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Abstract

Advancements in dense retrieval models have
brought ColBERT to prominence in Informa-
tion Retrieval (IR) with its advanced interaction
techniques. However, ColBERT is reported to
frequently underperform in zero-shot scenarios,
where traditional techniques such as BM25 still
exceed it. Addressing this, we propose to bal-
ance representation isotropy and anisotropy for
zero-shot model performance, based on our ob-
servations that isotropy can enhance cosine sim-
ilarity computations and anisotropy may aid in
generalizing to unseen data. Striking a balance
between these isotropic and anisotropic quali-
ties stands as a critical objective to refine model
efficacy. Based on this, we present ours, a Hy-
brid Isotropy Learning (HIL) architecture that
integrates isotropic and anisotropic representa-
tions. Our experiments with the BEIR bench-
mark show that our model significantly outper-
forms the baseline ColBERT model, highlight-
ing the importance of harmonized isotropy in
improving zero-shot retrieval performance.

1 Introduction

Recent advancements in information retrieval (IR)
have seen a shift from classical techniques like
BM25 to more advanced models that rely on dense
vector representations. ColBERT (Khattab and
Zaharia, 2020) is one such model utilizing multi-
vector representations to capture token-level in-
teractions, for often exceeding performance of
single-vector dense models like DPR (Karpukhin
et al., 2020). Despite its strengths, ColBERT
lags behind BM25 and other methods in zero-shot
tasks (Thakur et al., 2021), revealing a weakness in
its representational strategy.

To improve representation quality from an
isotropy perspective, methods can be categorized
into approaches that promote isotropy and those
that induce anisotropy. Specifically, approaches
such as CosReg (Gao et al., 2019) promote isotropy,
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Method Interactive
Objective

Isotropic Anisotropic

CosReg ✗ ✓ ✗

I-STAR ✗ ✗ ✓

Ours: ColBERT-HIL ✓ ✓ ✓

Table 1: Properties of methods with isotropy perspective.
The Interactive column denotes whether the method
considers the interaction between two distinct distribu-
tion. The Isotropic and Anisotropic columns indicate
that the method make the representation isotropic and
anisotropic, respectively.

while I-STAR (Rudman and Eickhoff, 2023) in-
duces anisotropy. Advocates for isotropy suggest
it benefits cosine-based scoring (Jung et al., 2023;
Li et al., 2020; Su et al., 2021), yet there are con-
trasting arguments that excessive isotropy might
compromise a model’s generalization abilities for
unseen data (Zhu et al., 2018; Rudman and Eick-
hoff, 2023). However, these approaches have two
limitations. First, the metrics used in their study
are not suitable for IR as they calculate isotropy
of query and passage as a single distribution, thus
not taking into account the differences between
the two distributions and their interactions. Sec-
ond, these methods aim to make representations
entirely isotropic or anisotropic, lacking the ability
to achieve their balance.

To address these issues, we identify two chal-
lenges: (1) generalizing isotropy to IR, and (2)
achieving an effective balance between isotropic
and anisotropic properties in the representations.
Table 1 illustrates the differences between our
proposed method and baselines in the context of
the two challenges. To address the first chal-
lenge, we introduce a new isotropy metric, Interac-
tive Isotropy (InterIso), which reflects the inter-
action between two distributions. Additionally,
we propose isotropic and anisotropic ColBERT
models, namely ColBERT-iso and ColBERT-aniso,
which leverage InterIso for regularization. To
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tackle the second challenge, we introduce Hybrid
Isotropy Learning (HIL) architecture to integrate
both isotropic and anisotropic modules.

For the first challenge, we propose, InterIso,
measuring the interaction between two distribu-
tions. In IR, queries are typically shorter, and pas-
sages are more detailed and descriptive. However,
traditional isotropy tools, such as Avg-Cos (Etha-
yarajh, 2019), IsoScore (Rudman et al., 2022), and
Partition isotropy score (Mu et al., 2017), measure
isotropy assuming that both query and passage rep-
resentations originate from the same distribution.
In contrast, InterIso computes the cosine similar-
ity specifically between query and passage embed-
dings to capture query-passage interactions to re-
flect distributional differences.

For the second challenge, HIL proposes a hybrid
model structure that combines the advantages of
isotropy and anisotropy, consisting of two compo-
nents: an isotropic lower layer and an anisotropic
upper layer. We hypothesizes that maximizing
the isotropy difference (∆InterIso) between the
isotropic and anisotropic components is our key
contribution to harnessing their respective bene-
fits. Specifically, we explore two strategies: an
ensemble of separately trained models combined at
score level and HIL approach that integrates both
isotropic and anisotropic aspects within a single
model. We find that promoting a larger ∆InterIso
enhances zero-shot performance, with HIL proving
superior as it encourages an isotropy-anisotropy
balance throughout the model layers.

