klyachko,
2022)

Arapaho arp 3.99 0.87 32.95 Algic train (Cowell, 2022)
Svan sva 4.77 0.56 47.85 Kartvelian train (Gippert, 2022)
Resígaro rgr 5.45 1.27 33.31 Arawakan train (Seifart, 2022b)
Yali (Apahap-
sili)

na 2.38 0.04 32.34 Nuclear Trans
New Guinea

test (Riesberg,
2022)

Asimjeeg Da-
tooga

na 2.81 0.28 28.30 Nilotic train (Griscom,
2022)

Northern Kur-
dish (Kurmanji)

kmr 4.39 0.54 50.76 Indo-European test (Haig et al.,
2022)
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Gorwaa gow 2.95 0.28 31.29 Afro-Asiatic train (Harvey, 2022)
Pnar pbv 8.28 0.29 72.74 Austroasiatic test (Ring, 2022)
Kakabe kke 4.14 0.59 33.07 Mande train (Vydrina, 2022)
Mojeño Trini-
tario

trn 5.66 0.65 48.42 Arawakan train (Rose, 2022)

Table 11: Detailed statistics of DORECO-IPA. (Avg. Phones: average number of phonemes in each word; Avg.Dur.:
average duration of each clip).
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Language ISO 639-3 Family Train (hrs) Dev (hrs) Test (hrs) Avg. Dur (s) Avg. Phones

