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Abstract

We introduce BUST, a comprehensive bench-
mark designed to evaluate detectors of texts
generated by instruction-tuned large language
models (LLMs). Unlike previous benchmarks,
our focus lies on evaluating the performance of
detector systems, acknowledging the inevitable
influence of the underlying tasks and different
LLM generators. Our benchmark dataset con-
sists of 25K texts from humans and 7 LLMs re-
sponding to instructions across 10 tasks from 3
diverse sources. Using the benchmark, we eval-
uated 5 detectors and found substantial perfor-
mance variance across tasks. A meta-analysis
of the dataset characteristics was conducted to
guide the examination of detector performance.
The dataset was analyzed using diverse metrics
assessing linguistic features like fluency and
coherence, readability scores, and writer atti-
tudes, such as emotions, convincingness, and
persuasiveness. Features impacting detector
performance were investigated with surrogate
models, revealing emotional content in texts en-
hanced some detectors, yet the most effective
detector demonstrated consistent performance,
irrespective of writer’s attitudes and text styles.
Our approach focused on investigating relation-
ships between the detectors’ performance and
two key factors: text characteristics and LLM
generators. We believe BUST will provide valu-
able insights into selecting detectors tailored
to specific text styles and tasks and facilitate
a more practical and in-depth investigation of
detection systems for LLM-generated text.

1 Introduction

In recent years, the development of large language
models (LLMs) has surged, with notable releases
such as GPT-4, Llama-2 and Falcon. As these mod-
els have advanced, distinguishing between texts
written by humans and texts generated by LLMs

*Equal contribution, with Cornelius focusing on dataset
creation and Lithgow on evaluation and data repurposing.

CONTEXT: Belize, formerly known as British Honduras, is a Caribbean
country located on the northeastern coast of Central America. Belize
is bordered on the northwest by Mexico, on the east by the Caribbean
Sea, and on the south and west by Guatemala. It has an area of 22,970
square kilometres (8,867 sq mi) and a population of 408,487 (2019).
Its mainland is about 290 km (180 mi) long and 110 km (68 mi) wide.
It has the lowest population and population density in Central America.

INSTRUCTION: Given this short paragraph about
Belize, how many people live there and what is notable
about its population density?

HUMAN: Belize has a population of 408,487 people
and has the lowest population density in Central America.

FALCON 7B: The population of Belize is around
408,487 according to the Worldometer statistics. This
figure is the estimated population of the country as
of year 2019. Belize is one of the smallest countries
in Central America with a population density of 38.93
people per square kilometers.

LLAMA-2 70B: According to the information pro-
vided, 408,487 people live in Belize. Belize has the lowest
population and population density in Central America.

GPT-4: According to the paragraph, Belize has a
population of 408,487 as of 2019. What is notable about
its population density is that it has the lowest population
and population density in Central America.

Figure 1: BUST dataset excerpt for the closed QA task:
Presents a HUMAN response and machine-generated texts
(e.g., FALCON 7B, LLAMA-2 70B, GPT-4) for a given
CONTEXT and INSTRUCTION.

has become challenging. Several studies show that
most adults cannot distinguish between the two
(Clark et al., 2021; Jakesch et al., 2023). This in-
distinguishability poses several challenges, ranging
from the potential for fraudulent authoring to the
automatic dissemination of targeted misinforma-
tion (Pan et al., 2023; Yu et al., 2023). There are
two main approaches to identifying generated text -
watermarking and detection systems - with the fo-
cus of this paper on the latter. Watermarking relies
on the developer’s watermark, whereas detection
systems can be developed independently. However,
the effectiveness and feasibility of current detec-
tors in identifying machine-generated text (MGT)
remains an active area of research. To effectively
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evaluate these detection systems, there is an ur-
gent need for an adaptable benchmarking dataset
that can cope with the influx of LLMs and covers
various tasks (Tang et al., 2023).

In this paper, we introduce a comprehen-
sive dataset1 tailored for benchmarking detectors
against instruction-tuned LLMs. This dataset con-
sists of 3,180 instructions paired with correspond-
ing responses from both humans and LLMs, result-
ing in a corpus of over 25,000 texts. A system-
atic evaluation of five distinct detectors was con-
ducted, revealing notable variances in performance
across the range of tasks. Additionally, we have
conducted a meta-analysis, examining the dataset’s
characteristics and employing surrogate models to
investigate the features that most significantly im-
pact detector performance. Our findings indicate
that while emotional content in texts enhanced the
performance of some detectors, the most effective
detector demonstrated consistent performance, irre-
spective of the writer’s attitudes. This benchmark2

serves as a valuable tool for identifying the most
suitable detectors for specific text styles and tasks.

The paper is organized as follows: Section 2
gives an overview of related work, focusing on
detector systems and analog datasets. Section 3
details the specifics of our proposed dataset and
the generators used. Section 4 explains the metrics
used for comparing different generators and the
used detector systems, while section 5 presents our
results. In section 6 we present two ablation studies
and a discussion on the implications of our results
is given in section 7. The paper concludes with
section 8, where we summarize our contributions
and make suggestions for future research.

2 Related Work

Following, we present related work on generated
text detectors and datasets for MGT.

Generated Text Detectors MGT detection has
evolved significantly over the years. Initial ef-
forts focused on detecting differences in linguis-
tic features and using statistical measures such as
perplexity, relative entropy, and style similarities
(Beresneva, 2016). Gehrmann et al. (2019) pro-
vided a suite of baseline statistical methods known
as "GLTR" to help humans detect MGT without
prior training. Recent developments like Detect-
GPT (Mitchell et al., 2023) define a curvature-

1https://github.com/IDSIA-NLP/BUST
2https://bust.nlp.idsia.ch

based criterion using log-likelihoods computed by
the model in question, circumventing the need to
train a separate classifier, collect a dataset of real
or generated passages, or explicitly watermark the
generated text. Similarly, Su et al. (2023) presented
DetectLLM, a zero-shot approach detecting a range
of LLMs using log-rank information.

Another prevalent strategy in this area involves
the detection of MGT as a classification task. In
this context, various pre-trained language models
such as Vicuna (Chiang et al., 2023) or RoBERTa
(Guo et al., 2023) are fine-tuned on datasets that
combine human-written with their corresponding
MGT examples. Notably, many of these models are
specialized for specific tasks, as GROVER (Zellers
et al., 2019). Others are tailored to specific domains
(Koike et al., 2023) or aim to detect output from
specific generator models (Guo et al., 2023).

LLM generated text datasets The datasets used
to evaluate systems capable of distinguishing be-
tween human-written and MGT vary considerably.
Some developers of detector systems have chosen
to create their own datasets for this purpose (Rad-
ford et al., 2019; Gehrmann et al., 2019; Zellers
et al., 2019; Verma et al., 2023). However, publicly
available datasets have often been created for very
specific purposes. In particular, some are designed
for specific generator models (Fagni et al., 2021;
Guo et al., 2023). Other datasets are limited to a
single task (Guo et al., 2023), while some are spe-
cific to a particular domain, such as the CHEAT
dataset (Yu et al., 2023), which solely focuses on
generating academic abstracts.

The TuringBench dataset (Uchendu et al., 2021)
provides a comprehensive benchmark containing
news articles generated by 19 different models,
based on their titles, and juxtaposed with the cor-
responding human-authored articles. However, the
text-generating capabilities of the models in this
dataset are not on par with the advanced capabilities
of current LLMs. Furthermore, Clark et al. (2021)
presented a dataset aimed at investigating the hu-
man ability to distinguish between texts written by
humans and machines. Notably, this dataset spans
multiple domains and incorporates various models,
though it is limited by having only 50 samples for
each generator. More recently, datasets encompass-
ing a wider variety of generator models have been
introduced, yet they tend to specialize in a limited
number of tasks. These include multilingual news
writing (Macko et al., 2023), question answering
(He et al., 2023), and article and review writing
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Source Dataset Task Human Machine Total

Dolly Databricks Brainstorming 250 1734 1984
Dolly Databricks Classification QA 250 1724 1974
Dolly Databricks Closed QA 250 1707 1957
Dolly Databricks Creative Writing 250 1738 1988
Dolly Databricks General QA 250 1724 1974
Dolly Databricks Information Extraction 250 1722 1972
Dolly Databricks Open QA 250 1719 1969
Dolly Databricks Summarization 250 1698 1948

Amazon Reviews Review writing 898 6251 7149

Twitter Post Stance writing 282 1969 2251

Total 3180 21986 25166

Table 1: Statistical information on our parallel human-written
and machine-generated dataset, divided into the different
source datasets and tasks.

(Wang et al., 2023). In comparison, our BUST
dataset incorporates diverse tasks, enabling a more
comprehensive analysis of detection systems’ capa-
bilities. A comprehensive overview of the available
datasets in this domain is given in Appendix Tab.
5. In contrast to other studies, our research focuses
exclusively on instruction-tuned models, which the
public is increasingly using through prompting in-
terfaces.

