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Abstract

Gender bias in vision-language models (VLMs)
can reinforce harmful stereotypes and discrim-
ination. In this paper, we focus on mitigating
gender bias towards vision-language tasks. We
identify object hallucination as the essence of
gender bias in VLMs. Existing VLMs tend
to focus on salient or familiar attributes in im-
ages but ignore contextualized nuances. More-
over, most VLMs rely on the co-occurrence be-
tween specific objects and gender attributes to
infer the ignored features, ultimately resulting
in gender bias. We propose GAMA, a task-
agnostic generation framework to mitigate gen-
der bias. GAMA consists of two stages: narra-
tive generation and answer inference. During
narrative generation, GAMA yields all-sided
but gender-obfuscated narratives, which pre-
vents premature concentration on localized im-
age features, especially gender attributes. Dur-
ing answer inference, GAMA integrates the
image, generated narrative, and a task-specific
question prompt to infer answers for different
vision-language tasks. This approach allows
the model to rethink gender attributes and an-
swers. We conduct extensive experiments on
GAMA, demonstrating its debiasing and gener-
alization ability.1

1 Introduction

Vision-language models (VLMs) have attracted
significant attention in recent years due to their
widespread applications in image captioning (Li
et al., 2020; Nguyen et al., 2022), image-text re-
trieval (Wang et al., 2020; Qu et al., 2021), and
visual question answering (Antol et al., 2015; Jiang
et al., 2020). Remarkable advancements have been
achieved in these tasks, primarily measured by task
performance metrics (Radford et al., 2021; Li et al.,
2023a). However, there is a growing concern about

∗Corresponding author.
1Our code is available at https://github.com/zyq0000

/GAMA.

Figure 1: Examples in image captioning with anno-
tations and captions generated by a baseline model,
SAT (Xu et al., 2015). We overlay images with atten-
tion heatmaps of SAT on the right. In the top example,
SAT focuses on the woman and predicts “juice”, a word
highly co-occurring with females. In the bottom ex-
ample, the gender is incorrectly predicted, as “soccer”
highly co-occurs with males in the training set.

the undesirable social bias (e.g., gender, race) in
VLMs (Hendricks et al., 2018; Ross et al., 2021;
Zhang et al., 2022). An example is presented in Fig-
ure 1 (bottom), implying stereotypes associating
sports with masculinity. More alarmingly, biased
VLMs have the potential to propagate and even
exacerbate existing stereotypes and inequalities.

Previous methods for mitigating social bias to-
wards vision-language tasks can be grouped into
two categories: 1) task-specific methods are de-
signed for task-specific datasets and models, which
mitigate bias by re-sampling datasets (Zhao et al.,
2017; Wang et al., 2021), synthesizing negative
samples for training (Hirota et al., 2023), or intro-
ducing debiasing modules or training objectives to
task-specific models (Hendricks et al., 2018; Tang
et al., 2021; Seth et al., 2023); and 2) task-agnostic
methods aim to pre-train a debiased encoder for
downstream tasks, most commonly by adopting an
adversarial approach to remove unwanted features
(Wang et al., 2019), or leveraging counterfactual
samples to minimize biased representations (Zhang
et al., 2022). Despite these efforts, task-specific
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methods often lack generalization ability, while ex-
isting task-agnostic methods primarily address bias
at the feature level and fall short of probing the
essence of social bias.

In this work, we focus on gender bias as it is a
crucial aspect of social bias. To address potential
limitations in existing research, our initial step is to
explore the essence of gender bias. We posit that
gender bias is a manifestation of object hallucina-
tion in VLMs (Rohrbach et al., 2018). Specifically,
models understand the form rather than the mean-
ing.2 This leads to a tendency for VLMs to focus
on the most salient or familiar objects or attributes
but ignore the rest of the image. Moreover, as
depicted in Figure 1, VLMs are inclined to halluci-
nate objects that co-occur with gender words, and
vice versa for gender attributes closely associated
with specific objects in the training set. As a result,
VLMs may generate answers containing objects or
gender attributes inconsistent with the given image.

We propose GAMA, a novel task-agnostic gen-
eration framework to mitigate gender bias towards
vision-language tasks. Unlike previous methods,
GAMA is a multi-level method, addressing bias
both in external object co-occurrences and in inter-
nal bias features. The framework comprises two
stages: narrative generation and answer inference.
During narrative generation, GAMA creates an all-
sided narrative for a given image, which prevents
premature focus on localized details. Besides, we
disentangle features through contrastive learning
(He et al., 2020; Chen et al., 2020) to obfuscate gen-
der information in the generated narratives. This
approach helps mitigate the influence of gender at-
tributes on context generation. The trained model
can seamlessly adapt to different vision-language
tasks for narrative generation without retraining.
During answer inference, the image, generated
narrative, and task-specific question prompt are
utilized to derive answers for different tasks. As
gender information is obfuscated in generated nar-
ratives, the model is encouraged to rethink gender
attributes in this stage, which contributes to more
appropriate and unbiased answers.

We conduct extensive experiments to demon-
strate the effectiveness of GAMA. First, GAMA
is evaluated across two vision-language tasks: im-

2Following Bender and Koller (2020), we define form as
the visible realization of vision and language, such as pixels or
bytes in digital representations of text or image, and meaning
as the relationship between form and external elements to
vision and language, like communicative intent.

age captioning and image search. Additionally,
zero-shot experiments are performed on two bench-
marks for measuring gender bias, namely VisoGen-
der (Hall et al., 2023) and VL-Bias (Zhang et al.,
2022). Experimental results show that GAMA per-
forms well against previous debiasing methods on
task performance and gender bias mitigation. No-
tably, GAMA exhibits remarkable generalization
ability on both benchmarks. Moreover, we show-
case the effectiveness of our proposed modules in
reducing object hallucination and gender bias. For
further explanation, we probe the connection be-
tween object hallucination and gender bias.

2 Related Work

2.1 Sources of gender bias

The growing popularity of multi-modality has
prompted research into sources of gender bias in
vision-language tasks. First, datasets are a promi-
nent factor, as object labeling is closely linked
to our conceptualization (Brown, 1958). Thus
real-life stereotypes subtly infiltrate datasets. Hi-
rota et al. (2022a) and Harrison et al. (2023)
highlighted the underrepresentation of women in
datasets. Second, pre-trained VLMs (PVLMs) have
enhanced vision-language tasks by leveraging ex-
tensive knowledge from pre-training data. Con-
sequently, PVLMs inherit such bias from both
language and vision sources (Wang et al., 2019;
Ross et al., 2021; Srinivasan and Bisk, 2022).
Third, model structures may amplify gender bias
in datasets (Zhao et al., 2017). Researchers have
observed stereotype exaggeration in various task-
specific VLMs (Kay et al., 2015; Bhargava and
Forsyth, 2019; Wang et al., 2021).

