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Abstract

Cross-lingual continual learning aims to con-
tinuously fine-tune a downstream model on
emerging data from new languages. One major
challenge in cross-lingual continual learning
is catastrophic forgetting: a stability-plasticity
dilemma, where performance on previously
seen languages decreases as the model learns to
transfer to new languages. Experience replay,
which revisits data from a fixed-size memory
of old languages while training on new ones,
is among the most successful approaches for
solving this dilemma. Faced with the chal-
lenge of dynamically storing the memory with
high-quality examples while complying with its
fixed size limitations, we consider Leitner queu-
ing, a human-inspired spaced-repetition tech-
nique, to determine what should be replayed
at each phase of learning. Via a controlled set
of quantitative and qualitative analyses across
different memory strategies, we show that, just
like humans, carefully picking informative ex-
amples to be prioritized in cross-lingual mem-
ory replay helps tame the stability-plasticity
dilemma. Compared to vanilla and strong mem-
ory replay baselines, our Leitner-guided ap-
proach significantly and consistently decreases
forgetting while maintaining accuracy across
natural language understanding tasks, language
orders, and languages.

1 Introduction

Cross-lingual continual learning is a machine learn-
ing paradigm aimed at continually adapting a down-
stream model to datastreams drawn from differ-
ent languages (M’hamdi et al., 2023). Naive ap-
proaches to cross-lingual continual learning involve
training a new model from scratch each time a new
language is available or training jointly over all
languages, which can be inefficient and even inac-
cessible. Faced with an overwhelming stream of

∗Work was conducted while the first author was a Ph.D.
student at the University of Southern California.

languages, modelers turn to continual learning tech-
niques to adapt models such that maximal learn-
ing from data is achieved when available data is
temporally limited. The consequence of a finite
data buffer limitation on a potentially infinite data
source is catastrophic forgetting (McCloskey and
Cohen, 1989). Catastrophic forgetting exempli-
fies the stability-plasticity dilemma (Carpenter and
Grossberg, 1987; Hadsell et al., 2020; Wolczyk
et al., 2021): It is inherently hard to preserve the
previously acquired knowledge (stability) while
learning novel information (plasticity).

Various continual learning approaches have pro-
posed to mitigate catastrophic forgetting by either
restricting entire sets of parameters from chang-
ing (Kirkpatrick et al., 2017; Zenke et al., 2017; Rit-
ter et al., 2018), designing language-specific model
components (Pfeiffer et al., 2020; M’hamdi et al.,
2023), or replaying a fixed buffer memory from pre-
viously seen languages (Shin et al., 2017; Chaudhry
et al., 2019a,b). M’hamdi et al. (2023) show that
memory-based approaches are more robust than
other approaches in taming the stability-plasticity
dilemma. Moreover, they are more scalable than
other approaches, such as model expansion, which
grows in complexity as a function of the underlying
downstream architecture.

Experience replay (ER) (Chaudhry et al., 2019b)
is a cognitively inspired memory-based approach
that reinforces previously seen experiences similar
to the process of memory consolidation in biolog-
ical systems (Isele and Cosgun, 2018). As more
languages are incorporated into the datastream, fit-
ting examples from new languages into a fixed-size
memory buffer becomes more challenging. This
invites a critical question: How can we dynami-
cally come up with informative memory examples
to keep for each language?

In this paper, we propose a human-inspired ap-
proach for learning what to replay at each phase of
cross-lingual continual learning. We hypothesize
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Figure 1: An overview of Leitner-guided memory replay for multi-phase cross-lingual continual learning: On top of
a cross-lingual datastream, we build a skill rating system to continually guide the memory population and update.
Skill ratings are scores from 1 to 5 obtained from Leitner queues; a higher score reflects greater learnability. At the
end of each phase, the skill ratings on the main data items from the phase language are used to choose what goes
in the memory, and the skill ratings of data items already in the memory are re-evaluated to determine if they can
remain. Our approach is language-agnostic in the sense that it uses Leitner queues to determine which examples to
keep in the memory at the end of each phase irrespective of the language.

that in such a setup at the beginning, most data is
difficult but as training progresses some data be-
comes well-learned and informative. We surmise
that reducing the forgetting of previously learned
examples requires using a strategy of alternately
learning new difficult examples along with rein-
forcement of well-learned examples. To design
cross-lingual memory, we leverage Leitner queues,
a cognitive technique that has been used for strate-
gically planning what to review in humans (Leit-
ner, 1974; Reddy et al., 2016) and for determining
informative and spurious data in self-training non-
continual learning applications (Amiri et al., 2018;
Amiri, 2019). Our Leitner-guided memory sam-
pling policy is a dynamic language-agnostic skill
rating system which selects candidates for inclu-
sion into memory according to how well they are
learned (Figure 1). We analyze memory design
attributes that contribute to reducing cross-lingual
continual learning forgetting and evaluate on typo-
logically diverse benchmarks ranging in difficulty.1

We summarize our contributions as follows:

(1) We are the first to formalize a human-inspired
solution based on Leitner queues to guide
cross-lingual memory replay (§2.3).