To demonstrate the effectiveness of our approach
for Dense Retrieval (DR) in zero-shot setting, we
experiment with BEIR benchmarks. As shown in
Table 2, ColBERT-HIL significantly outperforms
BM25 and ColBERT by +2.22%, +2.7% in full-
ranking retrieval, respectively. It represents the
importance of hybrid isotropy for better zero-shot
performance. Our contributions can be summarized
as the following.

• Identifying challenges in adapting isotropy
insights to IR models.

• Developing InterIso, a new metric to assess
isotropy in IR more accurately.

• Introducing ColBERT-HIL to achieve a syner-
gistic mix of isotropic and anisotropic repre-
sentations.

• Demonstrating the benefits of ColBERT-HIL

for zero-shot performance via BEIR bench-
mark results.

2 Related Work

2.1 Dense retrieval
The BERT (Devlin et al., 2019) models have
shown promise for dense retrieval tasks, where both
queries and documents are represented through em-
beddings. Dense retrieval models fall into two
categories: single-vector and multi-vector models.
Our focus is on the latter, where individual embed-
dings represent every term within queries and doc-
uments. In this scenario, query token embeddings
are used to retrieve the nearest document token
embeddings through approximate nearest neigh-
bor search (ANN). In the case of ColBERT, the
documents retrieved through ANN are reranked us-
ing late interaction as defined below, which is also
applied during training.

scorelate(q, d) =
∑

i∈[|Eq |]
max

j∈[|Ed|]
Eqi ·ET

dj
(1)

where q and d represent a query and a document
respectively, and E(·) represents token embedding
matrix of query or document.

2.2 Zero-shot retrieval
Zero-shot retrieval is a paradigm in IR that focuses
on the ability to retrieve relevant information for
queries which were not encountered during the
training phase. The late-interaction model, Col-
BERT performs a bit weaker than BM25 and the
other models on BEIR benchmark (Thakur et al.,
2021), which implies a weakness in its represen-
tations. While Jung et al. (2023) study isotropic
representations using post-processing with out-of-
distribution datasets in DR, they do not conduct it
in full-ranking and focus solely on isotropic repre-
sentations, rather than hybrid isotropy. Given our
emphasis on isotropy, there is no need to be con-
cerned about other late-interaction models that do
not consider isotropy.

2.3 Isotropy
In NLP, Isotropy refers to the measure of how
evenly distributed the contextualized representa-
tions are. We briefly review the commonly used
metrics and methods in Semantic Textual Similarity
(STS).

To measure isotropy, Avg-Cos (Ethayarajh,
2019) computes the average cosine similarity score
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among representations. IsoScore (Rudman et al.,
2022) measures the distance between the covari-
ance matrix of the data and the identity matrix.
Partition isotropy score, as defined by Mu et al.
(2017), involves a specific quotient related to the
partition function initially proposed by Arora et al.
(2016).

To control isotropy, Rudman and Eickhoff
(2023); Gao et al. (2019) suggest regularization
term, I-STAR and CosReg, to control isotropy
during training. While I-STAR is designed to be
anisotropic and CosReg is intended to be isotropic
in its design, both can induce either isotropy or
anisotropy by adjusting λ.

3 Proposed Method

We introduce InterIso measuring isotropy in Sec-
tion 3.1, and then discuss ensemble model using
InterIso in Section 3.2. We then propose ColBERT-
HIL mitigating the limitations of ensemble in Sec-
tion 3.3.

3.1 Interactive Isotropy (InterIso)

Traditional isotropy metrics might distort the evalu-
ation due to assuming that both query and passage
representations come from the same distribution.
Thus, to extend isotropy to IR, it is essential to
consider the interaction between query and passage
distributions. In this regard, we introduce Interac-
tive Isotropy (InterIso) to assess isotropy for query
and passage pairs. It can be formulated as follows:

InterIso(q, d) =
1

|Eq||Ed|
∑

i∈[|Eq |]

∑

j∈[|Ed|]
Eqi ·ET

dj

(2)
where q and d represent a query and a passage
respectively, and E(·) represents token embedding
matrix of query or passage.

InterIso is a simple yet effective measure of
isotropy between query and passage distributions.
InterIso, when closer to 0, signifies isotropic space,
where passage token embeddings make a sparse
space for each query token embedding. Conversely,
a value closer to 1 means that passage token embed-
dings are dense for each query token embedding,
indicating anisotropic space. Note that Eq. (2) com-
putes similarity only between query and passage
tokens, excluding comparisons within the individ-
ual query or passage, to capture the interaction
between query-passage distribution.