3 Dataset

This section describes in detail the datasets used
in our research. For a comprehensive overview
of these datasets, see Tab. 1. Our collected com-
parison corpus includes paired entries of partially
contextualized instructions, as well as both human-
written and MGT responses. Multiple MGT re-
sponses are available for each instruction, gener-
ated by different models, as shown in Fig. 1. The
specific models from which these responses are
derived vary in complexity and range in size from
7B to over 100B parameters. Details of the text
generation models can be found in Appendix Tab.
10.

For a comprehensive comparison and robust
analyses, we included models in different configu-
rations: standard models, models we further trained
ourselves, and models with or without Parameter-
efficient Fine-tuning (PEFT).

3.1 Dataset creation

This study uses a dataset obtained from a subset
of the publicly available Databricks Dolly dataset
(Conover et al., 2023). The dataset is characterized
by a large variety of human writing styles with
5000 annotators. In addition, the dataset is divided
into 8 different tasks, which allows for differential
benchmarking across these categorical variations.

In constructing our benchmark dataset, we ini-
tially selected 2000 samples from the Databricks

Dolly dataset using a stratified random sampling
technique to ensure representativeness across dif-
ferent tasks. Then we prompted 7 distinct Large
Language Models (LLMs) with the instructions of
these examples to generate the MGT responses.

To further examine detectors’ adaptability to dis-
tributional variations, we enhanced our dataset by
integrating two additional datasets, specifically re-
purposed for this study, which will be described in
the following section.

3.1.1 Repurposed review and stance datasets
While repurposing the reviews dataset for our study,
we strategically leveraged existing datasets, empha-
sizing those with the potential inclusion of emo-
tional or biased statements to evaluate how detec-
tors perform in such specific scenarios. We utilized
an Amazon review dataset (Ni et al., 2019) focused
on magazine subscriptions, spanning from 2014
to 2018, amounting to 900 reviews after meticu-
lous selection and linkage with product descrip-
tions. Additionally, we incorporated the CovidLies
dataset (Hossain et al., 2020; Chen et al., 2020), fea-
turing tweets expressing stances on specific topics.
In the case of the review dataset, the processing
pipeline involved applying sentiment prediction
and keyword extraction. We mapped 5-star review
scores to a textual scale, ranging from "Very un-
satisfied" to "Very satisfied." Using sentiment, key-
words, mapped satisfaction levels, and product de-
scriptions, we generated hypothetical instructions
formatted similarly to the Databricks Dolly dataset,
which underwent the same steps of synthetic gener-
ation. In the case of CovidLies, because the dataset
already provided the Tweet’s stance, we extracted
mentions and hashtags to provide them as guiding
information within the prompt.3

Similar to the Databricks Dolly dataset, the re-
purposed datasets include a wide variety of authors,
as the majority of reviews and tweets are written by
different users. By refraining from quality-based
filtering, the datasets ensure coverage of the full
spectrum of human expression and provide a broad,
realistic picture of different language styles and
writing methods.

4 Methodology

4.1 Dataset meta-analysis
Our research is primarily concerned with provid-
ing a careful evaluation and comparison of human-

3Appendix Tab. 9 provides a glimpse of a few examples
and Appendix Fig. 5 shows an overview of the process.
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written and MGT responses. To ensure the com-
pleteness and reliability of our results, we used
multiple evaluation metrics, each tailored to spe-
cific aspects of the data. This section explains the
methods and metrics used during our evaluation
process. Linguistic features and statistical dif-
ferences serve as basic markers for evaluating the
generated responses’ quality, fluency, and coher-
ence. The features used for our assessment are
listed in Appendix Tab. 6. Readability indices
are an empirical measure of the ease with which
a reader can understand a written text. We use
various readability indices with different emphases
listed in Appendix Tab. 7. Writer’s attitudes of-
fer indirect assessments of the author’s attitude by
categorizing the text based on dimensions like con-
vincingness, persuasiveness, irony, and emotions.
The objective is to gain interpretable insights into
whether the attitudes expressed in the texts influ-
ence the behavior of detectors. In our approach,
we utilized off-the-shelf models to infer attitudes.4

LIWC-based features are linguistic and psycho-
metric features obtained using LIWC5 (Boyd et al.,
2022), a well-known academically developed soft-
ware, providing quantitative insights of not only
linguistic and grammar (such as particular punc-
tuation, time orientation etc.) but also other more
sophisticated aspects of written text such as cogni-
tion, perception, social, motivation.

The rationale for selecting linguistic, readability,
writer’s attitude, and LIWC-based features was to
bring explainability to detector results. These fea-
tures were chosen for their ability to reflect diverse
perspectives on texts and their source.

4.2 Detectors
In our benchmark, we evaluated a diverse set of
black-box detector models, including both publicly
available and proprietary systems, as well as those
developed for commercial and non-commercial pur-
poses. Each detector was tested in a real-world
zero-shot scenario in which they were asked to dis-
tinguish between human-written and MGT, without
any prior fine-tuning on specific examples. The
XLMR_ChatGPT (Antoun et al., 2023) and Chat-
GPT_QA (Guo et al., 2023) detectors are based on
RoBERTa (Liu et al., 2019) and were fine-tuned us-
ing the HC3 dataset. In contrast to ChatGPT_QA,
the XLMR_ChatGPT detector was also trained on
out-of-domain data to improve its resilience against

4The models used are listed in Appendix Tab. 8.
5https://www.liwc.app/

common attack methods. Meanwhile, the training
of the ChatGPT_QA model was limited to question-
answer pairs extracted from the full text of the HC3
corpus to obtain a distinct knowledge domain. Ad-
ditionally, we used the RADAR_Vicuna7B (Hu
et al., 2023) model developed for robust MGT de-
tection through adversarial learning. This learning
process simulates an adversarial game with two
players: a paraphraser that attempts to generate re-
alistic text that can evade the detector and a detector
that attempts to thwart such attempts. In contrast,
the LLMDet (Wu et al., 2023) detector specializes
in identifying the origin of a given text and effi-
ciently distinguishing between several LLMs, such
as GPT-2, OPT, LLaMA, and their human-written
counterparts. It uses the next-token probabilities
of salient n-grams and proxy perplexity to make
its decisions. Lastly, we looked at the widely used
commercial system GPTZero6. Since it is a closed-
source platform, the details of GPTZero’s model
architecture, training datasets, and methods are not
publicly available, adding a layer of complexity to
evaluating its detection efficacy.

4.2.1 Detectors evaluation
Detector performance is evaluated using standard
classification metrics, considering LLM-generated
as the positive class. Due to the imbalanced nature
of our dataset, we used F1-macro as the primary
metric supplemented by the Matthews Correlation
Coefficient (MCC). F1-macro provides a balanced
assessment of precision and recall across all classes,
and MCC is robust to skewed distributions.7 The
differing outputs of the various detectors are han-
dled as follows: The LLMDet model outputs prob-
abilities for the text being generated by several
specific LLMs, which we merged into a single
machine-generated category or human-generated;
here, we took "1 - (score of human-generated)".
For the Radar_Vicuna7B model, which outputs the
probability that a text is machine-generated, we
labeled text as machine-generated if the probability
exceeded 0.5, using the probability as a value. Chat-
GPT_QA and XLMR_ChatGPT detectors make
binary decisions, using the provided score if the
detector labels the text as MGT or 1-score in the
opposite case. The evaluation is performed on dif-
ferent levels, considering different generative mod-
els, tasks and detectors. Additionally, we perform
correlation analysis and build surrogate models to

6https://www.gptzero.me
7Additional metrics are reported in Appendix A.
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simulate detector behavior.
Correlations between detectors’ predictions

and dataset features We conducted a multifaceted
analysis to comprehensively evaluate detector per-
formance and gain insights into their behavior
across various scenarios. Firstly, we computed
correlations between detector systems and dataset
features. This approach allows us to uncover pat-
terns in performance. Our goal was not only to
assess raw performance but also to understand
better how detectors respond in different contex-
tual settings. Furthermore, we aimed to unveil
interpretable associations between detector perfor-
mance and text features at varying levels, ranging
from lexico-syntactic attributes to nuanced expres-
sions of writers’ attitudes.

In our categorical correlation analysis, we em-
ployed Chi-tests to examine the relationships be-
tween detector predictions (human or MGT) and
the categorized attitudes of writers. For a more
detailed exploration, we also included correlation
assessments on continuous features. This involved
evaluating relationships between textual features
(such as length and word count), softmax outputs
representing writers’ attitudes versus the prediction
scores generated by the detectors.

