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Abstract

Language models (LMs) are indispensable
tools for natural language processing tasks,
but their vulnerability to adversarial attacks re-
mains a concern. While current research has
explored adversarial training techniques, their
improvements to defend against word-level at-
tacks have been limited. In this work, we
propose a novel approach called Semantic Ro-
bust Defence (SemRoDe), a Macro Adversarial
Training strategy to enhance the robustness of
LMs. Drawing inspiration from recent stud-
ies in the image domain, we investigate and
later confirm that in a discrete data setting such
as language, adversarial samples generated via
word substitutions do indeed belong to an ad-
versarial domain exhibiting a high Wasserstein
distance from the base domain. Our method
learns a robust representation that bridges these
two domains. We hypothesize that if samples
were not projected into an adversarial domain,
but instead to a domain with minimal shift, it
would improve attack robustness. We align
the domains by incorporating a new distance-
based objective. With this, our model is able
to learn more generalized representations by
aligning the model’s high-level output features
and therefore better handling unseen adver-
sarial samples. This method can be general-
ized across word embeddings, even when they
share minimal overlap at both vocabulary and
word-substitution levels. To evaluate the effec-
tiveness of our approach, we conduct experi-
ments on BERT and RoBERTa models on three
datasets. The results demonstrate promising
state-of-the-art robustness.

1 Introduction

Basic deep learning models are not inherently ro-
bust. This issue has been illustrated in numer-
ous studies pointing to structural problems such
as dataset shift (Moreno-Torres et al., 2012) and
the prevalence of adversarial attacks (Chakraborty
et al., 2018). Particularly in the context of natural

language research, adversarial attacks are gener-
ated by introducing small perturbations either at
the character, word, or sentence level of a textual
input while maintaining the meaning, semantics,
and grammar of the sentence. The development
of robust systems is therefore of paramount impor-
tance for a multitude of reasons. Notably, content
filters in need of detecting offensive language may
be misled into classifying negative content as posi-
tive. Furthermore, in the realm of language model
learning, adversarial attacks can successfully cir-
cumvent content moderation pipelines, prompting
harmful content generation which can severely im-
pact individuals and society.

With the accelerating popularity of LLMs and
applications, there has been an urgency for robust-
ness research.

There is a small, underexplored body of work
that has proposed the merger of an adversarial dis-
tribution with the original distribution to improve
a model’s adversarial robustness. Preliminary and
promising results have emerged when implement-
ing a theoretical solution based on base-adversarial
alignment in the form of domain adaptation in the
image domain (Song et al., 2018; Bouniot et al.,
2021).

Inspired by these findings, we initially expand
on their hypothesis, demonstrating how a domain
adaptation solution may have limitations. However,
we maintain the central idea that aligning the base
and adversarial features can lead to robust results
and explore the validity of this theory in the discrete
language domain.

We further refine this approach by formulating
a solution that aligns more closely with previous
work in adversarial robustness, making it more rele-
vant to the language domain. Through this process,
we demonstrate state-of-the-art performance across
a variety of models and datasets, thereby advancing
the cause of improving adversarial robustness in
the discrete language domain.
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The following points summarize the major con-
tributions of our research:

• We demonstrate that adversarial samples intro-
ducing word substitutions (Yoo and Qi, 2021;
Jin et al., 2019) lead to unwanted distribu-
tions in feature space (Figure 2), resulting in
a high Wasserstein distance between base and
adversarial features (Figure 3). We propose
a solution through a regularizer that reduces
the distance between a base and adversarial
domain, aiding the formulating of a represen-
tation robust to potential attacker projections.

• We explore the function of distance-based reg-
ularizers in aligning the base and adversarial
language domains. The effectiveness of fea-
ture alignment in enhancing robustness is evi-
denced in our distribution-oriented modelling
approach, which shows strong generalization
against various attack algorithms.

• Lastly, our work shows competitive perfor-
mance across multiple datasets and models,
offering preliminary findings on the usage of
diverse distance regularizers to accomplish
distribution alignment. This includes regular-
izers such as Maximum Mean Discrepancy
(MMD), CORrelation ALignment (CORAL),
and Optimal Transport. Our code is publicly
available1.

2 Related Work

Attacks on NLP systems On the front of adver-
sarial attacks, recent work has developed methods
to attack NLP systems. These methods firstly gener-
ate substitution candidates by removing, swapping,
or adding letters/punctuation (Ebrahimi et al., 2018;
Eger and Benz, 2020; Eger et al., 2019; Formento
et al., 2021) or finding word candidates around
the ℓ2 (Sato et al., 2018; Barham and Feizi, 2019)
or convex hull (Dong et al., 2021) of the word
embedding space. These word candidates can be
general word substitutions (Li et al., 2019), syn-
onyms (Jin et al., 2019; Li et al., 2020; Ren et al.,
2019), sememes (Zang et al., 2020), or grammati-
cal inflections (Tan et al., 2020). The substitution
candidate after that is expected to preserve a cer-
tain level of semantic structure, which is often en-
forced with the Levenshtein distance (Gao et al.,

1https://github.com/Aniloid2/SemRoDe-
MacroAdversarialTraining

2018) or through the use of a semantic encoder,
(Cer et al., 2018; Reimers and Gurevych, 2019).
These candidates can then be applied to the base
sentence in a black-box, gray-box, or white-box
setting. The black-box setting uses no information
from the victim’s system. In the gray-box settings,
some information from the model is used, such
as the output logit or label. In the white-box set-
ting, all model information is available, including
weights. In the case of the gray-box setting, such
character or word changes can result in a successful
perturbation when performing convex optimization
over the input by replacing the original letter or
word with the potential change and analyzing the
logit or label. This optimization problem is often
solved using greedy search (Jin et al., 2019), with
genetic algorithms (Alzantot et al., 2018), or parti-
cle swarm optimization (Zang et al., 2020). On the
contrary, white-box attacks leverage gradient and
parameters information from the model to inject
a δ in the embedding space, rather than the input
space.

Defence methods Research into the generation
of adversarial samples can subsequently contribute
to enhancing model robustness through adversar-
ial training, early efforts in adversarial training in
NLP included the adversarial examples back into
training by including the adversarial samples in
the batch (Jin et al., 2019). More recently, these
strategies have been refined (Yoo and Qi, 2021).
Alternatively, it is possible to extend the original
objective by adding an adversarial regularizer, sim-
ilar to how adversarial training is performed in the
image domain (Goodfellow et al., 2014; Miyato
et al., 2016; Madry et al., 2017; Wu et al., 2023).
Building upon this line of work, embedding pertur-
bation methods such as FreeLB (Zhu et al., 2020),
ASCC (Dong et al., 2021), InfoBERT (Wang et al.,
2021), DSRM (Gao et al., 2023) and FreeLB++
(Li et al., 2021), leverage the model’s gradient to
apply a perturbation within the continuous embed-
ding space via projected gradient descent. This
perturbation is constrained by a specified norm,
such as the L2 norm (Sato et al., 2018; Barham
and Feizi, 2019), or maintained within the confines
of a convex hull (Dong et al., 2021). Additionally,
some approaches only induce perturbation when
the loss falls below a predefined threshold (Liu
et al., 2022). These adversarial training schemas
result in a min-max game between the base and
adversarial objectives, forcing the model to learn
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both datasets.
More recently, defense techniques originating

from the off-manifold conjecture in images have
been adapted for the NLP context (Nguyen and
Tuan, 2022). Additionally, a detector (Mosca et al.,
2022) and an encoder (Wang et al., 2019) for adver-
sarial samples have been proposed. On the other
hand, it is also feasible to train an anomaly detector
to identify word substitutions (Bao et al., 2021)
or adversarial sentences (Shen et al., 2023). The
primary drawback of these methods is the need
to incorporate extra components into the pipeline,
either before or after inference, resulting in ad-
ditional computational load. A different line of
work demonstrated that enhancing the robustness
of attention-based models to adversarial attacks
can be achieved by aligning the distributions of the
keys and queries (Zhang et al., 2021). Adversarial
training can be effectively utilized to defend against
word-level attacks without introducing extra com-
putational overhead. There are also several works
exploring certified robustness for NLP systems but
these methods remain hard to scale to large models
(Jia et al., 2019; Ye et al., 2020; Zhao et al., 2022;
Wang et al., 2023c). A comprehensive benchmark-
ing of adversarial defense methods (Li et al., 2021)
concluded that FreeLB++ performs the best; it em-
ploys embedding perturbations to acquire robust
invariant representations. FreeLB++ is the state-
of-the-art technique, together with DSRM to im-
prove general robustness, while we identify A2T
as being the state-of-the-art technique to improve
robustness through adversarial data augmentation.
FreeLB++, is confined to exploring the embedding
space, while A2T is able to explore the full seman-
tic space.

3 Background

3.1 Overview

We consider the setting of a sequence classifier,
composed of a base model f base

θ whose output is
pooled fpool

θ and then fed into a classifier head f cls
θ

resulting in fθ : t(X ) 7→ Y , that takes an input
embedding X← t(x). Where the input sequence
of words x = (τ1, . . . , τn) ∈ X with the ground
truth label y and outputs a prediction ŷ = fθ(t(x))
are first parsed through tokenizer t. An adversarial
attack with algorithm g on input x and classifier
fθ would perturb τ , for example, using character
manipulations or word substitutions, to produce a
new adversarial sample x̂ that is misclassified by

fθ such that fθ(t(x̂)) ̸= y, the sample, can then be
validated for linguistic characteristics with d.

3.2 Adversarial training

The objective of adversarial training in NLP is to
minimize the high-risk regions in the continuous
space around an input sample’s word embeddings,
while constraining the search area with a bound
(Zhu et al., 2020). Adversarial training is formally
defined as follows:

min
θ

E{x,y}∼D max
||δ||≤ϵ

L(fθ(X + δ), y) (1)

Here, D represents the data distribution, X rep-
resents a tensor of word embeddings, where X is
the embedding representation of all input tokens,
and δ represents a perturbation. The aim of adver-
sarial training is to minimize the regions of high
risk around embedding X with a bound delta (Zhu
et al., 2020). The constraint is usually the ℓ2 norm
around the embedding. However, previous research
has explored other bounds, such as the convex hull
(Dong et al., 2021).