Afrikaans afr Indo-European 2.71 0.48 0.66 11.95 4.69
Amharic amh Afro-Asiatic 8.26 0.57 1.28 11.91 7.25
Arabic ara Afro-Asiatic 4.93 0.75 1.12 10.2 6.63
Azerbaijani aze Turkic 6.89 1.1 2.42 12.27 6.33
Belarusian bel Indo-European 7.3 1.37 3.11 13.87 6.08
Bulgarian bul Indo-European 7.05 0.85 1.44 10.65 5.47
Bengali ben Indo-European 8.18 1.21 2.75 12.67 5.84
Bosnian bos Indo-European 7.57 1.1 2.47 11.4 5.42
Catalan cat Indo-European 5.77 1.09 2.43 11.34 4.64
Cebuano ceb Austronesian 9.33 0.72 1.77 13.26 4.54
Mandarin Chinese cmn Sino-Tibetan 6.04 0.87 2 10.37 3.81
Czech cze Indo-European 6.38 0.82 1.91 10.76 5.58
Welsh wel Indo-European 9.12 1.49 3.32 12.98 4.27
Danish dan Indo-European 5.75 0.99 2.26 10.69 4.4
German ger Indo-European 6.88 1.06 2.46 11.16 5.61
Greek gre Indo-European 7.51 0.64 1.47 10.69 5.14
English eng Indo-European 5.64 0.88 1.39 9.79 4.41
Spanish spa Indo-European 6.73 1.17 2.45 11.24 4.87
Estonian est Uralic 5.38 1.02 2.37 10.57 6.35
Fula ful Niger-Congo 10.27 0.84 2.12 14.35 4.16
Finnish fin Uralic 6.75 1.18 2.58 11.61 7.04
Irish gle Indo-European 9.31 1.24 2.76 14.54 3.68
Galician glg Indo-European 5.12 0.89 2.06 10.31 5.01
Hausa hau Afro-Asiatic 10.09 1.25 2.47 15.21 4.36
Hindi hin Indo-European 5.14 0.63 1.11 11.01 4.08
Croatian hrv Indo-European 8.78 0.85 1.98 11.14 5.43
Hungarian hun Uralic 7.01 1.14 2.45 10.85 5.76
Indonesian ind Austronesian 6.94 0.97 1.89 12.18 5.79
Icelandic ice Indo-European 2.11 0.1 0.14 10.8 5.53
Italian ita Indo-European 6.86 1.31 2.8 11.52 4.97
Japanese jpn Japonic 5.06 0.67 1.52 11.63 3.63
Javanese jav Austronesian 8.6 0.94 2.22 12.98 5.47
Georgian geo Kartvelian 3.87 0.99 2.37 11.31 7.14
Kazakh kaz Turkic 8.91 1.29 3.02 13.55 6.78
Korean kor Koreanic 5.68 0.57 1.03 12.14 7.17
Kyrgyz kir Turkic 6.99 1.1 2.52 11.45 6.83
Lao lao Kra-Dai 5.58 0.47 1.09 13.41 21.33
Lithuanian lit Indo-European 7.28 0.97 2.32 10.96 6.33
Maori mri Austronesian 13.34 1.86 4.53 19.34 3.48
Macedonian mac Indo-European 5.14 1.05 2.47 10.5 5.35
Malayalam mal Indo-European 7.37 1.36 2.86 12.28 10.23
Mongolian mon Mongolic 8.63 0.97 2.21 12.19 5.52
Marathi mar Indo-European 9.48 1.23 3.04 12.96 6
Malay msa Austronesian 7.28 0.79 1.82 11.8 5.99
Maltese mlt Afro-Asiatic 7.5 1.24 2.81 12.31 4.68
Burmese bur Sino-Tibetan 10.07 1.49 3.25 14.56 12.17
Norwegian nob Indo-European 7.96 0.43 0.93 12.06 4.54
Dutch dut Indo-European 5.81 0.38 0.77 9.18 4.89
Nyanja nya Niger-Congo 8.23 1.2 2.77 14.53 5.99
Oromo orm Afro-Asiatic 5.11 0.05 0.13 13.46 5.41
Oriya ori Indo-European 2.42 1 2.25 11.33 6.5
Punjabi pan Indo-European 4.96 0.63 1.48 11.49 4.07
Polish pol Indo-European 7.23 0.73 1.63 10.71 5.66
Portuguese por Indo-European 7.77 1.06 2.5 12.49 4.7
Romanian ron Indo-European 7.65 0.88 1.95 11.46 5.31
Russian rus Indo-European 6.28 0.92 1.94 10.97 6.24
Sindhi snd Indo-European 9.15 1.1 2.55 12.15 4.41
Slovak slo Indo-European 4.55 0.92 2.1 10.8 5.58
Slovenian slv Indo-European 5.78 0.74 1.78 10.2 5.43
Shona sna Niger-Congo 7.56 1.27 3.03 14.12 6.88
Somali som Afro-Asiatic 9.84 1.26 3.03 14.04 4.77
Serbian srp Indo-European 8.14 0.7 1.66 12.05 5.25
Swedish swe Indo-European 6.34 0.79 1.82 11.64 5.08
Swahili swa Niger-Congo 10.1 0.69 1.54 14.72 5.15
Tamil tam Indo-European 6.34 1.04 1.61 12.5 8.12
Telugu tel Indo-European 5.87 0.75 1.11 11.64 7.03
Tajik tgk Indo-European 6.52 0.77 1.96 13.43 5.39
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Thai tha Kra-Dai 6.21 1.14 2.56 11.34 4.83
Turkish tur Turkic 6.43 0.94 2.09 11.77 6.48
Ukrainian ukr Indo-European 6.7 0.78 1.78 10.82 5.87
Urdu urd Indo-European 5.34 0.64 0.66 11.17 3.9
Uzbek uzb Turkic 7.6 0.99 2.25 11.8 6.58
Vietnamese vie Austroasiatic 6.71 1.01 2.33 10.97 4.07
Xhosa xho Niger-Congo 9.78 1.27 2.91 12.96 7.19
Yoruba yor Niger-Congo 8.46 1.56 3.26 15.48 3.48
Cantonese Chinese yue Sino-Tibetan 5.56 0.93 2.07 12.31 3.96
Zulu zul Niger-Congo 11.05 1.31 3.03 17.3 7.23

Table 12: Detailed statistics of FLEURS-IPA. (Avg.Phones: average number of phonemes in each word; Avg.Dur.:
average duration of each clip).
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