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Abstract

We introduce SPUD (Semantically Perturbed
Universal Dependencies), a framework for cre-
ating nonce treebanks for the multilingual Uni-
versal Dependencies (UD) corpora. SPUD data
satisfies syntactic argument structure, provides
syntactic annotations, and ensures grammati-
cality via language-specific rules. We create
nonce data in Arabic, English, French, German,
and Russian, and demonstrate two use cases
of SPUD treebanks. First, we investigate the
effect of nonce data on word co-occurrence
statistics, as measured by perplexity scores of
autoregressive (ALM) and masked language
models (MLM). We find that ALM scores are
significantly more affected by nonce data than
MLM scores. Second, we show how nonce
data affects the performance of syntactic de-
pendency probes. We replicate the findings of
Müller-Eberstein et al. (2022) on nonce test
data and show that the performance declines on
both MLMs and ALMs wrt. original test data.
However, a majority of the performance is kept,
suggesting that the probe indeed learns syntax
independently from semantics.1

1 Introduction

An ample amount of work in the last years has fo-
cused on making explicit the linguistic information
encoded in language models (LMs). Frequently,
the overarching question is to which extent the
behavioral and representational properties of self-
supervised LMs are cognitively plausible and as-
sumed by linguistic theory (surveys: Linzen and
Baroni, 2021; Mahowald et al., 2023; Chang and
Bergen, 2023). A subset of this work aimed at un-
derstanding LMs ability to learn syntax (survey:
Kulmizev and Nivre, 2022, examples: Hewitt and
Manning, 2019; Manning et al., 2020; Tenney et al.,
2019; Newman et al., 2021). A common approach
is to rely on the performance of a probing classifier

1Code at https://github.com/davidarps/spud

(Hupkes et al., 2018; Kunz and Kuhlmann, 2020,
2021) in predicting syntactic relations. However,
this method has been criticized for various reasons
(Belinkov, 2022), including that predicting a lin-
guistic property from LM representations does not
imply that the LM uses that property in its predic-
tions (Lyu et al., 2024). Maudslay and Cotterell
(2021) highlighted that results of syntactic probes
can be misleading due to semantic information in
the representation. In other words, a high probing
accuracy may be fully or partially attributed to the
use of present semantic knowledge.

The theoretical linguistic literature has discussed
the separation of syntactic grammaticality and se-
mantic information for decades, starting with the
sentence Colorless green ideas sleep furiously in
Chomsky (1957). A number of studies have used
systematically perturbed data to probe LM repre-
sentations and predictions on such grammatical
but nonsensical sentences (Gulordava et al., 2018;
Maudslay and Cotterell, 2021; Arps et al., 2022).
However, none of the works ensures that the nonce
data is grammatical, e.g. in their datasets, the va-
lency of predicates is not controlled. Furthermore,
only Gulordava et al. (2018) base their conclusions
on languages beyond English.

In this paper, we aim to standardize the efforts in
this direction by proposing a framework to create
nonce data that satisfies syntactic argument struc-
ture, provides syntactic annotations, and ensures
grammaticality via language-specific rules. The
framework relies on Universal Dependencies (UD,
de Marneffe et al., 2021) treebanks. For each sen-
tence in the treebank, it replaces content words with
other content words that are known to appear in the
same syntactic context. This results in nonce sen-
tences that preserve the syntactic structure of the
original sentences (see Fig. 1). To ensure syntactic
grammaticality, we define three types of language-
specific rules and constraints that are applied during
the process, which are: (i) the POS tag of the words
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to be replaced, (ii) constraints on word order and
dependency relations of replaced words to ensure
syntactic grammaticality, and (iii) word-level rules
to ensure that morphosyntactic constraints are met.
We refer to this algorithm and the resulting UD
data as Semantically Perturbed UD (SPUD).

We create SPUD data for five widely spoken lan-
guages; Arabic, English, French, German, and Rus-
sian. We show via a human evlation that SPUD is
preferrable in terms of grammaticality to the kind
of nonce data that has been previously used in the
literature to tackle similar research questions. We
show the effectiveness of SPUD on two tasks to as-
sess the robustness of autoregressive LMs (ALMs)
and masked LMs (MLMs) to semantic perturba-
tions. First, we study the effect of nonce data on
LM scoring functions (perplexity and its adapta-
tions for MLMs). Second, we investigate the ro-
bustness of syntactic dependency probes to seman-
tic irregularities, and disentangle the effect of lex-
ical semantic features on the findings of previous
work. The contributions and main findings of our
work are as follows:

• We introduce SPUD, a framework for creating
nonce treebanks for UD corpora that ensures
syntactic grammaticality, and provide nonce
treebanks for 5 languages (Arabic, English,
French, German, Russian).

• We show the effectiveness of the proposed
data log-likelihood scoring of different lan-
guage model architectures, and on the perfor-
mance of syntactic dependency probes.

• We show that ALM perplexity is significantly
more affected by nonce data than two formula-
tions of MLM pseudo-perplexity, and that for
MLMs, the availability of subword informa-
tion affects pseudo-perplexity scores on both
natural and SPUD data.

• In structural probing for dependency trees, we
show that ALM performance decreases more
than MLM performance on SPUD, and that
this performance drop is more pronounced for
edge attachment than relation labeling.

The paper is structured as follows. In the next
section, we discuss related work. In Sec. 3, we
describe the framework for creating nonce UD tree-
banks. Sec. 4 describes the experiment on scoring
nonce data with perplexity. In Sec. 5, we describe
the structural probing experiments. In Sec. 6, we
discuss the results and conclude.

DET NOUN AUX ADJ CCONJ ADJ PUNCT
The service was friendly and fast .
The interior was nuclear and fresh .

det

root

nsubj

cop

cconj

punct

cc

NOUN
interior

nsubj

det

ADJ
nuclear

root

nsubj

cop cconj

punct

ADJ
fresh

cconj

cc

Figure 1: SPUD data creation

2 Related Work

Automatically modified Dependency Trees The
idea to replace words and subtrees based on depen-
dency structure has been used for data augmen-
tation in various areas of NLP, in particular for
low-resource dependency parsing. Dehouck and
Gómez-Rodríguez (2020) proposed an idea simi-
lar to ours, with the differences that (i) they swap
subtrees instead of content words resulting in gen-
erated sentences with altered syntactic structure,
and (ii) their constraints on possible replacements
are language-agnostic. Şahin and Steedman (2018)
cut subtrees based on their dependency relation,
and modified treebanks by changing the order of
annotated dependency subtrees. Vania et al. (2019)
demonstrated the effectiveness of Şahin and Steed-
man (2018)’s algorithm as well as nonce treebanks
for low-resource dependency parsing. However,
their method lacked language-specific constraints
and did not rely on dependency edges to depen-
dents. Nagy et al. (2023) apply a similar method
for low-resource machine translation. Wang and
Eisner (2016) permuted dependents within a single
tree to generate synthetic treebanks with lexical
contents from one language and word order proper-
ties of another language.

Structural Probing DepProbe (Müller-
Eberstein et al., 2022) decodes labeled and directed
dependency trees from LM representations. With
DepProbe, Müller-Eberstein et al. (2022) probed
mBERT (Devlin et al., 2019) on 13 languages, and
showed that the probe performance is predictive
of parsing performance after finetuning the LM.
Prior to that, similar probes have been applied
to unlabeled (Kulmizev et al., 2020) as well as
unlabeled and undirected dependency trees (Hewitt
and Manning, 2019; Chi et al., 2020). Eisape et al.
(2022) used Hewitt and Manning (2019)’s method
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to probe GPT-2 (Radford et al., 2019).

Syntactic and Semantic Information in LMs
Gulordava et al. (2018) performed targeted syntac-
tic evaluation (TSE; Marvin and Linzen, 2018) on
ALMs in four languages and investigated the effect
of nonce data that considers POS tags and mor-
phological features for replacements. Lasri et al.
(2022a) investigated the effect of nonce data for
TSE in BERT and found that BERT correctly pre-
dicts number agreement for nonce sentences only
in simple syntactic templates. Maudslay and Cot-
terell (2021) investigated the effect of Jabberwocky
words (such as provicated) on syntactic probes.
Ravfogel et al. (2020) found a transformation of
LM representations that highlights structural prop-
erties. Arps et al. (2022) used a similar algorithm
as ours to create nonce versions of the English PTB
(Marcus et al., 1993), and probed the syntactic in-
formation in hidden representations of four MLMs.
The main difference to SPUD is that they do not re-
strict replacements to content words, and do not ap-
ply language-specific processing steps. Therefore
their nonce data is more likely to be ungrammatical.
Sinha et al. (2021) tested to which extent MLMs
rely on word order vs. higher-order cooccurence
statistics. They found that word order is not needed
to achieve high performance on many NLP tasks.
Papadimitriou et al. (2022) probed the relevance of
word order and semantic prototypicality for clas-
sifying grammatical roles with BERT. Lasri et al.
(2022b) compared BERT and human judgments
on the subject-verb agreement task for nonce data
and found that, while the error patterns of both
are similar, BERT has a generally higher perfor-
mance drop for nonce data than humans. Kauf et al.
(2023) explored the interaction of syntactic and se-
mantic information with similarity between LMs
and human fMRI signals, and show that lexical
semantic content - not syntactic structure - is the
main driver of similarity in both LM and human
representations.