3.3 Base domain

In adversarial training the original, unperturbed
samples X 7→ Y originate from a base domain.
We expand this notion to distinguish between
the base/adversarial domain in the input/linguistic
space and the feature space. Firstly XB ≜
{x | x is a sample from base input domain} then
HB

X ≜ fpool
θ (t(XB)) = {fpool

θ (t(x)) | x ∈ XB}
where HB

X is the feature distribution of the sam-
ples from the base domain. Assume, inline with
previous work (Song et al., 2018), the base do-
main XB follows a multivariate normal distribution
XB ∼ N (µXB

,ΣXB
)

3.4 Adversarial domain

A new perturbed sample x̂ is obtained by adding
a perturbation δ with strength controlled by maxi-
mize value ϵ to the original sample x, i.e., x̂ = x+δ
and |δ| ≤ ϵ. To obtain more real perturbation
samples for NLP task, we control the perturbation
strength through a controller g, which is an abstrac-
tion of an attack algorithm, such as TextFooler, and
perform the verbatim perturbation. Our assumption
is that the NLP classification model works, as it
captures the semantics of the data and uses that to
make a decision.
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Base & Adversarial
Domain

Robust
Domain

This is a good day

This is a fine day

Figure 1: The statistical components are aligned in both
the base and adversarial domain through the regularizer
LDist. Over time. This alignment allows the model f
to project both base and adversarial samples to a robust
domain, thus enhancing the robust generalization to
adversarial samples.

As we do an adversarial perturbation on sam-
ple x, this perturbation will introduce a covariate
shift to the original sample, dataset or distribution.
This will make the distribution bimodal on one
class instead of the expected single smooth distribu-
tion as illustrated in Figure 1 where a perturbation
in the input leads to the sample being projected
onto a different domain HA

X̂
. Where HA

X̂
, at times

also denoted as HB
X+δ, is the feature distribution

of the samples from the adversarial domain. In
our setup, after these samples have been passed
through fpool

θ , they will be projected in an adver-
sarial domain. Therefore, in our setup, XA ≜ {x̂ |
x̂ is a sample from adversarial input domain} and
HA

X̂
≜ fpool

θ (t(XA)) = {fpool
θ (t(x̂)) | x̂ ∈ XA}.

Assume the adversarial domain XA follows a mul-
tivariate normal distribution XA ∼ N (µXA

,ΣXA
)

Domain alignment methods Paraphrased sam-
ples, generated by substituting words, result in
a significant distributional shift in the high-level
representation space within the later layers of the
model. Therefore, the distances between the two
distributions at the fpool

θ layer will be high, as
shown in Figure 3. When t-SNE is applied to the
output features after fpool

θ , there are k clusters, half
of which originate from the base samples while the
other half from the adversarial samples (Figure 2).
The objective is thus to minimize these mean and
covariance distances of the high-level features, so
that only k/2 clusters remain, this would mean the
adversarial and base samples are perfectly aligned
in the feature space. The aim is to prevent adver-
sarial samples from being projected within the ad-
versarial feature distribution created by the model,
and instead, have them projected onto a new robust
feature distribution. To achieve this, we explore
approaches to align feature spaces, ensuring that

features from adversarial samples more accurately
represent features from base samples.

Commonly-used methods for measuring dis-
tance in the feature space and perform feature
alignment include Maximum Mean Discrepancy
(MMD), Optimal Transport (OT), and CORrela-
tion ALignment (CORAL). MMD measures distri-
butional differences through the mean of feature
representations, OT calculates the optimal trans-
formation cost, and CORAL aligns second-order
statistics. MMD is straightforward but sensitive
to kernel choices. OT captures fine-grained dif-
ferences but can be computationally demanding.
CORAL is simple and efficient but may not capture
all aspects of distributional discrepancy.

4 Methodology

Embedding robustness, as described by (Zhu et al.,
2020), is a concept whereby a model is consid-
ered robust if it can maintain low risk within re-
gions encircling a specific embedding X. Adversar-
ial training and gradient ascent methodologies are
applied directly to word embedding by prominent
techniques such as (Zhu et al., 2020; Madry et al.,
2019), in an effort to accomplish this. However,
these methods display limitations in sustaining this
robustness. These restrictions occur due to the
model being bound by ϵ. Transgression beyond
this ϵ limit incites undesirable word substitutions
(Table 3).

Notably, this presents a hurdle, since the majority
of word-level attacks, not having access to the input
word embeddings or gradients, conduct heuristic
optimization on the input sample. Each word of-
ten has N substitution candidates. Therefore, they
employ word substitutions to introduce a δ into a
sentence (see Figure 4 in the Appendix), thus often
exceeding the ϵ restriction. This allows such at-
tacks to explore regions in the semantic space that
the victim’s model has not previously seen.

Consequently, our research involves the direct
utilization of existing attack algorithms to generate
the adversarial data intended for training. Sub-
sequently, we scrutinize the extent to which our
training approach shows generalization when faced
with different attack algorithms employed by an
attacker.

4.1 Perturbations

In our work, we address the saddle problem in the
following manner. Firstly, we adopt a dynamic δ
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Figure 2: The distributions of the MR training
dataset with t-SNE projection in a binary classifi-
cation task. Heavy overlapping (Top) of the augmented
two-class data leads to mixtures of marginal distribu-
tions, which is alleviated and nearly linearly separable
(Bottom) after applying alignment between the original
and augmentation distributions.

that is tailored for a specific word substitution pair.
This delta is determined by a word substitution al-
gorithm, denoted as g. The sample is preserved
only if it complies with quantitative quality stan-
dards set by d. Rather than maximizing the loss,
we minimize the classification confidence. This
strategy aligns better with the adversarial objec-
tive commonly employed in most NLP adversarial
attacks. The process of creating adversarial sam-
ples with g and minimizing the classification confi-
dence inherently maximizes the distance between
the base and adversarial domain. We theorize that
this divergence is significantly larger than in the
image domain, or when introducing small deltas
in the embedding space, mainly because word sub-
stitutions contribute to a large δ. This domain dis-
tance can be summarized by computing a loss value
with distance-measuring techniques like MMD or
CORAL. (See Appendix A, F for further details)

4.2 Perturbation alignment

Through empirical analysis, we found that multiple
perturbed samples tend to construct new distribu-
tions in the feature space. This presents an issue as
the classifier component, modelled on the original
distributions, continues to function based on them.
This phenomenon is depicted in Figure 2 (top and
bottom), where base samples are characterized by
blue and red distributions, and adversarial samples
by cyan and yellow distributions. We explain this
phenomenon by the presence of a hypothetical base
and adversarial distribution over the feature space
(HB

X̂
and HA

X̂
) which we give empirical evidence of

existing through the Wasserstein distance in Figure
3. Our aim is to employ a regularizer during train-
ing that brings the distribution closer and hereby
aligns the domains into a robust domain (Figure 1).
This will enable the classifier to effectively function
on both the adversarial (which will no longer be
adversarial) and base samples. As shown in Figure
2 (bottom), this is demonstrated by the smoother
distributions and a reduction in the number of sam-
ples in both the cyan and yellow distributions (since
an additional 118 samples are classified correctly
by the robust model and now fall in the red and
blue distributions). The macro component seeks a
representation that remains invariant to alterations
from δ at the distribution level. We model this with
the following LDist(H

B
X , HB

X+δ).

min
θ

E{x,y}∼D

[
L(fθ(X, y))︸ ︷︷ ︸

for accuracy

+ max
d(X,g(X+δ))≤ϵ

LDist(H
B
X , HB

X+δ)︸ ︷︷ ︸
for robustness

] (2)

In equation 2, HA
X̂

= HB
X+δ represents the dis-

tribution from the base domain that has been per-
turbed with δ, and HB

X denotes the distribution
from the base domain itself.

4.3 Aligned semantic robust NLP model

Our first objective is the further finetuned model on
the target dataset, that anchors the performance of
the model when no adversarial objective is present.
It is defined by a loss function when doing infer-
ence with x and y. In our experiments, we use the
cross entropy loss. The second (Macro) objective
formulate the classical saddle point problem com-
monly found in adversarial training. The second
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objective employs a distance computation between
the representations of the model undergoing base
inference and the representations of the mode un-
dergoing adversarial inference.

L = LBase + λLDist (3)

Where λ controls the strength associated with
the distance regularizer.

4.4 Approximating LDist (Macro)

There are various methods available for model-
ing LDist. The use of a parametric distance mea-
sure, such as the Kullback-Leibler (KL) diver-
gence, would be preferable under ideal circum-
stances. However, implementing this measure in
practice is complex because it requires intermedi-
ate density estimations within a high-dimensional
space, for example, a 768-dimensional embedding
as in BERT. Additionally, the complexity is com-
pounded by the small number of samples typically
included in each batch, like 64. Non-parametric al-
ternatives encompass methods such as MMD with a
RBF kernel (Gretton et al., 2008; Pan et al., 2011),
CORAL (Sun et al., 2015), and, akin to the ap-
proach described in (Bouniot et al., 2021), utilizing
an optimal transport regularizer applied to output
features. An extensive explanation of each distance
measure is given in Appendix H.

5 Experimental Setup

5.1 Backbone models and tasks

We evaluated the BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019) models on the classifi-
cation tasks MR, AG-News, SST-2.

5.2 Evaluation metrics

We utilize the evaluation framework previously pro-
posed in (Morris et al., 2020), where an evalua-
tion set is perturbed, and we record the following
data from the Total Attacked Samples (TAS) set:
Number of Successful Attacks (Nsucc−atk), Num-
ber of Failed Attacks (Nfail−atk), and Number of
Skipped Attacks (Nskp−atk). We utilize these val-
ues to record the following metrics. Clean accu-
racy/Base accuracy/Original accuracy, which of-
fers a measure of the model’s performance during
normal inference. After attack accuracy/Accuracy
under attack (Aaft−atk =

Nfail−atk

TAS ) or (AUA), is
critical, representing how effectively the attacker
deceives the model across the dataset. Similarly,

the After success rate (Asucc−rte =
Nsucc−atk

TAS−Nskp−atk
)

or (ASR) excludes previously misclassified sam-
ples. The paper also considers the Percentage of
perturbed words, the ratio of disturbed words to the
total in a sample, and Semantic similarity, an auto-
matic similarity index, modelled by d (Cer et al.,
2018). Lastly, the Queries denotes the model’s
number of invocations for inference. Appendix B
and C give more details on our evaluation metrics
and strategy.

5.3 Evaluation baselines

The assessment involves comparing to seven base-
line techniques. These baselines include: The
‘Vanilla’ model, which is trained solely on the base
dataset. ‘TextFooler + Adv Aug’ which incorpo-
rates adversarial samples generated by TextFooler
into the base dataset as a form of data augmen-
tation. ‘TextFooler + Adv Reg’ which also uses
adversarial samples from TextFooler, but instead
applies a regularization approach with both λ0 and
λ1 set to 1, as detailed in "Standard" under Table
8 in the Appendix. Additionally, there are four
other baseline models to compare against. Among
them is ‘Attack-to-Train’ (A2T), which, according
to the latest available information, is currently the
leading state-of-the-art (SOTA) method for adver-
sarial training at the token level in the NLP do-
main, as referenced in (Yoo and Qi, 2021). Next,
there are embedding level adversarial training base-
lines. Among these there is ‘InfoBERT’, which
is recognized for enhancing model robustness by
requiring fewer projected gradient steps compared
to FreeLB. Following this, we have ‘FreeLB++’,
an advancement over FreeLB that achieves perfor-
mance gains by increasing the ϵ-bound. Finally,
there is ‘DSRM’, a novel approach that introduces
perturbations whenever the loss dips below a pre-
defined threshold. According to our latest knowl-
edge, FreeLB++ surpasses most existing baselines
(Li et al., 2021). Meanwhile, DSRM, as a more
recent innovation, demonstrates superior perfor-
mance over FreeLB++.