Given these diverse bias sources, gender bias
may not be effectively addressed by merely pre-
processing data or debiasing pre-training features.

2.2 Gender bias mitigation

Research interest in gender bias mitigation for
vision-language tasks has notably increased. Pre-
vious studies addressed gender bias in unimodal
models, such as language (He et al., 2022; Shaikh
et al., 2023) or vision (Wang et al., 2019; Steed and
Caliskan, 2021). Zhou et al. (2022) uncovered both
intra-modal and inter-modal gender bias. Previ-
ous work on gender bias mitigation for VLMs can
be divided into three classes: 1) adding debiasing
modules to existing task-specific VLMs, which aims
to pre-process imbalanced training sets (Zhao et al.,
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Figure 2: The overall framework of GAMA. We briefly provide task-specific question prompts and answers,
which are detailed in Appendix C. We take the token probability of the decoder as the match score in image search.

2017), process intermediate features (Hendricks
et al., 2018; Wang et al., 2021), or post-process
biased model outputs (Hirota et al., 2023; Janghor-
bani and De Melo, 2023); 2) re-designing training
objectives of PVLMs to produce debiased features
through negative (Wang et al., 2019) or counterfac-
tual (Zhang et al., 2022) samples; and 3) proposing
new model structures designed to learn fair rep-
resentations by capturing gender visual evidence
(Tang et al., 2021), or adding a negative residual
(Seth et al., 2023). However, previous studies su-
perficially address gender bias by removing biased
data or features and ignore the correlation between
gender bias and object hallucination.

2.3 Object hallucination

Despite the great success of VLMs in vision-
language tasks, they still suffer from object halluci-
nation. Object hallucination refers to the fact that
the content generated by the model contains objects
inconsistent with or absent from the given image
(Rohrbach et al., 2018). Rohrbach et al. (2018)
proposed two metrics, CHAIRs and CHAIRi, to
measure object hallucination. A recent approach,
POPE (Li et al., 2023b), is a polling-based query
method with enhanced flexibility. Efforts to mit-
igate object hallucination in VLMs fall into two
categories. Some methods aim to disentangle ob-
ject co-occurrence patterns. For instance, Biten
et al. (2022) introduced object labels and altered
objects in the captions, while Zhou et al. (2023)
replaced error-prone objects with placeholder tags.
Others focus on minimizing logical errors, such
as leveraging chain-of-thought (CoT) prompting
to generate intermediate reasoning chains as ratio-
nales (Zhang et al., 2023).

3 Method

In this section, we will first overview the frame-
work of GAMA and then introduce the training
data. Finally, we detail our model architecture.

3.1 Overview

GAMA is composed of two stages: narrative gener-
ation and answer inference, as illustrated in Figure
2. During narrative generation, GAMA takes an
image and a question prompt as input to yield an
all-sided but gender-obfuscated narrative. During
answer inference, different vision-language tasks
are formulated as generation tasks. GAMA utilizes
the image, generated narrative, and task-specific
question prompt to generate a task-specific answer.
We formulate both stages as taking an image I
and a text sequence X = [x1, x2, · · · , xn] with n
tokens as input and outputting a target sequence
Y = [y1, y2, · · · , ym] with m tokens.

The models in the two stages are trained inde-
pendently. The trained narrative generation model
can be applied to different tasks without retraining.

GAMA comprises three key modules: a vision-
language fusion module to extract features in
both stages, a gender obfuscation module to mask
gender-related information during narrative genera-
tion, and a decoder for answer generation.

3.2 Training data

During narrative generation, GAMA strives to gen-
erate an all-sided narrative for the given image to
avoid premature focus on localized details. To this
end, we train the model with the Localized Narra-
tives dataset (Voigtlaender et al., 2023) for Open
Images (Kuznetsova et al., 2020). The dataset is
crafted to depict image regions covered by a mouse
trace, associating specific image regions with spe-
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cific words in the narrative. Consequently, the
narratives are spread throughout the entire image,
rather than confined to specific localized regions.

3.3 Vision-language fusion module
The vision-language fusion module is designed to
learn vision-language representations in two stages.

Encoder We use the T5 (Raffel et al., 2020) en-
coder to learn language representations, and a Vi-
sion Transformer (ViT) (Dosovitskiy et al., 2020)
to extract vision features:

Hl = T5Encoder([x1, x2, · · · , xn]), (1)

Hv = W1ViT(I), (2)

where Hl,Hv ∈ Rn×d, and d is the hidden di-
mension. W1 is a projection matrix to convert the
shape of features extracted by the ViT. Notably, the
parameters of the ViT are frozen.

Feature fusion We utilize an attention mecha-
nism (Vaswani et al., 2017) to capture the interac-
tions between language and vision features:

Ĥv = Attention(Hl,Hv,Hv). (3)

We aggregate Hl and Ĥv with a gate mechanism
(Li et al., 2022a; Fang and Feng, 2022). The gate
λ and the fused features H are calculated as:

λ = Sigmoid(W2Hl +W3Ĥv), (4)

H = (1− λ) ·Hl + λ · Ĥv, (5)

where W2 and W3 are trainable parameters.

3.4 Gender obfuscation module
The gender obfuscation module is employed during
narrative generation to obfuscate gender informa-
tion in narratives. This module prevents the model
from biasing the context due to gender attributes.

Pre-processing First, we replace gender words
with a special token [GENDER] and leave other
words unchanged to obtain a narrative with masked
gender words Ȳ = [ȳ1, ȳ2, · · · , ȳm].3

Gender information detection Then we con-
struct the gender-masked features H̄. We detect
gender-related features Hg and remove them from
the vision-language features H as follows:

µ = Sigmoid(W4H), (6)

Hg = µ ·H, (7)

H̄ = H−Hg, (8)
3The gender word list comes from Hirota et al. (2023),

which can be found in Appendix A.

where W4 is a trainable parameter.

Contrastive loss Motivated by contrastive learn-
ing (He et al., 2020; Chen et al., 2020), we employ
a contrastive loss to keep the vision-language fea-
tures H close to the gender-masked features H̄ and
away from the gender-related features Hg. This
approach helps obscure gender details as well as
preserve context information. We define our con-
trastive loss as:

Lcon = − log
es(H,H̄)/τ

es(H,H̄)/τ + es(H,Hg)/τ
, (9)

where s(U,V) = U⊤V/∥U∥∥V∥ denotes the co-
sine similarity between U and V, and τ is a tem-
perature hyper-parameter.

3.5 Decoder
The T5 decoder takes the encoder output H̃, text se-
quence X , and previously generated tokens Ỹ<t as
inputs to get the t-th token probability distribution:

h̃t = T5Decoder(H̃, X, Ỹ<t), (10)

P (ỹt|H̃, X, Ỹ<t) = Softmax(W5h̃t), (11)

where W5 is a trainable parameter to map the hid-
den dimension to the vocabulary size. For each
symbol ã ∈ {H̃, h̃t, Ỹ<t, ỹt}, ã is either a or ā.