Surrogate models As noted, detectors are not
only black-box models but often also proprietary,
meaning many aspects of their inner workings are
not publicly disclosed. We simulate detector behav-
ior using surrogate models to understand different
detector outcomes on our benchmark dataset. Each
surrogate model is a classifier that ingests all men-
tioned linguistic, attitudinal and psychometric fea-
tures and uses a particular detector label (human vs.
MGT) as the target. To make the surrogate model
explainable, we use the Gradient Boosting classi-
fier as it provides insight into variable importance.
We construct multiple surrogate models while also
considering different tasks and generative models.

5 Results

5.1 Dataset Meta-analysis

Readability scores of texts produced by generative
models vary greatly depending on the chosen read-
ability metric, although, in general, for the majority
of readability metrics, texts generated by Falcon-
7b-Dolly obtain on average quite different scores
from those of other generative models.
Linguistic features The greatest variations be-
tween generators could be observed in the gen-

erated text length, where the longest texts are gen-
erated by Guanaco-7b, LLaMA-2-7b*, and GPT-4.

LIWC features The greatest differences between
generated texts could be noticed in terms of au-
thentic, analytic, tone and clout scores, with GPT-
4 texts having the highest analytic and authentic
scores. Less pronounced are differences in percep-
tion, cognition, drives and social aspects. While
GPT-4 texts still achieve the highest perception
scores, the highest drive scores are observed in
GPT-3.5. With respect to cognition, GPT-4 is
closely followed by LLaMA-2-70b* and LLaMA-
2-7b*, while in terms of social aspects, the latter
two take supremacy over the competitors. Minor
differences were noticed in conversation scores
where LLaMA-2-7b* comes closest to humans.
Additional figures for readability, linguistic, and
LIWC features are reported in the Appendix A.5.

Writers attitude Analyzing irony and emotional
expression in human-written text versus language
models (LLMs) reveals interesting patterns. No-
tably, human text tends to contain more irony than
LLM-generated texts, with GPT-4 exhibiting the
least ironic undertones (see Appendix Fig. 17).
In terms of emotions, a comparison shows dis-
tinct trends. LLaMA-2-7b* prominently expresses
curiosity, while Falcon-7b-Dolly emerges as the
model conveying the highest levels of remorse,
making it the “saddest” among all the models. Re-
morse and admiration are notably over-expressed
by Falcon-7b-Dolly and GPT-3.5. GPT-4 and
Guanaco-7b, on the other hand, stand out for con-
veying excitement, while Guanaco-7b surpasses
both humans and other models in overexpressing
the love emotion (see Appendix Fig. 15).

Turning to convincingness, in general, LLMs
produce arguments perceived with higher quality
(being relevant, clear, and impactful) compared
to humans. Notably, GPT-3.5 deviates the most
from the human baseline in this regard (see Ap-
pendix Fig. 14). Regarding persuasiveness, all
generators tend to generate text identified as per-
suasive more frequently than human-generated text.
GPT-4 closely aligns with the persuasive trends ob-
served in human-generated content (see Appendix
Fig. 18). Though a direct correlation between
these results and the ability of various LLMs to
replicate human expression’s attitude elements is
not established, these results could shed light on
detectors’ performance variations when assessing
texts generated by diverse generators.
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Task ChatGPT_QA LLMDet Radar_Vicuna7B XLMR_ChatGPT

* (All-tasks) 0.607 0.626 0.549 0.547
brainstorming 0.686 0.647 0.519 0.662
classification 0.509 0.577 0.474 0.487
closed_qa 0.537 0.597 0.476 0.543
creative_writing 0.713 0.611 0.661 0.644
general_qa 0.781 0.608 0.585 0.745
information_extraction 0.428 0.556 0.493 0.436
open_qa 0.723 0.616 0.522 0.685
review_generation 0.652 0.701 0.612 0.504
stance_generation 0.439 0.574 0.471 0.388
summarization 0.593 0.562 0.513 0.544

Table 2: Detectors performance in general (ALL) and per
task in terms of F1-macro.

5.2 Detectors evaluation
Among the detectors evaluated (see Tab. 2),
LLMDet emerges as the top performer in terms
of F1-macro, showcasing not only the best overall
performance but also remarkable stability across
various tasks. Following closely is ChatGPT_QA,
securing the second position, particularly excelling
in general_qa, open_qa, and creative_writing tasks,
outperforming LLMDet by 28%, 17%, and 16%,
respectively. Notably, XLMR_ChatGPT mirrors
the performance pattern of ChatGPT_QA, except
for struggles in the stance and review_generation
tasks. On the other end, Radar_Vicuna7B ranks as
the least effective detector overall, but its strengths
surface in information_extraction, review, and
stance_generation tasks. Shifting the focus to as-
sessing the performance depending on the source
text generator, ChatGPT_QA stands out with a
clear advantage in texts generated by Guanaco-7b,
Falcon-7b-Dolly, and GPT-3.5 compared to other
detectors. Conversely, Radar_Vicuna7B appears to
struggle the most to detect GPT-4 generated texts
(see Fig. 2 and Appendix Fig. 21).

5.3 Correlation analysis
On the categorical correlation between detec-
tor predictions and writers’ attitudes, we did
not observe significant correlations when consider-
ing the entire dataset. However, on a task-specific
level (see Appendix Fig. 22), Radar_Vicuna7B
is the most correlated detector. It significantly
correlated with at least two writer’s attitudes in
8 out of 10 tasks. Despite its high correla-
tion, Radar_Vicuna7B exhibited the poorest per-
formance. Conversely, LLMDet, the least corre-
lated overall, demonstrated stability across tasks.
It only showed significant correlations with two or
more attitudes in 3 of the 10 tasks, and half of the
tasks exhibited no correlation at all. Persuasiveness
was the most correlated attitude among detectors,
particularly in information_extraction, closed_qa,
creative_writing, and review_generation.

Assessment of the continuous correlation be-

Figure 2: Detectors performance on detecting text produced
by different generators (F1-macro)

tween detector prediction scores and linguistic,
attitudinal, and psychometric variables. Spear-
man correlation scores between different detector
prediction scores and input variables are generally
low. ChatGPT_QA has absolute correlation scores
>0.2 with the highest number of input variables,
mostly linguistic and LIWC features. On the con-
trary, LLMDet has absolute correlation scores >0.2
with only 5 input variables, out of which 4 are
linguistic. In particular, 3 linguistic features, num-
ber of words, number of sentences and percentage
of unique words, are correlated with all detector
scores; however, they are not in the same direc-
tion. Apart from linguistic and LIWC features,
XLMR_ChatGPT detector scores are also corre-
lated with approval and convincingness features
(see Appendix Fig. 19).

5.4 Surrogate models results

Overall performance Our surrogate models were
implemented using XGBoost library with 10 repe-
titions to ensure the robustness of the results. The
performance of surrogate models on the whole
dataset (considering all tasks and all generative
models) depends on the performance metric (see
Tab. 3). Regarding F1-macro and MCC scores,
which are also more important given the existing
class imbalance, the best surrogate is the one for
ChatGPT_QA, while the second best is the sur-
rogate for XLMR_ChatGPT. The surrogates for
the other two detectors reflect remarkable fluc-
tuations in the F1-macro score and, hence, are
deemed less reliable, although the surrogate for
Radar_Vicuna7B performs best in terms of F1-
weighted and F1-micro. Looking at the features
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Detector F1-weighted F1-macro F1-micro ROC AUC MCC

ChatGPT_QA 0.871 (0.003) 0.854 (0.003) 0.862 (0.003) 0.936 (002) 0.711 (0.005)
XLMR_ChatGPT 0.842 (0.001) 0.840 (0.001) 0.842 (0.001) 0.923 (0.002) 0.680 (0.003)
Radar_Vicuna7B 0.930 (0.002) 0.664 (0.007) 0.944 (0.001) 0.930 (0.004) 0.396 (0.015)

LLMDet 0.909 (0.002) 0.703 (0.006) 0.922 (0.002) 0.915 (0.004) 0.446 (0.017)

Table 3: XGBoost classifier performance in terms of F1-score,
ROC AUC and MCC across 10 runs. The best and second-
best scores per detector surrogate and performance metric are
denoted in bold and italics, respectively.

that the surrogate classifiers considered the most
important across all 10 runs, we can see (Fig. 3)
that linguistic features are very important for simu-
lating detectors’ behavior. In particular, the number
of words (denoted as “stats_num_words”) is con-
sidered an important variable in all 10 runs for
surrogate models of each detector, with also quite
a high average importance score across the runs.