6 Experiments

We initially investigate the performance of the sys-
tem using all the regularizers outlined in Equation
3 (referred to as Macro). When generating the
adversarial candidates using TextFooler, PWWS,
BERTAttack or TextBugger we set a angular simi-
larity ϵ, used to assess the semantics of a transfor-
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mation, to 0.5 where d is the Universal Sentence
Transformer (Cer et al., 2018), and the number
of word substitution candidates N to 50, which
are both the standard used in previous work, we
also utilize a greedy search approach with word re-
placement inspired by (Jin et al., 2019) to identify
suitable word substitutions in a query efficient way.

For the macro component, we undertake a com-
parative analysis involving adversarial training and
attacks utilizing word substitutions derived from
various word embeddings (WordNet, Contextual,
Counter Fitted, and GloVe). Furthermore, we con-
duct an in-depth examination of the resultant em-
beddings through t-SNE to gain valuable insights
into the behavior of the feature space.

7 Results

7.1 Distribution alignment through MMD

In this section, we investigate the effectiveness
of a training method that utilizes adversarial data
sampled from four different attacks which use
different word embeddings: PWWS (WordNet),
TextFooler (Counter-Fitted), BERTAttack (Con-
textual) and TextBugger (GloVe). Our primary
objective is to test whether a distance regularizer
limits the word level perturbations from creating
samples residing in the adversarial distributions
shown in Figure 2 (top) with color yellow and cyan
and secondly to evaluate if the new robust algo-
rithm generalizes across word embeddings since
the underlying hypothesis is that by leveraging a
distance metric, which enables successful learning
of domain-invariant features, we can anticipate im-
proved robustness not only against the same attack
but also across different attacks. This assumption is
grounded in the fundamental similarities shared by
word-level attacks. Additionally, Table 1 provides a
comprehensive overview of the performance gains
observed in terms of after-attack accuracy (AUA)
and the corresponding drop in the attack success
rate (ASR).

The insights derived from the presented analysis
are twofold. Firstly, as depicted in Table 1, Within
this context, the indispensability of distribution
alignment becomes evident, as it consistently leads
to significant performance gains in after-attack ac-
curacy, regardless of the employed word embed-
ding. Secondly, the observed improvements in per-
formance remain consistent even when subjected to
various word embedding attacks. This robustness
across diverse attacks further affirms the efficacy

and generalizability of the achieved performance
increments.

7.2 Effect of distribution alignment method
We perform an ablation study on the choice of dis-
tance metric used for distribution alignment Table
2 showcases MMD, Coral, and Optimal Transport.
We found training on optimal transport to be un-
stable and only effective for a narrow set of hy-
perparameters. For other attackers, MMD works
more reliably and has better after-attack perfor-
mance, achieving AUA of 37.8% ,44.6%, 39%, and
28.66% for PWWS, BertAttack, TextFooler, and
TextBugger, respectively. Although Coral and Opti-
mal Transport don’t perform as well as MMD, they
still outperform the baselines when tested on the
MR dataset. Because of these results, we focus our
experimentation with MMD. This might be due to
MMD being a method that aligns lower statistical
components, compared to CORAL and Optimal
Transport, which may help when training using
batches, in fact, it was shown that optimal transport
does indeed suffer when the transport map isn’t
computed across all samples in a dataset (Nguyen
et al., 2022).

7.3 Why distribution alignment works
Table 1 illustrates how the after-attack accuracy
of a model, trained on word substitutions gen-
erated from different embedding sets such as
counter-fitted embeddings (TextFooler) (Mrkšić
et al., 2016), WordNet (PWWS) (Miller, 1995),
or masked language modeling (BERTAttack), can
be effectively generalized across these sets. This
observation can be attributed to the presence of
a base domain (represented by the red/blue clus-
ter) and an adversarial domain (represented by the
yellow/cyan cluster) as depicted in Figure 2. Con-
sequently, training the model with an objective that
aligns these two distributions and creates a new
representation in the feature space can result in im-
proved robustness performance. This can be ascer-
tained by the Wasserstein distance dropping over
time Figure 3 (top), when training with Equation
3, this drop, which represents the two hypothetical
base and adversarial feature distributions becom-
ing similar, can be seen despite utilizing MMD
as a distance measure. Naturally, this occurs in a
high dimension, which makes it difficult to show
using a dimensionality reduction technique such as
t-SNE in Figure 2. Interestingly, in Figure 3 the
Wasserstein distance seem to capture the relation-
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Table 1: Adversarial training using distribution alignment on MR. Values in Bold represent the highest scores,
those in round brackets (∗) denote the second highest, and values in square brackets [∗] indicate the third highest.
Extended results are in Table 17 in the Appendix.

Model Train method
(Defense)

Test Method
PWWS

(WordNet)
BERTAttack
(Contextual)

TextFooler
(Counter Fitted)

TextBugger
(Sub-W GloVe)

CA (↑) AUA (↑) ASR (↓) CA (↑) AUA (↑) ASR (↓) CA (↑) AUA (↑) ASR (↓) CA (↑) AUA (↑) ASR (↓)

BERT

Vanilla 86.0 21.2 75.35 86.0 32.6 62.09 86.0 13.8 83.95 86.0 5.8 93.26
TextFooler + Adv Aug 85.6 21.0 75.47 85.6 31.6 63.08 85.6 11.8 86.21 85.6 4.0 95.33
TextFooler + Adv Reg 86.8 25.8 70.28 86.8 34.2 60.6 86.8 18.4 78.8 86.4 8.0 90.74
A2T 86.8 18.0 79.26 86.8 32.6 62.44 86.8 13.8 84.1 86.8 3.8 95.62
InfoBERT 82.6 31.4 61.99 82.6 34.6 58.11 82.6 19.6 76.27 82.6 6.8 91.77
FreeLB++ 84.2 26.6 68.41 84.2 32.4 61.52 84.2 16.4 80.52 84.2 3.8 95.49
DSRM 87.6 25.6 70.78 87.6 32.6 62.79 87.6 20.0 77.17 87.6 11.0 87.44
PWWS + MMD (SemRoDe) 86.0 37.0 56.98 86.0 [45.8] 46.74 86.0 38.2 55.58 86.0 28.2 67.21
BERTAttack + MMD (SemRoDe) 85.8 38.2 55.48 85.8 (46.6) 45.69 85.8 40.0 53.38 85.8 29.4 65.73
TextBugger + MMD (SemRoDe) 85.8 [37.4] 56.41 85.8 47.6 44.52 85.8 (39.4) 54.08 85.8 (28.8) 66.43
TextFooler + MMD (SemRoDe) 85.8 (37.8) 55.94 85.8 44.6 48.02 85.8 [39.0] 54.55 85.8 [28.6] 66.67

RoBERTa

Vanilla 89.6 24.0 73.21 89.6 33.2 62.95 89.6 12.0 86.61 89.6 5.0 94.42
TextFooler + Adv Aug 90.0 30.4 66.22 90.0 36.0 60.0 90.0 21.4 76.22 90.0 9.0 90.0
TextFooler + Adv Reg 90.8 31.8 64.98 90.8 34.6 61.89 90.8 21.0 76.87 90.8 9.4 89.65
A2T 92.0 24.2 73.7 92.0 28.8 68.7 92.0 15.0 83.7 92.0 4.4 95.22
InfoBERT 89.2 30.4 65.92 89.2 29.4 67.04 89.2 19.4 78.25 89.2 4.4 95.07
FreeLB++ 91.6 29.4 67.9 91.6 33.8 63.1 91.6 20.0 78.17 91.6 6.6 92.79
DSRM 88.4 29.0 67.19 88.4 39.8 54.98 88.4 25.2 71.49 88.4 9.8 88.91
PWWS + MMD (SemRoDe) 89.4 [53.2] 40.49 89.4 57.8 35.35 89.4 (55.4) 38.03 89.4 (43.2) 51.68
BERTAttack + MMD (SemRoDe) 89.8 53.6 40.31 89.8 [56.8] 36.75 89.8 46.2 48.55 89.8 56.4 37.19
TextBugger + MMD (SemRoDe) 89.4 (53.4) 40.27 89.4 (57.2) 36.02 89.4 55.6 37.81 89.4 [42.8] 52.13
TextFooler + MMD (SemRoDe) 88.8 51.8 41.67 88.8 56.6 36.26 88.8 [54.8] 38.29 88.8 42.2 52.48

Table 2: Model (BERT) performances for AUA depend-
ing on the alignment regularizer when trained on the
MR dataset. We use TextFooler to generate the adver-
sarial samples that form the adversarial domain.

Distance
Metric

Test Method (MR/BERT) Where CA (↑) AUA (↑) ASR (↓)
PWWS

(WordNet)
BERTAttack
(Contextual)

TextFooler
(Counter Fitted)

TextBugger
(Sub-W GloVe)

CA AUA ASR CA AUA ASR CA AUA ASR CA AUA ASR
Vanilla 86.0 21.2 75.35 86.0 32.6 62.09 86.0 13.8 83.95 86.0 5.8 93.26
L2 Distance 85.4 14.6 82.9 85.4 26.6 68.85 85.4 8.0 90.63 85.4 2.4 97.19
CORAL (SemRoDe) 86.0 27.0 68.6 86.0 37.8 56.05 86.0 21.0 75.58 86.0 10.2 88.14
OT (SemRoDe) 85.6 37.4 56.31 85.6 35.6 58.41 85.6 28.6 66.59 85.6 13.4 84.35
MMD (SemRoDe) 85.8 37.8 55.94 85.8 44.6 48.02 85.8 39.0 56.97 85.8 28.6 66.67

ship between distributions in a smoother way than
using MMD, this is further shown in other datasets
such as AGNEWS and SST2 in Appendix 17.