3.6 Training objective
During the training phase, we use the teacher forc-
ing to train the models in the two stages. The
models in two stages are trained independently.

Narrative generation In the narrative generation
stage, we train the model with the cross-entropy
loss on ground-truth narratives and narratives with
masked gender words, which can be defined as:

Lce = −
m∑

t=1

logP (yt|H, X, Y<t), (12)

L̄ce = −
m∑

t=1

logP (ȳt|H̄, X, Ȳ<t). (13)

In total, the narrative generation stage contains
three losses, which can be formulated as:

L1 = Lcon + Lce + L̄ce. (14)

Answer inference The answer inference model
is trained with a cross-entropy loss:

L2 = −
m∑

t=1

logP (yt|H, X, Y<t). (15)
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4 Experiment Setup

To demonstrate the effectiveness and generaliza-
tion ability of GAMA, we conduct extensive ex-
periments across two vision-language tasks (image
captioning and image search) and two benchmarks
for measuring gender bias (VisoGender (Hall et al.,
2023) and VL-Bias (Zhang et al., 2022)).4

4.1 Datasets

The statistics of the datasets are listed in Table 1.

Gender label Following previous work (Hen-
dricks et al., 2018; Wang et al., 2021; Hirota et al.,
2023), we utilize ground-truth captions to label the
gender attributes of images. Specifically, an im-
age will be labeled as “male (female)” if at least
one of its captions contains male (female) gender
words and no captions contain female (male) words.
Otherwise, it will be labeled as “neutral”.

Narrative generation The Localized Narratives
dataset (Voigtlaender et al., 2023) for Open Images
(Kuznetsova et al., 2020) is utilized to train the
narrative generation model.5

Image captioning We experiment on MSCOCO
captions (Chen et al., 2015). Following Hirota et al.
(2023), we use the original MSCOCO training set
for training, a subset of the MSCOCO validation set
from Zhao et al. (2021) for test,6 and the remaining
images for validation. Each image is associated
with five human-annotated captions. Notably, no
images in the test set are labeled as “neutral”.

Image search Our evaluation for image search
involves the MSCOCO (Chen et al., 2015) and
Flickr30K (Young et al., 2014) datasets. Follow-
ing Wang et al. (2021), we use the Karpathy split
(Karpathy and Fei-Fei, 2015) for training and vali-
dation. As test sets in the Karpathy split are gender-
unbalanced, we randomly select the same number
of images with their gender-neutral queries 7 under
“male”, “female” and “neutral” labels for test.

4Due to space constraints, experiments on VL-Bias can be
found in Appendix D.1.

5We ascertain the absence of any overlap between Local-
ized Narratives and other test sets through the cosine similarity
among image tensors with a threshold of 0.9. See Appendix
D.2 for further studies on the training set size of Localized
Narratives.

6Access the test split at https://princetonvisualai.
github.io/imagecaptioning-bias/.

7The queries are available at https://github.com/eri
c-ai-lab/Mitigate-Gender-Bias-in-Image-Search.

Stage Task Dataset Train Dev Test

1
Narrative

Generation
Localized
Narratives

507,444 41,691 126,020

2

Image
Captioning

MSCOCO 82,783 29,724 10,780

Image
Search

MSCOCO 113,287 5,000 1,500
Flickr30K 29,000 1,000 300

VisoGender / / 690

Table 1: The statistics of datasets. We show the counts
of images within each split of the datasets.

VisoGender VisoGender (Hall et al., 2023)
benchmarks occupation-related gender bias in
VLMs. VLMs are required to align images with
correct gender pronouns in a resolution task and re-
trieve the top-K images for a gender-neutral caption
of a given occupation in a retrieval task.

4.2 Baselines

Image captioning GAMA is compared with the
following methods for image captioning: 1) Equal-
izer (Hendricks et al., 2018), which focuses on the
“person” segmentation to make gender-specific pre-
dictions; 2) GAICes (Tang et al., 2021), which en-
courages capturing gender visual evidence through
self-guided visual attention; and 3) LIBRA (Hirota
et al., 2023), which leverages state-of-the-art cap-
tioning models to generate high-quality captions
and debiases through an additional editing model.

Image search We evaluate GAMA against the
following methods for image search: 1) SCAN-FS
(Wang et al., 2021), which applies a fair sampling
method to the representative image search baseline
SCAN (Lee et al., 2018); 2) CLIP-clip (Wang et al.,
2021), which introduces a feature pruning algo-
rithm to the features generated by the PVLM CLIP
(Radford et al., 2021); and 3) FairVLP (Zhang
et al., 2022), which trains the PVLM ALBEF (Li
et al., 2021) with counterfactual samples to obtain
debiased representations.

VisoGender Following Hall et al. (2023), we
evaluate GAMA against state-of-the-art pre-trained
vision-language encoders (CLIP (Radford et al.,
2021), OpenCLIP (Cherti et al., 2023) trained on
LAION 2B and 400M, SLIP (Mu et al., 2022),
DeCLIP (Li et al., 2022b) and FILIP (Yao et al.,
2022)) and pre-trained captioning models (BLIP-2
(Li et al., 2023a) and GIT (Wang et al., 2022)).
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Model Gender Bias Metrics ↓ Image Captioning Metrics ↑
LIC Error BiasAmp BLEU-4 CIDEr METEOR SPICE CLIPScore

Equalizer † 0.7 8.1 -0.50 27.2 79.8 24.1 16.8 69.9
GAICes

† 1.4 5.9 -0.70 32.6 94.5 27.4 18.3 72.7

NIC (Vinyals et al., 2015)

+LIBRA ♭

-0.3 5.7 -1.47 24.6 72.0 24.2 16.5 71.7
SAT (Xu et al., 2015) -1.4 3.9 -0.48 34.6 95.9 27.8 20.0 73.6

FC (Rennie et al., 2017) -0.2 4.3 -1.11 32.8 95.9 27.3 19.7 72.9
Att2in (Rennie et al., 2017) -0.3 4.6 -3.39 35.9 101.7 28.5 20.6 73.8

UpDn (Anderson et al., 2018) 1.5 4.5 -2.23 37.7 110.1 29.6 22.0 74.6
Transformer (Vaswani et al., 2017) 2.3 5.0 -0.26 33.9 98.7 28.6 20.9 75.7

OSCAR (Li et al., 2020) 0.3 4.6 -1.95 37.2 113.1 31.1 23.2 75.7
ClipCap (Mokady et al., 2021) -1.5 4.5 -0.57 33.8 100.6 29.3 21.4 76.0

GRIT (Nguyen et al., 2022) 0.7 4.1 1.57 40.5 116.8 30.6 22.6 75.9

GAMA -1.1 3.4 -3.40 38.2 115.1 31.0 22.7 75.4

Table 2: Results of image captioning. The best results are highlighted in green, and the second-best are in blue. For
gender bias metrics, lower is better. For image captioning metrics, higher is better. Gender bias metrics are scaled by
100. †: the results are reproduced with official implementation; ♭: the results are retrieved from Hirota et al. (2023).