Scoring Functions for LMs The likelihood of
sentences assigned by an LM is often used to in-
vestigate the model’s preference for grammatical
sentences (Kulmizev and Nivre, 2022; Warstadt
et al., 2020). Perplexity (PPL) is a common met-
ric to score the likelihood of a sentence with ALMs.
For MLMs, estimating the likelihood of a given
sentence in a fashion that is useful for applications
is not as trivial. Salazar et al. (2020) formalized
pseudo-perplexity (PPPL) as a scoring function

for MLMs: Each token in a sentence is masked in
turn, and PPPL is computed as a function of the
MLM’s probability of the masked tokens. Kauf
and Ivanova (2023) showed that PPPL system-
atically inflates scores for multi-token words, and
proposed PPPLl2r, a subword-aware alternative
that is more robust to this effect. Miaschi et al.
(2021) trained classifiers on different linguistic fea-
tures to predict the PPL of GPT-2 and PPPL
of BERT. They find that GPT-2 scores are gener-
ally better predictable by their set of features than
BERT scores, and that lexical features are more
important for GPT-2 than for BERT.

3 Nonce Treebanks for Five Languages

This section presents SPUD (Semantically Perturbed
Universal Dependencies), our framework for nonce
data creation. The input is a UD treebank, and the
output is a treebank with the same syntactic struc-
ture as the input but nonce semantic content. In
principle, the same algorithm is applied in any lan-
guage, but each language requires a set of language-
specific pre- and post-processing steps (Sec. 3.1).
In this work, we create nonce data for five lan-
guages and treebanks: Arabic (PADT, Hajic et al.,
2009), German (HDT, Borges Völker et al., 2019),
English (EWT, Silveira et al., 2014), French (GSD,
Guillaume et al., 2019), and Russian (SynTagRus,
Droganova et al., 2018). Fig. 1 presents one ex-
ample. More examples and information on the
resources are in App. A. To apply the framework
to a new language, an annotated UD treebank and
access to a native speaker in the target language are
required. Along with this paper, we publish a tuto-
rial for creating SPUD treebanks in other languages.

3.1 Generating Nonce Data

Language-independent algorithm The proce-
dure consists of iteratively replacing content words
with other words that appear in the same syntactic
context at another point in the treebank. We con-
sider words with POS tags ADJ, ADV, NOUN, PROPN
and VERB as content words. The syntactic con-
text of a token t is defined as (i) the UPOS tag
of t, (ii) the dependency relation of t to its head,
and (iii) the dependency relations of t to its de-
pendents. This syntactic context is collected for
every lemma. Then, the nonce trees are created by
replacing content words with other words where
the lemma appeared in the same syntactic context.
The morphological features of t, as annotated in
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UD, are considered to determine the right form for
a replacement. For this step, the morphological
databases UDLexicon (Sagot, 2018) and Wiktex-
tract (Ylonen, 2022) are used. Fig. 1 presents an
example (without morphosyntactic features).

Language-specific modifications are necessary
to ensure that the data meets the criterion of being
morphosyntactically correct. For instance, if the
first sound of the word following an English indef-
inite article changes from a vowel to a consonant
or vice versa, the article is adjusted with the help
of a phonological dictionary. E.g. when replacing
apple in an apple with bicyle, the result is a bicycle
and not *an bicycle. We refer to App. A for details
on the language-specific modifications.

Quality of the generated data To determine the
sufficiency of the language specific rules, we asked
linguistically trained native speakers of the respec-
tive languages to provide feedback on how well the
nonce sentences match the desired criteria. The an-
notators received samples of at least 100 sentence
pairs. Over 2-3 iterations, annotators pointed out
problems in the generated data, which we then ad-
dressed by modifying the language-specific rules.

Human evaluation We conduct a human evalu-
ation to estimate the benefits of using SPUD over
the algorithm presented by Gulordava et al. (2018),
which does not incorporate information about syn-
tactic dependencies or language-specific rules. For
this evaluation, human annotators were presented
with sentence triplets, each consisting of an origi-
nal sentence from the treebank, a nonce version of
that sentence generated by SPUD, and a nonce ver-
sion generated by the algorithm of Gulordava et al.
(2018). The two nonce sentences were presented
in random order, without indication of their source.
Annotators rated for each sentence whether it was
grammatical, and which of the two nonce sentences
was syntactically closer to the original. One anno-
tator rated 30 French sentence triplets, and two
annotators rated 39 English and 153 German sen-
tence triplets. All triplets where selected randomly
from the corresponding treebanks. Annotators had
the option to indicate that they were unsure, or that
the two nonce sentences were equally close to the
original. We find that SPUD is rated grammatical
more frequently than the algorithm of Gulordava
et al. (2018) in all three languages, and by all an-
notators (Tab. 1). Concretely, up to 87% of the
SPUD sentences are rated grammatical, compared

to only up to 38% of the sentences generated by
the algorithm from Gulordava et al. (2018). Inter-
annotator agreement on grammaticality judgments
is moderate, with Cohen’s Kappa of .51 (en) and
0.58 (de). SPUD is also preferred in the majority
of cases, with some "equal" ratings (Tab. 2). We
conclude that, while the scale of this experiment is
limited, the results suggest that the quality of the
sentences generated by SPUD is higher than that
of the algorithm of Gulordava et al. (2018), which
has been used previously to interpret the behavior
of LMs.

4 Scoring SPUD with ALMs and MLMs

The SPUD treebanks are designed to be grammatical
but highly improbable. In this section, we investi-
gate how this property is reflected in the predictions
of different LM architectures. On the one hand,
this serves as a sanity check for SPUD resources:
Do we in fact perturb co-occurrence statistics of
words as intended? On the other hand, at a higher
level, it investigates whether SPUD data makes the
models perplexed and how different LM architec-
tures, and uni- vs. bidirectional context, influence
the effect that syntactic and semantic structure has
on model predictions. Concretely, we answer the
following questions: To what extent is SPUD data
harder to predict than original data? Are ALMs and
MLMs affected by SPUD data in different ways?
Are MLM scoring functions affected differently by
nonce data?

4.1 Scoring Functions for LMs

App. E.1 shows examples for all scoring functions.

ALMs: Perplexity (PPL) of a sentence x =
(x1, . . . , xn) is commonly defined as the exponen-
tiated average of the negative sum of log probabili-
ties for all tokens xi. The lower the perplexity, the
higher the probability of x for the model.

PPL(x) = exp(− 1

n

n∑

i=0

log p(xi|x<i)) (1)

MLMs: Pseudo-Perplexity (PPPL) is de-
signed to capture the likelihood that an MLM as-
signs to a sequence (Salazar et al., 2020). It is cal-
culated by processing the input n times, masking
each token xi exactly once. PPPL(x) is defined
via the sum of log probabilities that the LM assigns
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SPUD Gulordava et al. (2018)

Sentences yes no unsure yes no unsure \kappa
de 153 72.5 27.5 0 9.5 90.5 0 0.58
en 39 78.2 19.2 2.6 35.9 60.3 3.8 0.51
fr 30 86.7 13.3 0 0 100 0

Table 1: Results for Grammaticality judgments. For German and English, the mean between the two annotators is
presented. Grammaticality judgments were also made for the original sentences, which were almost always rated
grammatical. They are not included in the figure and in the inter-annotator agreement calculations.

Equal SPUD Gulordava et al. (2018) unsure κ

de 13.7 81.0 4.2 1.0 0.17
en 20.5 70.5 1.3 7.7 0.09
fr 13.3 86.7 0.0 0.0

Table 2: Results for Preference judgments. For German and English, the mean between the two annotators is
presented. While Cohen’s κ is low, per item agreement is higher (.56 for en, .73 for de).

to the masked xi:

PPPL(x) = exp(− 1

n

n∑

i=0

log p(xi|x\i)) (2)

MLMs: PPPL with subword generation Kauf
and Ivanova (2023) proposed PPPLl2r, a vari-
ant of PPPL that is more aligned with PPL for
ALMs. The idea is to consider the groupings of
tokens to words, and predict subword tokens with-
out conditioning on succeeding tokens. Let ωr(xi)
denote the tokens that are in the same word as xi,
including and succeeding xi. For example, when
tokenizing accordeon as accord, ##eon, it holds
that ωr(accord) = {accord, ##eon}. Then, tokens
ωr(xi) from the right context within the same word
are masked out when predicting the token xi:

PPPLl2r(x) = exp(− 1

n

n∑

i=1

log p(xi|x\ωr(xi)))

(3)

Evaluating Scoring Functions on SPUD When
comparing scores across sentences, the variance is
very high: Some sentences are far more likely than
others, irrespective of the language or whether they
are nonce. Thus, we use the ratio between sentence-
level scores of a pair of original and corresponding
SPUD sentence (sorig, snonce). For a scoring func-
tion f ∈ {PPL,PPPL, PPPLl2r}, we define
the ratio as rf (sorig, snonce) =

f(snonce)
f(sorig)

and then
investigate the distribution of rf for all sentence
pairs in a corpus.