7.4 Interpreting Distribution Alignment

To provide insights into the path an example takes
in the feature space as it becomes adversarial, we
employ t-SNE visualization. This approach allows
us to track the trajectory of samples as they undergo
perturbations, which has remained largely unex-
plored in the existing literature. With Figure 2 and
Figure 5, 6 in the Appendix we present the results
of our experiments. Figure 2 (top) provides insight
into the distributions within the base model. Mov-
ing forward, we explore the model that incorporates
a distance metric (MMD) as a regularizer, depicted
in Figure 2 (bottom). This picture present the dis-
tribution components of the model utilizing MMD.
These visualizations collectively contribute to our
understanding of the behavior and transformations
occurring within the feature space. There are three
important extrapolations to consider from these
figures. Firstly, the robust model exhibits fewer ad-
versarial samples (cyan and yellow points) due to a
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Figure 3: OT (Top) MMD (Bottom) response over itera-
tions for MR

higher number of correctly classified points. Sec-
ondly, by quantifying the number of perturbations
required to successfully perturb a sample across the
boundary (illustrated by the black samples with ar-
rows), we observe most samples, to successfully be
perturbed across a classification boundary require
more word substitutions. The black point shows
this. Originally in Figure 2 (top) only perturbing
one word was sufficient to achieve a successful at-
tack. In Figure 2 (bottom) the same sample needs
to have 4 word substitutions before being success-
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Type Sample

Original
[CLS] Woods’ Top Ranking on Line at NEC Invite
(AP) AP - Tiger Woods already lost out on the majors.
Next up could be his No. 1 ranking. [SEP]

FreeLB++
[CLS] Woods’ Top Ranking on Line at NEC Invite

[SEP] (AP) AP - Tiger Woods strong lost partners love
the majors and [SEP] up xiao ko . No. 1 ranking to won

TextFooler
[CLS] Woods’ Keynote Rank on Routing at NEC Invite
(AP) AP - Tiger Woods already lost out on the
commandant. Next up could be his No. 1 ratings. [SEP]

Table 3: Example of a qualitative sample generated by
FreeLB after a large amount of δ steps. We use an initial
δ of size 0.05 with a gradient ascend step size of 5 for
about 30 steps. Red: Bad change, embedding method,
Green: Good change, conceptual method.

fully perturbed (Positive to Negative sentiment in
Table 17 in the appendix).

7.4.1 Qualitative samples
After a sufficient number of iterations (δ steps) on
an embedding, FreeLB++ causes the embedding to
move closer to a neighboring discrete embedding.
This, in turn, leads to a change in token when map-
ping the second embedding, as demonstrated in
Table 3. While the token substitution has the poten-
tial to preserve synonym information, there is no
guarantee. We observed that training with too many
δ steps, resulting in frequent token substitutions,
actually worsens the performance of adversarial
training. This finding is consistent with the ob-
servations made in (Li et al., 2021), emphasizing
a significant drawback of FreeLB++. We believe
this issue can be addressed by sampling adversarial
samples using high-quality word embeddings and
by matching the base and adversarial distributions.

8 Computation time

SemRoDe is computationally efficient. In Table
4, the ‘Adversarial Set Generation’ column tracks
the time taken to adversarially generate 10% of
the data, while the ‘Train’ column records the time
required to train the model. Techniques for embed-
ding perturbation such as FreeLB++, InfoBERT,
and DSRM are more time-consuming due to, at
times, undergoing multiple PGD steps. In contrast,
token perturbation techniques like TextFooler and
A2T do not undergo this operation. Table 4 pro-
vides a comparative analysis of the computational
times for the various methods. Further discussion
on computational cost is presented in Appendix K.

9 Discussion

Recent studies have taken a novel approach by in-
vestigating the impacts of adversarial attacks and

Table 4: Computation time to generate adversarial sam-
ples and perform training on MR with 7 epochs on
BERT. Robustness values are shown in Table 1

Type GPU Time
Adversarial Set

Generation Train

Baseline - 365
TextFooler + Aug 494 396
TextFooler + AT 473 691
TextFooler + MMD (SemRoDe) 537 694
A2T 2655 670
DSRM - 883
FreeLB++ - 4648
InfoBERT - 5404

defenses on smaller encoding and decoding mod-
els, such as BERT, RoBERTa, and GPT. Given
that these models are less computationally demand-
ing, they serve as more tractable proxies for larger,
cutting-edge models. Promisingly, attacks that
work on these models have been shown to be appli-
cable to sophisticated LLMs, according to recent
works (Wang et al., 2023a; Zhu et al., 2023; Wang
et al., 2023b). Our research provides insight into
aligning the base and adversarial domains and how
doing so can improve robust accuracy. As the land-
scape of LLMs continues to evolve and expand,
we hope these findings can be utilized and applied
to larger, more sophisticated language models to
improve their robustness to adversarial attacks.

10 Conclusion

Drawing inspiration from previous work on im-
age settings utilizing continuous data, we demon-
strate the existence of a base and adversarial do-
main within a linguistic setting that uses discrete
data. This becomes apparent when an attacker ma-
nipulates a system through word-level substitutions.
Striving to decrease the divergence between these
two domains in the belief that it would improve ro-
bust generalization, we employ a distance regular-
izer on high-level features. This allows for learning
an internal representation that restricts attackers
from shifting a base sample into the adversarial
domain. This method introduces a novel distance-
based regularizer, LDist, as we investigate different
distance measures for aligning the domains. Align-
ing these domains results in a reduced Wasserstein
distance and smoother clustering of the t-SNE out-
put features. This procedure, aligning base and
adversarial features, fosters robust generalization,
as the learned representations maintain robust accu-
racy despite attackers leveraging word substitutions
from four various word-embeddings.
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12 Limitations

We do not consider the class-conditional case, and
the domains are ‘inverted’. This means a distance
measure like MMD won’t necessarily align the
adversarial samples of class one with its respec-
tive samples from the base class. Instead, it will
simply reduce the distance between the base and
adversarial domains, which might impede robust
performance. Therefore, in future work, it will be
necessary to conduct a study where the objective
takes classes into account when performing LDist.
Furthermore, we currently do not perform online
adversarial training, where we generate adversarial
samples in every batch. This could be subopti-
mal as the model is dynamic and changes with
each batch. Another limitation involves robustness
against white-box, embedding perturbations. Con-
sidering our threat model, we do not anticipate that
attackers will have access to the embedding space.
Therefore, the model will lack robustness against
any adversarial perturbation that results in an input
embedding not directly mappable back to the input
space. This is because the adversarial training al-
gorithm will not have been exposed to such data
points. Lastly, how this alignment technique can be
extended to generative models remains unexplored.

13 Ethics Statement

This research was conducted in accordance with
the ACM Code of Ethics.
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A Implementation details

In the case of the SemRoDe macro model, adver-
sarial examples are generated during the first epoch.
We generate adversarial samples where each word
in a sample has N substitution candidates, for each
candidate substitution the greedy search with word
replacement algorithm checks whether such substi-
tution reduces the classification confidence at the
logit, if the transformation is successful, it needs to
achieve above ϵ = 0.5 angular similarity to be con-
sidered a successful adversarial sample, which will
be included in training. The difference between the
TextFooler, BERTAttack, PWWS and TextBugger
methods is the utilized word embeddings to gener-
ate N . The MR model is trained on this data for
seven epochs, while both the AGNews and SST2
models are trained for three epochs each.

A.1 Offline vs online adversarial training

Generating the dataset one time at the start, which
we call offline adversarial training, differs from
typical adversarial training techniques, which cre-
ate adversarial samples at every epoch or batch to
consider the model’s dynamic learning nature. We
have found this method best given that the gener-
ation of adversarial samples through TextFooler,
BERTAttack, PWWS, and TextBugger can be time-
consuming due to the heuristic nature of these at-
tacks.

Naturally, we experiment with online adversarial
training on BERT/MR, following the conventional
approach of dynamically generating adversarial
samples at each epoch. However, we observed
no significant improvement in performance. Our
conclusion is that epoch-wise adversarial training
may not be necessary, and that an adversarial data
augmentation strategy that follows an offline adver-
sarial training paradigm is sufficient to align base
and adversarial representations, thereby ensuring
robustness against word-level attacks. Addition-
ally, this approach offers the benefit of being a
more rapid training setting, as detailed in Table 4.

A.2 Baseline implementation

Nonetheless, we continue to reference state of the
art baselines in our comparative analysis. The
FreeLB++ model remains unmodified as it gener-
ates adversarial samples at the embedding level at
each batch for all data. As for A2T, we preserve its
original implementation. The entire training data is
exposed to the algorithm, which then generates ap-
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proximately 20% of the data as adversarial samples.
This percentage aligns with the recommendations
outlined in the original implementation.

We implemented InfoBert in the same manner as
it was in TextDefender; however, it should be noted
that with the original learning rate of 2e-5 for the
inner steps, in our case, the algorithm was unable
to converge to a robust model. Consequently, we
experimented with a learning rate of 0.1, which
represents the upper limit recommended by the
original implementation of InfoBert (Wang et al.,
2021). Additionally, we increased the number of
projected gradient descent (PGD) steps from 3 to
7 for both AGNEWS and SST2 datasets across all
models. For the MR dataset, which is smaller, we
conducted 15 steps on BERT and 25 on ROBERTA.
With the exception of these modifications, all other
hyperparameters remained unchanged.

When it came to implementing the DSRM (Gao
et al., 2023), we adhered closely to the original
publication, adjusting only the clipping parameter.
The original clipping value prescribed in the pa-
per and code, in our experiments, did not yield an
improved after attack accuracy; thus, we set the
loss clamp to 50 for both SST2 and AGNEWS. In
practice, this adjustment is akin to eliminating the
clamping entirely. As a result, the algorithm modi-
fies the batch at every iteration. We observed that
this approach is able to enhanced the accuracy after
the attack while also largely maintaining the origi-
nal accuracy. For the MR dataset, however, such a
high loss clamp rendered the algorithm ineffective.
Therefore, we adjusted the clamp to 0.5. As we
trained BERT and ROBERTA models from scratch
utilizing DSRM, we extended the training to 10
epochs for AGNEWS and SST2, and 50 epochs for
MR, choosing the model that demonstrated the best
performance.

A.3 Datasets

We Test on 3 classification datasets, the base dis-
tribution size and adversarial distribution size are
presented in Table 5.