Dataset Model Gender Bias Metrics Image Search Metrics ↑
Bias@1 Bias@5 Bias@10 Recall@1 Recall@5 Recall@10

MSCOCO

SCAN-FS -0.1043 -0.1716 -0.2392 25.4 54.8 66.1
CLIP-clip -0.1173 -0.1940 -0.2528 28.9 57.2 68.5
FairVLP 0.0334 0.1293 0.1965 58.7 80.2 90.4
GAMA 0.0273 0.1281 0.1995 63.7 83.6 93.5

Flickr30K

SCAN-FS -0.1281 -0.1857 -0.2469 36.4 67.6 78.3
CLIP-clip -0.1050 -0.1603 -0.2307 64.0 86.5 91.9
FairVLP 0.0514 0.1012 0.1731 77.4 95.2 97.1
GAMA 0.0449 0.0941 0.1676 83.1 95.8 97.9

Table 3: Results of image search. For gender bias
metrics, closer to 0 is better. Baselines are reproduced
with official implementation. We report the average
across 3 runs. Note that we evaluate models with gender-
balanced test sets instead of the Karpathy test sets uti-
lized by Wang et al. (2021) and Zhang et al. (2022).

4.3 Metrics
We present metrics for evaluation, covering task
performance, gender bias, and object hallucination.
Calculation details are presented in Appendix B.

Task performance metrics are used to evaluate
model performance on specific tasks. For image
captioning, we use established referenced-based
metrics BLEU-4 (Papineni et al., 2002), CIDEr
(Vedantam et al., 2015), METEOR (Denkowski and
Lavie, 2014) and SPICE (Anderson et al., 2016) as
well as a reference-free metric CLIPScore (Hessel
et al., 2021). For image search, we employ Re-
call@K to calculate the ratio of correct images in
the top-K retrieved images.

Gender bias metrics are employed to measure
the model performance on gender bias mitigation.
For image captioning, we use LIC (Hirota et al.,
2022b) to measure gender bias in the context of
gender words, Error (Hendricks et al., 2018) to
assess the gender misclassification ratio of gener-
ated captions, and BiasAmp (Zhao et al., 2017) to
quantify bias amplification based on word-gender
co-occurrence. For image search, we follow Wang
et al. (2021) and adopt Bias@K to measure gen-

der bias among the top-K images. For VisoGender,
we follow the setting in Hall et al. (2023). The
resolution accuracy gap (∆RA) is used to measure
resolution bias, while Bias@K (Wang et al., 2021),
Skew@K (Geyik et al., 2019) and NDKL (Geyik
et al., 2019) are used to measure retrieval bias.

Object hallucination metrics are utilized to
probe the connection between object hallucination
and gender bias. CHAIRs and CHAIRi (Rohrbach
et al., 2018) are used to evaluate incorrect object
generation at the sentence and object levels, respec-
tively. Rohrbach et al. (2018) used a synonym list
(Lu et al., 2018) to map words to MSCOCO objects.
We refine it with hierarchical object relationships.8

4.4 Implementation details

We use flan-t5-base (Chung et al., 2022) as
the backbone. Our image encoder is vit-base-
patch16-384 (Dosovitskiy et al., 2020), and its pa-
rameters are frozen during training. For narrative
generation, we set the temperature τ = 0.1 and
conduct further studies in Appendix D.2. Exper-
iments on VisoGender are conducted on GAMA
search models under a zero-shot setting. More de-
tails are presented in Appendix C.

5 Results and Analysis

In this section, we seek to answer the following
research questions: RQ1: Does GAMA perform
well across different vision-language tasks in task
performance metrics and gender bias metrics? (Sec-
tion 5.1) RQ2: Do our gender obfuscation module
and two-stage framework help GAMA think before
acting? (Section 5.2) RQ3: Are object halluci-
nation and gender bias closely related? (Section

8Details can be found in Appendix B.2.
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5.2) RQ4: Can GAMA be generalized to special-
ized datasets for gender bias measurement under a
zero-shot setting? (Section 5.3)

5.1 Overall results

We conduct experiments on GAMA and baselines.
Results on image captioning and image search are
shown in Table 2 and Table 3, respectively.

To begin with, GAMA outperforms or closely
aligns with the baselines in both two tasks. It is
noteworthy that most of these baselines are tai-
lored to a specific task. In contrast, GAMA is a
task-agnostic method and can be easily applied to
different vision-language tasks.

Then we compare GAMA with each baseline
separately. First, GAMA comfortably outperforms
Equalizer and GAICes. As Equalizer forces the
model to focus on persons in images, it loses nec-
essary information to generate the correct context
of gender words. Similarly, GAICes is designed
to improve gender classification accuracy with ad-
ditional gender evide nce. Therefore, these two
baselines prove less effective.

Second, LIBRA achieves noticeable results with
different captioning models. LIBRA considers gen-
der bias manifested as gender misclassification as
well as biased context. However, there are some
problems. 1) LIBRA is limited by the performance
of captioning models, as it is designed to revise
their outputs. 2) LIBRA is designed to edit biased
captions after a captioning model, but it is trained
with synthesized data instead of actual model out-
puts, potentially causing error propagation. Con-
sequently, the performance of LIBRA depends on
the specific captioning model in use, rendering its
results on gender bias metrics less stable.

Third, GAMA also performs better than SCAN-
FS, CLIP-clip and FairVLP in image search. We
observe that SCAN-FS and CLIP-clip exhibit over-
correction, leading to the underrepresentation of
males. These baselines tackle gender bias mainly
by removing biased data or features. Given the
diverse sources of bias, it cannot be effectively
mitigated by merely processing data or debiasing
pre-training features.

Finally, we compare models on task performance
and gender bias mitigation ability in Figure 3. Re-
sults show that GAMA strikes a good balance be-
tween task performance and gender bias mitigation.

Figure 3: Comparison on task performance and gen-
der bias mitigation ability. We normalize the metrics
separately and sum the normalized gender bias metrics
and image captioning metrics, respectively.

Figure 4: Heatmap visualization of the co-occurrence
frequency between gender attributes and certain
words. We respectively select five words highly co-
occurring with females and males in the training set. We
show the frequency of co-occurrence between gender
attributes and words in the model predictions. Darker
colors indicate higher frequencies.

5.2 Ablation study

To further explain the results, we carry out ablation
studies on GAMA as well as explore the connection
between object hallucination and gender bias in
image captioning. Table 4 shows the results. We
summarize the main observations as follows.