(2) We show that our Leitner-inspired approach
for selecting memory replay items reduces

1Our code is available at https://github.com/
meryemmhamdi1/x-continuous-learning/tree/main/
humanlearn.

forgetting without sacrificing transfer learning
gains (§4.1).

(3) We provide a fine-grained analysis over differ-
ent language orders and languages showing
that our approach is consistently and robustly
beneficial (§4.2).

(4) We provide a qualitative analysis that investi-
gates the usefulness of data as a function of
its learnability (§4.3).

2 Methodology

In this section, we start by describing our ER ap-
proach adapted to cross-lingual continual learning
(§2.1). Then, we explain the mechanism for deter-
mining skill ratings based on Leitner queues (§2.2).
After that, we explain how we use this Leitner-
based skill rating system to guide memory storage
and update in cross-lingual ER (§2.3).

2.1 Cross-lingual Experience Replay
We follow the same setup for cross-lingual con-
tinual learning and ER defined by M’hamdi et al.
(2023). The general continual learning paradigm
assumes access is limited to a portion of the data
at any phase. The cross-lingual continual learning
process consists of sequentially fine-tuning a model
on a cross-lingual datastream in multiple phases. A
cross-lingual datastream D1···N is a set of N distinct
labeled datasets sampled from different languages
one at a time. Each dataset Di is drawn from a
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single distinct language ℓi ∈ L = {ℓ1, ℓ2 · · · ℓN}.
Each phase Pi ∈ P1···N is a stage in cross-lingual
continual learning where the model gets fine-tuned
on a dataset Di for a number of epochs. The ER
approach is implemented as follows: At the end
of each phase (except the last one) Pi ∈ P1···N−1,
we choose some data from Di to add to a memory
buffer M of fixed size |M|. In later phases Pj af-
ter Pi, we replay from M, which contains memory
data drawn from D<j interleaved with the main
loss on data drawn from Pj .

2.2 Leitner-based Skill Rating System

We draw inspiration from Leitner queues (Leitner,
1974), a method of prioritization originally con-
ceived of as a strategy for human memorization and
later used in machine learning applications (Amiri
et al., 2018). The key prioritization insight we lever-
age is that of demonstrated mastery. That is, items
in a (training) data set may be rated by the degree
to which they have been mastered by the learner.
We instantiate this by associating a rating r to each
training data item d, and changing r(d) based on
a model m’s ability to correctly classify d during
training. Let [s, e] be the acceptable rating range,
let rm′(d) be the rating for d according to some pre-
vious model m′, and let ϕm(d) ∈ {−1, 1} indicate
that model m classified d {incorrectly, correctly},
respectively. Then

rm(d) = max(min(rm′(d) + ϕm(d), e), s)

Thus, r is raised when d is correctly classified and
lowered when it is misclassified, subject to the
acceptable range. In this work, we set [s, e] =
[1, 5], following established practice (Reddy et al.,
2016; Amiri et al., 2018).

2.3 Leitner-Guided Cross-lingual Experience
Replay (LER)

We explore the use of r(d) to determine whether
or not to include d in M. At the start of phase Pi,
by convention, for all d ∈ Di ∪M, we set r∅(d),
the initial rating, to s. At the end of each epoch
within the phase, we update r for each data item in
Di and M according to the model m at that point
in training. At the end of Pi, we use r values to
form the new M, selecting |M|

i items from Di and
|M|− |M|

i items from the current M according to
one of two strategies:

• LER (Easy): Highest-rated items are prioritized.

• LER (Hard): Lowest-rated items are prioritized.

Our approach, which selects data from Di in-
versely proportional to i, enables the fixed and lim-
ited M to contain an even distribution of samples
from all D<i thus seen, militated by the relative
learning difficulty of different phase datasets. Our
approach is language-agnostic as we continue to
rank the examples to keep in the memory regardless
of their language and based solely on their degree
of learnability.

3 Experimental Setup

We start by presenting the different baselines
and model variants used to compare between dif-
ferent experimental scenarios (§3.1). We then
describe the benchmark datasets and their base
models (§3.2) along with the multilingual datas-
treams (§3.4) that we focus on in this evaluation.
More implementation details, such as the hyper-
parameters, number of parameters used, and run-
time for different models can be found in Ap-
pendix A.

3.1 Baselines & Model Variants
Baselines Before delving into different variants
of Leitner-guided memory replay, we consider the
following baselines:

• No ER. This is our lower-bound naive sequential
fine-tuning baseline. This sequentially fine-tunes
on datasets sampled from one language at a time
Di ∈ D1···N without using any experience replay.

• Balanced. This is an experience replay approach
adapted from Lopez-Paz and Ranzato (2017),
which allocates equally sized buffers balanced
across language. At the end of each phase Pi,
|M|/(N − 1) examples are randomly picked
from Di and added to M.