Table 5: Dataset sizes

Task Dataset Train Adv Data
Size (Train)

Test Classes

Sentiment
Classification

MR 8.5k 850 1k 2
SST-2 67k 6.7k 1.8k 2

News
Classification

AGNEWS 120k 12k 7.6k 4

B Evaluation metrics extended

We utilize the evaluation framework previously pro-
posed in (Morris et al., 2020), where an evalua-
tion set is perturbed, and we record the following
metrics from the Total Attacked Samples (TAS)
set: Number of Successful Attacks (Nsucc−atk),
Number of Failed Attacks (Nfail−atk), and Num-
ber of Skipped Attacks (Nskp−atk). The Clean
accuracy/Base accuracy/Original accuracy repre-
sents the accuracy of the model undergoing nor-
mal inference. A high clean accuracy indicates
that the model performs well for its intended task.
The After attack accuracy/Accuracy under attack
(Aaft−atk =

Nfail−atk

TAS ) or (AUA) is the most cru-
cial metric, representing how effectively the at-
tacker can deceive the model across the dataset.
Lower values of AUA indicate a higher success
rate in fooling the model. The After success rate
(Asucc−rte =

Nsucc−atk

TAS−Nskp−atk
) or (ASR) is similar

to AUA but excludes previously misclassified sam-
ples. The Percentage of perturbed words refers
to the ratio of perturbed words to the total num-
ber of words in the sample. This metric should
be minimized as perturbing more words makes the
sample’s manipulation more detectable. Seman-
tic similarity (Jin et al., 2019; Maheshwary et al.,
2020) is an automatic similarity index that quan-
tifies the visual difference between two samples
using a deep learning model. In this case, mod-
elled by d, the Universal Sentence Encoder (Cer
et al., 2018) is utilized along with a angular cosine
similarity hyper parameter ϵ between the output
embeddings. An output value of 1 indicates seman-
tic equivalence, while 0 represents no similarity.
Queries denotes the number of times the algorithm
needs to invoke the model for inference; keeping
this low helps avoid detection. We further explain
the evaluation strategy in Appendix C.

C Evaluation Strategy

The experiments section will follow the evaluation
setting originally proposed by TextDefender (Li
et al., 2021). The main difference is that we will
still test whether a method can generalize when us-
ing the same synonym set. This testing is relevant
due to the requirement of learning robust models
against existing attacks, such as BERTAttack and
PWWS. Additionally, we propose another evalua-
tion test that assesses the generalization of training
on one set of synonyms against other sets. This test
is applicable because these attacks already exist,
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but we do not yet have training strategies to address
them. It will also demonstrate how well training
on one set of synonyms can generalize to attackers
using other synonym sets. In line with the tech-
nique adopted by TextDefender, we set the ϵ value
to 0.5, leading to a semantic similarity threshold
of 0.84. In a move to achieve balance, we ensure
that the perturbation does not exceed 30% of the
words in each sample. Concurrently, we adhere to
a maximum limit of L∗N queries per sample, with
L denoting the length of the sample in words. As
the parameters Queries, Percentage of perturbed
words, and Semantic similarity maintain constancy,
we have sidestepped their inclusion in our tables.

D Further explanation of adversarial
training in language models

The technique for creating adversarial examples is
crucial and our work differs in this respect from pre-
vious work such as Contextualized representation-
Adversarial Training (CreAT) (Wu et al., 2023).
This work applies PGD over ’k’ steps with an L2-
norm restriction on the perturbation magnitude,
which parallels prior research, such as (Sato et al.,
2018; Barham and Feizi, 2019). However, con-
temporary word-level attacks do not adhere to the
L2-norm constraint. Instead of adding small delta
perturbations, these attacks use word substitutions,
with semantic similarity serving as the boundary
for perturbations. This strategy allows an adversary
to more readily bypass the defender’s constraints.
Consequently, we are faced with the critical ques-
tion: How can we incorporate these same bounds
and deltas into our adversarial training technique?
The most practical solution is to enforce these re-
strictions at the input stage by adopting the ap-
proaches utilized in well-established attack mecha-
nisms. Hence, our method is superior as it enables
the algorithm to more thoroughly explore the attack
space. Compared to CreAT we also are attempting
to align distributions, and therefore analyse them in
detail. Different from our work, CreAT introduces
a technique to better train the encoder part of a
model with adversarial training, since they noticed
normal adversarial training struggles to do so, es-
pecially when applied to a encoder-decoder model.
In our work, when incorporating samples gener-
ated through embedding perturbation techniques
into regular adversarial training, the performance
improvement is relatively minor. We hypothesize
that this is due to the inherent discrepancy between

the base and adversarial samples, which belong to
two distinct distributions within the feature space.
Standard adversarial training does not adequately
address this divergence, thus highlighting the ne-
cessity of a distance regularizer to better align these
two distributions.

E Explanation of ϵ

In our study, the angular similarity ϵ is employed
as a hyperparameter to place constraints on ad-
versarial samples generated with algorithm g in
conjunction with d. Model d can be any qualita-
tive variant capable of preserving the fundamental
attributes of the base sample such as meaning, flu-
ency, grammar, similarity, and so on. The pivotal
area of interest tends to be semantic similarity, of-
ten represented by the output from the universal
sentence encoder. We establish our threshold by
employing the formula w = 1 − ϵ

π , where ϵ has
the bounds (0,π). In this study, we have chosen
ϵ = 0.5 which yields a threshold of 0.84. Table 12
demonstrates how employing different values of ϵ
can result in varying intensity of attacks. Note that
a small ϵ results in a small angle between the orig-
inal sample and adversarial sample, hence, if any
adversarial sample from g, after being processed
by d is above this ϵ, the sample is rejected.

Previous research has primarily maintained a
fixed ϵ in the vicinity of word embeddings, where
the structure of the boundary is usually in the form
of either an l2-ball or a convex hull. In our exper-
iments, we leverage heuristic adversarial samples
bound by d with the aim to restrict the adversaries
not based on arbitrary objectives such as an l2 ball,
but rather, on important aspects of linguistic char-
acteristics like semantic similarity.

Also take note that increasing N and reducing ϵ
have similar effects. They both lead to the genera-
tion of more diverse adversarial samples that can
further reduce the classification confidence. How-
ever, referring to the Epsilon and Embedding abla-
tion study (Table 12 and Table 11), this diversity
often comes at the cost of quality, because the se-
mantics are liable to significant alterations.

F Large δ Explanation

In comparison to the image domain or the addi-
tion of a static δ within the word embedding space,
word substitutions in the embedding space incor-
porate a substantially large, word pair-specific δ,
which is challenging to both predict and pre-set
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Exploring Word Substitution Overlap By Word Embedding
Attack Method (Word Embedding)

Attack Method
(Word Embedding)

Counter-Fitted WordNET Contextualized Glove

Counter-Fitted 100%
1.6%

(23.4%)
3.6%
(38%)

10.4%
(73%)

WordNET
1.6%

(23.4%)
100%

2%
(11.3%)

2.4%
(22%)

Contextualized
3.6%
(38%)

2%
(11.3%)

100%
9%

(81.8%)

Glove
10.4%
(73%)

2.4%
(22%)

9%
(81.8%)

100%

Table 6: Word substitution overlap by word embedding.

(as illustrated in Figure 4). This potentially exacer-
bates the divergence between the base domain and
the adversarial domain could potentially explain
the high starting Wasserstein distance. It might
also shed light on the considerable improvement in
post-attack accuracy following the minimization of
LDist.

good 3, 1, 0.3, -0.5 ...

fine -0.4, 2, 0.4, -4.5 ...

?

-3.4, 1, 0.1, -4 ... 

(good, fine)

Figure 4: Doing a word substitution is the same as
adding a large δ of fixed size to each word pair. Nor-
mally in adversarial training δ is set to 0.5, this, in
comparison, is a small perturbation.

G Vocabulary and Word Substitution
Overlap

In this section, we emphasize the significant over-
lap in vocabulary and dictionaries among popu-
lar word embeddings (see Table 6). However, we
observe a limited overlap in potential word sub-
stitutions on a per-word basis (see Table 7). As-
suming we have two vocabularies V1 and V2 with
W1 = W2 = W overlapping tokens, each token
W has a set of potential token substitutions de-
noted as W

′
, where W

′
1 is unlikely equal to W

′
2

since these token substitutions are sourced by inde-
pendent word substitution algorithms or data struc-
tures. To calculate the word substitutions overlap,
we measure the Jaccard index J using the formula:

J =
|W ′

1∩W
′
2|

|W ′
1∪W

′
2|

. We then compute the average result

for each word. Table 7 also highlights the J for
the W that achieved the highest overlap across the
vocabulary in brackets.

Vocabulary/Dictionary overlap by word embedding types
Word Embedding Overlap

Counter-Fitted WordNET Contextualized Glove

Word
Embeddings

Number of
tokens or
words

65713 147306 30522 400000

Counter-Fitted 65713 65713
31233

(21.2% WordNet)
(47.5% Counter)

20994
(68.8% Context)
(31.9% Counter)

62951
(15.73% Glove)

(95.79% Counter)

WordNET 147306
31233

(21.2% WordNet)
(47.5% Counter)

147306
14510

(9.85% WordNet)
(47.5% Context)

55666
(37.78 WordNet)

(13.9 Glove)

Contextualized 30522
20994

(68.8% Context)
(31.9% Counter)

14510
(47.5% Context)
(9.85% WordNet)

30522
22877

(75% Context)
(5.7% Glove)

Glove 400000
62951

(15.73% Glove)
(95.79% Counter)

55666
(13.9 Glove)

(37.78 WordNet)

22877
(5.7% Glove)
(75% Context)

400000

Table 7: Overlap between vocabulary. Percentage in
brackets represents the percentage overlap of the union
over the original vocabulary.

H Distance measures

H.0.1 MMD
The general equation for the maximum mean dis-
crepancy (MMD) distance is often described math-
ematically as the following:

MMD(P,Q) = ∥Ex∼P [φ(f(x))] (4)

− Ey∼Q[φ(f(y))]∥2 (5)

Where E denotes the expected value, x and y
are samples drawn from distributions P and Q,
respectively, φ is a kernel function that maps the
data into a high-dimensional feature space, fθ is an
optional feature extractor, and ||.||2 is the squared
norm of the difference between the two expected
values.

In our case, we use fθ and is set to a sequence
classifier. We therefore define fθ(x) = hA and
fθ(y) = fθ(x̂) = hB . Where in this case both
hA and hB are sampled from distributions HA and
HB respectively.

MMD(HA, HB) =
∥∥EhA∼HA [φ(hA)]

− EhB∼HB [φ(hB)]
∥∥2 (6)

We then set φ to be a rbf kernel.

MMD(HA, HB) =
∥∥EhA∼HA [hA]

− EhB∼HB [hB]
∥∥2 (7)

H.0.2 CORAL
The CORrelation ALignment (CORAL) measures
the difference in the second-order statistics of the
samples from the two sets. Specifically, it aligns
the covariance matrices of the two sets by minimiz-
ing the Euclidean norm between them. CORAL
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requires the covariance matrices to be computable.
It can be defined mathematically as follows:

CORAL(HA, HB) =
1

4d2
∥CHA − CHB∥2F (8)

Where d is the dimensionality of the samples,
and CHA and CHB are the covariance matrices of
the samples from HA and HB , respectively. The
Frobenius/Euclidean norm is denoted by ∥·∥F . The
equation measures the distance between the co-
variance matrices of HA and HB after aligning
them through matrix square root transformation,
and scales the distance by a constant factor.