4.2 Hypotheses

Hypothesis 1: LMs assign a higher score to SPUD
data than to original data - the content words are
chosen at random, and therefore should be much
harder to predict than the original words.

Hypothesis 2: ALMs and MLMs are impacted by
SPUD data in different ways. Bidirectional context
determines the syntactic properties of a predicted
token to a larger degree than unidirectional con-
text. Therefore, the space of probable predictions
is smaller for MLMs than for ALMs, and we expect
that the impact of SPUD data on ALM perplexity
should be higher than on MLM pseudo-perplexity.

Hypothesis 3: For SPUD, rPPPLl2r
are higher than

rPPPL because nonce words are hard to predict
based on context from surrounding words, but easy
to predict based on context from the same word.

4.3 Experimental Setup

We adapt Kauf and Ivanova (2023)’s implementa-
tion to retrieve token-level scores for all sentences
in the SPUD and original data. We compare results
for mBERT (Devlin et al., 2019) as an MLM and
mGPT (Shliazhko et al., 2024) as an ALM. We re-
port the scoring results of only one instance of SPUD
data per sentence. We argue that this is sufficient
to draw conclusions about the general behavior of
the models, since we conduct the experiment on a
large number of sentences, and different languages.
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Figure 2: Intrinsic evaluation results for English and
Arabic. Plots for other languages are in App. E.2.

4.4 Results

Is SPUD data harder to predict than original
data? To test Hypothesis 1, we check the dis-
tribution of score ratios rf for all scoring functions
f . The results for mBERT and mGPT are shown in
Fig. 2 and show that for all settings, the first quar-
tile is larger than 1, i.e. the score of SPUD sentences
is higher than that of original sentences for the vast
majority of the data. This means that SPUD data
receives lower likelihood than original data and is
therefore harder to predict, as expected.

Are scoring functions affected differently by
nonce data? To answer this question, we com-
pare the distributions of score ratios for all scor-
ing functions, as displayed in Fig. 2. This ques-
tion is answered in two parts, and both parts hold
irrespective of whether outliers with rf > 250
are taken into account or not. First, we test Hy-
pothesis 2 by comparing the distributions of score
ratios for ALMs and MLMs. Here, the picture
is clear: rPPL are significantly higher than both
rPPPLl2r

and rPPPL, measured with a Wilcoxon
signed-rank test. This result, and all following re-
sults, are significant at p ≪ 0.001. Second, we test
Hypothesis 3 by comparing the MLM scoring func-
tions rPPPLl2r

and rPPPL. Here, the picture is
less clear: All ratios are significantly different from
each other according to the same test, but fPPPLl2r

has slightly lower quartiles than rPPPL for Arabic
(in all other languages, the opposite is true). This

means that for all languages except Arabic, PPPL
is less affected by SPUD data than PPPLl2r.

Differences across languages and models The
same trends were tested for monolingual Arabic
and English models. The results are presented in
App. E.2. In all monolingual settings, SPUD data is
harder to predict than original data (all first quar-
tiles of ratio distributions are larger than 1). For
differences between ratio predictions, the picture
is more mixed: Regarding the difference between
ALMs and MLMs, Arabic AraGPT2 (Antoun et al.,
2021) shows higher ratio quartiles for PPL than
the MLM scoring functions of AraBERT (Antoun
et al., 2020). For English, the MLM scoring func-
tions of RoBERTa (Liu et al., 2019) are signifi-
cantly higher than PPL of GPT-2 (Radford et al.,
2019). Regarding the difference between PPPL
and PPPLl2r, the picture is the same as for mul-
tilingual models: For English, PPPLl2r is signif-
icantly higher than PPPL, and for Arabic, the
opposite is true.

4.5 Interim Summary and Discussion

There are three main takeaways from this exper-
iment. First, we find (as expected) that SPUD is
harder to predict than original data in all settings.
Second, the ALM perplexity and two MLM scoring
functions respond differently to SPUD data: mBERT
is affected less than mGPT, and within mBERT,
PPPLl2r is affected more than PPPL for all lan-
guages except Arabic (because of the availability
of subword context). For monolingual models, we
see a more mixed picture where for English, ALMs
are affected less by SPUD data than MLMs, and for
Arabic, the trend that PPPLl2r is affected more
than PPPL is consistent. These results suggest on
one hand a special role of the Arabic language, and
on the other hand point to the possibility that these
differences are not systematic properties of model
architectures and scoring functions, but rather de-
pend on the training data and tokenization. How-
ever, as a general trend, we can hypothesize from
the comparison between PPPL and PPPLl2r

that the inflated scores for multi-token words that
Kauf and Ivanova (2023) found for PPPL are car-
ried over to SPUD data: If PPPL increases less
than PPPLl2r for nonce data, this means that the
increase in PPPL is cushioned by the high pre-
dictability of multi-token words in PPPL. We
measure the lexical diversity of SPUD in App. D. For
all languages, Type-Token-Ratio (TTR) decreases.
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This means that all our findings hold even though
SPUD is less lexically diverse than natural data.

5 Nonce Dependency Probing

In this section, we measure the efficacy of SPUD in
decoding the syntactic knowledge learned in LM
representations. Concretely, we train DepProbe
structural probes (Müller-Eberstein et al., 2022)
and compare the performance on the standard (orig-
inal) UD test sets with performance on SPUD test
sets. We choose DepProbe because none of its
alternatives produces both directed and labeled de-
pendency trees. We investigate to which extent
DepProbe performance is influenced by lexical se-
mantics rather than its desired task of predicting
purely syntactic properties. With the assumption
from previous work (Sec. 2) that a certain drop in
performance on nonce test data is expected, we
answer the following research questions:
RQ1: Is MLM and ALM performance affected dif-
ferently when tested on SPUD data?
RQ2: Are the predictions of dependencies between
tokens (edges) and dependency relations (edge la-
bels) affected differently by SPUD data?
We answer these questions on all five languages,
and present additional experiments to improve the
robustness of our findings.

5.1 Probing Model
Müller-Eberstein et al. (2022) presented DepProbe,
a lightweight decoder for directed and labeled de-
pendency trees. The model consists of two learnt
linear transformations of the LM representations.
Both transform dh-dimensional word representa-
tions into vectors that highlight a feature of the
dependency tree. L is a sequence labeling clas-
sifier that predicts for each word the label of the
incoming dependency edge. B ∈ Rdh×b projects
the LM representation in a syntactic subspace with
b < dh, where word vector distances mimic the dis-
tance between words in the tree. The dependency
tree is constructed in a top-down fashion from both
components, selecting the word as root to which
L assigns the highest probability of being the root.
Details are provided in App. F.1.

5.2 Experimental setup
Metrics We report the same metrics as Müller-
Eberstein et al. (2022), all of which are commonly
used in the dependency parsing and probing litera-
ture. RelAcc is the percentage of tokens for which
the relation label of the incoming edge is correctly

predicted, UAS (unlabeled attachment score) is the
percentage of tokens for which the head token is
correctly predicted, and LAS (labeled attachment
score) is the conjunction of RelAcc and UAS.

Hyperparameters All probe hyperparameters
were taken from Müller-Eberstein et al. (2022) in
order to replicate their results. For all models, the
dimensionality of the syntactic subspace is b = 128.
We take the hidden representations of layers 6 (7) as
input to DepProbe’s distance (relation) component
for all twelve-layered models. Müller-Eberstein
et al. (2022) trained probes on English data for all
layers of mBERT and chose the best-performing
layer for each component. We repeated this exper-
iment to determine the best-performing layer for
the 24-layered mGPT (App. F.6), and found that
layer 12 performs best for both components.

Baselines We use three baselines to ensure that
the syntactic information we probe for is (i) contex-
tual in nature rather than dependent on word types,
and (ii) learnt during LM pretraining rather than
by the probe. To estimate how much information
about the probing task is contained in (context-
insensitive) token embeddings, we train DepProbe
on mBERT’s embedding layer. To estimate how
much information about the probing task is ac-
quired during pretraining of a LM, we probe the
internal representations of two MLMs that share
the architecture of mBERT but randomize either all
parameters, or all parameters except the embedding
matrix (Belinkov, 2022). All trained probes out-
perform the baselines by large margins (minimal
difference of 15.9 LAS for mGPT on SPUD data).
All baseline results are presented in App. F.3.

5.3 Results

Tables 3, 4 present the results. ∆ shows the perfor-
mance drop between original and SPUD test sets. In
general, performance depends largely on treebank
size. This trend is also visible in Müller-Eberstein
et al. (2022), where Kendall’s τ between LAS and
treebank size in 13 languages is 0.50 (p = 0.017).

mBERT vs. mGPT (RQ1) For all languages
and settings except Arabic RelAcc (both test sets),
and Russian (all metrics, original data), mBERT
outperforms mGPT in terms of absolute perfor-
mance. In addition, ∆ on SPUD is larger for mGPT
than for mBERT in almost all settings. The differ-
ence in model architectures is especially relevant
for predicting the syntactic structure of nonce data,
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RelAcc UAS LAS
orig ∆ orig ∆ orig ∆

ar 82.8 5.5 63.1 7.3 55.5 8.3
de 92.7 1.7 84.4 3.4 80.2 4.0
en 87.1 2.3 74.2 3.8 67.9 4.1
fr 89.3 2.0 76.0 4.4 70.4 4.3
ru 88.2 1.5 75.4 3.2 69.2 3.1

Table 3: DepProbe results for mBERT. ∆ shows the
performance drop when nonce data is used.