• Random. This is a more realistic experience re-
play approach, adapted from Riemer et al. (2019),
which randomly samples and updates |M| from
D<i at the end of each phase Pi.

Other techniques have been proposed to produce
memory exemplars such as mean of features (Re-
buffi et al., 2017), K-Means clustering (Chaudhry
et al., 2019b), and prototypical networks (Ho et al.,
2023). However, we don’t explore those techniques
since they either under-perform Random (reservoir
sampling) (Chaudhry et al., 2019b) or their contri-
bution severely depends on the order of training
sets experimented with.
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Model Variants We design the following model
variants on top of LER. The research question we
analyze here is: Does dynamically prioritizing easy
elements help mitigate forgetting more than hard
elements or vice versa? Our analysis evaluates
the aggregated effectiveness of different strategies
used for memory construction. This consists of
LER (Easy) and LER (Hard), which use easy and
hard examples, in terms of their learnability, to fill
and update the memory, respectively.

3.2 Benchmarks & Base Models
We conduct experiments on two datasets commonly
used in natural language understanding literature,
covering different typologically diverse languages
and requiring different levels of reasoning: multilin-
gual task-oriented dialog (MTOD) and multilingual
question answering (MQA).

MTOD This is a multilingual goal-oriented sys-
tem focusing on the natural language understand-
ing module. This module consists of two subtasks,
namely intent detection and slot filling. For MTOD
evaluation, we use two multilingual task-oriented
dialog datasets: MTOP (Li et al., 2021) and Mul-
tiATIS++ (Xu et al., 2020). MultiATIS++ covers
18 intents and 84 slots on average per language
from one domain. MTOP covers 117 intents and
78 slots from 11 domains. We choose MTOP and
MultiATIS++ since they are among the large-scale
datasets available for task-oriented dialog cover-
ing typologically diverse languages. We use the
same architecture as in Castellucci et al. (2019)
to jointly learn intent classification and slot-filling
subtasks. M-BERT (Devlin et al., 2019) is used to
encode each input sentence. On top of the [CLS]
representation of the sentence, we use a linear layer
plus Softmax to predict its intent class. We use
a sequence labeling layer in the form of a linear
layer plus CRF (Lafferty et al., 2001) to predict slot
labels in BIO annotation. We optimize jointly over
the sum of intent and slot losses. For evaluation,
we use accuracy and F1 scores to evaluate intent
classification and slot filling, respectively.

MQA This is a multilingual span-based question-
answering task that extracts the answer token span
to a question given a defined context. To ensure a
challenging and trustworthy evaluation for MQA,
we choose TyDiQA (Clark et al., 2020), which
is a translation-free realistic information-seeking
benchmark. We follow the same pre-processing
and architecture as in Hu et al. (2020). Specifi-

cally, we concatenate the input question (after pre-
pending it with a [CLS] token) and the context as
a single packed sequence separated by a [SEP ]
token and feed that to M-BERT. Then, the embed-
dings of the context are fed to a linear layer plus
Softmax to compute the probability that each to-
ken in the context is the start or end token of the
answer span. We optimize for the joint loss over
the start and end tokens predictions. Complying
with Hu et al. (2020) evaluation, we use F1-score
macro-averaged over examples.

Table 1 shows the statistics per language
and split for MTOP, MultiATIS++, and TyDiQA
datasets.

Dataset Language Train Dev Test

MTOP

English 15,667 2235 4386
German 13,424 1815 3549
Hindi 11,330 2012 2789
Thai 10,759 1671 2765

MultiATIS++

English 4488 490 893
French 4488 490 893
Chinese 4488 490 893
Turkish 578 60 715

TyDiQA

Indonesian 5131 571 565
Russian 5841 649 812
Swahili 2479 276 499
Telugu 5006 557 669

Table 1: Statistics of MTOP, MultiATIS++, and TyDiQA
per language and split.

3.3 Evaluation Metrics
Our primary analytical tool is forgetting, which
measures the degree to which a learned skill is
lost when a model is trained on out-of-language
data. Lower forgetting is better, while negative
forgetting indicates the model has improved due
to out-of-language training. We also show final
performance, which is simply a metric’s value af-
ter all phases of continual learning. We follow the
same formulation of cross-lingual continual learn-
ing evaluation protocols as M’hamdi et al. (2023).
Let R be some success metric for evaluating a task
and Ri,≤j be the evaluation on the test set for lan-
guage ℓi fine-tuning on D≤j . For a more succinct
analysis of interference versus transfer tradeoff, we
focus on the following two metrics:

• Forgetting (F ↓). We compute forgetting av-
eraged over D2···≤N as follows:

F =
1

N − 1

N∑

j=2

F≤j ,

F≤j =
1

j − 1

j−1∑

i=1

Fi,≤j ,

(1)
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where F≤j is the average forgetting that re-
sulted at the point of training on Dj . Fi,≤j =
maxk∈[1,j−1]Ri,≤k − Ri,≤j . Fi,≤j is the de-
gree to which performance on Di has de-
graded by continuing to train on D≤j instead
of stopping before including Dj .