In the above equation, the covariance matrices
are calculated both mathematically and program-
matically in the following way:

CHA
=

1

nA − 1
(HT

AHA −
1

nA
(1THA)

T (1THA))

(9)

CHB
=

1

nB − 1
(HT

BHB −
1

nB
(1THB)

T (1THB))

(10)

Where nA/nB are the number of discrete sam-
ples for both the HA/HB distributions.

H.0.3 Optimal Transport
There are multiple ways to use optimal transport
in the training procedure. One method is first to
calculate the p-norm cost matrix C between final
representations from the model undergoing base
inference HB and adversarial inference HA and
the transport map T . The transport map is the joint
probability between pBase and pAdv. Where pBase

and pAdv are the empirical distributions of the base
and adversarial datasets in the feature spaces that
satisfy

∑LB
i=1 p

Base
i = 1 and

∑LA
j=1 p

Adv
j = 1 ,

often assumed to be uniform and meeting the fol-
lowing conditions.

pBase =

LB∑

i=1

pBase
i δhB

i
, pAdv =

LA∑

j=1

pAdv
j δhA

j

(11)
Matrix C is later converted to its entropic regular-

ized version with K = exp(−C/ε). Together with
the optimal transport map, the Sinkhorn algorithm
(Cuturi, 2013; Feydy et al., 2018; Feydy, 2020;

Nguyen and Tuan, 2021) iteratively projects K be-
tween pBase and pAdv through multiple Sinkhorn
iterations. The distance using Sinkhorn is hence
defined as:

LSinkhorn = D(HB, HA) = OT (pBase, pAdv)

− 1

2
OT (pBase, pBase)

− 1

2
OT (pAdv, pAdv)

(12)

Where

OT (pBase, pAdv) =
MB∑

i=1

pBase
i SB +

MA∑

i=1

pAdv
i SA

(13)
MB = MA and SA and SB are computed

in the aforementioned Sinkhorn iteration. These
iterations are further illustrated in Algorithm 1.
Sinkhorn iteratively projects the regularised cost
matrix K on pBase and pAdv.

Algorithm 1 Sinkhorn loop
Input:Probabilities pBase and pAdv, cost function
C(xi, yi), Number of iterations N, temperature ε
Output: Sinkhorn tensors SA and SB

1: Initialize SA, SB ← 0RN , 0RM

2: for Iteration i in N do
3: SA

i ← −εlog
∑M

j=1 p
Advexp 1

ε
[SB

j − C(xi, yi)]

4: SB
j ← −εlog

∑N
i=1 p

Baseexp 1
ε
[SA

i − C(xi, yi)]
5: end for
6: return SA, SB

I Alternative adversarial training
formulations

There are numerous loss functions that have been
demonstrated to enhance the adversarial robustness
of various models. However, all of the functions
presented in Table 8 have been shown to be inef-
fective in the language domain according to (Wang
et al., 2020a). In our work, we introduce a new reg-
ularizer, which has shown empirical effectiveness
on language-related problems.

I.1 Training hyper-parameters
Table 9 outlines the parameters pertaining to Table
2. The ’Freeze layers’ section emphasizes that the
initial 11 layers of the models were frozen, serving

8018



Defense Method Loss Function
Standard λ0 · CE(fcls(x, ·), y) + λ1 · CE(fcls(x̂, ·), y)

TRADES (Zhang et al., 2019) CE(fcls(x, ·), y) + λ · ∥fcls(x, ·)− fcls(x̂, ·)∥k
MMA (Ding et al., 2020) CE(fcls(x, ·), y) · 1(ϕ(x) ̸= y) + CE(fcls(x̂, ·), y) · 1(ϕ(x) = y)

MART (Wang et al., 2020b) BCE(fcls(x̂, ·), y) + λ · KL(fcls(x, ·)∥fcls(x̂, ·)) · (1− fcls(x, y))

CLP (Kannan et al., 2018) CE(fcls(x, ·), y) + λ · ∥fcls(x, ·)− fcls(x0, ·)∥k
SemRoDe (Ours) CE(fcls(x, ·), y) + λ · 1

|B|
∑

B⊂D Dist(fpool(t(XB)), fpool(t(XA)))

Table 8: Defense Methods and Loss Functions

as a feature extractor. This approach allows us
to concentrate on aligning the high-level features
during the training process.

Model Dataset Method Base
Lambda

Adv
Lambda

Dist
Lambda

Data
ratio LR Freeze

Layers

BERT

AGNEWS

Vanilla 1 0 0 0.1 2e-5 False
TextFooler + Adv Aug 1 1 0 0.1 2e-5 False
TextFooler + Adv Reg 1 1 0 0.1 2e-5 False
A2T 1 1 0 1 2e-5 False
FreeLB++ 0 1 0 1 2e-5 False
TextFooler + MMD 1 0 1 0.1 2e-5 True

MR

Vanilla 1 0 0 0.1 2e-5 False
TextFooler + Adv Aug 1 1 0 0.1 2e-5 False
TextFooler + Adv Reg 1 1 0 0.1 2e-5 False
A2T 1 1 0 1 2e-5 False
FreeLB++ 0 1 0 1 2e-5 False
TextFooler + MMD 1 0 1 0.1 2e-5 True

RoBERTa

AGNEWS

Vanilla 1 0 0 0.1 2e-5 False
TextFooler + Adv Aug 1 1 0 0.1 2e-5 False
TextFooler + Adv Reg 1 1 0 0.1 2e-5 False
A2T 1 1 0 1 2e-5 False
FreeLB++ 0 1 0 1 2e-5 False
TextFooler + MMD 1 0 1 0.1 2e-5 True

MR

Vanilla 1 0 0 0.1 2e-5 False
TextFooler + Adv Aug 1 1 0 0.1 2e-5 False
TextFooler + Adv Reg 1 1 0 0.1 2e-5 False
A2T 1 1 0 1 2e-5 False
FreeLB++ 0 1 0 1 2e-5 False
TextFooler + MMD 1 0 1 0.1 2e-5 True

Table 9: Training parameters for Table 2

I.2 Output layer architecture
For both BERT and RoBERTa, we extract the out-
put features from each token, which are, in our
case, the dimension of 128*768, and pool them
with fpool

θ along the first dimension. This process
results in an output feature vector of shape 768,
which encapsulates the information in the whole
input. This vector is subsequently used for the
LDist regularizer and passed to f cls

θ for classifi-
cation. The f cls

θ is configured to a single linear
layer. We adopted this architecture due to the small
dataset sizes used in our experiments.

I.3 Computational experiments
The experiments were conducted on a server with
8 Nvidia Tesla v100-sxm2-32gb GPUs. For all
our tests, to ensure reproducibility when training
or performing adversarial attacks, we set the seed
to 765, one of the two seeds used in the TextAt-
tack framework (Morris et al., 2020). For data
sampling and shuffling, we set the seed to 42, the
same as TextDefender (Li et al., 2021). We perform
each experiment once where we use 500 adversar-
ial samples to evaluate the model’s robustness, this
is similar to previous work.

J Ablation Studies

The default setting of N = 50, ϵ = 0.5 and λ = 1,
to our knowledge, gives the best results.

J.1 Regularizer λ strength
The LDist regularizer’s strength has a positive ef-
fect on robust accuracy at strengths of 0.5/1, after
which it tends to decrease. The robust accuracy for
the vanilla model is significantly lower, clocking in
at 13.8% (Table 10).

Table 10: Ablation study for λ on LDist

Lambda TextFooler
CA (↑) AUA (↑) ASR (↓)

0 86.0 13.8 83.95
0.1 86.0 31.8 63.02
0.5 85.8 39.6 53.85
1 85.8 39.4 54.08
5 85.4 34.4 59.72
10 85.6 31.8 62.85

J.2 Attack strength (Attacking)
In this experiment, the SemRoDe macro model
has been trained on TextFooler with N = 50, but
is subsequently attacked with TextFooler values
ranging from N=1 to N=150. This is to compare its
robust performance with that of the vanilla model.

As the value of N increases, the robustness of the
vanilla model decreases. However, upon reaching
N=150 - an amount considerably higher than the
typically used N=50 - the performance between
the two models converges. At this point, the ro-
bustness of the vanilla model remains invariant at
12%, while the SemRoDe macro model stabilizes
at 32%, clearly exhibiting superior robustness with
increased N.

J.3 Ablation ϵ

The hyperparameter ϵ determines the maximum
angular semantic similarity that a valid adversarial
sample must maintain. A small ϵ results in a high
semantic similarity threshold, as defined by the
equation w = 1− ϵ

π . It’s important to note that ϵ
is constrained by the bounds (0, π)
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Table 11: Ablation study on the attacker’s number of
word substitutions per word N

Attacker N (Epsilon) Vanilla TextFooler + MMD
(SemRoDe)

CA (↑) AUA (↑) ASR (↓) CA (↑) AUA (↑) ASR (↓)
1 86.6 75.8 12.47 85.8 75.2 12.35
5 86.6 44.6 48.5 85.8 56.2 34.5
10 86.6 33.8 60.97 85.8 51.8 39.63
50 86.0 13.8 83.95 85.8 39.4 54.08
100 86.6 12.0 86.14 85.8 32.6 62.0
150 86.6 12.0 86.14 85.8 32.6 62.0

Table 12: Ablation study on the attacker’s angular simi-
larity ϵ

Attacker ϵ (Angular Similarity) Vanilla TextFooler + MMD
(SemRoDe)

CA (↑) AUA (↑) ASR (↓) CA (↑) AUA (↑) ASR (↓)
π/96 86.6 62.2 28.18 85.8 70.4 17.95
π/48 86.6 62.2 28.18 85.8 70.4 17.95
π/24 86.6 62.2 28.18 85.8 70.4 17.95
π/12 86.6 40.4 53.35 85.8 54.2 36.83
π/6 86.6 14.0 83.83 85.8 39.0 54.55
π/3 86.6 13.6 84.3 85.8 38.4 55.24
π/2 86.6 13.6 84.3 85.8 38.4 55.24
2 · π/3 86.6 13.6 84.3 85.8 38.4 55.24
5 · π/6 86.6 13.6 84.3 85.8 38.4 55.24
π 86.6 13.6 84.3 85.8 38.4 55.24

J.4 White-box attacks

We also investigate the performance of our tech-
nique when an attacker uses gradient information
to identify word substitutions in a white-box attack
strategy, as described in (Ebrahimi et al., 2018).
Our regularizer, which aligns distributions, en-
hances robustness, especially when compared to
standard adversarial training using the same dataset,
as shown in Table 13.