RelAcc UAS LAS
orig ∆ orig ∆ orig ∆

ar 85.2 7.7 59.5 12.6 53.4 13.5
de 92.6 3.6 84.2 6.8 79.9 8.1
en 82.8 5.2 58.9 5.5 52.2 6.5
fr 87.5 2.8 69.6 6.2 64.0 6.7
ru 88.7 3.0 75.6 5.4 69.6 6.0

Table 4: DepProbe results for mGPT. ∆ shows the per-
formance drop when nonce data is used.

where context is a more important cue than for
original data. The only exception to this is Russian,
where mGPT outperforms mBERT in absolute per-
formance on original data but not on SPUD. This is
likely due to the distribution of languages in the
pretraining data: mGPT’s training data put an em-
phasis on Russian and regionally related languages
(Shliazhko et al., 2024). The relatively low perfor-
mance of both models on English, however, is most
likely explained by the relatively small size of the
English treebank.

Relation labeling vs. attachment (RQ2) Dep-
Probe performance is measured in terms of the
two components of the model: relation labeling
(RelAcc) and attachment (UAS). While the abso-
lute performance varies, for both models and all lan-
guages, ∆ is larger for the attachment component
than for the relation labeling component. mGPT
shows a larger ∆ than mBERT for both compo-
nents when directly comparing the absolute per-
formance drop per language. In the most extreme
case, the ∆ in UAS for Arabic is 7.3 points for
mBERT and 12.6 points for mGPT. This points in
the same direction as the performance of the em-

RelAcc UAS LAS
orig ∆ orig ∆ orig ∆

roberta-base 85.9 2.5 70.9 3.6 64.0 4.0
gpt2 82.4 4.5 53.1 3.6 47.1 4.6

Table 5: DepProbe monolingual results for English

bedding layer baseline: Relations are more easily
predictable from lexical cues. Attachment, on the
other hand, requires more contextual information,
especially when the head is in the future context of
the dependent. This finding is particularly insight-
ful because it shows that probing for labeled and
directed dependency trees highlights differences
between ALMs and MLMs that are not captured
when ignoring relations and directionality (e.g. Eis-
ape et al., 2022).

Monolingual results (RQ1,RQ2) We test the
above hypotheses on two English 12-layered mod-
els: GPT-2 (Radford et al., 2019) and RoBERTa
(Liu et al., 2019). The trends (Tab. 5) are similar
to the multilingual models: RoBERTa outperforms
GPT-2 on all metrics, and the performance drop
is larger for GPT-2 than for RoBERTa (except for
UAS, where it is the same). The only difference
is that for GPT-2, the separate probe components
show a behavior inverse to the multilingual models:
RelAcc shows a larger performance drop on SPUD
data (4.5) than UAS (3.6). However, this can be ex-
plained by the absolute performances of the GPT-2
probe, which are much higher for RelAcc than for
UAS. This leaves less room for performance detri-
ments on SPUD data at attachment than at relation
labeling.

5.4 Additional experiments

To test the robustness of our results, we conduct
several additional experiments. First, we test the
effect of different random seeds for the probe’s
initial weights and the selection of nonce words
(App. F.4). We find that performance is stable
across random seeds. Concretely, the largest ob-
served standard deviation across random seeds was
0.35 points UAS for English SPUD data, and most
of the other settings show much lower standard
deviations. Second, we test the effect of ignor-
ing dependency relations in nonce data creation,
i.e. selecting replacements based only on POS
tags and language-specific rules (App. F.5). The
results show that this kind of nonce data produces
worse probing results than SPUD data, with some
cross-lingual variation. Finally, we train DepProbe
on all layers of mBERT and mGPT and compare
the performance on English original and SPUD data
(App. F.6). Most importantly, this confirms that all
other experiments were run on the best-performing
layers. Additionally, this provides insights into the
layerwise dynamics of both models.
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5.5 Interim Summary
The probing experiments show an overall perfor-
mance drop on SPUD data for both MLMs and
ALMs. In general, probes for MLMs perform bet-
ter than probes for ALMs on both original and
SPUD, and the performance drop on SPUD is higher
for ALMs than for MLMs. This is likely due to
the fact that ALM probe predictions are based on a
representation with one-sided contextual informa-
tion.2 All models show a larger peformance drop
for attachment than for relation labeling, and the
embedding layer baseline shows a relatively high
performance on relation labeling. This points in the
direction that relation labeling information is more
easily predictable from lexical cues than attach-
ment information and that, on the contrary, MLMs
are better at predicting attachment information for
nonce data than ALMs. Finally, when viewed in
isolation, many SPUD test sets show a high absolute
performance, suggesting that probes indeed base
their predictions on syntactic information.

6 Discussion and Conclusion

Dataset We presented Semantically Perturbed
Universal Dependencies (SPUD), a framework for
creating parallel nonsensical UD treebanks, and
apply it to generate grammatical but nonsensical
data in five languages. We present two use cases for
SPUD, which contribute to the literature that relates
LMs to the notions of grammaticality, acceptability
and probability (Gulordava et al., 2018; Sprouse
et al., 2018; Lau et al., 2017, 2020). Beyond that,
SPUD has several possible applications such as data
augmentation for low-resource parsing or syntactic
similarity benchmarks.

Scoring SPUD with ALMs and MLMs In ana-
lyzing how token-level predictions are affected by
SPUD, we find that SPUD data consistently shows
higher scores (i.e., lower likelihood) than original
data on all models. This shows that, as desired,
the lexical co-occurrence patterns of content words
in SPUD are perturbed. Of all scoring functions,
the increase in ALM perplexity is highest. With
our experiments, we contribute to the open ques-
tion of how best to compute scores from MLMs by
comparing PPPL with subword-aware PPPLl2r

(Kauf and Ivanova, 2023). While we are mostly
able to support (Kauf and Ivanova, 2023)’s argu-
ment that PPPLl2r is empirically more similar

2In a small-scale qualitative analysis, we find that this can
explain many errors made by ALMs but not MLMs.

to PPL than PPPL is, we find that the response
of ALMs and MLMs to SPUD data is significantly
different. This indicates a more fundamental dif-
ference between how ALMs and MLMs score sen-
tences: Bidirectional context in MLMs makes it
easier to identify the syntactic properties of a pre-
dicted word, even in nonce sentences.

Probing ALMs and MLMs for SPUD trees We
probe different models for labeled and directed de-
pendency trees on SPUD using the DepProbe frame-
work (Müller-Eberstein et al., 2022). We find that
probe performance drops (compared to original
test sets) for all languages and both model archi-
tectures when using SPUD test sets. However, a ma-
jority of the probe performance is maintained. The
ALM mGPT has a lower overall performance than
mBERT, as well as a higher performance drop on
SPUD data. For both architectures, attachment con-
tributes more to the performance drop than relation
labeling does. These findings confirm the results
in Maudslay and Cotterell (2021) and Arps et al.
(2022). On the contrary, Eisape et al. (2022) found
that GPT-2 performs on par with MLMs on struc-
tural probing of unlabeled undirected dependency
trees. This contrast highlights the importance of
probe architecture and task design.

Linguistic Information and LMs Sinha et al.
(2021) found that MLMs rely on higher-order co-
occurrence statistics for many tasks, and can main-
tain high performance without word order informa-
tion. We view the same problem from a different
angle: Our scoring results show that, expectedly,
LM predictions are optimized for co-occurrence in-
formation. Probing performance, however, can be
maintained to a high-degree even if co-occurrence
at the lexical level is disrupted. Our comparison of
MLMs and ALMs suggests that both architectures
process nonce data differently, and MLMs are bet-
ter at identifying syntactic structure in SPUD data
than ALMs.

Limitations

Model instances and architectures All our di-
rect comparisons between model architectures are
limited by the fact that we compare models with
different hyperparameters, training data, and to-
kenizers. To quantify the effect of each of these
components on the syntactic learning requires avail-
ability of models trained using various combination
of these settings.
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Data While we put significant effort into assur-
ing the quality of the generated data, we did not
conduct a large-scale human evaluation, e.g. via
crowd-sourced grammaticality judgments. This
means that while we are confident that grammati-
cal errors in SPUD are rare, rare errors might exist
that have potentially severe effects on individual
predictions.

Formulations of scoring functions The lit-
erature varies in the way in which scoring
functions are applied. Assume that σ =∑n

i=0 log p(xi|context) is the sum of log likeli-
hoods in a scoring function such as PPL. We
follow Salazar et al. (2020) and divide σ by se-
quence length and exponentiate (exp(−(1/n)σ)),
as defined in Eq. 1. Kauf and Ivanova (2023), on
the contrary, base their experiments directly on
σ. Due to the nonlinear differences between both
versions, it is possible that not all of our findings
on scoring functions are transferable to raw log
likelihood scores. We do not expect this to affect
our main findings, especially since our compari-
son of the exponentiated versions of PPPL and
PPPLl2r shows trends that are consistent with
Kauf and Ivanova (2023)’s findings on English
data, the language they focus on. However, we
deem a more detailed comparison of scoring func-
tions with and without exponentiation is necessary
to draw more general conclusions, even though this
is beyond the scope of this paper.