Performance by task When simulating de-
tectors’ behavior on a task level, in terms of
F1-macro and MCC score, the surrogate XGB
model simulating the behavior of ChatGPT_QA
performs the best in all tasks except for review
and stance_generation. For review_generation,
the surrogate for XLMR_ChatGPT outperforms
the others, while for stance_generation simulat-
ing Radar_Vicuna7B is the most successful (also
in terms of other metrics, see Appendix Tab.
12). Comparing each detector surrogate model
performance across different tasks in terms of
MCC, the surrogate for ChatGPT_QA performs
the best on the information_extraction task, the sur-
rogates for XLMR_ChatGPT and Radar_Vicuna7B
perform the best on the stance_generation
task and the surrogate for LLMDet performs
the best on review_generation task. Look-
ing at the most important features used by
surrogates, we observe that linguistic fea-
tures such as “stats_percent_unique_words” and
“stats_num_words” are perceived as most impor-
tant for different detectors and tasks, although the
surrogate for LLMDet tends to rely more on word
length and punctuation.8

Performance by generative model When sim-
ulating detector behavior with respect to the un-
derlying generator model (see Appendix Tab. 13),
in terms of F1-macro and MCC scores, we had
the most success for ChatGPT_QA detector for all
generators except human, Falcon-7b* and GPT-4.
In the case when human or Falcon-7b* generated
the text, the best performance was obtained for the
Radar_Vicuna7B surrogate, while in the case of
GPT-4, it was the surrogate for XLMR_ChatGPT.

8See Fig. 31 in Appendix A.

Figure 3: Features resulting as top 10 most important within
each of 10 runs per different detector XGBoost surrogate
classifiers, together with their average importance score.

Regarding feature importance (see Appendix Fig.
32), we observe a consistent trend where surrogates
generally depend on the "number of words" feature.
However, the LLMDet surrogate additionally relies
on "average word length" and punctuation (comma,
apostrophe), and the XLMR_ChatGPT surrogate
even considers various emotions.

6 Ablation studies
Analyzing the detector performance across the ab-
lation scenarios (see Fig. 4), we found GPT-Zero as
the top performer consistently, with scores of 0.683,
0.692, and 0.652 in the uncontrolled, temperature-
min, and length scenarios, respectively. Following
closely is ChatGPT_QA, which suffered a notice-
able 17% drop in performance, particularly when
length control is applied. XLMR_ChatGPT, in the
third position, exhibits a similar pattern. Interest-
ingly, the introduction of temperature control does
not significantly affect detector performance. How-
ever, length control appears to be a critical factor,
leading to performance reduction in all detectors ex-
cept Radar_Vicuna7B, which demonstrates a slight
improvement under this constraint.9 Extending the
ablation analysis to the text and the corresponding
generators, we made the following observations.

In the Length-based scenario, focusing on text
characteristics revealed a notable increase in the
overall percentage of nouns, coupled with a de-
crease in the percentage of verbs (see Appendix

9See Appendix Tab. 11 for detailed detector performance
on the different ablation scenarios.
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Figure 4: Detectors performance on the ablation set per con-
trolled variable (F1-macro)

Fig. 25). Additionally, the emphasis on time orien-
tation was reduced (see Appendix Fig. 27). We did
not observe significant changes in writer’s attitudes.
However, when evaluating the performance of de-
tectors on texts generated by different models, a
noticeable change was identified for ChatGPT_QA.
It struggled more to correctly detect text generated
by GPT-4 (see Appendix Fig. 24).

In the Temperature-min scenario, an analysis
of text characteristics showed a drastic increase
in the average sentence length for LLaMA-2-7b*
(see Appendix Fig. 26). In relation to writer’s atti-
tudes, LLaMA-2-7b* was significantly affected in
a positive manner. It played a crucial role in tem-
pering overexpressed emotions, such as curiosity,
and contributed to enhanced convincingness (see
Appendix Fig. 13). Despite this, the text generated
by LLaMA-2-7b* was not harder to detect in this
scenario (see Appendix Fig. 24).

7 Discussion

Analyzing detectors’ performance across tasks
(see Tab. 4), focusing on F1-macro, we
noted similarities between ChatGPT_QA and
XLMR_ChatGPT. However, XLMR_ChatGPT de-
creases performance, particularly in stance and
review_generation tasks, indicating limitations
with less probable data scenarios not extensively
covered during training. This suggests that
XLMR_ChatGPT might be less adept at handling
unseen tasks, potentially lacking generalizability.

Furthermore, when evaluating models with pro-
nounced emotions (Falcon-7b-Dolly, Guanaco-7b,
and GPT-3.5), we identified a significant advantage
of ChatGPT_QA over LLMDet, shown in the de-
tector vs. generator F1-macro comparison. This
observation aligns with the correlations observed
between ChatGPT_QA predictions and writers’ at-
titudes, contrasting with LLMDet, which exhibits

minimal correlation with writers’ attitudes (see
Appendix Fig. 22). Although Radar_Vicuna7B
is the overall least performing model, it demon-
strates competitive performance in stance and re-
view_generation tasks. These tasks were gen-
erated by repurposing datasets less likely cov-
ered during LLMs training, which could suggest
that Radar_Vicuna7B is less overfitted. In gen-
eral, LLMDet demonstrates more consistent perfor-
mance across the tasks, while ChatGPT_QA ranks
as the second-best performer in certain tasks but
falls short in others. Specifically, ChatGPT_QA
performs well in QA-related tasks as anticipated,
yet it underperforms in tasks such as informa-
tion_extraction.

When comparing detector versus surrogate
model performances at the task level, we can no-
tice that for brainstorming, general_qa, open_qa,
creative_writing, surrogate model performance mir-
rors detector behavior (meaning that the good per-
formance of a detector, typically ChatGPT_QA,
could also be well mimicked by the respective sur-
rogate model) while this is not the case for the other
tasks (stance_generation, information_extraction,
closed_qa, classification, review_generation, sum-
marization). Particularly when LLMDet best per-
forms in a task (e.g., stance_generation, see Tab. 2
and Appendix Fig. 30), its behavior is hard to ex-
plain with the surrogate model. This means that the
considered features are very useful for simulating
ChatGPT_QA behavior and less so for LLMDet,
probably leading the LLMDet surrogate to rely on
unexpected features like punctuation

Notably, variations in the best-performing model
across evaluations arise from differences in how the
data was grouped. Figure 2 and Table 4 assess per-
formance concerning the generator, using a subset
of human-generated and the corresponding MGT,
resulting in a balanced dataset. Conversely, Table
2 evaluates detectors on full or task-specific sub-
sets, disregarding the generator, based on human
and corresponding MGTs from multiple models,
often leading to an imbalanced dataset that may
bias F1-macro scores in favor of LLMDet.

8 Conclusion
In this study, we present a benchmark for evaluating
LLM-generated text detectors. Our dataset com-
prises 3180 instructions with corresponding human
responses across 10 tasks from 3 diverse sources.
Synthetic responses were generated by prompting
7 different LLMs, resulting in a dataset exceeding
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LLaMA-2 70b* GPT-4 GPT-3.5 LLaMA-2-7b* Falcon 7b* Guanaco 7B Falcon-7b Dolly
F1-m MCC ROC F1-m MCC ROC F1-m MCC ROC F1-m MCC ROC F1-m MCC ROC F1-m MCC ROC F1-m MCC ROC

CLOSED QA

ChatGPT_QA 0.548 0.230 0.591 0.768 0.562 0.772 0.723 0.489 0.730 0.636 0.358 0.657 0.614 0.326 0.640 0.838 0.681 0.838 0.880 0.760 0.880
XLMR_ChatGPT 0.493 0.005 0.502 0.700 0.405 0.701 0.719 0.447 0.721 0.521 0.055 0.527 0.577 0.158 0.578 0.740 0.495 0.743 0.770 0.569 0.775
LLMDet 0.530 0.151 0.564 0.567 0.285 0.610 0.545 0.204 0.583 0.545 0.204 0.583 0.553 0.232 0.593 0.569 0.293 0.613 0.585 0.359 0.632
Radar_Vicuna7B 0.378 0.023 0.505 0.357 -0.121 0.466 0.372 -0.031 0.493 0.357 -0.121 0.466 0.352 -0.142 0.458 0.358 -0.114 0.468 0.380 0.035 0.507

CLASSIFICATION

ChatGPT_QA 0.568 0.336 0.621 0.820 0.676 0.824 0.588 0.361 0.634 0.727 0.542 0.741 0.472 0.209 0.560 0.904 0.815 0.904 0.855 0.733 0.857
XLMR_ChatGPT 0.426 0.068 0.520 0.824 0.665 0.826 0.635 0.378 0.661 0.618 0.354 0.647 0.486 0.165 0.556 0.861 0.729 0.862 0.836 0.685 0.837
LLMDet 0.600 0.351 0.638 0.567 0.233 0.598 0.485 0.000 0.500 0.599 0.344 0.636 0.515 0.078 0.536 0.584 0.289 0.618 0.576 0.264 0.609
Radar_Vicuna7B 0.352 0.064 0.507 0.326 -0.184 0.455 0.352 0.064 0.507 0.349 0.000 0.500 0.352 0.064 0.507 0.346 -0.030 0.496 0.343 -0.066 0.489