3.2 Ensemble for Hybrid Isotropy

To leverage the advantages of both isotropy and
anisotropy in ensemble model, it may be crucial to
increase ∆InterIso, which denotes the difference in
InterIso between isotropic and anisotropic modules.
For this purpose, InterIso metric can be directly em-
ployed as a loss term for each module. Given triples
⟨q, d+, d−⟩, we can formulate late-interaction loss,
Llate term as follows:

Llate = CE(scorelate(q, d
+), scorelate(q, d

−))

where CE represents cross-entropy function, d+

and d− represent a positive and negative passage
for given query q. The loss, LInterIso can be formu-
lated as follows:

Lreg(q, d) =





InterIso(q, d) λ < 0

abs(InterIso(q, d)) λ > 0

LInterIso = Llate + λ Lreg

where abs(·) represents absolute value. As InterIso
closer to 0 represents strong isotropy, we take the
absolute value of InterIso for λ > 0. The isotropy
of representations is controlled by the sign of λ,
where negative values make it more anisotropic and
positive values make it more isotropic. We choose
ColBERT-iso and ColBERT-aniso as isotropic and
anisotropic modules, respectively, based on their
nDCG@10 performance for λ > 0 and λ < 0 on
MSMARCO dev dataset. ColBERT-λ is a simple
λ−ensemble combining these modules as a base-
line, and detailed implementations of ColBERT-
cosreg and ColBERT-istar using CosReg and I-
STAR regularization are described in Section A.3.

3.3 Hybrid Isotropy Learning (HIL)

While ColBERT-λ can enhance ∆InterIso by ad-
justing λ of each modules, extreme changes in
λ might disrupt the vector spaces learned in the
pretraining step. To tackle this issue, we pro-
pose ColBERT-HIL with Hybrid Isotropy Learning
(HIL) architecture, achieving both isotropic and
anisotropic representation within a single model.

Inspired by the findings of Ethayarajh (2019),
which demonstrate that BERT tends to learn
isotropic embeddings in its lower layers and
anisotropic embeddings in its upper layers, we
adopt a similar strategy. As shown in Figure 1,
ColBERT employs a single vector space, whereas
ColBERT-HIL utilizes two, separately learning
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Figure 1: Overview of ColBERT (left) and ColBERT-HIL (right). (b) shows its anisotropic and isotropic vector
spaces represented by blue box and orange box, respectively. In vector spaces, orange and gray dots indicate query
and passage token embeddings, respectively.

isotropic and anisotropic representations to har-
ness their respective benefits. Specifically, we take
isotropic representations (L) which are sequentially
passed through the vocab embedding layer and a
linear layer aimed at reducing the embedding di-
mension. Furthermore, anisotropic representations
(H) are obtained by projecting the last hidden state,
which aligns with the ColBERT token representa-
tions.

To formulate the loss function for learning each
representation, we describe further details. Let s
denote either a query or a passage.

Input(s) = [CLS] [S] Tokenizer(s) [SEP]

where [S] becomes [Q] for a query and [D] for a
passage, depending on s. Then, Ls and Hs can be
formulated as follows:

Ls = Linear(Vocab(Input(s))) ∈ R|s|×128

Hs = Linear(BERT(Input(s))) ∈ R|s|×128

where Vocab represents vocab embedding layer. As
Ls represents a projected Vocab embedding, it may
contain potential noise from less important terms.
To address this, we multiply the inverse document
frequency (IDF) of the query term, approximating
term importance (Formal et al., 2021), by the max-
imum value in Eq. (1). Let M(qi, d) denote the
maximum similarity between query term qi and
passage token embeddings. Then, the scores of L

and H for qi can be formulated as follows:

M(qi, d) = max
j∈[|Ed|]

Eqi ·ET
dj

SL(qi, d) = IDF(qi) ·M(qi, d)

SH(qi, d) = M(qi, d)

However, this multiplication introduces a differ-
ence in scale between SL(qi, d) and SH(qi, d). To
tackle this scaling issue, we compute mean and
standard deviation of them using samples in the
same batch, and apply z-score normalization. Then,
late-interaction score and loss for L and H can be
formulated as follows:

S
′
(·)(qi, d) =

S(·)(qi, d)−m(·)
σ(·)

scorelate(·)(q, d) =
∑

i∈[|Eq |]
S

′
(·)(qi, d)

Llate(·) = CE(scorelate(·)(q, d
+), scorelate(·)(q, d

−))

where m(·) and σ(·) represent mean and standard
deviation, respectively. To combine two late-
interaction losses, we simply add them together.