The gender obfuscation module mitigates gen-
der bias in the context. First, this module effec-
tively obfuscates gender-related information during
narrative generation, leading to a reduction in the
number of narratives with gender words. Next,
the absence of this module is observed to cause
an increase in the LIC score, indicating amplified
gender bias in the generated context. Additionally,
the BiasAmp score shows an increase. We spec-
ulate it is because GAMA without this module is
exposed to direct gender information, leading to
the generation of more words closely related to
gender attributes. The rise in HRg

C@10 and Figure
4 manifest that GAMA without this module halluci-
nates more objects that highly co-occur with gender
words in the training set, thus affirming our hypoth-
esis. Lastly, GAMA without generated narratives
also achieves competitive results against previous
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Model Gender Bias Metrics ↓ Gender-related Statistics ↓ Object Hallucination Metrics ↓ Co-occurrence Statistics ↓
LIC Error BiasAmp #Gender CHAIRs CHAIRi HRg

C@10 HRo
C@10

GAMA -1.1 3.4 -3.40 55.61 10.94 6.02 38.15 50.30

w/o GO ♦ 0.5 3.1 -1.26 62.49 12.81 7.36 41.52 50.09
w/o narrative ⋆ -0.6 4.1 -2.87 / 13.02 7.84 41.37 51.94
single-stage ♣ -0.9 3.6 -2.13 / 12.40 7.02 39.91 51.76

Table 4: Results of ablation studies. #Gender denotes the proportion of generated narratives with gender words in
the test set. Note that no images are labeled as “neutral” in the test set. CHAIRs and CHAIRi are calculated based
on our refined synonym list. HRo

C@10 (Li et al., 2023b) and HRg
C@10 are used to quantify whether the model is

prone to hallucinate objects that frequently co-occur with ground-truth objects and gender attributes, respectively,
which are detailed in Appendix B.3. ♦: the gender obfuscation module (GO) is removed from narrative generation;
⋆: the model is trained to generate gender-obfuscated captions instead of gender-obfuscated narratives in the first
stage; ♣: the narrative generation stage is removed, and GO is adopted in the answer inference stage. Note that the
single-stage framework does not incorporate narratives as input.

Model
Resolution Retrieval

Accuracy ↑ ∆RA Bias@5 Bias@10 MaxSkew@5 ↓ MaxSkew@10 ↓ NDKL ↓
OO OP Mean σ Mean σ Mean σ Mean σ Mean σ

CLIP 0.75 -0.14 -0.27 0.11 0.38 0.16 0.22 0.27 0.15 0.18 0.13 0.19 0.07
OpenCLIP2B 0.78 -0.07 -0.37 0.10 0.44 0.08 0.23 0.29 0.17 0.18 0.11 0.18 0.07

OpenCLIP400M 0.74 -0.27 -0.29 0.17 0.47 0.11 0.22 0.33 0.18 0.16 0.13 0.19 0.07
SLIP 0.60 0.14 0.14 0.06 0.52 0.00 0.24 0.32 0.21 0.17 0.12 0.19 0.09

DeCLIP 0.70 0.06 -0.17 0.11 0.40 0.15 0.26 0.28 0.16 0.20 0.14 0.17 0.07
FILIP 0.45 0.06 0.36 0.01 0.43 0.03 0.26 0.29 0.16 0.17 0.13 0.18 0.07

BLIP-2 0.84 -0.09 0.07 / / / / / / / / / /
GIT 0.84 -0.07 -0.27 / / / / / / / / / /

GAMA Flickr30K 0.81 0.06 0.09 0.04 0.42 0.01 0.26 0.26 0.15 0.17 0.12 0.18 0.07
MSCOCO 0.82 0.04 -0.09 0.01 0.40 -0.04 0.24 0.26 0.14 0.18 0.11 0.17 0.08

Table 5: Results of zero-shot experiments on VisoGender. The best results are highlighted in green, and the
second-best are in blue. The results of GAMA are obtained by the search models trained on MSCOCO and
Flickr30K, respectively. Other results are retrieved from Hall et al. (2023). Occupation-object (OO) and occupation-
participant (OP) cases denote the single-person and two-person resolution tasks, respectively. For ∆RA and Bias@K,
closer to 0 is better. We report mean and standard deviation (σ) for the retrieval task across all occupations.

debiasing methods. The results further demonstrate
the effectiveness of the gender obfuscation module.

The two-stage framework can facilitate debiased
answers. We note an increase in the Error score
in the single-stage framework. The narrative gener-
ation stage is designed to prompt GAMA to grasp
the overall image before giving ultimate answers.
The rise in BiasAmp and HRo

C@10 indicates that
the single-stage framework relies more on word
co-occurrence for answer generation. Hence, the
two-stage framework serves as an effective method
to prevent GAMA from prematurely focusing on lo-
calized features and hallucinating ignored objects.

Object hallucination and gender bias exhibit a
close correlation. As shown in Table 4, mitigat-
ing gender bias leads to a decrease in object hallu-
cination. Object hallucination mainly results from
the frequent occurrence of certain objects (includ-
ing persons) and the co-occurrence between objects
in the training set (Li et al., 2023b). Similarly, gen-
der bias is manifested as the overrepresentation of a

certain gender or the high-frequency co-occurrence
between gender attributes and objects in datasets.
In essence, gender bias can be thought of as a form
of object hallucination in VLMs. Consequently,
efforts to mitigate gender bias in VLMs result in a
simultaneous reduction of object hallucination.

5.3 Experiments on generalization ability

The datasets employed in the above experiments
are not specifically constructed to detect gender
bias in VLMs, which may contain gender bias in
annotations, e.g., underrepresentation of women
(Zhao et al., 2017; Harrison et al., 2023). Con-
sequently, we turn to VisoGender for further ex-
periments. As shown in Table 5, GAMA exhibits
good overall performance across bias metrics for
both tasks, further demonstrating its generalization
ability and effectiveness in gender bias mitigation.

6 Conclusion

In this paper, we present GAMA, a two-stage task-
agnostic generation framework to mitigate gender
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bias towards vision-language tasks. GAMA is en-
couraged to gain a comprehensive understanding of
images during narrative generation and to rethink
gender attributes and answers during answer infer-
ence. Experimental results demonstrate GAMA’s
superiority in both task performance and gender
bias metrics over previous methods. Furthermore,
we conduct ablation studies and analyze the close
connection between object hallucination and gen-
der bias. Finally, we evaluate GAMA under a zero-
shot setting to showcase its generalization ability.
We hope that GAMA can contribute to the future
exploration of fairness in VLMs.
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Limitations

Following previous research (Wang et al., 2021; Hi-
rota et al., 2023), we utilize a gender word list for
pre-processing. Although prior studies have cov-
ered most gender words, some may still be omitted.
One potential solution is to train a model to obfus-
cate gender information in a sentence via synthe-
sized data.