Structural Probing and Properties of Explana-
tions In the following, we discuss limitations of
our probing experiments in terms of the proper-
ties of explanations defined by Lyu et al. (2024).
Several of their criteria are met: First, our experi-
ments are plausible (the resulting dependency trees
are intuitive to humans), Second, the critierion of
Input sensitivity relates closely to the interaction
of syntax and semantics in probing which we in-
vestigate. The definition is that “An explanation
should be sensitive (resp. insensitive) to changes
in the input that influence (resp. do not influence)
the prediction” (Lyu et al., 2024, p. 6). This cri-
terion is met because (i) we directly investigate
the effect of changing the semantic content of the
probe and model input, and (ii) because DepProbe
is generally sensitive to changes in syntax. Third,
the criterion of Faithfulness states that “an expla-
nation should accurately represent the reasoning
process behind the model’s prediction” (Lyu et al.,
2024, p. 1). Since we do not investigate model

predictions but probe predictions, this criterion is
not directly applicable. However, we can say that
the probe predictions need not be faithful, because
DepProbe learns to predict syntactic structure in
a supervised fashion, and does not necessarily de-
code the syntactic generalizations that the model
has learnt. Finally, Completeness and Minimality
do not apply because they refer to explaining con-
tributing factors for model predictions rather than
probe predictions.
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A Nonce treebanks

A.1 Languages and resources
Table 6 summarizes the languages for which SPUD
treebanks are generated. In general, we use the UD
test sets for evaluation, and also sample replace-
ment candidates from the UD test sets to avoid
data leakage. For all experiments, we used the UD
release 2.10.

A.2 Language-specific rules
For consistency, we implement the general rule in
languages written in Latin script that the replace-
ment has to be capitalized if the replaced word was
capitalized.

Arabic No language-specific rules are applied,
except for the removal of diacritics to increase the
number of possible replacements.

German Adjective suffixes are depending on sev-
eral features, however, not all of these features are
consistently annotated in the available resources.
Concretely, the forms are inflected for Case, Num-
ber, Genus, Degree of comparison, and Determi-
nacy, leading to large inflection paradigms. For
this reason, we implement the rule that for adjec-
tives ending in -e, -em, -en, -er, -es, the replaced
adjective has to have the same ending.

English A word list is compiled from wiktionary
using wiktextract (Ylonen, 2022) to determine
words starting with consonants or vowels. This
list is used to determine the correct indefinite ar-
ticle for English nouns: The choice of a or an
depends on the following word, which can be a
replaced content word (e.g., an adjective or noun).
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Family, Genus Writing system UD treebank UDtrain tokens
Arabic Afro-Asiatic, Semitic Arabic PADT, (Hajic et al., 2009) 224K
English IE, Germanic Latin EWT, (Silveira et al., 2014) 205K
French IE, Romance Latin GSD, (Guillaume et al., 2019) 355K
German IE, Germanic Latin HDT, (Borges Völker et al., 2019) 2,754K
Russian IE, Slavic Cyrillic SynTagRus, (Droganova et al., 2018) 1,206K

Table 6: Summary of the languages for which nonce data is generated. IE = Indo-European. Family and Genus
according to Dryer and Haspelmath (2013).

The determiner is adjusted if the first sound of the
following word changes from a vowel to a conso-
nant or vice versa. For example, when replacing
apple in an apple with bicyle, the result is a bicycle
and not *an bicycle.

French In French, we implement a similar rule
as for English determiners. Concretely, we replace
le/la/de/ with l’/d’ and vice versa if the following
word starts with a vowel, consonant, or aspirated
h, respectively. The pronunciation of the following
word is determined from wiktionary using wiktex-
tract (Ylonen, 2022). Furthermore, French adjec-
tives fall into three classes: A fixed set of adjectives
precedes the noun. The majority of adjectives fol-
low the noun. A small set of adjectives can appear
in both positions. For instance, grande maison –
‘big house’ and voiture rouge – ‘red car’ are cor-
rect, but *maison grande and *rouge maison are
not. The syntactic context as defined in generating
nonce data does not capture the adjective classes.
Thus, we replace adjectives preceding (following)
the head only with adjectives that also precede (fol-
low) the head in the UD treebank.

Russian The rich case system in Russian poses a
challenge for the algorithm as defined above. Con-
cretely, the case of dependents is not part of the
syntactic context. Contrary to the other languages
in our sample, the case of an object is determined
by the verb, and both accusative and genetive case
are possible and frequent cases for these objects.
This means that if a verb with an accusative object
is replaced with a verb with a genitive object, a
case mismatch is introduced. Since Russian never-
theless retains high probing performance (Sec. 5),
we did not explicitly address this problem.

A.3 Examples

For illustration purposes, we present relatively
short sentences with multiple nonce versions in
Figures 3 (ar), 4 (de), 5 (en), 6 (fr), and 7 (ru).

NOUN PROPN ADJ ADV VERB total

ar 0.93 0.77 0.93 0.74 0.66 0.47
de 0.96 0.93 0.68 0.92 0.61 0.41
en 0.85 0.84 0.86 0.83 0.59 0.38
fr 0.83 0.69 0.88 0.92 0.50 0.36
ru 0.84 0.70 0.80 0.89 0.46 0.39

Table 7: Ratio of replaced words per POS in the test set.
The column "total" shows the replacement ratio over all
POS, including function words and punctuation.

A.4 Replacement statistics

Tab. 7 shows the ratio of replaced words per POS
in the test set. Of the 25 ratios (5 languages, 5
POS tags), 6 are above 0.9 and 14 are above 0.8,
indicating that the algorithm is able to find replace-
ments for the vast majority of content words. The
replacement ratio is lowest for verbs, for two rea-
sons: First, verbs are generally less frequent than
e.g. nouns. Second, verbs frequently have a rela-
tively complex argument structure, which leads to a
large number of syntactic contexts and an increased
frequency of syntactic contexts that are not shared
with other verbs.

B List of Models

mGPT (Shliazhko et al., 2024, huggingface
id: ai-forever/mGPT) and mBERT (Devlin
et al., 2019, bert-base-multilingual-cased)
are used for all experiments. English scor-
ing and probing experiments are additionally
conducted with RoBERTa (Liu et al., 2019,
roberta-base) and GPT-2 (Radford et al.,
2019, gpt2). Arabic scoring experiments are
additionally conducted with AraGPT2 (Antoun
et al., 2021, aubmindlab/aragpt2-base)
and AraBERT (Antoun et al., 2020,
aubmindlab/bert-base-arabertv2).

C Data preprocessing

We apply the following preprocessing steps to the
UD treebanks after creating SPUD splits. To allow a
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NOUN NOUN NOUN X X PUNCT NOUN ADP NOUN
alsayid almuhandis alduktur ghasaan tayaarat - waziran lilsinaeat lilsinaea
alsayid khabir najah ghasaan tayaarat - janub lilsinaeat batn
alsayid tawasue shakhs ghasaan tayaarat - muhamad lilsinaeat hal
alsayid hal eamil ghasaan tayaarat - muhamad lilsinaeat dabit
alsayid sahm niqash ghasaan tayaarat - janub lilsinaeat qamh
alsayid yawm mil ghasaan tayaarat - janub lilsinaeat ghad

root

nmod

nmod

nmod

nmod

punct

dep

case

nmod

NUM SYM NOUN ADP NOUN NOUN ADP X
90 % ziadat fi sadirat almansujat ’iilaa turkia
90 % masar fi tawasue waqud ’iilaa turkia
90 % aism fi fariq daght ’iilaa turkia
90 % hukm fi sijn eali ’iilaa turkia
90 % eumar fi murashah fibrayir ’iilaa turkia
90 % bad’ fi fard shakhs ’iilaa turkia

root

nmod

nsubj

case

nmod

nmod case

nmod

Figure 3: Arabic SPUD examples (in transliteration).

ADJ NOUN VERB ADP PUNCT SCONJ NOUN ADP NOUN VERB PUNCT
Entsprechende Anfragen setzen voraus , dass Einträge im Katalog vorliegen .

Zahllose Größen fielen voraus , dass Hersteller im Prozessor funktionieren .
Selbstgemachte Stunden gaben voraus , dass Gewinne im Kern kamen .