LHIL = LlateL + LlateH

Although Ls and Hs already possess isotropy and
anisotropy as suggested by Ethayarajh (2019), we
expect that incorporating InterIso as a regulariza-
tion term can further enhance their isotropic dif-
ference. Therefore, we revise LHIL by introducing
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Model(→) Baselines Hybrid Isotropy Models

Dataset(↓) BM25 ColBERT ColBERT-cosreg ColBERT-istar ColBERT-λ ColBERT-HIL †(ours)

MS MARCO (dev) 22.84 41.32 41.38 41.89 42.17 42.04

TREC-COVID 59.35 66.65 40.43 65.06 65.57 73.21
BioASQ 52.25 43.58 44.32 43.74 43.54 45.25
NFCorpus 32.06 28.82 28.26 28.89 29.15 31.33

NQ 30.55 51.99 42.5 51.79 52.28 51.08
HotpotQA 63.29 60.09 58.74 60.14 59.82 67.11
FiQA-2018 23.61 29.83 28.57 29.11 29.3 31.39

Signal-1M (RT) 33.04 27.61 25.09 28.56 27.44 30.09

TREC-NEWS 39.52 35.79 32.44 36.6 37.43 37.35
Robust04 40.7 36.8 36.61 37.2 38.41 42.18

ArguAna 39.7 29.8 29.47 30.17 29.54 33.04
Touché-2020 44.25 21.62 13.89 20.96 21.97 25.53

CQADupStack 30.21 34.69 33.74 34.88 34.9 36.19
Quora 78.84 84.76 82.84 84.72 85.39 85.07

DBPedia 31.78 38.01 36.27 39.74 39.12 40.04

SCIDOCS 14.9 15.15 13.92 15.13 14.81 15.8

FEVER 65.13 72.39 72.93 74.14 73.9 76.35
Climate-FEVER 16.51 15.08 14.78 15.77 17.02 17.33
SciFact 67.89 62.29 62.54 62.18 62.63 65.27

Avg. Performance vs. BM25 - -0.48% -3.68% -0.27% -0.08% +2.22%
Avg. Performance vs. ColBERT +0.48% - -3.2% +0.21% +0.4% +2.7%

Table 2: Full-ranking nDCG@10 performances of BM25, ColBERT, and hybrid isotropy models on MS MARCO
and BEIR benchmarks. The best performing results are highlighted in bold, and second best performing results are
underlined. The Avg. performance does not include MSMARCO, and † represents the results with the p-value <
0.01 in comparison to ColBERT.

regularization terms as follows:

LregL = −abs(InterIsoL(q, d))

LregH = InterIsoH(q, d)

LHIL = LlateL + LlateH + λ (LregL + LregH )

where InterIsoL(q, d) and InterIsoH(q, d) repre-
sent InterIso for Ls and Hs, respectively. In
LregL term, we take the absolute value to make
InterIsoL(q, d) close to 0, and use a minus sign
to increase the difference from InterIsoH(q, d).
As our objective is to enhance ∆InterIso, we
conducted experiments with a negative value of
λ. At inference step, we compute scorelateL(q, d)
and scorelateH (q, d), and then simply add them to-
gether.

4 Experiment

4.1 Experimental Setting

Dataset and Evaluation Metric To validate our
approach, we use two datasets, MS MARCO-
passage (Nguyen et al., 2016) for training and
BEIR (Thakur et al., 2021) for evaluating zero-shot
performance. Our primary focus lies in improv-
ing the Normalized Discounted Cumulative Gain

(nDCG) metric for full-ranking retrieval on BEIR
benchmark.

Implementation We follow the training settings
described in (Khattab and Zaharia, 2020) as we
implement our approach using ColBERTv1 as
the backbone. All ColBERT model variations
in this paper are trained under the same set-
tings. For BM25, we use open-source implemen-
tation provided by Pyserini1. More detailed hyper-
parameters are described in Section A.3.

4.2 Experimental Results
Research Questions To evaluate the effective-
ness of our method, we address the following re-
search questions:

• RQ1: Does increasing ∆InterIso enhance
zero-shot performance and why?

• RQ2: Does HIL architecture mitigate a limita-
tion of λ−ensemble?

• RQ3: Does each regularization term in HIL
improve ∆InterIso?

• RQ4: Is HIL architecture generalizable?
1https://github.com/castorini/pyserini
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Model BEIR ∆InterIso

ColBERT-cosreg 45.54 -0.01

ColBERT-istar 45.75 0.01

ColBERT-λ 46.12 0.5

ColBERT-HIL 46.7 0.99

Table 3: nDCG@10 performance in re-ranking top100
passages from BM25 and ∆InterIso for various isotropic
and anisotropic modules.

AnisotropicIsotropic

Figure 2: Score distributions for ColBERT, L and H
in ColBERT-HIL. Dashed lines represent ideal isotropy
(orange) and anisotropy (blue).

4.2.1 RQ1: ∆InterIso for zero-shot
performance

In this section, we demonstrate that augmenting
∆InterIso yields improvements in zero-shot per-
formance, while also conducting an analysis of
whether isotropic and anisotropic modules are per-
forming as intended.