OPEN QA

ChatGPT_QA 0.859 0.721 0.859 0.863 0.731 0.864 0.818 0.636 0.818 0.841 0.683 0.841 0.656 0.343 0.664 0.884 0.776 0.884 0.841 0.683 0.841
XLMR_ChatGPT 0.725 0.477 0.730 0.746 0.531 0.752 0.752 0.548 0.759 0.688 0.389 0.691 0.638 0.278 0.639 0.770 0.595 0.777 0.759 0.566 0.766
LLMDet 0.574 0.361 0.627 0.577 0.379 0.632 0.552 0.265 0.600 0.570 0.344 0.623 0.482 0.026 0.511 0.570 0.344 0.623 0.561 0.303 0.611
Radar_Vicuna7B 0.427 0.052 0.516 0.375 -0.163 0.436 0.454 0.229 0.557 0.432 0.076 0.523 0.449 0.193 0.550 0.433 0.084 0.525 0.442 0.139 0.539

INFORMATION EXTRACTION

ChatGPT_QA 0.476 0.139 0.547 0.647 0.387 0.668 0.600 0.321 0.632 0.548 0.245 0.594 0.504 0.182 0.565 0.759 0.555 0.765 0.803 0.625 0.805
XLMR_ChatGPT 0.430 -0.069 0.471 0.596 0.214 0.603 0.630 0.275 0.635 0.496 0.045 0.520 0.460 -0.015 0.493 0.715 0.431 0.715 0.733 0.466 0.733
LLMDet 0.481 0.074 0.529 0.494 0.123 0.547 0.493 0.117 0.545 0.503 0.157 0.558 0.486 0.092 0.536 0.526 0.263 0.590 0.526 0.263 0.590
Radar_Vicuna7B 0.402 0.088 0.520 0.392 0.009 0.502 0.397 0.045 0.511 0.398 0.055 0.513 0.372 -0.101 0.469 0.373 -0.095 0.471 0.384 -0.040 0.489

BRAINSTORMING

ChatGPT_QA 0.839 0.679 0.839 0.815 0.634 0.815 0.802 0.610 0.803 0.882 0.764 0.882 0.693 0.427 0.702 0.884 0.769 0.884 0.832 0.667 0.833
XLMR_ChatGPT 0.766 0.532 0.766 0.766 0.532 0.766 0.766 0.532 0.766 0.787 0.576 0.788 0.653 0.321 0.657 0.842 0.696 0.843 0.819 0.644 0.820
LLMDet 0.602 0.391 0.646 0.604 0.399 0.648 0.597 0.368 0.639 0.593 0.353 0.635 0.523 0.112 0.549 0.591 0.346 0.633 0.609 0.423 0.655
Radar_Vicuna7B 0.444 0.126 0.536 0.365 -0.200 0.418 0.451 0.173 0.547 0.441 0.109 0.532 0.450 0.163 0.545 0.441 0.109 0.532 0.429 0.040 0.513

GENERAL QA

ChatGPT_QA 0.830 0.688 0.833 0.819 0.661 0.821 0.825 0.677 0.828 0.810 0.640 0.812 0.730 0.460 0.730 0.843 0.721 0.846 0.817 0.656 0.819
XLMR_ChatGPT 0.772 0.599 0.779 0.740 0.514 0.746 0.774 0.604 0.781 0.740 0.514 0.746 0.708 0.436 0.712 0.774 0.604 0.781 0.769 0.593 0.777
LLMDet 0.560 0.359 0.621 0.557 0.341 0.616 0.538 0.251 0.592 0.555 0.332 0.614 0.463 -0.010 0.496 0.558 0.350 0.618 0.550 0.306 0.607
Radar_Vicuna7B 0.507 0.196 0.569 0.459 0.011 0.504 0.535 0.346 0.607 0.492 0.132 0.549 0.527 0.297 0.596 0.525 0.288 0.594 0.532 0.326 0.603

SUMMARIZATION

ChatGPT_QA 0.576 0.171 0.583 0.764 0.532 0.765 0.750 0.502 0.750 0.664 0.331 0.665 0.570 0.161 0.578 0.795 0.601 0.796 0.818 0.657 0.820
XLMR_ChatGPT 0.468 -0.059 0.471 0.676 0.378 0.682 0.649 0.313 0.653 0.565 0.131 0.566 0.504 0.010 0.505 0.724 0.501 0.733 0.735 0.533 0.745
LLMDet 0.450 0.063 0.522 0.483 0.246 0.570 0.473 0.183 0.556 0.467 0.145 0.546 0.458 0.102 0.534 0.482 0.235 0.568 0.487 0.270 0.575
Radar_Vicuna7B 0.478 0.134 0.546 0.422 -0.077 0.468 0.455 0.039 0.515 0.452 0.026 0.510 0.439 -0.018 0.493 0.450 0.019 0.507 0.497 0.231 0.573

CREATIVE WRITING

ChatGPT_QA 0.830 0.664 0.831 0.767 0.534 0.767 0.836 0.678 0.837 0.828 0.659 0.828 0.721 0.448 0.722 0.845 0.696 0.845 0.830 0.664 0.831
XLMR_ChatGPT 0.790 0.581 0.790 0.682 0.374 0.684 0.773 0.547 0.773 0.750 0.500 0.750 0.680 0.370 0.682 0.834 0.675 0.835 0.830 0.666 0.831
LLMDet 0.537 0.348 0.608 0.531 0.310 0.600 0.529 0.301 0.597 0.526 0.284 0.593 0.483 0.094 0.536 0.529 0.301 0.597 0.529 0.301 0.597
Radar_Vicuna7B 0.625 0.410 0.661 0.552 0.166 0.574 0.623 0.403 0.659 0.613 0.362 0.646 0.618 0.382 0.653 0.629 0.424 0.665 0.627 0.417 0.663

REVIEW WRITING

ChatGPT_QA 0.814 0.672 0.818 0.629 0.424 0.665 0.895 0.802 0.896 0.830 0.697 0.834 0.691 0.502 0.713 0.982 0.965 0.982 0.971 0.942 0.971
XLMR_ChatGPT 0.627 0.429 0.665 0.372 0.074 0.512 0.816 0.679 0.821 0.600 0.396 0.646 0.586 0.379 0.636 0.922 0.851 0.922 0.950 0.902 0.950
LLMDet 0.683 0.505 0.709 0.686 0.515 0.712 0.637 0.351 0.656 0.671 0.462 0.695 0.617 0.292 0.633 0.682 0.501 0.707 0.666 0.442 0.688
Radar_Vicuna7B 0.488 0.220 0.568 0.498 0.286 0.582 0.501 0.308 0.587 0.500 0.302 0.585 0.501 0.308 0.587 0.501 0.308 0.587 0.501 0.305 0.586

STANCE WRITING

ChatGPT_QA 0.694 0.521 0.717 0.580 0.385 0.634 0.561 0.363 0.621 0.766 0.614 0.777 0.474 0.260 0.569 0.637 0.452 0.674 0.845 0.727 0.848
XLMR_ChatGPT 0.570 0.368 0.627 0.525 0.314 0.598 0.643 0.454 0.678 0.602 0.406 0.649 0.460 0.233 0.560 0.610 0.415 0.654 0.807 0.670 0.813
LLMDet 0.476 0.154 0.551 0.475 0.148 0.549 0.494 0.256 0.576 0.469 0.117 0.540 0.475 0.148 0.549 0.502 0.309 0.587 0.501 0.299 0.585
Radar_Vicuna7B 0.349 0.085 0.507 0.349 0.085 0.507 0.349 0.085 0.507 0.348 0.057 0.505 0.349 0.085 0.507 0.300 -0.295 0.409 0.343 -0.039 0.495

Table 4: Detectors performance per task and per generator model in terms of F1-macro (F1-m), ROC AUC (ROC), and Matthews
Correlation Coefficient (MCC). The best scores per task and performance metric are displayed in bold-face

25k texts. Evaluating 5 detectors revealed substan-
tial performance variance across tasks. Our meta-
analysis explored dataset characteristics, guiding
the analysis of detector performance. Surrogate
models highlighted the difficulty in explaining the
most performant detector, frequently relying on un-
expected textual features. Emotions, in particular,
aided some detectors in specific tasks, but the most
stable and effective detector exhibited consistent
performance irrespective of writer’s attitudes.

These distinctive characteristics position our
benchmark as a valuable resource for end-users
seeking to select a detector that best suits their
target text style and use case. Notably, we have
integrated all analyses into an automated pipeline,
which enhances accessibility and usability for re-
searchers and practitioners in the field.