Mehrjährige Plattformen finden voraus , dass Senatoren im Tarif stammen .
Namhafte Kommunikationen nehmen voraus , dass Buge im Button kamen .
Sichere Unionen weisen voraus , dass Codes im Betrüger standen .

amod nsubj

root

compound:prt

punct

mark

nsubj

case obl

ccomp

punct

ADV NOUN ADP PROPN
Weiter Wirbel um Rambus
Öfter Hersteller um Spanien
Öfter Hersteller um Philadelphia
Öfter Emulator um Hawaii
Öfter Manager um Austin
Öfter Schlüssel um Washington

advmod

root

case

nmod

PROPN VERB NOUN
IBM entwickelt Petaflops-Computer

Berlin versteckt Absätze
Graham behebt Befehle
Gates exportiert Unterschiede
Herzog meldete Kunden
Japan streicht Lieferanten

nsubj

root

obj

Figure 4: German SPUD examples.

fair comparison between MLMs and ALMs, we fil-
ter out sentences that are shorter than 4 words from
the data in all experiments. On short sentences,
ALMs have a disadvantage because their per-token
score increases over the sentence given increasing
context length, while the basic masked language
modeling task assumes access to the same amount
of context for each token. For SPUD in Arabic, we
remove diacritics with the PyArabic library (Zer-
rouki, 2010). The Arabic morphological lexicon
is lemmatized with Farasa (Darwish and Mubarak,
2016).

D Lexical Diversity of Nonce data

TTR
Language orig. nonce

ar .0094 .0077
de .0054 .0043
en .0571 .0463
fr .0441 .0297
ru .0052 .0044

Table 8: Type-Token Ratio of underlying UD treebanks
and SPUD versions.
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NOUN
Thanks
Rubbish
Cheer
Kiss
Crab
Frame

root

PRON VERB PRON NOUN ADV ADV PUNCT
I enjoyed your presentations very much .
I combined your blogs notionalliest recently .
I wanted your jobs successfully fifthest .
I gave your steps crossest long .
I needed your luggages monthly best .
I knew your firms perfectly frequently .

nsubj

root

nmod:poss

obj

advmod

advmod

punct

PRON AUX VERB NOUN ADP DET NOUN CCONJ NOUN SCONJ PRON AUX ADJ PUNCT
I ’ll post highlights from the opinion and dissents when I ’m finished .
I ’ll ban statues from the shape and wheels when I ’m Saudi .
I ’ll receive prizes from the computer and insurances when I ’m interested .
I ’ll use discounts from the trap and situations when I ’m Mexican .
I ’ll receive winds from the computer and towels when I ’m ready .
I ’ll book appointments from the video and subsidiaries when I ’m welcome .

nsubj

aux

root

obj

case

det

nmod

cc

conj

mark

nsubj

cop

advcl

punct

Figure 5: English SPUD examples.

DET NOUN AUX ADV ADV ADJ CCONJ VERB ADV
Cette école est très bien sérieuse et aide beaucoup
Cette route est notamment aisément sérieuse et aide unanimement
Cette révolution est tjrs fort sérieuse et aide évidemment
Cette installation est fortement après sérieuse et aide bien
Cette assemblée est inversement fort sérieuse et aide autant
Cette dirigeante est peu très sérieuse et aide aussi

det

nsubj

cop

advmod advmod

root

cc

conj

advmod

NOUN PUNCT DET NOUN ADJ PRON PRON VERB ADP NOUN PUNCT
Ps : l’ année prochaine on y retourne d’ office ....
Ps : la saison institutionnelle on y retourne de merlon ....
Ps : la saison naturelle on y retourne de jeudi ....
Ps : la saison debout on y retourne de pote ....
Ps : la saison régulière on y retourne de japonais ....
Ps : la saison municipale on y retourne de compte ....

obl:mod

punct det

obl:mod

amod

nsubj

iobj

root

case

obl:mod

punct

ADP NOUN NOUN ADP NOUN VERB ADP PROPN PROPN
Sur place vente de livres consacrés à Jean Ferrat
Sur réforme vente de coteaux basés à Jeremy Robert
Sur citoyenne vente de coureurs composés à Pearl David
Sur défense vente de dessins situés à Ben Mason
Sur couleur vente de pts postés à Thomas Sébastien
Sur identité vente de coteaux compris à Pearl Boyer

case nmod

root

case

nmod

acl case

obl:arg

flat:name

Figure 6: French SPUD examples.

Model-Independent Comparison: Type Token
Ratio (TTR) is a widely used measure of lexi-
cal diversity. where a larger value indicates that
less tokens are used repeatedly (Köhler, 2003).
Apart from the segmentation model (in our case
the mBERT tokenizer), TTR focuses on capturing
the distribution of the data relatively independent
from large computational or methodological over-
head. The TTR (when tokenized with mBERT) in

all languages is shown in Tab. 8.

E Scoring Experiments

E.1 Example for Scoring Functions

An example for how all scoring functions are com-
puted for the phrase accordeon player is displayed
in Tab. 9.
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PUNCT PRON VERB PUNCT ADJ PUNCT PRON VERB PUNCT
- Чему удивляться , милый , чему удивляться ?
- Чему удивляться , охранительный , чему удивляться ?
- Чему удивляться , технологический , чему удивляться ?
- Чему удивляться , солнечный , чему удивляться ?
- Чему удивляться , уверенный , чему удивляться ?
- Чему удивляться , охранительный , чему удивляться ?

punct

iobj

root

punct

parataxis punct

iobj

conj

punct

ADV PRON VERB PUNCT NOUN PUNCT PUNCT
Куда вас занесло , кр-ретины ? !

Довольно вас занесло , канцлеры ? !
Быстренько вас занесло , канцлеры ? !

Иначе вас занесло , канцлеры ? !
Грубо вас занесло , старики ? !

Выгодно вас занесло , канцлеры ? !

advmod

obj

root

punct

parataxis

punct

punct

PRON VERB ADJ NOUN ADP NOUN NOUN PUNCT ADP DET ADP PRON NOUN PUNCT
Они куют собственное благополучие за счет страны , за наш с вами счет .
Они несут музыкальное задание за прах обидчивости , за наш с вами аэропорт .
Они имеют рулевое кино за образ стажировки , за наш с вами аэропорт .
Они держат мелочное преобразование за случай картины , за наш с вами аэропорт .
Они имеют широкое предпочтение за раз еврозоны , за наш с вами аэропорт .
Они имеют алкогольное солнце за конец стены , за наш с вами перстень .

nsubj

root

amod

obj case

fixed

obl punct

case

det

case

nmod

conj

punct

Figure 7: Russian SPUD examples.

accord ##eon player

? _ _
PPL accord ? _

accord ##eon ?
? ##eon player

PPPL accord ? player
accord ##eon ?
? _ player

PPPLl2r accord ? player
accord ##eon ?

Table 9: The token for which a probability is recorded
is marked with "?". Tokens that are masked out or not
available from context are marked with "_".

E.2 Scoring Experiment

In Tab. 10, we show the ratios of scoring functions
for multilingual models in German, French and
Russian (complementing the English and Arabic
results in Tab. 2). In Tab. 11, we show the ratios
of scoring functions for monolingual models in
Arabic and English.

E.3 Scoring outlier analysis

For English, we investigate the sentence pairs with
the highest and lowest scoring function ratios. The
sentences with the highest ratio are shown in Table
12. Sentences with very high ratios are all rela-
tively short. The large difference in ratios between
scores assigned by mBERT and mGPT indicate
that these original sentences could be part of the
pre-training data for mGPT but not mBERT - the
former is overfitting to the original sentence. Also,
these sentences contain uppercase sentences (which
might affect tokenization), and almost all original
sentences contain well-known named entities or
common phrases that are disrupted in the nonce
data (U.S. Senate Committee, AS FAR AS POSSI-
BLE, etc.)

The sentences with the lowest ratio are shown
in Table 13. The examples include typos in the
original data (ling instead of long), an example in
which the original seems ungrammatical (6), and
examples in which only single words are replaced
by other forms that are presumably more frequent
(cover - go, Per - Google, . . . )
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rPPPL rPPPLl2r
rPPL

de
10 2

10 1

100

101

102

103

10 2

10 1

100

101

102

103

10 2

10 1

100

101

102

103

fr
10 2

10 1

100

101

102

103

10 2

10 1

100

101

102

103

10 2

10 1

100

101

102

103

ru
10 2

10 1

100

101

102

103

10 2

10 1

100

101

102

103

10 2

10 1

100

101

102

103

Table 10: Scoring function ratios for multilingual mod-
els.

F Probing Experiments

F.1 DepProbe architecture
Müller-Eberstein et al. (2022) presented DepProbe,
a lightweight decoder for directed and labeled de-
pendency trees. The model consists of two matri-
ces, L and B. Both transform dh-dimensional word
representations3 into vectors that hightlights a syn-
tactic property of that representation. Assume that
the LM representation of a word wi is hi ∈ Rdh ,
and that the annotation has l dependency relations.

Predicting dependency relations The matrix
L ∈ Rdh×l is a linear classifier that predicts for
each word the label of this word’s incoming depen-
dency edge – the relation between the word and
its head. Concretely, the “probability of a word’s
relation ri being of class lk is given by:

p(ri = lk|wi) = softmax(Lhi)k (4)

” (Müller-Eberstein et al., 2022, p. 7713). This
model component is trained using cross-entropy
loss.

3For tokens consisting of multiple subwords, the word
representation is the mean of the subword representations.

rPPPL rPPPLl2r
rPPL

ar
10 2

10 1

100

101

102

103

10 2

10 1

100

101

102

103

10 2

10 1

100

101

102

103

en
10 2

10 1

100

101

102

103

10 2

10 1

100

101

102

103

10 2

10 1

100

101

102

103

Table 11: Scoring function ratios for monolingual mod-
els (Arabic and English).