Table 13: SemRoDe’s robustness to white-box attacks
on BERT-MR

Approach CA (↑) AUA (↑) ASR (↓)
Baseline 86.6 55.6 35.8
TextFooler + AT 85.8 58.6 31.7
TextFooler + MMD 86.0 67.6 21.4

J.5 Adaptive attacks

This section analyzes the threat model wherein an
attacker knows that the model has been trained on
SemRoDe, and is therefore robust to word substitu-
tions. In response, the attacker adopts an adaptive
attack strategy, such as that described in (Tramer
et al., 2020). We initiate our adaptive attack by
posing the question: How might someone compro-
mise the system, given their understanding of our
defenses?

To establish our counter-strategy, we commence
by: (1) looking for a new objective, through which
the optimization process may be effective in gen-
erating adversarial samples. Subsequently, (2) we
look for an appropriate method to optimize this

objective and uncover adversarial examples, lastly
(3) we iterate on our new findings to perform bet-
ter attacks. In the context of NLP classification,
our primary goal, which is optimizing for untar-
geted misclassification, remains the same. Never-
theless, this objective can be changed to that of
targeted misclassification if the task has more than
two classes. For the purposes of this section’s ex-
perimentation, we focus on binary classification
with the MR dataset.

For the second strategy (2), although our sys-
tem is not designed for this, a natural choice might
be character insertions. To evaluate against these
adaptive attacks, we apply the character insertion
method described in (Li et al., 2019), and addition-
ally consider the punctuation insertion techniques
put forth in (Formento et al., 2023). Remarkably,
SemRoDe enhances its robustness to character in-
sertion attacks without training on any specific data
points (Table 14), a finding that potentially rein-
forces the theory that adversarial attacks originat-
ing in the token space reside in a different distribu-
tion to that of normal samples.

Proceeding to the next step (3), we repeat the
process, now informed by insights from the previ-
ous step. Considering that our algorithm remains
robust against character insertions, it is possible
that the robust adversarial training method we em-
ploy can detect the sequence in which words are
substituted during an attack. Throughout the train-
ing phase, we utilized a greedy search strategy with
word replacement to create adversarial examples.
This approach enhances the efficiency of greedy
search by initially ranking words based on their im-
portance as determined by saliency, attention score,
or the impact on classification confidence when
removed. The greedy search then prioritizes these
words for substitution. To further assess the robust-
ness of our system, we investigate how it performs
when the attacker adopts a different optimization
strategy, building upon step (2).

For the refined approach (2), we explore a suite
of alternative algorithms to traverse the optimiza-
tion landscape, opting for conventional greedy
search, particle swarm optimization (Zang et al.,
2020), and beam search instead of greedy search
enriched with word replacement (Table 15).

Lastly, we reflect on our findings on how the
defence failed, what we learned from it, and po-
tential improvements. We demonstrate that our
technique, which aligns distributions, outperforms
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the use of adversarial training with a regularizer,
when an attacker engages in an adaptive attack
strategy. However, we do note a significant drop
in robust accuracy when changing the optimization
strategy. This shows that there may be limitations
when generating data through a specific optimiza-
tion strategy, such as a greedy search paired with
word replacement. To enhance performance across
various attack optimization strategies, it might be
better to identify an optimization method superior
to the current greedy search with word replace-
ment. A more comprehensive and diverse range
of samples could be achieved by incorporating a
wider set of word substitutions, occurring at vari-
ous positions within the sentence and in a different
order. This approach could significantly increase
the diversity of the data.

Table 14: Initial testing on adaptive adversarial attacks.
We explore character and punctuation insertions. The
results are on MR and BERT.

Approach Character Insertions Punctuation Insertions
CA (↑) AUA (↑) ASR (↓) CA (↑) AUA (↑) ASR (↓)

Baseline 86.6 48.0 44.57 86.6 36.0 58.43
TextFooler + AT 85.8 45.8 46.62 85.8 34.6 59.67
TextFooler + MMD 86.0 58.8 31.63 86.0 51.0 40.7

K Extended Computation time

In this section, we investigate the GPU computa-
tion time required for generating the adversarial
training set and for training the model with this
augmented dataset. Data augmentation (TextFooler
+ AUG) emerges as the fastest method. Given that
the augmented data constitutes only 10% of the
original dataset, the incremental cost during train-
ing is minimal. Consequently, data augmentation
entails a training duration that is approximately
10% longer than that of the baseline model.

The Adversarial Training techniques TextFooler
+ AT, A2T, and TextFooler + MMD (SemRoDe),
work by first creating an adversarial training set.
The lower computation times between TextFooler
and A2T show that data generation with TextFooler
is more computationally efficient than with A2T.
Meanwhile, with respect to the training process,
these methods exhibit similar timeframes, approxi-
mately doubling the duration compared to baseline
training. This increase is attributable to the neces-
sity of sampling and conducting inference using the
adversarial dataset at each base training iteration.

We also considered embedding perturbation tech-
niques such as FreeLB++, InfoBERT and DSRM.
These approaches involve modifying the input

through multiple PGD steps at every training it-
eration. To match the performance of the baseline,
as detailed in the implementation from TextDe-
fender (Li et al., 2021). Specifically, we applied
the gradient perturbation 15 times for InfoBERT,
30 times for FreeLB++, and once for DSRM per
iteration. The accumulation of these multiple PGD
steps across a comprehensive dataset significantly
extends the training duration. Table 4 provides a
comparative analysis of the computational times of
the different methods.

L Distinction between GloVe and
Counter-Fitted GloVe embeddings

The word embeddings used in this study are
GloVe embeddings. GloVe (Pennington et al.,
2014) embeddings are generated using a self-
supervised algorithm that extracts global word-
word co-occurrence statistics from a given cor-
pus. However, to address certain limitations of
plain GloVe embeddings, new authors introduced
Counter-Fitted GloVe embeddings (Mrkšić et al.,
2016). These counter-fitted embeddings aim to
mitigate issues arising from the expectation of se-
mantic similarity, which sometimes results in con-
ceptual associations and anomalies within the gen-
erated embedding clusters. These anomalies may
include clusters containing antonyms instead of
synonyms, or dissimilar words that typically appear
in similar contexts, such as east/west/north/south.

Counter-fitted embeddings inject both synonym
and anonym information into the original GloVe
embeddings, making them more suitable for word
substitution attacks. In the context of this research,
the original TextBugger paper employed GloVe
embeddings, but within the TextAttack framework,
the implementation of TextBugger utilizes Counter-
Fitted GloVe embeddings. The experiments con-
ducted for this study were performed using the orig-
inal TextBugger algorithm with GloVe embeddings
as the baseline for comparison, while TextFooler
utilizes the Counter-Fitted GloVe embeddings.

M Extended Feature space plots

Figures 5, 6 present the t-SNE visualizations of
MR without marginal distributions, with the corre-
sponding plots showcased in Figure 2. Meanwhile,
Figures 7, 8, 9, 10 display the t-SNE and marginal
distributions for AG-News. Figure 11 illustrates
the reduction in distances for AG-News, and Figure
12 depicts the decreasing distances for SST2.
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Table 15: Second testing on adaptive adversarial attacks. We explore multiple optimization strategies. The results
are on MR and BERT.

Train method
(Defense)

Particle swarm
optimization

Beam
Search

Greedy
Search

CA (↑) AUA (↑) ASR (↓) CA (↑) AUA (↑) ASR (↓) CA (↑) AUA (↑) ASR (↓)
Baseline 86.6 13.6 84.3 86.6 15.6 81.99 86.6 10.2 88.22
TextFooler + AT 85.8 25.6 70.16 85.8 23.6 72.49 85.8 12.6 85.31
TextFooler + MMD 86.0 38.6 55.12 86.0 28.2 67.21 86.0 27.4 68.14
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Figure 5: Non-Robust model TSNE.
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Figure 6: Robust model TSNE.
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Figure 7: Non-Robust model TSNE.
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Figure 8: Robust model TSNE.

−40 −20 0 20 40
x

−20

−10

0

10

20

y

Non-Robust T-SNE
Adv Samples 345 

Sample's Type
Base Sample (0)
Base Sample (1)
Successful Adv Sample (0->1)
Successful Adv Sample (1->0)
Progression Sample (0->1)

Figure 9: Non Robust model TSNE with marginal dis-
tributions.

N Qualitative Samples

Table 16 showcases two examples that are progres-
sively perturbed through word substitutions per-
formed by TextFooler.

O Extended SemRoDe results

We also test on RoBERTAa and AGNEWS in Table
17.
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Sample Type Model Number of Word
Substitutions Sample (MR Sentiment classification)

Positive Sentiment to Negative Sentiment

BERT Base
Base Sample (1) 0 buy is an accomplished actress, and this is a big, juicy role .
Successful Adv Sample (1 to 0) 1 buy is an accomplished actress, and this is a big, fecund role .

BERT Robust

Base Sample (1) 0 buy is an accomplished actress, and this is a big, juicy role .
Base Sample (1) 1 absorbing is an accomplished actress, and this is a big, juicy role .
Base Sample (1) 2 absorbing is an accomplished actress, and this is a momentous, juicy role .
Successful Adv Sample (1 to 0) 3 absorbing is an accomplished actress, and this is a momentous, juicy liability .

Negative Sentiment to Positive Sentiment

BERT Base
Base Sample (0) 0

you’ll just have your head in your hands wondering why lee’s character didn’t just go to a
bank manager and save everyone the misery .

Base Sample (0) 1
you’ll just have your head in your veins wondering why lee’s character didn’t just go to a
bank manager and save everyone the misery .

Successful Adv Sample (0 to 1) 2
you’ll just obtain your head in your veins wondering why lee’s character didn’t just go to a
bank manager and save everyone the misery .

BERT Robust

Base Sample (0) 0
you’ll just have your head in your hands wondering why lee’s character didn’t just go to a
bank manager and save everyone the misery .

Base Sample (0) 1
you’ll just have your head in your hands wondering why lee’s character didn’t just go to a
bank warden and save everyone the misery .

Base Sample (0) 2
you’ll just have your head in your hands wondering why lee’s character didn’t just go to a
southwest warden and save everyone the misery .

Base Sample (0) 3
you’ll just have your head in your hands wondering why lee’s idiosyncrasies didn’t just go to a
southwest warden and save everyone the misery .

Base Sample (0) 4
you’ll just have your head in your veins wondering why lee’s idiosyncrasies didn’t just go to a
southwest warden and save everyone the misery .

Successful Adv Sample (0 to 1) 5
you’ll just have your head in your veins wondering why lee’s idiosyncrasies didn’t just go to a
southwest warden and save everyone the miseries .