Limitations

Limited Amount of Datasets. A notable limi-
tation of our study is that we rely on a limited
number of datasets. Although these datasets were
selected for relevance and quality, they represent
only a fraction of the available textual sources. This
limitation could lead to a lack of diversity in lan-
guages, language styles, topics and linguistic nu-
ances, which could affect the generalizability of
our results. Users should be aware that the results
and findings from our dataset may not fully reflect
the complexity and variations that occur in practice.
Consequently, interpretations and applications of
our research should be made with these limitations
in mind.

Limited Selection of Generator Models. Our
research includes a selected set of text generation
models, which is a notable limitation. This limited
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selection means that the dataset may not represent
the full range of text generation capabilities cur-
rently available. Advanced or emerging models
may not be adequately represented, particularly
those using state-of-the-art techniques or architec-
tures. As a result, the effectiveness of our dataset in
recognizing text from these unrepresented models
may be reduced.

Limited Selection of Detector Models. In the
present study, we use a specific selection of detec-
tor models, which is a significant limitation. This
limited selection may not cover the full range of
detection methods and technologies available in
practice. Consequently, this could lead to a biased
assessment of the reliability of our dataset, as it is
evaluated against a potentially not fully representa-
tive sample of detectors. This limitation highlights
the need to be cautious when generalizing the re-
sults and suggests that it is important to test the
dataset with a wider variety of detector models for
a more comprehensive evaluation.

Ethics Statement

Intended Use Our research, which focuses on the
collection of a new dataset for machine-generated
text detection, is designed to advance the field re-
sponsibly and ethically. This dataset, drawn from
publicly available resources, integrates various pub-
licly available text generation models and detec-
tors. Our primary goal is to provide the research
community with a robust benchmark for evaluat-
ing and improving text recognition algorithms. We
anticipate that this dataset will help to improve
the accuracy and reliability of recognition methods
and thereby gain a broader understanding of the
nuances in MGT. We emphasize that our dataset
is intended to be used for academic and research
purposes only. It is intended to facilitate the devel-
opment of more sophisticated recognition tools that
can distinguish between human and MGT to en-
sure the integrity and authenticity of digital content.
In this way, we aim to support ongoing efforts to
maintain transparency and trustworthiness in digi-
tal communications. We strongly discourage any
use of this dataset that violates ethical standards or
promotes malicious activity, such as the creation
of misleading or harmful content. Our adherence
to ethical guidelines reflects our commitment to
promoting positive impact in the field of natural
language processing and beyond.

Biases. In our study, we acknowledge the po-

tential for inherent biases within our dataset and
the broader implications that these biases may have
in the field of MGT detection. We recognize that
any dataset, especially when derived from publicly
available sources, may reflect historical and soci-
etal biases in the data it contains. These biases
include, but are not limited to, linguistic, cultural,
gender or demographic preferences. We are partic-
ularly cautious about how these biases might affect
the performance and interpretation of detection al-
gorithms and potentially lead to biased or unfair
results.

Misuse Potential. Our data set, which was de-
veloped for the evaluation of MGT detection, has
significant potential for positive impact. However,
we are aware of the possibility of its misuse. In
particular, there is a risk that the dataset could be
used to develop methods to create more convincing
MGT, which could be used for misleading purposes
such as misinformation or spam. To prevent this,
we prohibit the use of our dataset for unethical
practices, including but not limited to the creation
of misleading or harmful content. We encourage
users to adhere to a high standard of ethical respon-
sibility and ensure that the data set is only used
to enhance the authenticity and trustworthiness of
digital communications.

Reliability conditions. The reliability of our
dataset for the evaluation of MGT detection mod-
els depends on the performance and development
of the generator systems. It is important to recog-
nize that the accuracy and effectiveness of these
tools can vary significantly depending on the de-
sign, training data, and underlying algorithms. Con-
sequently, the usefulness of our dataset as a bench-
mark is reliable on the condition that these mod-
els are regularly updated and refined to adapt to
advances in text generation technologies. Users
should note that the results obtained may not be
universally applicable to all generator and detector
systems, and that continuous validation against a
variety of models is essential to maintain the rele-
vance and effectiveness of the dataset in an evolv-
ing technological landscape.
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A Appendix

A.1 Related Work

Dataset LLMs Domain/Task

GPT-2 Output10

(Radford et al., 2019)
GPT-2 Various

HC3
(Guo et al., 2023) ChatGPT QA

Neural Fake News
(Zellers et al., 2019) Grover News

TweepFake
(Fagni et al., 2021) GPT2 Tweets

GPT2-Output
(Kim) GPT2 WebText

TURINGBENCH
(Uchendu et al., 2021) GPT1,2,3 News

ChatGPTorNot
(Pegoraro et al., 2023) ChatGPT QA

(medical and finance)
CHEAT

(Yu et al., 2023) ChatGPT Abstracts

MULTITuDE
(Macko et al., 2023)

Alpaca-Lora, GPT3.5/4,
LLama, OPT,

Davinci, Vicuna
News

ArguGPT
(Liu et al., 2023)

GPT2/3.5, Babbage,
Curie, Davinci Essay writing

M4
(Wang et al., 2023)

Davinci003, ChatGPT,
Cohere, Dolly-v2,

BLOOMz, FlanT5, LLaMA

(News) Article writing,
QA, Review writing

MGTBench
(He et al., 2023)

ChatGPT, ChatGLM,
Dolly, ChatGPT-turbo,
GPT4Al,l StableLM

QA

Table 5: Overview of related benchmark datasets (QA is the acronym for Question Answering).

A.2 Dataset Description

Features LLaMA-2-70b* Guanaco-7b LLaMA-2-7b* Falcon-7b* Falcon-7b-Dolly Human GPT-3.5 GPT-4

Avg. word length 5.64 5.07 5.44 5.41 7.19 5.44 5.48 5.45
Avg. sentence length 92.00 122.68 137.19 82.92 172.32 87.25 91.76 103.50
Avg. words per sentence 14.96 23.38 22.38 14.00 25.48 14.22 15.08 17.16
Percent of vowels 28.40 28.95 28.83 29.13 29.35 29.17 29.62 29.34
Percent of consonants 43.69 44.13 44.35 44.36 45.12 44.12 45.19 45.22
Percent of punctuation 4.54 3.61 4.29 4.30 3.47 3.51 3.56 4.01
Percent of stopwords 30.83 40.54 33.73 30.91 37.32 29.78 33.34 34.25
Num. words 167.16 326.42 265.24 91.79 198.09 71.50 96.27 226.63
Num. sentences 12.33 24.40 17.55 6.52 15.03 5.02 7.35 15.87
Percent of unique words 69.95 56.68 64.61 80.56 60.77 82.23 76.29 68.63
Percent of long words 24.96 18.97 23.45 23.01 22.49 21.52 24.42 24.51

Table 6: Overview of different linguistic features and their average values across different generators. Notation used for the
above features: ’stats_avg_word_length’, ’stats_avg_sentence_length’, ’stats_avg_words_per_sentence’, ’stats_percent_vowels’,
’stats_percent_consonants’, ’stats_percent_punctuation’, ’stats_percent_stopwords’, ’stats_num_words’, ’stats_num_sentences’,
’stats_percent_unique_words’, ’stats_percent_long_words’

Readability score LLaMA-2-70b* Guanaco-7b LLaMA-2-7b* Falcon-7b* Falcon-7b-Dolly Human GPT-3.5 GPT-4

flesch_kincaid_score 10.63 10.36 10.19 11.66 14.45 12.01 10.63 9.47
flesch_score 50.33 54.83 51.61 48.27 39.77 49.14 45.58 52.74
gunning_fog_score 12.82 12.66 12.33 14.00 16.60 14.39 12.67 11.17
coleman_liau_score 10.96 9.51 10.94 10.75 11.14 10.76 12.22 10.64
dale_chall_score 9.87 9.51 9.90 10.02 10.67 9.66 10.31 10.10
ari_score 10.77 10.36 10.20 12.01 15.76 12.83 10.58 9.20
linsear_write_score 12.00 12.61 11.35 14.26 18.69 15.31 10.45 9.56

Table 7: Avg. Readability

Attitude Model Description

Emotions11(Demszky et al., 2020) SamLowe/roberta-base-go_emotions Trained on the Go-Emotions dataset to classify over 28 emo-
tions

Persuasiveness12 paragon-analytics/roberta_persuade Binary classification (Non-persuasive, Persuasive)

Irony13(Barbieri et al., 2020) cardiffnlp/twitter-roberta-base-irony Roberta base model pretrained on tweets and finetuned for
irony detection with the TweetEval benchmark

Convincingness14(Gretz et al., 2019) jakub014/bert-base-uncased-IBM-argQ-30k-
finetuned-convincingness-IBM

Trained on the assumption that convincingness is linked to
high quality arguments which are typically clear, relevant,
and with high impact.

Table 8: Off-the-shelf models used to infer attitudes in texts.