Predicting word distances The matrix B ∈
Rdh×b predicts the dependency edges between
words. B projects the LM representations in a vec-
tor space that has less dimensions than the LM
layer (b < dh). The target vector space is in-
formally called the syntactic subspace: It reflects
structural information such that vector distances
between words mimic the distance between words
in the dependency tree. Concretely, when hi, hj
are the LM representations of words wi, wj , their
distance dB(hi, hj) in the syntactic subspace is de-
fined by Müller-Eberstein et al. (2022, Eq. 1):

dB(hi, hj) =
√
(Bhi −Bhj)T (Bhi −Bhj)

(5)
This model component is trained to predict the

distance between all word pairs in the dependency
tree. Assume that the distance between two words
in the dependency tree is defined as the path length
between the two words, dP (wi, wj). If s is a sen-
tence of length N + 1, the loss for optimizing B is
given by Müller-Eberstein et al. (2022, Eq. 2):

LB(s) =
1

N2

N∑

i=0

N∑

j=0

|dP (wi, wj)− dB(hi, hj)|

(6)

Constructing the dependency tree The outputs
of the relation and distance components are com-
bined to construct the dependency tree starting
from the root. The word with the highest prob-
ability of being the root (as assigned by L) is set
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orig. nonce rPPPL rPPPLl2r rPPL

NORTH CAROLINA RELIGIOUS COALITION FOR MARRIAGE... D’ Vernon ugly Coalition For El Dong 388.97 176.08 3320.79
U.S. Senate Committee on Appropriations Can Bay Committee on Williss’ 35734.78 16130.36 1027.64
SHE KNOWS GREAT FOOD AND DINING EXPERIENCES. She solicits Swedish election And rabbit outlets. 8.67 16.67 968.43
BEST CHINESE RESTAURANT EVER!!! Truest corrupt Restaurant definitely!!! 4.57 7.44 855.44
THEY ARE VERY RUDE AND NASTY. They Are allegedly happy And hidden. 80.31 38.98 797.19
my new OLYMPUS X940 DIGITAL CAMERA...? My inhuman April Port wireless Camera...? 10.03 5.29 759.14
STAY AWAY AS FAR AS POSSIBLE. Move wrongest currently low As satisfactory. 31.35 28.88 608.69
Super Pet Silent Spinner Exercise Wheel Standard Fidelity alleged Alliance Prince Wheel 257.01 74.85 538.77
CHERNOBYL ACCIDENT: TEN YEARS ON Greenfield diplomacy: Ten Years partly 10.86 17.24 511.29

Table 12: Selection of sentences with rPPL above 500. Data is printed verbatim, including casing, punctuation, etc.

orig nonce rPPPL rPPPLl2r rPPL

New training Centre is excellent Extensive vacation temperature is amazing 0.01 0.32 0.04
Maria Valdes superior $62,500 Todd Taylors’ strong $62,500 0.47 0.24 0.11
Gold award parts excellence, metro. Hoodie leader coffees tank, Michelle. 1.60 2.17 0.14
Talked to Craig and the Court today. Talked to Emily and the viewer yesterday. 0.05 0.43 0.16
oh god is there an agenda. Oh god is there an antibiotic. 0.22 0.20 0.18
Broke out the activities of 1179. Checked out the spirits of 1179. 0.79 0.69 0.21
Shanna, I spoke with Per tonight about this. Kim, I spoke with Google yesterday about this. 0.30 0.30 0.24
George Bush: Money manager Roger’s Dick’s: garage therapist 0.04 0.13 0.25
Is it possible to shoot lazers out of your Wang? Is it great to see e-mails out of your house? 0.08 0.06 0.28
if they hiss, they are not playing. If they are, they are not running. 0.62 0.49 0.34
Even though you are expensive. Certainly though you are expensive. 3.74 5.69 0.39
See you all there - this is ling overdue See you all there - this is here deep 1.19 0.56 0.44
Can you cover for me today? Can you go for me tomorrow? 0.18 0.43 0.46
Brazil we have current data already Danny we have ambitious tongue feverishly 0.08 0.82 0.47
Your cat will adjust quickly. Your health will starve inappropriateliest. 0.76 2.27 0.48

Table 13: Selection of sentences with rPPL < 0.5. Data is printed verbatim, including casing, punctuation, etc.
Data with such low ratios also included longer sentences, which are omitted for space reasons.

as the dependency tree root. Then, the words are
iteratively added to the dependency tree, always
choosing the word with the smallest distance dB
to a word that is already covered. The dependency
labels are assigned based on L. A detailed example
of this process is shown in App. F.2.

F.2 DepProbe Example

In Fig. 8, we present a step-by-step example for for
reconstructing trees with DepProbe, following Alg.
1 in (Müller-Eberstein et al., 2022). For simplicity,
the correct distance matrix (Fig. 8a) and correct
relations are taken as input to the algorithm.

F.3 Baselines

mBERT embedding layer (M0) In this baseline,
we use the output of mBERT’s embedding layer
as input to DepProbe. M0 estimates how much
information about the probing task is contained in
the (context-insensitive) token embeddings.

Random mBERT (MR) We consider the repre-
sentations of a transformer model with the same
architecture as mBERT, but all parameters are ran-
domly initialized. Performance of this baseline es-

timates how much information about dependency
structures is contained in the architecture of an
MLM and the DepProbe training.

Random contextualization mBERT (MRC) We
consider a transformer model with the same ar-
chitecture as mBERT, but all parameters except
the embedding layer are randomly initialized. The
performance of this baseline estimates how much
information about dependency structures from lin-
guistic context is acquired during pretraining of
the MLM (Belinkov, 2022). We take the represen-
tations from layers 6 (7) as input to DepProbe’s
distance (relation) component.

Results All probed models outperform the base-
lines by a large margin, both on original and nonce
data (Tables 14, 15, 16). This shows that the prob-
ing task probes for contextual information (com-
parison to M0), and that the probed information is
learnt during pretraining (comparison to MR and
MRC). M0, the embedding layer baseline, shows
decent performance on the relation labeling task
(Tab. 14): Up to 74.6 RelAcc for German, and
∆ < 5 for all languages. For attachment, the ab-
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why does my snake refuse to eat ?

why 0 2 3 2 1 3 2 2
does 2 0 3 2 1 3 2 2
my 3 3 0 1 2 4 3 3
snake 2 2 1 0 1 3 2 2
refuse 1 1 2 1 0 2 1 1
to 3 3 4 3 2 0 1 3
eat 2 2 3 2 1 1 0 2
? 2 2 3 2 1 3 2 0

(a) Gold distance matrix for the example sentence.

covered
words

tree comment

1 {refuse}

refuse

root

maximum
p(root|refuse)

2-6
{why, does,
snake, refuse,
eat, ?}

why does snake refuse eat ?

advmod

aux

nsubj

root

xcomp

punct all distance 1 to
root refuse

7

{why, does,
my, snake,
refuse, eat,
?}

why does my snake refuse eat ?

advmod

aux

nmod nsubj

root

xcomp

punct snake is only word
with distance 1 to
my

8

{why, does,
my, snake,
refuse, to,
eat, ?}

why does my snake refuse to eat ?

advmod

aux

nmod nsubj

root

mark

xcomp

punct
to is only word
with distance 1 to
eat

(b) Step by Step example.

Figure 8: DepProbe tree decoding example

solute scores are lower and the performance drop
is larger. This is intuitive: The embedding layer
provides a basis for predicting context-insensitive
information such as the most frequent dependency
relation of a word type, and this information is
still useful for predicting the dependency relations
in SPUD data. However, predicting attachment re-
quires more contextual information, for SPUD data
even more so than for original data. The absolute
performance and ∆ of MRC is within 1 point to
M0 for all languages (Tab. 15). This shows that
the random contextualization does not detriment
the predictability of relation labeling based on the
embedding layer. Attachment performance is lower
in terms of absolute scores for MRC than for M0,
which leads to less room for a performance drop
but overall lower LAS on both test sets. On relation
labeling, MRC performs between 4.8 and 12.6 ac-

curacy points better than MR on original data. On
attachment, MR performs better than MRC for all
languages except Arabic. All baseline performance
drops for nonce data are relatively small. The most
intuitive explanation for this is that on the one hand,
lower overall performance leaves less room for a
performance drop, and on the other hand it con-
firms that nonce data is created in a way in which
only the co-occurence information is changed, but
not the syntactic contexts in which the words gen-
erally appear (e.g. the tendency of a word to appear
as a subject is preserved).