Another consideration is the narrative generation
model. Despite its generalization ability to various
vision-language tasks and datasets, the model re-
quires additional computing resources and datasets
for training. Due to the boom in large VLMs
(LVLMs), we will investigate the feasibility of gen-
erating gender-obfuscated narratives using these
models.

Theoretically, we can replace the model for
answer inference with any state-of-the-art task-
specific generative model, which will explored in
our future work.

Ethics Statement

In our paper, we focus on mitigating gender bias
towards vision-language tasks. Due to the inherent
challenges associated with human analysis, includ-
ing substantial manual effort and time investment,
we leverage existing datasets and benchmarks for
gender bias measurement. While quantitative met-
rics provide valuable insights, we acknowledge
their potential limitations in capturing nuanced gen-
der bias. Additionally, current datasets and bench-

marks only consider binary gender, which over-
simplifies the intricate and diverse nature of gen-
der identity. Therefore, GAMA remains to be im-
proved. We hope that the advancements in GAMA,
as presented in this paper, will serve as a catalyst
for inspiring further valuable research in gender
bias mitigation towards vision-language tasks.
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A List of Gender Words

We use the gender words from Hirota et al. (2023),
which are listed in Table 6.

B Metrics

B.1 Gender bias metrics

LIC As for LIC, we follow the method proposed
by Hirota et al. (2022b).

First, we pre-process captions by masking gen-
der words. To measure gender bias amplification in
image captioning models, we need to quantify the
difference between bias in the generated captions
set D̂ and bias in the ground-truth captions in the
training data D. Then we train two gender classi-
fiers f and f̂ on the two masked caption sets D and
D̂, respectively. Finally, we compare the accuracy
of two gender classifiers as follows:

LICD =
1

|D|
∑

(y,a)∈D
sa(y)1[f(y) = a], (16)

LICM =
1

|D̂|
∑

(ŷ,a)∈D̂
ŝa(ŷ)1[f̂(ŷ) = a], (17)

LIC = LICM − LICD, (18)

where y and ŷ are the ground-truth caption and
generated caption, respectively. We denote a as the
gender label of the caption. sa(·) and ŝa(·) are the
probabilities that f and f̂ classify the gender of the
caption as a, respectively.

The higher accuracy of the classifier trained on
the masked captions indicates that the context con-
tains more information related to gender. LIC > 0
indicates that the model amplifies gender bias with
respect to the training data, and mitigates it other-
wise.

Following Hirota et al. (2023), we construct the
classifiers with bert-base-uncased (Devlin et al.,
2019) as the backbone and two fully connected
layers with Leaky ReLU activation on top. We
finetune the model for 5 epochs with a learning rate
of 1× 10−5.

Error Error represents the ratio of gender mis-
classification in the generated captions. Following
Hendricks et al. (2018) and Hirota et al. (2023), we
utilize the gender word list to identify the gender
label of the generated captions as detailed in Sec-
tion 4.1. And “neutral” labels are not considered
as errors.

Gender Gender Words

Female

woman, female, lady, mother, girl, aunt,
wife, actress, princess, waitress, sister,
queen, chairwoman, policewoman, girlfriend,
pregnant, daughter, she, her, hers, herself

Male

man, male, father, gentleman, boy, uncle,
husband, actor, prince, waiter, son, brother,
guy, emperor, dude, cowboy, boyfriend,
chairman, policeman, he, his, him, himself

Table 6: Gender word list.

BiasAmp BiasAmp is proposed to quantify the
bias amplification of the model. Following Zhao
et al. (2017) and Hirota et al. (2023), we use the
top 1, 000 common words in captions and filter the
words that are not strongly associated with humans,
leaving a set L of high-frequency words.9

We calculate the bias of the word l ∈ L on the
gender a ∈ A = {m, f} as follows:

ba,l =
ca,l∑
a∈A ca,l

, (19)

b̂a,l =
ĉa,l∑
a∈A ĉa,l

, (20)

where ca,l and ĉa,l are the number of co-
occurrences of a and l in the training data and
in the model predictions, respectively. Then bias
amplification is defined as:

BiasAmp =
1

L
∑

a∈A,l∈L
(b̂a,l − ba,l)1[ba,l >

1

|A| ].

(21)
BiasAmp > 0 indicates that gender bias is am-

plified by the model, and otherwise mitigated.

Bias@K Wang et al. (2021) proposed Bias@K to
measure gender bias in image search by comparing
the proportions of masculine and feminine images
in search results. Let q denote the search query
and RK

q denote the top-K retrieved image set. The
gender bias of RK

q is defined as:

Bias@K(q) =

{
0, if Nm +Nf = 0
Nm−Nf

Nm+Nf
, otherwise

,

(22)
where Nm and Nf denote the number of images la-
beled “male” and “female” in RK

q , respectively.
Then Bias@K is calculated as the average of
Bias@K(q) over all queries.

9The word list in available at https://github.com/ucl
anlp/reducingbias.
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A positive Bias@K indicates a higher frequency
of retrieving images featuring males compared to
females. This metric is most suitable when the
candidate images are gender-balanced, as it does
not consider the distribution of candidates.

MaxSkew@K Hall et al. (2023) measured the
difference between the desired proportion of gender
attributes in RK

q and the actual proportion. Let
A = {m, f} denote the gender attribute set. The
skew of RK

q for the gender attribute a ∈ A is
defined as:

Skewa@K(q) = ln
PRK

q ,q,a

Pd,q,a
, (23)

where Pd,q,a and PRK
q ,q,a are desired proportion

of gender attributes in the test set and the actual
proportion in RK

q , respectively.
Then we calculate the maximum value of

Skew@K among all gender attributes for the re-
trieved images:

MaxSkew@K(q) = max
a∈A

Skewa@K(q), (24)

Finally, MaxSkew@K is calculated as the aver-
age of MaxSkew@K(q) over all queries.

NDKL Geyik et al. (2019) and Hall et al. (2023)
measured the distance of the prediction distribution
from a fair distribution over all candidate results.
Let Rq denote the candidate set of the query q. The
NDKL of Rq is defined as:

NDKL(q) =

1

Z

|Rq |∑

K=1

1

log2 (K + 1)
dKL(DRK

q
∥D),

(25)

where Z =
∑|Rq |

K=1
1

log2 (K+1) is a normalizing fac-
tor, and dKL(·) denotes the KL-divergence. DRK

q

and D denote the actual distribution of gender at-
tributes over the top-K retrieved images and the
desired distribution, respectively.

Resolution bias Hall et al. (2023) defined resolu-
tion accuracy (RA) as the proportion of correctly
resolved pronouns. Let O denote the occupation
set. We calculate the resolution accuracy of the
gender attribute a on the occupation o ∈ O as:

RAa(o) =
n̂a,o

na,o
, (26)

where na,o denotes the total number of pronouns
of the gender attribute a in occupation o, and n̂a,o

denotes the number of correctly resolved pronouns
of a in o.