A.3 Repurposed review and stance datasets
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Figure 5: Process to repurpose review datasets into instructions.
Dataset Instruction Context Response Generator

Amazon reviews

Based in the provided product description, gener-
ate a positive product review from a client who is
Very satisfied. Consider the following keywords:
DIY, DIY, house, fashion magazines

Product description: Tackle any home im-
provement project or repair with help from
The Family Handyman. Guarantee success
with step-by-step instructions and how-to pho-
tos, plus save time and money with handy
hints, workshop tips and new product reviews.
No matter how little experience you have, The
Family Handyman makes it easy! Family
Handyman publishes 11 issues per year which
includes a special issue that counts as 2 issues
in your subscription.

I’m a so-so DIY’er. I try to DIY pretty much ev-
erything around the house, not everything turns out
too well. So that’s where I’m coming from, and
my opinion of this magazine is that it’s a lot of fun
to read. Interesting, helpful, fun ideas and articles.
Some good tips too. Nothing earth shattering but
not bad. I feel like this is what my wife must feel
like when she reads her fashion magazines.

Human

I’m beyond pleased with The Family Handyman! As
someone who loves DIY projects around the house,
this magazine is a game-changer. The step-by-
step instructions and how-to photos are incredibly
helpful, making every home improvement project
a breeze. The handy hints and workshop tips have
saved me both time and money. It’s like having a
personal expert by my side. I especially appreciate
the new product reviews, guiding me towards the
best tools for the job. It’s become my go-to resource
for all things DIY. Couldn’t be happier with my sub-
scription!

GPT-3.5

Based in the provided product description, gener-
ate a positive product review from a client who
is Unsatisfied. Consider the following keywords:
bike magazine, bike magazine, bike magazine,
bi

Product description: Cycle World, America’s
largest motorcycle media brand, is the leading
resource for in-depth, quality information on
all types of motorcycles, accessories and rid-
ing gear.

I used to love this magazine, particularly in the
1970s. Unfortunately, the writing is now bland and
there is little incisive coverage. This used to be the
premier bike magazine. I won’t renew, that’s for
sure.

Human

Initially dissatisfied, but pleasantly surprised! The
Cycle World magazine exceeded my expectations
with its comprehensive coverage of motorcycles,
accessories, and riding gear. The quality informa-
tion provided is unmatched, making it a valuable
resource for any bike enthusiast. Highly recom-
mended for a deeper understanding of the biking
world!

GPT-3.5

CovidLies Generate a tweet related to COVID-19 that have
a stance in favor of ’We’re very close to a vac-
cine.’ Include the following mentions: [@Speak-
erPelosi]

@SpeakerPelosi I understand Israel will have a vac-
cine for coronavirus in a few weeks.

Human

Encouraging news on the COVID-19 front! We’re
very close to a vaccine breakthrough that could bring
us closer to ending this pandemic. Fingers crossed
for a swift and successful rollout. [@SpeakerPelosi]
#COVID19 #VaccineHope

GPT-3.5

Table 9: Repurposed Datasets examples

A.4 Text generation

Generators In our study, we evaluated a diverse set of models from the Falcon and LLaMA families, as
well as two GPT models. Specifically, we considered two models from the Falcon family (Almazrouei
et al., 2023): Falcon 7B Instruct15 and our customized version, Falcon 7B Dolly16, which utilizes LoRA
as a Parameter-Efficient Fine-Tuning (PEFT) technique. Additionally, we incorporated three models from
the LLaMA family (Touvron et al., 2023b,a): LLaMA-2 7B Chat17, LLaMA-2 70B Chat18, and PEFT
model LLaMA Guanaco 19. Finally, our analysis also included two models from the GPT series (OpenAI,
2023): GPT-3.5-turbo-1106 and GPT-4-turbo-1106-preview20. The base models that were instruction-
or chat-tuned are marked with an asterisk (*) for clarity. The specific configuration can be found in Tab.
10. This selection of models, encompassing a range of complexities and specializations, allows for a
comprehensive examination of capabilities of the text generation models.

15https://huggingface.co/tiiuae/falcon-7b-instruct
16https://huggingface.co/jco2/falcon-7b-dolly-peft-stp-10k
17https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
18https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
19https://huggingface.co/timdettmers/guanaco-7b
20https://platform.openai.com/docs/models
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Generator Model name Max Length Temperature PEFT

Falcon-7b* Falcon 7B instruct 2048 1 No
Falcon-7b-Dolly Falcon 7B dolly 2048 1 LoRA
Guanaco-7B LLaMA Guanaco 2048 0.7 QLoRA
LLaMA-2-7b* LLaMA-2 7B chat 4096 0.6 No
LLaMA-2-70b* LLaMA-2 70B chat 4096 0.6 No
GPT-3.5 GPT-3.5-turbo-1106 16285(context window)/4096 (max. output) 1 No
GPT-4 GPT-4-turbo-1106-preview 128K(context window)/4096 (max. output) 1 No

Table 10: Models used for the text generation

Prompt We have tried to reduce the prompt template to a minimum to ensure it is uniformly applicable
to the different models (see Fig. 6). Only the Guanaco-7b and Falcon-7b-Dolly models have minor
modifications in the template due to the use of a different instruction tuning scheme while fine-tuning, as
shown in Fig. 7. An additional line with context was only added if such context was available; otherwise,
this line was omitted completely.

Context: [GIVEN_CONTEXT]

Instruction: [GIVEN_INSTRUCTION]

Figure 6: Prompt template for the generator models.

### Context: [GIVEN_CONTEXT]

### Human: [GIVEN_INSTRUCTION] ### Assistant:

Figure 7: Modified prompt template for the Guanaco-7b and Falcon-7b-Dolly generator models.

A.5 Meta analysis

Figure 8: Readability scores across different generative models
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Figure 9: Linguistic features across different generative models

Figure 10: Scores of LIWC features Clout, Authentic, Tone and Analytic across different generative models
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Figure 11: Scores of LIWC features Cognition, Perception, Social and Drives across different generative models

Figure 12: Scores of LIWC features Assent, Netspeak and Conversation across different generative models

Figure 13: Writer’s attitude Emotions counts relative to human, ablation controlling temp-min
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Figure 14: Writer’s attitude Convincingness counts

Figure 15: Writer’s attitude Emotions counts relative to human

Figure 16: Writer’s attitude contrasting expressed Emotions
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Figure 17: Writer’s attitude Irony counts

Figure 18: Writer’s attitude Persuasiveness counts
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Figure 19: Correlation scores between different features and detectors scores higher than 0.2 (absolute values)
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A.6 Detectors evaluation
This section provides additional figures of detector performance, including assessments across tasks based
on F1-macro scores (Fig. 20) and evaluations of detection capability across various text generators using
the Matthews Correlation Coefficient (MCC) metric (Fig. 21).

Figure 20: Detectors performance across tasks (F1-macro)

Figure 21: Detectors performance on detecting text produced by different generators (MCC)

A.7 Ablation
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Figure 22: Categorical correlations between Detectors and Writers attitudes on the ablation set per task (Chi-test)

Figure 23: Categorical correlations between Detectors and Writers attitudes on the ablation set per controlled variable (Chi-test)

f1-weighted f1-macro roc_auc_ovr mcc
Variable Detector

uncontrolled ChatGPT_QA 0.733 0.686 0.750 0.436
GPT_Zero 0.770 0.683 0.671 0.372
LLMDet 0.731 0.603 0.594 0.265
Radar_Vicuna7B 0.666 0.512 0.521 0.057
XLMR_ChatGPT 0.679 0.620 0.669 0.295

temperature-min ChatGPT_QA 0.738 0.690 0.754 0.442
GPT_Zero 0.779 0.692 0.678 0.395
LLMDet 0.734 0.606 0.597 0.277
Radar_Vicuna7B 0.676 0.522 0.531 0.089
XLMR_ChatGPT 0.685 0.626 0.674 0.304

length ChatGPT_QA 0.610 0.573 0.665 0.288
GPT_Zero 0.742 0.652 0.648 0.304
LLMDet 0.702 0.572 0.568 0.169
Radar_Vicuna7B 0.687 0.533 0.542 0.128
XLMR_ChatGPT 0.576 0.529 0.597 0.168

Table 11: Detectors performance on the ablation set per controlled variable in terms of F1-macro, F1-macro, ROC AUC and
MCC.
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Figure 24: Detector performance by generator on the different ablation scenarios.
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Figure 25: Distribution of spacy variables wrt the controlled variables (length and temperature).

Figure 26: Distribution of stats variables per generative model wrt the controlled variables (length and temperature).