• Final performance (FP ↑). This is the final
performance at the last phase PN averaged
over all datasets D≤N :

FP =
1

N

N∑

i=1

Ri,≤N . (2)

3.4 Datastreams

We design a balanced set of distinct language
permutations, following the cross-lingual con-
tinual learning evaluation paradigm established
by M’hamdi et al. (2023). Formally, for a given
set of N = 4 languages, we sample a subset of
N language permutations P ⊂ S(L ) where each
language appears exactly once in each permutation.
Table 2 shows the language permutations we con-
sider for different downstream benchmarks. For
example, the first permutation in MTOP is cho-
sen such that the languages are ordered from high-
resource to low-resource languages. The last per-
mutation uses the opposite order. Then, we curate
the two other permutations such that each language
appears exactly once in each place across all permu-
tations as if we are solving a 4x4 Sudoku. This en-
sures that our evaluation metrics are well-balanced
when the average is taken over the 4 permutations
taking into account the forgetting on different lan-
guages with equal contribution.

Dataset # Order

MTOP

1 English→German→Hindi→Thai
2 German →English→Thai→Hindi
3 Hindi→Thai→English→German
4 Thai→Hindi→German→English

MultiATIS++

1 English→French→Turkish→Chinese
2 French→English→Chinese→Turkish
3 Turkish→Chinese→English→French
4 Chinese→Turkish→French→English

TyDiQA

1 Russian→Indonesian→Telugu→Swahili
2 Indonesian→Russian→Swahili→Telugu
3 Telugu→Swahili→Russian→Indonesian
4 Swahili→Telugu→Indonesian→Russian

Table 2: Language permutations for MTOP, Multi-
ATIS++, and TyDiQA.

4 Results & Analysis

In this section, we provide an extensive analysis
to demonstrate the effectiveness of our Leitner-
guided cross-lingual experience replay approach.
We present both a summary of the test performance
based on the best epoch given Dev data split per-
formance and over each epoch throughout different
training stages (§4.1). Then, we present a more fine-
grained analysis, shedding light on the language
orders and languages for which our Leitner-based
skill rating system is particularly helpful (§4.2).
Last but not least, we present a qualitative analy-
sis of different categories of skill ratings and what
makes ruling out hard examples useful (§4.3).

4.1 Average Performance

In Table 3, we compare between different Leitner-
guided memory selection strategies and baselines
for MTOP, MultiATIS++, and TyDiQA benchmarks
in terms of their forgetting. We start by showing
their forgetting on the test data averaged over differ-
ent language orders based on the best-performing
model on the Dev data split. Compared to No ER
baseline, all ER approaches: Balanced, Random,
and LER variants are beneficial in reducing forget-
ting, irrespective of the strategy followed in mem-
ory storage and update. It is clear that the forgetting
gap between No ER and ER approaches is more pro-
nounced for MTOP and MultiATIS++ tasks than it
is for TyDiQA. We conjecture that this is due to the
formulation of TyDiQA as a span-based question-
answering task. The latter employs a simple token
classification model, which is less challenging than
joint optimization over classification and sequence
modeling objectives in MTOD. The gains are even
more pronounced for MTOP, whose ontology cov-
ers more domains, intents, and slots than that of
single-domain MultiATIS++. Among MTOP sub-
tasks, slot filling has a higher overall forgetting than
intent detection. The implication of all of these
findings is that forgetting is more pronounced, and
our technique more crucial, when tasks are more
difficult.

By keeping a balanced memory across lan-
guages, Balanced could have the benefit of making
sure to revisit all languages assuming knowledge of
the total number of languages involved in the con-
tinual learning. However, using a balanced memory
across languages Balanced doesn’t lead to lower
forgetting than picking a random memory across
languages Random. This could be because Bal-

7809



-3
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2

1 2 3 4 5 6 7 8 9 10

Fo
rg

et
tin

g 
of

 S
lo

t F
ill

in
g 

F1
 S

co
re

LER (Easy)
Random
LER (Hard)

(a) Average forgetting ↓.

87.4
87.6
87.8

88
88.2
88.4
88.6
88.8

89
89.2
89.4

1 2 3 4 5 6 7 8 9 10

Fi
na

l P
er

fo
rm

an
ce

 o
f S

lo
t 

Fi
lli

ng
 F

1 
Sc

or
e

LER (Easy)
Random
LER (Hard)

(b) Average final performance ↑.

Figure 2: Average forgetting and final performance of slot filling for different model variants compared to the
Random baseline averaged over different language orders. The lower the forgetting and the higher the final
performance the better.

