@inproceedings{kim-etal-2024-hil,
title = "{HIL}: Hybrid Isotropy Learning for Zero-shot Performance in Dense retrieval",
author = "Kim, Jaeyoung and
Lee, Dohyeon and
Hwang, Seung-won",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.437",
doi = "10.18653/v1/2024.naacl-long.437",
pages = "7892--7903",
abstract = "Advancements in dense retrieval models have brought ColBERT to prominence in Information Retrieval (IR) with its advanced interaction techniques.However, ColBERT is reported to frequently underperform in zero-shot scenarios, where traditional techniques such as BM25 still exceed it.Addressing this, we propose to balance representation isotropy and anisotropy for zero-shot model performance, based on our observations that isotropy can enhance cosine similarity computations and anisotropy may aid in generalizing to unseen data.Striking a balance between these isotropic and anisotropic qualities stands as a critical objective to refine model efficacy.Based on this, we present ours, a Hybrid Isotropy Learning (HIL) architecture that integrates isotropic and anisotropic representations.Our experiments with the BEIR benchmark show that our model significantly outperforms the baseline ColBERT model, highlighting the importance of harmonized isotropy in improving zero-shot retrieval performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2024-hil">
<titleInfo>
<title>HIL: Hybrid Isotropy Learning for Zero-shot Performance in Dense retrieval</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jaeyoung</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dohyeon</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-won</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Advancements in dense retrieval models have brought ColBERT to prominence in Information Retrieval (IR) with its advanced interaction techniques.However, ColBERT is reported to frequently underperform in zero-shot scenarios, where traditional techniques such as BM25 still exceed it.Addressing this, we propose to balance representation isotropy and anisotropy for zero-shot model performance, based on our observations that isotropy can enhance cosine similarity computations and anisotropy may aid in generalizing to unseen data.Striking a balance between these isotropic and anisotropic qualities stands as a critical objective to refine model efficacy.Based on this, we present ours, a Hybrid Isotropy Learning (HIL) architecture that integrates isotropic and anisotropic representations.Our experiments with the BEIR benchmark show that our model significantly outperforms the baseline ColBERT model, highlighting the importance of harmonized isotropy in improving zero-shot retrieval performance.</abstract>
<identifier type="citekey">kim-etal-2024-hil</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.437</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.437</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>7892</start>
<end>7903</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HIL: Hybrid Isotropy Learning for Zero-shot Performance in Dense retrieval
%A Kim, Jaeyoung
%A Lee, Dohyeon
%A Hwang, Seung-won
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F kim-etal-2024-hil
%X Advancements in dense retrieval models have brought ColBERT to prominence in Information Retrieval (IR) with its advanced interaction techniques.However, ColBERT is reported to frequently underperform in zero-shot scenarios, where traditional techniques such as BM25 still exceed it.Addressing this, we propose to balance representation isotropy and anisotropy for zero-shot model performance, based on our observations that isotropy can enhance cosine similarity computations and anisotropy may aid in generalizing to unseen data.Striking a balance between these isotropic and anisotropic qualities stands as a critical objective to refine model efficacy.Based on this, we present ours, a Hybrid Isotropy Learning (HIL) architecture that integrates isotropic and anisotropic representations.Our experiments with the BEIR benchmark show that our model significantly outperforms the baseline ColBERT model, highlighting the importance of harmonized isotropy in improving zero-shot retrieval performance.
%R 10.18653/v1/2024.naacl-long.437
%U https://aclanthology.org/2024.naacl-long.437
%U https://doi.org/10.18653/v1/2024.naacl-long.437
%P 7892-7903
Markdown (Informal)
[HIL: Hybrid Isotropy Learning for Zero-shot Performance in Dense retrieval](https://aclanthology.org/2024.naacl-long.437) (Kim et al., NAACL 2024)
ACL
- Jaeyoung Kim, Dohyeon Lee, and Seung-won Hwang. 2024. HIL: Hybrid Isotropy Learning for Zero-shot Performance in Dense retrieval. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 7892–7903, Mexico City, Mexico. Association for Computational Linguistics.