Then the resolution bias on the occupation o is
defined as the gender resolution accuracy gap:

∆RA(o) = RAm(o)−RAf (o). (27)

Finally, we calculate the resolution bias ∆RA

as the average of ∆RA(o) over all occupations.
∆RA > 0 indicates that the model performs better
in resolving males within occupations, and vice
versa.

B.2 Object Hallucination Metrics
Definition CHAIR (Rohrbach et al., 2018) is a
popular metric for object hallucination measure-
ment with two variants, CHAIRi and CHAIRs.
CHAIRi and CHAIRs evaluate object hallucina-
tion at the object and sentence levels, respectively.
Let NH

o denote the number of hallucinated objects,
No denote the total number of mentioned objects,
NH

c denote the number of captions with halluci-
nated objects, and Nc denote the total number of
captions. CHAIRi and CHAIRs are defined as:

CHAIRi =
NH

o

No
, (28)

CHAIRs =
NH

c

Nc
. (29)

CHAIRi describes the proportion of hallucinated
objects among all generated objects. CHAIRs de-
scribes the proportion of generated captions with
hallucinated objects.

Details Rohrbach et al. (2018) utilized a syn-
onym list (Lu et al., 2018) to map words to
MSCOCO objects (e.g., “player” to “person”).
However, it is notable that the list is coarse-grained.
For instance, it considers terms like “woman” and
“man” as well as “purse” and “briefcase” as syn-
onyms. Although “woman” and “man” both fall
under the“person” class, and “purse” and “brief-
case” belong to the category of bags, it is crucial
to recognize that they represent distinct objects.
Therefore, we refine the list with hierarchical ob-
ject relationships among objects based on the fine-
grained classes defined in NoCaps (Agrawal et al.,
2019). If a word in a sub-category (e.g., “woman”)
is predicted in its super-category (e.g., “person”),
we do not consider it as a hallucinated object. Con-
versely, if a word in a category (e.g., “woman”) is
predicted in its sibling category (e.g., “man”), we
consider it as a hallucinated object.
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B.3 Hit Ratio
Li et al. (2023b) utilized the hit ratio (HRo

C) to
measure the object co-occurrence in object hallu-
cination. They demonstrated that VLMs mostly
hallucinate objects that frequently co-occur with
ground-truth objects in the image.

Let Hi denote the set of hallucinated objects in
the i-th image, and Co denote the set of the top-
K frequently co-occurring objects with ô in the
training set. The top-K hit ratio of the probing
object ô is defined as:

HRo
C@K(ô) =

1

Mô

Mô∑

i=1

|Hi ∩ Cô|
|Hi|

, (30)

where Mô is the total number of images containing
ô.

Similarly, we define the top-K hit ratio of the
probing gender a as:

HRg
C@K(a) =

1

Ma

Ma∑

i=1

|Hi ∩ Ca|
|Hi|

, (31)

where Ma is the total number of images with the
gender label a, and Ca denotes the set of the top-K
frequently co-occurring objects with the gender a.

C Implementation Details

We select the best models based on the loss on the
validation set for all tasks. Following Hendricks
et al. (2018) and Tang et al. (2021), we set the beam
size as 5 during inference. Table 7 shows our hyper-
parameters for training in different tasks. Table 8
lists the input and output formats of GAMA.

We implement GAMA with PyTorch (Paszke
et al., 2019) and Huggingface Transformers (Wolf
et al., 2020). We train the models with a single
NVIDIA Ge-Force RTX 4090 GPU. More imple-
mentation details can be found in our code.

Image search With a probability of 50%, we ran-
domly sample the caption of another training image
to create a negative pair for training. The model
predicts answers with “yes” or “no” as shown in Ta-
ble 8. We take the token probability of the decoder
as the match score.

VisoGender In VisoGender, each occupation ap-
pears with two caption templates: a person with
a possessive pronoun to an object (e.g., “the doc-
tor and his/her stethoscope”) and a person with
a possessive pronoun to a participant (e.g., “the

doctor and his/her patient”). We evaluate the per-
formance of the trained GAMA search models on
MSCOCO and Flickr30K without additional train-
ing, respectively. Our experiments on VisoGen-
der follow the original setting proposed by Hall
et al. (2023). In the resolution task, we provide
the model with queries containing “his” and “her”,
respectively. We determine the answers based on
the match scores. In the retrieval task, we use neu-
tral queries incorporating the pronoun “their” and
provide the model with candidate images featuring
correct occupations with balanced gender distribu-
tions.

D Additional Experiments

D.1 Experiments on VL-Bias

We conduct experiments on VL-Bias (Zhang et al.,
2022) under a zero-shot setting.

Dataset VL-Bias serves as a benchmark for mea-
suring gender bias in VLMs, encompassing 52 ac-
tivities and 13 occupations related to humans.10

The dataset includes images sourced from the In-
ternet, as well as existing image datasets such
as MSCOCO (Chen et al., 2015) and Flickr30K
(Young et al., 2014). The captions are in the format
of “The {gender} is {target}”, where “target” repre-
sents an activity (e.g., “shopping”) or an occupation
(e.g., “engineer”). In total, VL-Bias comprises 24K
image-text pairs, including 13K pairs for the 52
activities and 11K for the 13 occupations.

Baselines Following Zhang et al. (2022), we eval-
uate GAMA against three common and effective de-
biasing methods: 1) Gender Swapping (GS) (Zhao
et al., 2018), which swaps gender words in the in-
put text to mitigate the effect of gender attributes,
and is adapted to vision-language tasks based on
CycleGAN (Zhu et al., 2017); 2) Dropout Regu-
larization (DR) (Webster et al., 2020), which is
designed to prevent model from overfitting to gen-
der attributes by increasing the dropout rate; and
3) FairVLP (Zhang et al., 2022), which trains the
PVLM ALBEF (Li et al., 2021) with counterfactual
samples to obtain debiased representations.

Metrics Zhang et al. (2022) proposed the vision-
language bias for VL-Bias. Let t denote a target
word, and a denote the gender attribute. The vision-
language bias on t towards a on an image-text pair

10The dataset is available at https://github.com/VL-Bi
as/VL-Bias.
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Hyper-parameters Narrative Generation Image Captioning Image Search

MSCOCO Flickr30K

Hidden Dimension d 768 768 768 768
Maximum Epochs 15 10 5 5

Learning Rate 4× 10−5 1× 10−4 2× 10−5 3× 10−5

Weight Decay 0.01 0.01 0.01 0.01
Batch Size 20 24 32 32

Maximum Input Sequence Length 128 256 256 256
Maximum Output Sequence Length 128 64 3 3

Table 7: Hyper-parameter settings of GAMA.