Table 16: Qualitative examples showing a sample being perturbed in both the base model and our robust model.
Positive to Negative Sentiment (Figures 2 (Top and Bottom), 5 and 6). Negative to Positive Sentiment (Figures 7,9,
8, 10).
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Figure 10: Robust model TSNE with marginal distribu-
tions.
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Model Dataset Train method
(Defense)

Test Method
PWWS

(WordNet)
BERTAttack
(Contextual)

TextFooler
(Counter Fitted)

TextBugger
(Sub-W GloVe)

CA (↑) AUA (↑) ASR (↓) CA (↑) AUA (↑) ASR (↓) CA (↑) AUA (↑) ASR (↓) CA (↑) AUA (↑) ASR (↓)

BERT

AGNews

Vanilla 96.2 56.2 41.58 96.2 45.8 52.39 96.2 30.4 68.4 96.0 41.4 56.88
TextFooler + Adv Aug 95.4 66.4 30.4 95.4 49.6 48.01 95.4 51.6 45.91 95.4 50.6 46.96
TextFooler + Adv Reg 96.4 71.2 26.14 96.4 [55.4] 42.53 96.4 58.4 39.42 96.4 56.4 41.49
A2T 96.4 58.0 39.83 96.4 45.2 53.11 96.4 41.6 56.85 96.4 43.6 54.77
InfoBERT 96.0 69.8 27.29 96.0 59.6 37.92 96.0 49.2 48.75 96.0 55.8 41.88
FreeLB++ 95.4 73.8 22.64 95.4 54.8 42.56 95.4 52.8 44.65 95.4 51.6 45.91
DSRM 94.6 55.4 41.44 94.6 48.8 48.41 94.6 37.4 60.47 94.6 47.6 49.68
PWWS + MMD (SemRoDe) 96.2 45.0 53.22 96.2 44.4 53.85 96.2 35.0 63.62 95.6 43.2 54.81
BERTAttack + MMD (SemRoDe) 95.8 [75.4] 21.29 95.8 73.0 23.8 95.6 (68.0) 28.87 95.6 (73.2) 23.43
TextBugger + MMD (SemRoDe) 95.6 (75.6) 20.92 95.6 73.0 23.64 95.6 [67.8] 29.08 95.6 [73.0] 23.64
TextFooler + MMD (SemRoDe) 95.6 77.0 19.46 95.6 (72.6) 24.06 95.6 69.4 27.41 95.6 74.2 22.38

SST-2

Vanilla 94.0 20.2 78.51 94.0 31.6 66.38 94.0 11.4 87.87 94.0 2.8 97.02
TextFooler + Adv Aug 94.0 27.4 70.85 94.0 33.0 64.89 94.0 18.4 80.43 94.0 4.2 95.53
TextFooler + Adv Reg 94.6 23.4 75.26 94.6 33.0 65.12 94.6 18.4 80.55 94.6 4.6 95.14
A2T 94.0 22.8 75.74 94.0 38.8 58.72 94.0 16.0 82.98 94.0 5.0 94.68
InfoBERT 92.6 27.4 70.41 92.6 32.2 65.23 92.6 15.8 82.94 92.6 4.0 95.68
FreeLB++ 90.8 28.8 68.28 90.8 35.0 61.45 90.8 16.8 81.5 90.8 4.4 95.15
DSRM 93.0 23.8 74.41 93.0 41.6 55.27 93.0 27.4 70.54 93.0 11.0 88.17
PWWS + MMD (SemRoDe) 93.8 (41.6) 55.65 93.8 59.2 36.89 93.8 (43.8) 53.3 93.8 (30.2) 67.8
BERTAttack + MMD (SemRoDe) 94.2 43.6 53.72 94.2 (58.2) 38.22 94.2 49.0 47.98 94.2 33.2 64.76
TextBugger + MMD (SemRoDe) 94.2 31.4 66.67 94.2 48.8 48.2 94.2 32.6 65.39 93.8 18.6 80.17
TextFooler + MMD (SemRoDe) 94.2 [40.4] 57.11 94.2 [55.4] 41.19 94.2 [40.2] 57.32 94.2 [25.0] 73.46

MR

Vanilla 86.0 21.2 75.35 86.0 32.6 62.09 86.0 13.8 83.95 86.0 5.8 93.26
TextFooler + Adv Aug 85.6 21.0 75.47 85.6 31.6 63.08 85.6 11.8 86.21 85.6 4.0 95.33
TextFooler + Adv Reg 86.8 25.8 70.28 86.8 34.2 60.6 86.8 18.4 78.8 86.4 8.0 90.74
A2T 86.8 18.0 79.26 86.8 32.6 62.44 86.8 13.8 84.1 86.8 3.8 95.62
InfoBERT 82.6 31.4 61.99 82.6 34.6 58.11 82.6 19.6 76.27 82.6 6.8 91.77
FreeLB++ 84.2 26.6 68.41 84.2 32.4 61.52 84.2 16.4 80.52 84.2 3.8 95.49
DSRM 87.6 25.6 70.78 87.6 32.6 62.79 87.6 20.0 77.17 87.6 11.0 87.44
PWWS + MMD (SemRoDe) 86.0 37.0 56.98 86.0 [45.8] 46.74 86.0 38.2 55.58 86.0 28.2 67.21
BERTAttack + MMD (SemRoDe) 85.8 38.2 55.48 85.8 (46.6) 45.69 85.8 40.0 53.38 85.8 29.4 65.73
TextBugger + MMD (SemRoDe) 85.8 [37.4] 56.41 85.8 47.6 44.52 85.8 (39.4) 54.08 85.8 (28.8) 66.43
TextFooler + MMD (SemRoDe) 85.8 (37.8) 55.94 85.8 44.6 48.02 85.8 [39.0] 54.55 85.8 [28.6] 66.67

RoBERTa

AGNews

Vanilla 95.8 49.8 48.02 95.8 45.6 52.4 95.8 32.2 66.39 95.8 44.8 53.24
TextFooler + Adv Aug 95.4 63.0 33.96 95.4 51.4 46.12 95.4 50.6 46.96 95.4 51.8 45.7
TextFooler + Adv Reg 95.4 67.2 29.56 95.4 57.6 39.62 95.4 60.0 37.11 95.4 60.0 37.11
A2T 94.8 61.2 35.44 94.8 49.8 47.47 94.8 46.8 50.63 94.8 50.8 46.41
InfoBERT 95.6 63.4 33.68 95.6 62.8 34.31 95.6 41.0 57.11 95.6 55.6 41.84
FreeLB++ 96.0 70.0 27.08 96.0 64.8 32.5 96.0 46.4 51.67 96.0 59.6 37.92
DSRM 95.8 64.6 32.71 96.0 57.2 40.42 96.0 40.2 58.12 96.0 53.4 44.38
PWWS + MMD (SemRoDe) 95.4 (72.4) 24.11 95.4 70.6 26.0 95.4 (63.0) 33.96 95.4 (70.0) 26.62
BERTAttack + MMD (SemRoDe) 95.4 74.8 21.59 95.4 72.8 23.69 95.4 70.8 25.79 95.4 61.6 35.43
TextBugger + MMD (SemRoDe) 95.4 71.2 25.37 95.4 (71.6) 24.95 95.4 [61.4] 35.64 95.4 [69.4] 27.25
TextFooler + MMD (SemRoDe) 95.6 [71.4] 25.31 95.6 [70.8] 25.94 95.6 61.2 35.98 95.6 70.0 26.78

SST2

Vanilla 94.2 25.0 73.46 94.2 38.4 59.24 94.2 14.2 84.93 94.2 6.6 92.99
TextFooler + Aug 93.0 35.8 61.51 93.0 38.2 58.92 93.0 29.2 68.6 93.0 12.4 86.67
TextFooler + AT 93.8 30.6 67.38 93.8 34.8 62.9 93.8 21.6 76.97 93.8 4.8 94.88
A2T 93.6 20.6 77.99 93.6 32.8 64.96 93.6 14.0 85.04 93.6 3.6 96.15
InfoBERT 95.6 39.0 59.21 95.6 44.0 53.97 95.6 34.0 64.44 95.6 18.6 80.54
FreeLB++ 95.4 34.8 63.52 95.4 36.2 62.05 95.4 23.8 75.05 95.4 10.4 89.1
DSRM 94.4 30.2 68.01 94.4 42.4 55.08 94.4 24.8 73.73 94.4 14.4 84.75
PWWS + MMD (SemRoDe) 93.8 50.0 46.7 93.8 59.6 36.46 93.8 50.2 46.48 93.8 34.8 62.9
BERTAttack + MMD (SemRoDe) 93.8 (47.2) 49.68 93.8 [53.2] 43.28 93.8 40.6 56.72 93.8 27.6 70.58
TextBugger + MMD (SemRoDe) 93.8 45.6 51.39 93.8 [53.2] 43.28 93.8 [40.8] 56.5 93.8 [32.2] 65.67
TextFooler + MMD (SemRoDe) 94.2 [47.0] 50.11 94.2 (59.2) 37.15 94.2 (46.6) 50.53 94.2 (32.4) 65.61

MR

Vanilla 89.6 24.0 73.21 89.6 33.2 62.95 89.6 12.0 86.61 89.6 5.0 94.42
TextFooler + Adv Aug 90.0 30.4 66.22 90.0 36.0 60.0 90.0 21.4 76.22 90.0 9.0 90.0
TextFooler + Adv Reg 90.8 31.8 64.98 90.8 34.6 61.89 90.8 21.0 76.87 90.8 9.4 89.65
A2T 92.0 24.2 73.7 92.0 28.8 68.7 92.0 15.0 83.7 92.0 4.4 95.22
InfoBERT 89.2 30.4 65.92 89.2 29.4 67.04 89.2 19.4 78.25 89.2 4.4 95.07
FreeLB++ 91.6 29.4 67.9 91.6 33.8 63.1 91.6 20.0 78.17 91.6 6.6 92.79
DSRM 88.4 29.0 67.19 88.4 39.8 54.98 88.4 25.2 71.49 88.4 9.8 88.91
PWWS + MMD (SemRoDe) 89.4 [53.2] 40.49 89.4 57.8 35.35 89.4 (55.4) 38.03 89.4 (43.2) 51.68
BERTAttack + MMD (SemRoDe) 89.8 53.6 40.31 89.8 [56.8] 36.75 89.8 46.2 48.55 89.8 56.4 37.19
TextBugger + MMD (SemRoDe) 89.4 (53.4) 40.27 89.4 (57.2) 36.02 89.4 55.6 37.81 89.4 [42.8] 52.13
TextFooler + MMD (SemRoDe) 88.8 51.8 41.67 88.8 56.6 36.26 88.8 [54.8] 38.29 88.8 42.2 52.48

Table 17: Extended results: Values in Bold represent the highest scores, those in round brackets (∗) denote the
second highest, and values in square brackets [∗] indicate the third highest.
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Figure 12: OT (Top) MMD (Bottom) response over
iterations for SST2
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