Zero-shot performance We first evaluate zero-
shot performance in full-ranking, as shown in Ta-
ble 2. Remarkably, our model (ColBERT-HIL)
exhibits the most superior performance in this con-
text. In delving deeper into the relationship be-
tween ∆InterIso and zero-shot performance, we
analyze re-ranking performance using various en-
semble models. Table 3 indicates that ColBERT-λ
and ColBERT-HIL, utilizing InterIso as loss term,
achieve the second-best and best performance, re-
spectively. This suggests enhanced zero-shot per-
formance with an increase in ∆InterIso.

Isotropy and Anisotropy are Well-Represented
To affirm the successful representation of isotropic
and anisotropic spaces in ColBERT-HIL, by L and
H modules, respectively, we compute the cosine
similarity scores between query and passage to-
ken embeddings. As depicted in Figure 2, the

52.29% 46.68%1.03%

L H

84.65% 5.74%7.0%

ColBERT-iso ColBERT-aniso

(a) ColBERT-𝜆 (b) ColBERT-HIL

ΔInterIso: 0.53 ΔInterIso: 0.99

Figure 3: Venn diagram of retrieved passages in first-
stage. The orange and blue indicate passage sets re-
trieved by isotropic and anisotropic modules, respec-
tively.

score distributions of L (orange curve) and H (blue
curve) noticeably shift towards 0 and 1, respec-
tively, when compared to the baseline ColBERT
(grey curve). This empirical evidence supports the
assertion that the isotropic and anisotropic mod-
ules within ColBERT-HIL effectively learn their
respective spaces for IR.

Isotropy and Anisotropy are Complementary
To explore the complementarity between isotropic
and anisotropic modules complementarity inherent
in isotropic and anisotropic modules, we present a
Venn diagram depicting the retrieved passages for
each query in the first stage, as depicted in Figure 3.

In both ColBERT-λ and our proposed model
(ColBERT-HIL), we observe that isotropic and
anisotropic modules discover mostly distinct pas-
sages but with some duplications (shown as in-
tersection in the diagram): while ColBERT-λ re-
trieves 7.0% duplicated passages with a ∆InterIso
of 0.53, ColBERT-HIL retrieves only 1.03% dupli-
cated passages, demonstrating a significant reduc-
tion with a higher ∆InterIso of 0.99. This outcome
presents the pronounced complementary advantage
achieved by increasing ∆InterIso.

Meanwhile, in the case of ColBERT-λ, the
majority of passages (91.65%) are retrieved by
ColBERT-iso. This limitation arises because
ColBERT-aniso may retrieve passage tokens from
the same passage for each query token, owing to
its anisotropic distribution. In contrast, ColBERT-
HIL demonstrates a more balanced retrieval, with
comparable numbers of passages retrieved using its
isotropic and anisotropic modules. This balanced
approach mitigates the bias observed in ColBERT-
λ’s retrieval mechanism, where a predominant re-
liance on ColBERT-iso occurs.
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Figure 4: Performance drop when decreasing λ for
ColBERT-aniso. Yellow line and green bar indicate
nDCG@10 in re-ranking on BEIR and ∆InterIso of
ColBERT-λ, respectively. The x-axis represents the λ
for regularization term of ColBERT-aniso.

Figure 5: Differences in the log-scale of InterIso com-
pared to ColBERT for each layer.

4.2.2 RQ2: Mitigating the limitation of
ColBERT-λ

In this section, we reveal a limitation of ColBERT-
λ, and HIL architecture mitigates this issue.

To optimize the complementarity between
isotropy and anisotropy, we observe zero-shot per-
formance and ∆InterIso of ColBERT-λ across var-
ious λ values for each module. As depicted in
Figure 4, a decline in performance is evident when
reducing the λ of ColBERT-aniso to enhance its
anisotropy while maintaining ColBERT-iso fixed.
This suggests a limitation in λ−based tuning for
finding an optimal ensemble.

We also examine isotropy and anisotropy in each
layer, to confirm whether it accords with finding
from Ethayarajh (2019): BERT is known to ac-
quire isotropic embeddings in its lower layers and
anisotropic embeddings in its upper layers. Our
finding illustrated in Figure 5 is consistent: Lower
layers, isotropic and containing lexical information,
are influenced by the regularization term, leading
to induced anisotropy in upper layers. As a result,
InterIso, calculated for each layer in the figure, is
significantly higher values in the lower layers of

Model MSMARCO BEIR

Baselines
BM25 59.24 87.1

ColBERT 66.15 82.15

Anisotropic module
ColBERT-aniso 64.42 76.54

H 65.01 81.22
Hybrid model
ColBERT-λ 66.51 82.4

ColBERT-HIL 67.37 83.85

Table 4: Re-ranking nDCG@10 performance on BM25-
Easy dataset. The H represents anisotropic module of
ColBERT-HIL.