Approach MTOP MultiATIS++ TyDiQA
Intent Accuracy ↓ Slot F1 ↓ Slot F1 ↓ F1 ↓

No ER 5.84 7.56 2.62 1.52
Balanced† 0.92 1.15 −0.63 0.92
Random‡ 0.68 0.76 −0.56 0.73
LER (Easy) 0.49 0.63 −0.73 0.83
LER (Hard) 0.82 1.09 1.10 1.14

Table 3: Average Test forgetting scores based on the Dev
data split performance of different models and baselines.
We compare two Leitner-guided memory replay variants
LER (Easy) and LER (Hard) to the baselines. Since no
previous work on experience replay in the cross-lingual
setup reports any forgetting results, we implement in
addition to No ER our internal baselines: Balanced and
Random adapted from †(Lopez-Paz and Ranzato, 2017)
and ‡(Riemer et al., 2019), respectively. Best (lowest ↓)
forgetting scores are highlighted in bold for each task
and subtask.

anced picks a balanced amount of examples per
language, exposing the model to less diversity com-
pared to Random. This could also show the need
to continuously update the diversity of memory to
make room for higher-quality examples in contin-
ual learning. LER (Easy) stands out as one of the
most successful strategies in reducing forgetting
and beating both experience replay baselines. LER
(Easy) reaches the lowest forgetting with reductions
of 1.76, 0.64, and 0.46 in forgetting of F1 score for
slot filling compared to LER (Hard), Balanced, and
Random respectively. Results on MultiATIS++ and
to some degree TyDiQA confirm the consistent su-
periority of LER (Easy) and the inferiority of the
LER (Hard) approach.

For the remaining analysis, we focus on MTOP,
shedding more light on the added value of LER
approaches compared to the best-performing ER

baseline, Random. Figures 2a and 2b show the
learning curves of different models on slot filling
in terms of forgetting and final performance, re-
spectively. Throughout the training, LER (Easy) is
consistently more effective than Random and LER
(Hard) in minimizing forgetting while improving
final performance, thus taming the interference ver-
sus transfer tradeoff. LER (Easy) can converge and
stabilize at a low forgetting score earlier in training.
On the other hand, the LER (Hard) strategy exacer-
bates the forgetting problem as training proceeds.
This shows that replaying easy examples is consis-
tently more effective than revisiting hard ones that
the model is struggling with. Our Leitner-based
skill rating system provides a dynamic measure
that keeps selecting pertinent instances as language
exemplars in constructing the memory replay.

4.2 Fine-grained Language Analysis

Figures 3 and 4 show a fine-grained analysis of
forgetting between different models across differ-
ent language orders and languages, respectively.2

For each language order and language, we re-
port Test results for the best-performing model
based on Dev data split. Overall, we observe
that LER (Easy) consistently outperforms LER
(Hard) and Random across different language or-
ders and languages. Certain language orders
such as Thai→Hindi→German→English (4) and
Hindi→Thai→English→German (3) have more
forgetting than others. The languages that bene-
fit the most compared to Random are Hindi and

2More results for other subtasks can be found in the Ap-
pendix B.
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German whereas the gains for Thai and English are
more minimal. LER (Easy) manages to bridge that
gap in forgetting, keeping it within a low range.

0.44
0.16

0.56

1.37

0.39 0.27

0.76

1.64

0.83 0.90
1.10

1.53

0.0

1.0

2.0

1 2 3 4

Fo
rg

et
tin

g 
of

 S
lo

t 
Fi

lli
ng

 F
1 

Sc
or

e 

LER (Easy) Random LER (Hard)

Figure 3: Fine-grained analysis of forgetting of slot
filling over different language orders as defined in Ta-
ble 2. Best (lowest) results for each language order are
highlighted in bold.
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Figure 4: Fine-grained analysis of forgetting of slot
filling over different languages. Best (lowest) results for
each language are highlighted in bold.

4.3 Discussion
In this part, we conduct a qualitative analysis to
complement our conclusion from our quantitative
analysis that choosing training data for the mem-
ory that is easy to learn is more beneficial than
choosing data that is not easily learned. To dig
deeper into why ruling out harder examples from
the memory is beneficial, we look more closely
at the characteristics of those hard cases among
training data. We define an intractable example as
an example whose skill rating never gets promoted
and stays 1 throughout training. At the other end
of the spectrum is a confident example whose skill
rating converges to 5 and never gets demoted after
that.