Stage Task Input Sequence Target Sequence

1 Narrative Generation Task: What can you see in this image? Please describe it in detail. Answer: [NARRATIVE]

2
Image Captioning Context: [NARRATIVE]. Task: Generate a short caption of the image. Answer: [CAPTION]

Image Search Context: [NARRATIVE]. Query: [CAPTION]. Question: Do the image and the query match? Answer: Yes/No

Table 8: The input and output formats of GAMA. For image search, we take the token probability of the decoder
as the match score. For the second stage, model-generated narratives are utilized instead of relying on ground-truth
narratives from datasets.

s can be formulated as:

Bs(t, a) =
PT (t|sc)− PT (t|s)
PA(a|sc)− PA(a|s)

, (32)

where sc is the counterfactual image-text pair of
s. PT (t|s) denotes the probability that the model
predicts the masked target word as t, and PA(a|s)
denotes the probability that the model predicts the
masked gender word as a.

Let A = {m, f} denote the gender attribute set,
and St denote all image-text pairs with the target t.
The gender bias over the target t is defined as:

BV L(t) =
1

|St|
∑

s∈St

Bs(t,m)−Bs(t, f). (33)

A positive BV L(t) indicates that the target t is
biased towards males, and vice versa. The gender
bias of the dataset is calculated as the average of
BV L(t) over all targets.

Implementation details As the baseline models
are pre-trained on MSCOCO (Chen et al., 2015),
we utilize the GAMA search model trained on
MSCOCO for evaluation. We take the token prob-
ability of the decoder as the probability for a tar-
get or a gender attribute. Counterfactual texts are
constructed by reversing the gender words, while
counterfactual images are generated with an adver-
sarial attack based on the official implementation
of Zhang et al. (2022).

Experimental results As shown in Table 9,
GAMA obtains remarkable debiasing performance

Model Activity 13K Occupation 11K

GS 11.21 12.47
DR 11.17 13.52

FairVLP 6.97 7.74

GAMA 5.96 6.83

Table 9: Results on VL-Bias. The best results are
highlighted in green. For the results, closer to 0 is
better. The baseline results are retrieved from Zhang
et al. (2022).

against baselines. The results underscore its gen-
eralization ability as well as its effectiveness in
gender bias mitigation.

D.2 Further study

In this section, we analyze the impact of the tem-
perature hyper-parameter, the data size of Local-
ized Narratives (Voigtlaender et al., 2023), and the
frozen parameters.

Temperature We show the results in Table 10.
The contrastive loss with a larger temperature is
less sensitive to the hard negative samples as dis-
cussed in prior work (Wang and Liu, 2021). There-
fore, it is hard for GAMA with a large temper-
ature to distinguish gender-related features from
gender-masked features, leading to increased LIC
and BiasAmp scores.

Data size Although we have demonstrated the
effectiveness of the model without narrative gener-
ation in Section 5.2, we wonder about the influence
of the data size on the results. Therefore, we con-
duct an ablation study on the training set size of

789



Temperature Gender Bias Metrics↓ Image Captioning Metrics ↑
LIC Error BiasAmp BLEU-4 CIDEr METEOR SPICE CLIPScore

0.01 -1.4 3.5 -3.42 37.9 115.2 30.9 22.5 75.5
0.1 -1.1 3.4 -3.40 38.2 115.1 31.0 22.7 75.4
1 -0.7 3.3 -3.28 37.7 114.6 30.6 22.4 75.6

Table 10: Results of the ablation study on the temperature hyper-parameter.

Localized Narratives (Voigtlaender et al., 2023) for
narrative generation.

As our objective is to alleviate gender bias, we
randomly select the images categorized under the
“Person” class for experiments. Results are illus-
trated in Table 11 and Table 12.

We observe that the data size seems to have lit-
tle impact on GAMA’s task performance and its
gender bias mitigation ability in image captioning.
However, the data size affects the generalization
ability of GAMA on VisoGender. We consider
that it is because a large training set enhances the
zero-shot generalization ability of GAMA in nar-
rative generation, thereby ensuring robust model
performance during answer inference.

Parameters To minimize the cost of training the
model, we investigate the feasibility of reducing
additional training. We experiment with freezing a
portion of the parameters in GAMA, and the results
are summarized in Table 13 below.

Freezing the T5 encoder in GAMA leads to re-
sults that are only slightly inferior to those of un-
frozen GAMA, which is an encouraging finding.
However, the outcomes of freezing both the flan-
T5 encoder and decoder are less promising. We
think it is because the fusion of language features
and vision features creates a new feature space,
which is distinct from the original features learned
by T5. Consequently, the frozen decoder cannot be
effectively adapted to this new feature space.
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Data Size Gender Bias Metrics ↓ Image Captioning Metrics ↑
LIC Error BiasAmp BLEU-4 CIDEr METEOR SPICE CLIPScore

100% -1.1 3.4 -3.40 38.2 115.1 31.0 22.7 75.4

100% Person -1.0 3.2 -3.35 38.0 114.5 30.9 22.5 75.3
30% Person -0.8 3.5 -3.02 37.9 113.6 30.6 22.2 75.2

Table 11: Results of the ablation study on the data size in image captioning. “100% Person” and “30% Person”
denote that we randomly construct the training set for narrative generation with 100% and 30% of the images under
the “Person” class, respectively. We report the average across 3 runs.

Data Size
Resolution Retrieval

Accuracy ↑ ∆RA Bias@5 Bias@10 MaxSkew@5 ↓ MaxSkew@10 ↓ NDKL ↓
OO OP Mean σ Mean σ Mean σ Mean σ Mean σ

100% 0.82 0.04 -0.09 0.01 0.40 -0.04 0.24 0.26 0.14 0.18 0.11 0.17 0.08

100% Person 0.81 0.06 0.10 0.07 0.39 0.10 0.23 0.26 0.16 0.19 0.12 0.18 0.08
30% Person 0.76 0.14 0.19 0.11 0.39 0.15 0.26 0.31 0.16 0.21 0.13 0.19 0.09

Table 12: Results of the ablation study on the data size in VisoGender.

Model Gender Bias Metrics ↓ Image Captioning Metrics ↑
LIC Error BiasAmp BLEU-4 CIDEr METEOR SPICE CLIPScore

GAMA -1.1 3.4 -3.40 38.2 115.1 31.0 22.7 75.4

Frozen encoder -1.2 3.4 -3.35 38.0 114.6 30.7 22.2 75.1
Frozen encoder & decoder -0.6 3.7 -2.79 37.1 112.5 29.8 21.6 74.4
w/o GO Frozen encoder 0.4 3.2 -1.12 37.8 114.2 30.3 22.1 74.9

Table 13: Results of partial parameters frozen. We freeze the T5 encoder in GAMA, both the T5 encoder and
decoder in GAMA, and the T5 encoder in GAMA w/o GO, respectively.
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