Model MSMARCO BEIR ∆InterIso
ColBERT-HIL
w/o regL, regH

41.76 43.6 0.24

ColBERT-HIL
w/o regH

41.96
(+0.2)

43.84
(+0.24)

0.29
(+0.05)

ColBERT-HIL
w/o regL

42.2
(+0.44)

44.54
(+0.94)

0.94
(+0.7)

ColBERT-HIL
42.34

(+0.58)
44.8

(+1.2)
0.99

(+0.75)

Table 5: Ablation study for regularization terms. The
number indicates full-ranking nDCG@10 performance
for each dataset.

ColBERT-aniso, indicating a potential loss of lexi-
cal information.

For a more detailed analysis, we introduce the
BM25-Easy dataset based on the top 50% of BM25
nDCG@10 scores for all queries. The evaluation
of performances on BM25-Easy in Table 4 reveals
that ColBERT-aniso experiences a performance de-
crease of -5.61% compared to ColBERT, signifying
a disturbance in lexical information.

On the other hand, the HIL architecture circum-
vents these issues. The objectives of the LregL and
LregH terms in the ColBERT-HIL loss function di-
rectly aim to enhance ∆InterIso during training,
inducing isotropy and anisotropy in its lower and
upper layers, respectively. In Figure 5, ColBERT-
HIL exhibits more isotropy than ColBERT-aniso
up to the fifth layer and becomes increasingly
anisotropic from the sixth layer onward. Further-
more, in Table 4, the anisotropic module H outper-
forms ColBERT-aniso by +4.68%, and ColBERT-
HIL surpasses ColBERT-λ by +1.45% on BM25-
Easy. This suggests that ColBERT-HIL effectively
mitigates the disturbance of lexical information.
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Model MSMARCO BEIR
ColBERT 41.66 42.32

ColBERT-λ
42.03

(+0.37)
42.52
(+0.2)

ColBERT-HIL
42.34

(+0.68)
44.8

(+2.48)

Table 6: Re-ranking nDCG@10 performance for same
passages, retrieved in first-stage by ColBERT-HIL.

4.2.3 RQ3: Ablation Study
We conduct an ablation study on both the MS-
MARCO and BEIR datasets, as illustrated in Ta-
ble 5. Each regularization term is individually in-
corporated into ColBERT-HIL without any other
regularization terms.

Our findings reveal that both LregL and LregH
contribute to enhancements in ∆InterIso and over-
all performance across both datasets. Notably,
LregL, designed to induce isotropy in the lower
layers, leads to an improvement in ∆InterIso. This
holds true even when the lower layers are already
strong isotorpic when trained without any regular-
ization terms.

It is worth noting that the individual contribu-
tions of both LregL and LregH are evident in the
observed improvements, underlining the effective-
ness of each term in refining the performance of
ColBERT-HIL on both datasets.

4.2.4 RQ4: Generalizability of HIL
This section shows how our proposed approach,
the HIL structure utilizing the InterIso metric, gen-
eralizes to re-ranking task, to a more recent late-
interaction model.

Re-ranking task To assess the re-ranking capa-
bilities of ColBERT, ColBERT-λ, and ColBERT-
HIL, we conduct re-ranking on the same passages
retrieved in the first stage by ColBERT-HIL, as
presented in Table 6. Despite employing an equal
number of passages for re-ranking, both ColBERT-
HIL and ColBERT-λ surpass ColBERT in perfor-
mance. This suggests the advantages of leveraging
both isotropic and anisotropic representations for
re-ranking. Additionally, ColBERT-HIL signifi-
cantly enhances zero-shot performance by approxi-
mately 12 times compared to ColBERT-λ, under-
scoring the effectiveness of the HIL framework for
zero-shot retrieval.

Recent late-interaction model To validate the
generalizability of HIL for more recent late-

Model MSMARCO BEIR
CITADEL 35.86 38.03

CITADEL-HIL
36.84

(+0.98)
40.32

(+2.29)

Table 7: Re-ranking nDCG@10 performance for each
dataset. CITADEL-HIL represents CITADEL trained
with HIL architecture.

interaction model, other than ColBERT, we ap-
ply HIL to the recent late-interaction model,
CITADEL (Li et al., 2023). As shown in Table 7,
CITADEL-HIL, trained with the HIL architecture,
outperforms CITADEL by +0.98% and +2.29% on
MSMARCO and BEIR, respectively. The improve-
ment in BEIR performance is twice that observed
in MSMARCO, aligning with the consistent results
observed with ColBERT and highlighting the ver-
satility of HIL across different retrieval models.

5 Conclusion

Addressing the challenge of applying prior insights
on isotropy to IR, we introduce InterIso, a metric
designed to quantify isotropy between queries and
passages in DR settings. Leveraging InterIso, we
propose HIL architecture that seamlessly integrates
isotropic and anisotropic representations. Our ex-
periments with BEIR benchmark demonstrate that
ColBERT-HIL significantly outperforms the base-
lines, ColBERT and BM25. It indicates the pivotal
role of harmonized isotropy in enhancing zero-shot
retrieval performance.