In Figure 5, we report percentages of intractable
and confident training data in MTOP for each lan-
guage, averaged over all phases and language or-
ders. We notice that for each language, 70% or
more examples are confident. Thus, the Random
approach to memory selection is unlikely to differ
all that much from the LER (Easy) approach, at
least in intent detection for MTOP. For other tasks

with lower rates of easy examples, it might not be
straightforward to pick easy examples with a ran-
dom approach. We also observe a trend where the
more high-resource the language is, the less likely
its examples are intractable and the more likely its
examples are confident. Thai, which has the high-
est percentage of intractable examples, is the most
low-resource in MTOP. This explains why LER
(Easy) is much more beneficial than Random for
Thai and Hindi compared to English and German
for intent classification in Figure 9 (Appendix B).
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Figure 5: Percentages of examples that never get pro-
moted past skill rating 1 (Skill never promoted) and
those that converge to the maximum skill rating 5 (Con-
verged to max skill) per language averaged over differ-
ent language orders. More statistics on the proportion of
different languages in the memory at the end of training
using different approaches are shown in Appendix C.

As an exemplar, we focus now on English data,
specifically concentrating on training data analysis
from the end of the first phase in language order
English→German→Hindi→Thai. To understand
what makes an example particularly intractable, we
define the following categories:

• Low-resource (LR): A training instance is con-
sidered low-resource if the number of training
instances per its intent label is below 10. For En-
glish, there are 137 training instances per intent
on average. This makes low-resource labels fall
within the 25% percentile.

• Difficult to disambiguate (DD): This is the case
if the true class is among the most similar to
the predicted class. We let the [CLS] token rep-
resentation of a sentence be its representation.
We then compute the centroid of the sentence
representations per class label. For each label,
we determine its most similar predicted classes
based on the 5 nearest neighbors.

• Poorly-defined (PD): Unlike low-resourced and
difficult to disambiguate examples which are au-
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Type Utterance True Class Prediction Classes

LR
Put this song on repeat. music:LOOP_MUSIC music:REPLAY_MUSIC
What is Tyler studying in school? people:GET_MAJOR people:GET_UNDERGRAD
Merge another call with this one. calling:MERGE_CALL calling:END_CALL

DD
Did Jack get sentenced today? news:GET_DETAILS_NEWS news:QUESTION_NEWS
How to make Arab tahini sauce? recipes:GET_INFO_RECIPES recipes:GET_RECIPES
What time does the sun come up tomorrow? weather:GET_SUNRISE weather:GET_SUNSET

PD
Where does Kade work? people:GET_LOCATION people:GET_EMPLOYER
Pause the current timer and delete. timer:PAUSE_TIMER timer:DELETE_TIMER
Increase my timer to 30 minutes. timer:CREATE_TIMER timer:RESTART_TIMER

Table 4: Examples of intractable examples and their gold truth and prediction intent labels from each category.

tomatically determined by their labels, we inspect
here case by case for poorly-defined sentences.
We define a poorly-defined example as any sen-
tence that doesn’t make sense to be attributed to
a certain label. This could be due to a mismatch
or lack of commonsense in the way the ontology
was defined for certain labels.

We show in Figure 6 some statistics of differ-
ent categories of intractable examples. Most in-
tractable examples are either DD, LR, or both. In-
specting confident examples reveals that no LR
or DD examples are encountered among them.
This demonstrates that our Leitner-guided approach
LER (Easy) can detect such hard categories and rule
them out. By imposing a more fine-grained skill
rating system, our Leitner-guided memory replay
approach provides a more confident approach to de-
termine which labels the model is struggling with
more than relying on prediction loss (Amiri et al.,
2018). The skill rating system adds information
that prediction loss alone does not. In fact, only
27% of the English examples that have skill ratings
between 2 and 4 (neither intractable nor highly con-
fident) are wrongly predicted at the end of the first
phase. Those unstable examples are part of the
selection of LER (Hard), so not prioritizing such
examples is beneficial.

50%

20%

2%22%

4%

2%

DD
LR
PD
LR & DD
PD & DD
Unclassified

Figure 6: Distribution of different categories of in-
tractable examples in the English data.

In Table 4, we provide some examples of dif-
ferent categories of wrongly predicted labels. We
observe inconsistencies in those examples. Those
that are specifically DD are so close to being picked
as representative examples of certain classes, which
can only confuse the learner. For example, while
"Pause the current timer and delete." is supposed
to be classified as timer:PAUSE_TIMER, this la-
bel is far from being comprehensively descrip-
tive of the sentence intent. Its predicted label
timer:DELETE_TIMER is not wrong either, as it
detects the intent to delete, which is the second
part of the example. We suspect that reinforcing
the learning using difficult cases can only mislead
the learner. In Figure 7, we show a t-SNE pro-
jection of the centroids of different intent label
representations. We highlight in that figure the
most common DD labels whose representations
are indistinguishable in the vector space. Some
of those labels like GET_STORIES_NEWS and
GET_DETAILS_NEWS are to the human eye also
DD, which could be an artifact of how the intent
ontology was defined. Our Leitner-guided strategy
LER (Easy) rules them out, favoring examples the
learner is more confident about with class labels
that correspond to more clearly separable represen-
tations.