F.4 Random seeds

The experimental setup introduced two random
components: The probe’s initial weights are ran-
domly initialized, and the nonce data is created
by randomly sampling words. To test the effect
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RelAcc UAS LAS
orig ∆ orig ∆ orig ∆

ar 66.1 4.7 43.3 5.8 29.9 5.9
de 74.6 2.8 49.7 5.5 40.8 6.1
en 65.4 1.6 45.6 3.5 33.7 3.2
fr 70.6 2.1 48.2 3.0 36.9 3.2
ru 71.3 2.0 46.6 3.3 35.3 3.3

Table 14: M0. Embedding layer of mBERT

RelAcc UAS LAS
orig ∆ orig ∆ orig ∆

ar 65.4 4.7 31.0 4.1 21.9 4.1
de 75.2 3.2 46.4 5.3 38.7 6.1
en 66.4 1.7 41.9 3.0 32.0 2.9
fr 70.9 2.5 40.6 2.3 31.7 2.4
ru 71.0 2.0 42.0 2.7 32.4 2.8

Table 15: MRC . Mid layers of mBERT architecture
with trained embedding matrix and random transformer
layers

RelAcc UAS LAS
orig ∆ orig ∆ orig ∆

ar 60.6 2.6 38.9 3.1 25.6 2.6
de 64.6 6.0 39.6 5.2 29.5 6.2
en 58.4 3.0 37.8 2.9 25.7 3.3
fr 63.7 2.1 39.8 3.1 27.3 2.3
ru 58.4 2.0 36.1 2.3 22.9 2.0

Table 16: MR. Mid layers of mBERT architecture with
completely random parameters

orig. SPUD ∆ mean

ar 84.6 ± 0.13 78.9 ± 0.13 5.7
de 92.5 ± 0.04 90.8 ± 0.05 1.7
en 86.5 ± 0.10 84.8 ± 0.10 1.7
fr 89.9 ± 0.13 87.9 ± 0.25 2.0
ru 88.8 ± 0.00 87.3 ± 0.04 1.5

Table 17: Mean and standard deviation RelAcc of prob-
ing with different random seeds.

orig nonce ∆ mean

ar 63.5 ± 0.18 56.0 ± 0.18 7.5
de 83.3 ± 0.08 80.0 ± 0.09 3.3
en 73.0 ± 0.31 69.3 ± 0.35 3.6
fr 75.5 ± 0.17 71.3 ± 0.33 4.2
ru 74.8 ± 0.02 71.6 ± 0.15 3.2

Table 18: Mean and standard deviation UAS of probing
with different random seeds.

orig. nonce ∆ means

ar 56.9 ± 0.13 48.0 ± 0.17 8.9
de 79.5 ± 0.06 75.6 ± 0.07 4.0
en 67.3 ± 0.29 63.6 ± 0.31 3.8
fr 70.8 ± 0.18 66.5 ± 0.32 4.3
ru 69.3 ± 0.01 66.2 ± 0.17 3.2

Table 19: Mean and standard deviation LAS of probing
with different random seeds.

of these random components, we additionally run
experiments with varying random seeds for each
of these components in a pilot study. Per language,
we initialize probes with 3 different random seeds,
and each of these probes is evaluated on 5 differ-
ent SPUD datasets. This means that per language,
3 predictions for original data and 15 predictions
for nonce data are available. For all 3 evaluation
metrics, the resulting scores across predictions are
stable. Concretely, the largest observed standard
deviation across predictions was 0.35 points UAS
for English SPUD data. Most of the other settings
show much lower standard deviations. We argue
that these random components do not have a large
effect on the results, and that it is therefore suf-
ficient to run the above probing experiments as
described.

F.5 Ignoring dependency relations in nonce
data creation

To compare our approach against the common
nonce data creation practice of using POS tags,
we test on a version of English and German nonce
data that ignores dependency-specific information
and only modifies the data based on POS tags and
language-specific rules. The results are shown in
Table 20. The performance difference between the
two versions of nonce data is larger for English than
for German. This supports the fact that in English,
dependency information is more easily extracted
from positional information than in German: In the
English data, the position of a word is a stronger
cue for its dependency relation than in German.

F.6 Layer dymanics

We train DepProbe on English data on all layers of
mBERT and mGPT. On the one hand, this serves
the purpose of selecting the layer used in all other
experiments. Müller-Eberstein et al. (2022) con-
ducted the same experiment on mBERT to identify
the layer that performs best on the probing task.
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RelAcc UAS LAS
SPUD POS SPUD POS SPUD POS

de 91.0 90.1 81.0 79.7 76.2 75.0
en 84.8 81.7 70.4 66.0 63.8 59.2

Table 20: Results for English and German test sets with
(SPUD) and without (only POS) dependency information
in the nonce data creation.

left right

ar 0.67 0.31
de 0.32 0.63
en 0.37 0.56
fr 0.40 0.56
ru 0.42 0.53

Table 21: Fraction of edges to the left and right in the
respective UD test sets. Both columns do not sum to 1
because the root is not counted.

The best layer for each task (6 for relation labeling,
7 for attachment) is then used in all other experi-
ments. We repeat this process on mGPT to identify
the highest performing layer for this model. In the
case of mGPT, layer 12 performs best on both tasks.
For selecting the best layer, we use the original test
data (following existing work).

On the other hand, the layerwise probing results
highlight how syntactic and semantic information
influence probing performance across layers. For
RelAcc, mGPT’s performance on both test sets
develops relatively stable, with a sharp increase in
the lowest layers and a slight decrease in the higher
layers. The ∆ to the SPUD test set also increases
during the lower layers and then stays quite stable.
For mBERT, the pattern is similar, with a steeper
decline in performance on the highest layer. For
UAS (and LAS), mGPT shows smaller changes
across layers than for RelAcc. While the pattern
appears jumpy, no individual difference between
consecutive layers is larger than 3.5 points and the
∆ to the SPUD test set is stable. mBERT shows a
clearer but steeper trend with best performance in
the mid layers and worse performance in the higher
and lower layers.

F.7 Probe Performance by edge direction
To further elaborate on the differences between
decoded trees from ALMs and MLMs, we inves-
tigate the performance of DepProbe in our main
experiment on edges in different directions. For all
languages, edges to the left are defined as edges
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Figure 9: Layerwise DepProbe performance for mBERT
and mGPT.

RelAcc UAS LAS
l r l r l r

m
G

PT
,o

ri
g. ar 81.8 91.9 60.0 56.0 52.0 53.5

de 88.3 94.5 77.0 86.7 71.1 82.9
en 75.4 87.4 54.3 58.7 44.5 53.3
fr 81.1 92.1 66.5 70.5 58.2 66.4
ru 84.9 91.5 71.7 77.0 64.1 71.8

m
G

PT
,∆

ar 10.3 2.3 15.6 6.6 16.9 6.7
de 5.8 2.5 9.3 5.9 10.9 7.0
en 7.0 3.9 5.5 5.4 6.6 6.4
fr 2.7 2.9 7.4 5.6 7.0 6.9
ru 4.2 2.1 7.1 4.1 7.7 4.8

m
B

E
R

T,
or

ig
. ar 77.8 92.7 63.1 60.9 52.7 58.8

de 85.7 95.9 75.4 87.8 67.7 85.1
en 75.4 94.5 65.8 78.0 52.6 75.3
fr 79.3 96.2 69.6 79.3 58.6 77.2
ru 81.4 93.3 70.5 77.7 60.3 74.0

m
B

E
R

T,
∆

ar 7.6 1.1 8.8 4.3 10.4 4.3
de 2.6 1.2 4.3 3.1 5.1 3.7
en 2.9 1.8 3.0 4.5 3.1 4.9
fr 2.8 1.2 4.4 4.3 3.9 4.5
ru 1.9 1.1 3.6 3.0 3.2 3.0

Table 22: Performance for edges to the left and right
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where the dependent has a lower index than the
head (vice versa for edges to the right). The rel-
ative frequency of edges to the left and right is
displayed in Tab. 21. For all Indo-European (IE)
languages, the majority of edges are to the right
(left for Arabic). The results (Tab. 22) show that
for the IE languages, edges to the right show higher
performance than edges to the left. For ALMs, this
is especially intuitive: The edges to the right are
the ones where both head and dependent are in
the context of the token on which the prediction
is made. When considering only original data and
IE languages, the performance difference between
ALMs and MLMs interestingly shows that MLMs
are better at predicting edges to the right, but not
necessarily better at predicting edges to the left.
Arabic consitutes a special case because the dis-
tribution of edges to the left and right is swapped.
For RelAcc and SPUD, edges to the left show lower
performance than edges to the right, following the
pattern in the other languages. For attachment, the
more frequent edges to the left show higher perfor-
mance than edges to the right (but only in original
data). The performance drop on nonce data and
RelAcc is larger for edges to the left in all lan-
guages and both models. For attachment however,
the pattern is more mixed. Since the performance
drop on nonce data is secondary to the overarching
research question of this particular experiment, we
do not investigate this further.

G Computational requirements

All experiments were run on a single NVIDIA
GeForce RTX 3090 GPU with 24GB of memory,
and powered by renewable energy sources. Col-
lecting the (pseudo-)perplexity scores for one com-
bination of language, model, and scoring function
takes between 5 minutes and 2 hours. The dura-
tion depends mostly on the dataset size and model
architecture. Computing both versions of pseudo-
perplexity for a single sentence requires n forward
passes for a sentence of length n, while PPL com-
putation requires just one forward pass. Training a
single DepProbe model takes between 10 minutes
and 3 hours, depending on the size of the LM and
treebank. Probe inference is faster. From these
values, we estimate that the complete set of ex-
periments reported in this paper can be conducted
with our hardware in 25-30 hours. Creating SPUD
treebanks does not require GPU access and takes
several minutes on a CPU and 64GB RAM.
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