6 Limitations

To the best of our knowledge, we are the first to
achieve hybrid isotropy by combining isotropic and
anisotropic embeddings at the score-level. While
this approach is straightforward and easy to apply,
adopting more sophisticated methods to combine
isotropy and anisotropy could potentially enhance
performance beyond simple score-level fusion. We
remain this task for future research endeavors.
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Figure 6: Score distributions for hybrid isotropy models. Orange and Blue represent isotropic and anisotropic
modules, respectively, and Gray indicates ColBERT.

Figure 7: Re-ranking nDCG@10 performance on BEIR and InterIso for ColBERT-iso (left) and ColBERT-aniso
(right). Solid and dashed lines represent nDCG@10 and InterIso, respectively. The x-axis indicates λ for each
module.

Figure 8: Re-ranking nDCG@10 performance of
ColBERT-HIL on BEIR and ∆InterIso during train-
ing. The x-axis indicates training steps, and Red, Blue,
Green, and Gray represent ColBERT-HIL, ColBERT-
HIL w/o regL, ColBERT-HIL w/o regH , and ColBERT-
HIL w/o regL, regH , respectively.

A Appendices

A.1 Isotropy

Metrics Avg-Cos (Ethayarajh, 2019) computes
the average cosine similarity score as follows:

Avg-Cos(s) =
1

|Es|(|Es| − 1)

∑

i ̸=j

Esi ·ET
sj

where s indicates representations. IsoScore (Rud-
man et al., 2022) measures the distance between
the covariance matrix of the data and the identity

matrix as follows:

δ(X) =
||Σ̂D − 1||√
2(n−√

n)

ϕ(X) =
(n− δ(X)2(n−√

n))2

n2

IsoScore(X) =
(n · ϕ(X)− 1)

(n− 1)

where X , n, and Σ̂D indicate representations, num-
ber of components of PCA for X , and normalized
diagonal of the covariance matrix of first n prin-
cipal components. Partition isotropy score, as
defined by Mu et al. (2017), can be formulated as
follows:

Z(C) =
∑

x∈X
exp(cTx)

I(X) =
minc∈C Z(c)

maxc∈C Z(c)

where X indicates the representations and c is cho-
sen from the eigenspectrum of XXT . Avg-Cos
closer to 0 indicates strong isotropy, while a value
of 1 suggests anisotropy. For IsoScore and Partition
isotropy score, 0 represents anisotropy, whereas 1
represents isotropy.
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Methods Rudman and Eickhoff (2023); Gao et al.
(2019) propose regularization term, I-STAR and
CosReg, to adjust isotropy during training. Their
loss function can be formulated as follows:

LI-STAR = LCE + λ · (1− IsoScore(X̃, Ci))

LCosReg = LCE + λ
1

M2

M∑

i

∑

j ̸=i

x̂Ti x̂j

where LCE represents cross-entropy loss, X̃ =⋃n
l=1Xl denotes the union of all hidden states from

a network with n layers and Ci is the shrinkage
covariance matrix for epoch i of training. IsoScore
measures isotropy of X̃ and Ci. For CosReg,
x̂i =

xi
||x|| and {x1, x2, ..., xM} denotes the mini-

batch representation obtained from the last hidden
layer.

A.2 Experiment Setting
MS MARCO-Passage 2 (Nguyen et al., 2016)
This dataset offers a collection of 8.8 million pas-
sages with the labels sourced from the Bing search
engine. Since the relevance labels for the official
test set are not accessible to the public, we used
only the training set to train the model and evalu-
ated it on the development set.

BEIR 3 (Thakur et al., 2021) Benchmarking-IR
(BEIR) serves as a comprehensive and diverse
evaluation benchmark for zero-shot information
retrieval. It encompasses 18 datasets spanning a
range of text retrieval tasks and domains.

Evaluation Metric We evaluate the perfor-
mance on the BEIR benchmark using the Normal-
ized Discounted Cumulative Gain (nDCG) met-
ric. To compute this metric, we employ the
pytrec_eval (Van Gysel and de Rijke, 2018) Python
library.

A.3 Implementation
Variations of ColBERT model We follow the
training settings described in Khattab and Zaharia
(2020), using a learning rate of 3×10−6 and a batch
size of 32. The models are trained for 200k iter-
ations on the MS MARCO-Passage dataset, with
query and passage lengths set to 32 and 180. For
ColBERT encoder, we utilize the base version (Un-
cased) of BERT (Devlin et al., 2019). For hyper-
parameter, we search λ based on nDCG@10 using

2https://github.com/microsoft/
MSMARCO-Passage-Ranking

3https://github.com/beir-cellar/beir

MS MARCO-Passage dev dataset in a range of
[-1, 1] with a step size of 0.1. The best configura-
tion λ was -0.1, 0.4 and -0.3 for ColBERT-aniso,
ColBERT-iso and ColBERT-HIL, respectively.