5 Related Work

Continual learning work inspired by human-like
learning falls into several categories. Notable cat-
egories include spaced-repetition (Smolen et al.,
2016; Amiri et al., 2017; Amiri, 2019; Feng
et al., 2019; Klasson et al., 2023), mechanisms
of sleep (Ball et al., 2020; Mallya and Lazebnik,
2018; Schwarz et al., 2018), and reactivation of
memories (Hayes et al., 2020; van de Ven et al.,
2020). Leitner queues, one of the most famous
spaced repetition techniques, started garnering at-
tention for machine learning recently. However,
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Figure 7: t-SNE visualization of centroids of different
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tinguishable in the embedding space.

most of the work is focused on scheduling when
to review data in non-continual learning setups.
Amiri et al. (2017) show the sample efficiency of a
human-inspired memory model to determine when
to review each item as a function of the difficulty of
the item and the strength of the network. Klasson
et al. (2023) propose a Monte Carlo tree search ap-
proach for memory replay. More work (Amiri et al.,
2018; Amiri, 2019) demonstrates the effectiveness
of Leitner queues at determining spurious data and
confident labels for self-training applications. Our
work, by contrast, is the first to test for the effec-
tiveness of Leitner queue-based skill ratings in mit-
igating forgetting in cross-lingual continual learn-
ing. Some studies, such as He et al. (2021), have
looked into analyzing the forgetting problem from
the perspective of knowledge transfer and context
sensitivity from pre-training to fine-tuning. Fine-
grained analyses such as Luo et al. (2023) look at
different types of general knowledge in large lan-
guage models that are saliently forgotten and at
the role that model scale plays in forgetting. To
the best of our knowledge, no previous work has
analyzed forgetting in the cross-lingual continual
learning context.

6 Conclusion

In this paper, we formulate a human-inspired ex-
perience replay approach specifically for cross-
lingual continual learning. We propose a Leitner-
based skill rating system to dynamically populate
and update the memory with high-quality items.
Our approach can deal with the stability-plasticity
dilemma better than random selection, especially
for complex tasks and consistently over languages

and language orders. The implications of this anal-
ysis include a recipe for how to incorporate aspects
of human learning in the design of memory replay
in cross-lingual continual learning.

Limitations

Other Variants of Leitner Queues In this paper,
we have focused on Leitner queues as an approach
to guide the process of memory storage and update.
In future work, other variants of Leitner queues or
other approaches based on human learning theories
could be explored. For example, more fine-grained
approaches based on theories of how languages get
forgotten to model the retention curve as a function
of the task difficulty, review periods, and strength
of the model could be investigated. This could
help us understand how the process of forgetting
works and when to schedule revisions accordingly
to circumvent that.

Fine-grained Analysis of Task Difficulty In this
paper, we evaluate on a representative set of nat-
ural language understanding tasks. We prove that
our approach benefits challenging tasks more con-
sistently. However, we don’t closely investigate
if there is a correlation between the difficulty of
a task and the effectiveness of our Leitner-based
skill rating approach on it. For such an analysis
to be possible, we need a principled way to define
what makes a task more difficult naturally or to
simulate that synthetically. We leave a systematic
fine-grained analysis over more downstream tasks
ranging in difficulty for future work.

Other Scenarios of Cross-lingual Continual
Learning Given the myriad ways to define re-
alistic setups, the endeavor of defining a more
principled realistic model of annotation scenario,
following some logic or pattern, warrants its own
dedicated investigation. In this study, we chose
to focus on a common realistic scenario encoun-
tered by many users: a model is used by a user in
one language, and then later on, the user experi-
ences the need to incorporate more languages one
at a time. Aside from being an extreme adapta-
tion case and thus a useful stress test of our tech-
nique, a realistic language phase scenario would
be a company’s strategic decision to enter into a
new language/market due to an influx of customer
data. While exploring broader scenarios of con-
tinual learning — where each phase may entail
training on multiple languages repeatedly — holds
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potential, such exploration lies beyond the scope
of this study.

Experimenting with Other Language Orders
In this work, we experiment with a carefully cu-
rated and balanced set of language orders. In future
work, it would be worth investigating the extent
to which models forget when using other possible
language orders. It is also not clear if there is a
deterministic linguistic or non-linguistic factor that
can make a particular language order languages
more susceptible to forgetting than others. Hence,
a meticulous and comprehensive analysis needs to
be conducted to unravel the intricacies of the phe-
nomenon of forgetting and its underlying triggers
in the context of cross-lingual continual learning.

Experimenting with Memory Scale To ensure
a consistent comparison between different mod-
els, we maintain a fixed memory size per bench-
mark throughout our analysis. Naturally, as the
memory size grows, we anticipate the need to be
discriminative in memory selection to be dimin-
ished. Specifically, since most examples are not
intractable (not difficult to learn), a larger mem-
ory capacity increases the likelihood of a random
approach selecting higher-quality, well-learned ex-
amples. Conversely, we anticipate that experiment-
ing with even smaller memory budgets may not
yield optimal results, as there must be adequate
memory size for the experience replay approach to
significantly outperform the vanilla baseline. In fu-
ture work, interested readers can explore more low-
resource and sample-efficient approaches, such as
meta-learning, on top of our approach.
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A Implementation Details

We specify below more implementation details,
such as hyperparameters and datasets, in addition
to the runtime and number of parameters of differ-
ent models.