Regularization term We revise CosReg and I-
STAR, as regularization for DR. Given triples
⟨q, d+, d−⟩, we replace LCE term, which is men-
tioned in Section A.1, with Llate as follows:

Llate = CE(scorelate(q, d
+), scorelate(q, d

−))

where d+ and d− represent a positive and negative
passage for given query q. Since both I-STAR and
CosReg regularization terms have the same role,
we explore two terms with hyper-parameter λ. The
loss function can be formulated as follows:

Lreg(s) =





1− IsoScore(X, I)

1
M2

∑M
i

∑
j ̸=iX

T
i Xj

L{CosReg | I-STAR} = Llate +
λ

2
· (Lreg(q) +Lreg(d))

where s denotes either a query or a passage, and X
and I represent projected last hidden state of s and
identity matrix, respectively. The other notations
are the same as described in Section A.1. We com-
pute regularization term for queries and passages
separately, recognizing their distinct distributions.
The optimal configurations for λ were 0.2 and -0.1
for isotropic and anisotropic modules of CosReg,
and 0.2 and -0.6 for isotropic and anisotropic mod-
ules of I-STAR.

CITADEL We use the open-source dpr-scale4

to implement CITADEL (Li et al., 2023) and
CITADEL-HIL. When implementing CITADEL-
HIL, we L2 normalize token embedding and apply
softmax operation to token-level router representa-
tions to prevent the divergence of InterIso values.
We set λ, query and passage length to -0.3, 32 and
180, respectively, and train for 10 epochs.

A.4 Experiment details

Score distributions The score distributions for
hybrid isotropy models are depicted in Figure 6.
These scores are computed using query and pas-
sage pairs retrieved by BM25 from MSMARCO
dev dataset. ColBERT-InterIso and ColBERT-HIL
effectively learn isotropic and anisotropic spaces,

4https://github.com/facebookresearch/
dpr-scale
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Model BEIR

ColBERTv2 46.4

ColBERTv2-HIL
46.61

(+0.21)

Table 8: nDCG@10 scores in full-ranking when using
ColBERTv2 as a backbone model.

whereas ColBERT-cosreg and ColBERT-istar strug-
gle to learn distinct vector spaces. We can also see
ColBERT-iso and ColBERT-aniso achieve the best
isotropy and anisotropy, respectively, except for L
and H .

Limitation of Ensemble To reveal limitations of
ColBERT-InterIso, we examine zero-shot perfor-
mance and InterIso of ColBERT-iso and ColBERT-
aniso for various λ. As shown in Figure 7, we ob-
serve a performance drop in ColBERT-aniso when
decreasing λ, while ColBERT-iso maintains con-
sistent performance.

Ablation study for training steps We conduct
an ablation study on training steps, as shown in
Figure 8. It shows that L and H are close to each
other when trained without any regularization term.
While ∆InterIso for ColBERT-HIL w/o regH is
larger than ColBERT-HIL w/o regL, regH at the
200k step, it still decreases during training due
to regL only inducing isotropy in its lower layers,
which already exhibit strong isotropy. However,
∆InterIso for ColBERT-HIL consistently increases
during training, signifying that regL and regH ef-
fectively enhance the isotropic difference between
them.

A.5 Additional evaluations

ColBERTv2 as a backbone We adopted Col-
BERTv1 as a backbone model since ColBERTv2 is
not suitable for separately observing the two types
of scores in HIL: one from isotropic space and
another from anisotropic space. However, in this
section, we confirm the performance gain based
on ColBERTv2. We used the public checkpoint5

for ColBERTv2 and trained ColBERTv2-HIL, ini-
tializing it from a pretrained checkpoint which
trained with one hard negative example over 150
steps. Despite ColBERTv2 being trained with 31
hard negative examples, we observe in Table 8 that
ColBERTv2-HIL still outperforms it.

5https://github.com/stanford-futuredata/
ColBERT

Model BEIR

ColBERT 42.23

ColBERT-HIL
45.25

(+3.02)

Table 9: nDCG@10 scores in full-ranking. Col-
BERT and ColBERT-HIL are trained with BEIR-
hyperparameters.

BEIR-hyperparameters We used the hyperpa-
rameters from the ColBERTv1 paper (Khattab and
Zaharia, 2020) since we utilized ColBERTv1 as
a backbone model. This slightly differs from the
hyperparameters used in the BEIR paper (Thakur
et al., 2021). In ColBERTv1 settings, the sequence
length is 180, while the BEIR paper used a se-
quence length of 300. To verify the effect of hy-
perparameters, we trained ColBERT and ColBERT-
HIL with BEIR-hyperparameters. Table 9 demon-
strates that we can achieve a similar performance
gain when using BEIR-hyperparameters.
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