A.1 Hyperparameters

For all experiments, we use M-BERT (bert-base-
multilingual-cased)3 with 12 layers as our pre-
trained multilingual Transformer-based encoder
model. Consistent with M’hamdi et al. (2023) and
Hu et al. (2020) for MTOP and TyDiQA, respec-
tively, we use the Adam optimizer (Kingma and Ba,
2015), fixing the learning rate to 3e−5 for all exper-
iments for a fair comparison. M’hamdi et al. (2023)
perform a manual hyperparameter search over the
range [1× 10−4, 3× 10−4, 1× 10−5, 3× 10−5] to
choose the most optimal learning rate based on Dev
data split performance. For TyDiQA, those hyperpa-
rameters are chosen based on Hu et al. (2020). For
MultiATIS++, we perform a manual search over
the same learning rates range and find that 3×10−5

performs comparably to other learning rates. So,
we fix a learning rate of 3 × 10−5, ϵ = 1× 10−8,
β1 = 0.9, β2 = 0.99 in the optimizer for a fair
comparison for all experiments. For TyDiQA ex-
periments, we find it helpful when a scheduler with
linear decaying learning rates is used. We use batch
sizes of 4, 16, and 4 for MTOP, MultiATIS++, and

3github.com/huggingface/transformers version
3.4.0 pre-trained on 104 languages, including all languages
covered in our evaluation.
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TyDiQA, respectively. In all baseline models Bal-
anced and Random and Leitner-guided ER (LER)
model variants, we choose a fixed memory propor-
tion to 20% of the training data from each bench-
mark. Based on that, we fix |M| memory size to
10,105, 500, and 500 for all MTOP, MultiATIS++,
and TyDiQA experiments, respectively. We also fix
the sampling frequency from the memory to every
10 minibatches. For all experiments, we run for 10
epochs maximum and pick the best model based
on Dev data split. We use the same seed across all
experiments to report the mean results. We also fix
a seed of 42 for the random initialization of Numpy,
Random, and Torch libraries over all experiments.
All experiments are run on the same computing in-
frastructure using 1 NVIDIA A40 GPU of 46,068
MiB of memory CUDA version 11.6 and Pytorch
version 1.13.1.

A.2 Dataset License

MTOP dataset has been released by Facebook un-
der Creative Commons Attribution-ShareAlike 4.0
International Public License. MultiATIS++ and Ty-
DiQA datasets have been released under the Apache
License, which allows the use, modification, and
distribution of the dataset.

A.3 Runtime

We show in Table 5 the runtime of different ap-
proaches and baselines for one single language or-
der on MTOP. This runtime includes both the costs
of training and evaluation. Our LER only incurs 3
hours more than No ER approach, with most of it
spent calculating the skill rating at the end of each
epoch.

Model Total Runtime
No ER 6 hrs 23 min 20 sec
Balanced 6 hrs 45 min 22 sec
Random 6 hrs 25 min 25 sec
LER(easy/hard) 9 hrs 23 min 13 sec

Table 5: Fine-grained runtime analysis per model for
one single language order on MTOP.

Table 6 compares between the number of pa-
rameters of models used for different downstream
benchmarks. Task-oriented dialog benchmarks
(MTOP and MultiATIS++) require more param-
eters and thus are more challenging compared to
span-based question answering (TyDiQA).

Model # Parameters
MTOP 178,081,402
MultiATIS++ 178,036,139
TyDiQA 177,264,386

Table 6: Fine-grained parameter analysis per bench-
mark.

B More Results

Figures 8 and 9 show a fine-grained analysis of
the forgetting of intent classification over different
language orders and languages, respectively.
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Figure 8: Fine-grained analysis of forgetting of intent
classification over different language orders as defined
in Table 2. Best (lowest) results for each language order
are highlighted in bold.
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Figure 9: Fine-grained analysis of forgetting of intent
classification over different languages. Best (lowest)
results for each language are highlighted in bold.

C Proportion of Memory per Language

Figure 10 shows a fine-grained analysis of the lan-
guage distribution of the memory at the last phase
after training for each language order in MTOP.
We compare between different distributions using
Leitner queues approaches against the random ap-
proach. While Random maintains a close to uni-
form per language distribution in different language
orders, LER (Easy) and LER (Hard) make informed
decisions of which proportions to pick from each
language depending on its learnability.
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(a) English→German→Hindi→Thai. (b) Thai→Hindi→German→English.

(c) Hindi→Thai→English→German. (d) German →English→Thai→Hindi.

Figure 10: Statistics of the memory distribution per language at the end of the training on each language order in
MTOP dataset.
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