Figure 27: Distribution of time orientation variables wrt the controlled variables (length and temperature).
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A.8 Surrogate models results
Due to a strong correlation between variable stats_num_words and LIWC variable WC (Spearman
correlation coefficient = 1), variable stats_percent_punctuation and LIWC variable AllPunc (0.93) and
variable stats_percent_long_words and LIWC variable BigWords (0.81), we eliminated those mentioned
LIWC variables from (WC, AllPunc, BigWords) from further consideration (see Fig. 28). Also, readability
features were not taken into consideration for surrogate model construction due to many missing values
(limitation of readability metrics on short text).

Surrogate models were implemented using XGBoost library (with 10 repetitions). The training was
done using 100 boosting rounds, logloss as an evaluation metric, 0.1 as eta (learning rate) and setting 5 as
the maximum depth of each tree.

Figure 28: Correlation between input variables (excerpt))
The ROC curve for different surrogate classifiers in general can be seen in Fig. 29, while the ROC

curve for the stance_generation (interesting due to different surrogate performance in terms of ROC AUC),
can be found in Fig. 30.

As mentioned before, XGB surrogate performance by different tasks and generative models can be seen
in Tab. 12 and Tab. 13 respectively, while the corresponding important features can be found in Fig. 31
and Fig. 32, respectively.

8050



Figure 29: ROC curve for surrogate models (all tasks and generative models)

Figure 30: ROC curve for surrogate models for stance_generation task.
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Task Detector F1-weighted F1-macro F1-micro ROC AUC MCC

brainstorming

ChatGPT_QA 0.875 (0.016) 0.846 (0.018) 0.878 (0.015) 0.937 (0.007) 0.7 (0.034)
XLMR_ChatGPT 0.832 (0.01) 0.784 (0.013) 0.84 (0.01) 0.895 (0.014) 0.585 (0.03)
Radar_Vicuna7B 0.891 (0.009) 0.64 (0.016) 0.912 (0.007) 0.863 (0.024) 0.349 (0.038)

LLMDet 0.908 (0.012) 0.687 (0.038) 0.922 (0.009) 0.915 (0.016) 0.413 (0.069)

classification

ChatGPT_QA 0.878 (0.01) 0.876 (0.009) 0.877 (0.01) 0.951 (0.007) 0.752 (0.019)
XLMR_ChatGPT 0.846 (0.011) 0.843 (0.011) 0.846 (0.011) 0.92 (0.012) 0.687 (0.022)
Radar_Vicuna7B 0.963 (0.009) 0.568 (0.061) 0.973 (0.006) 0.899 (0.02) 0.194 (0.139)

LLMDet 0.855 (0.019) 0.718 (0.029) 0.871 (0.015) 0.872 (0.012) 0.468 (0.053)

closed_qa

ChatGPT_QA 0.86 (0.011) 0.86 (0.011) 0.86 (0.011) 0.935 (0.01) 0.721 (0.022)
XLMR_ChatGPT 0.802 (0.006) 0.787 (0.006) 0.804 (0.006) 0.875 (0.012) 0.579 (0.013)
Radar_Vicuna7B 0.904 (0.017) 0.628 (0.04) 0.923 (0.012) 0.905 (0.014) 0.315 (0.074)

LLMDet 0.866 (0.023) 0.663 (0.04) 0.886 (0.017) 0.867 (0.019) 0.373 (0.065)

creative_writing

ChatGPT_QA 0.836 (0.011) 0.764 (0.014) 0.844 (0.008) 0.879 (0.009) 0.541 (0.022)
XLMR_ChatGPT 0.804 (0.022) 0.764 (0.027) 0.809 (0.021) 0.872 (0.019) 0.535 (0.055)
Radar_Vicuna7B 0.881 (0.017) 0.607 (0.027) 0.908 (0.012) 0.86 (0.022) 0.306 (0.057)

LLMDet 0.927 (0.014) 0.584 (0.032) 0.943 (0.009) 0.904 (0.03) 0.227 (0.075)

general_qa

ChatGPT_QA 0.881 (0.013) 0.751 (0.026) 0.892 (0.012) 0.899 (0.015) 0.529 (0.056)
XLMR_ChatGPT 0.87 (0.014) 0.686 (0.016) 0.887 (0.012) 0.865 (0.015) 0.414 (0.035)
Radar_Vicuna7B 0.887 (0.009) 0.546 (0.028) 0.917 (0.007) 0.84 (0.012) 0.192 (0.074)

LLMDet 0.901 (0.014) 0.619 (0.032) 0.919 (0.01) 0.878 (0.024) 0.29 (0.065)

information_extraction

ChatGPT_QA 0.901 (0.012) 0.891 (0.012) 0.901 (0.012) 0.954 (0.008) 0.783 (0.023)
XLMR_ChatGPT 0.83 (0.016) 0.826 (0.016) 0.83 (0.016) 0.907 (0.011) 0.653 (0.033)
Radar_Vicuna7B 0.910 (0.011) 0.648 (0.03) 0.924 (0.009) 0.915 (0.012) 0.336 (0.059)

LLMDet 0.874 (0.015) 0.689 (0.03) 0.89 (0.01) 0.862 (0.02) 0.414 (0.051)

open_qa

ChatGPT_QA 0.885 (0.013) 0.84 (0.016) 0.889 (0.012) 0.923 (0.012) 0.688 (0.03)
XLMR_ChatGPT 0.855 (0.019) 0.747 (0.029) 0.867 (0.015) 0.88 (0.015) 0.518 (0.049)
Radar_Vicuna7B 0.894 (0.013) 0.61 (0.03) 0.916 (0.010) 0.841 (0.025) 0.288 (0.064)

LLMDet 0.891 (0.014) 0.606 (0.032) 0.914 (0.008) 0.892 (0.014) 0.28 (0.048)

review_generation

ChatGPT_QA 0.832 (0.009) 0.82 (0.008) 0.834 (0.008) 0.914 (0.007) 0.644 (0.016)
XLMR_ChatGPT 0.843 (0.005) 0.84 (0.005) 0.844 (0.005) 0.926 (0.004) 0.681 (0.01)
Radar_Vicuna7B 0.976 (0.004) 0.768 (0.025) 0.980 (0.003) 0.945 (0.007) 0.596 (0.039)

LLMDet 0.926 (0.008) 0.783 (0.014) 0.933 (0.007) 0.938 (0.006) 0.585 (0.026)

stance_generation

ChatGPT_QA 0.898 (0.011) 0.885 (0.012) 0.898 (0.01) 0.952 (0.008) 0.771 (0.023)
XLMR_ChatGPT 0.901 (0.011) 0.874 (0.013) 0.903 (0.011) 0.957 (0.007) 0.75 (0.026)
Radar_Vicuna7B 0.988 (0.004) 0.896 (0.042) 0.989 (0.004) 0.979 (0.02) 0.798 (0.083)

LLMDet 0.919 (0.011) 0.596 (0.033) 0.938 (0.007) 0.87 (0.016) 0.281 (0.075)

summarization

ChatGPT_QA 0.841 (0.01) 0.821 (0.013) 0.845 (0.01) 0.907 (0.009) 0.649 (0.025)
XLMR_ChatGPT 0.804 (0.01) 0.774 (0.014) 0.809 (0.01) 0.878 (0.011) 0.555 (0.027)
Radar_Vicuna7B 0.84 (0.022) 0.651 (0.03) 0.865 (0.014) 0.848 (0.018) 0.358 (0.047)

LLMDet 0.922 (0.012) 0.643 (0.041) 0.937 (0.009) 0.89 (0.03) 0.343 (0.091)

Table 12: XGBoost classifier performance per task in terms of F1-score, ROC AUC and MCC across 10 runs. The best scores
per task and performance metric are displayed in the bold-face.

Generator model Detector F1-weighted F1-macro F1-micro ROC AUC MCC

LLaMA-2-70b*

ChatGPT_QA 0.879 (0.009) 0.873 (0.010) 0.88 (0.009) 0.948 (0.008) 0.748 (0.02)
XLMR_ChatGPT 0.854 (0.01) 0.853 (0.01) 0.854 (0.01) 0.935 (0.005) 0.708 (0.019)
Radar_Vicuna7B 0.937 (0.008) 0.538 (0.028) 0.956 (0.005) 0.844 (0.036) 0.198 (0.068)

LLMDet 0.94 (0.007) 0.634 (0.028) 0.952 (0.004) 0.914 (0.014) 0.321 (0.059)

Guanaco-7b

ChatGPT_QA 0.936 (0.007) 0.875 (0.011) 0.937 (0.006) 0.965 (0.005) 0.753 (0.022)
XLMR_ChatGPT 0.901 (0.007) 0.83 (0.012) 0.905 (0.006) 0.944 (0.007) 0.666 (0.021)
Radar_Vicuna7B 0.938 (0.007) 0.722 (0.024) 0.947 (0.005) 0.941 (0.01) 0.484 (0.041)

LLMDet 0.961 (0.008) 0.584 (0.036) 0.971 (0.006) 0.92 (0.025) 0.243 (0.087)

LLaMA-2-7b*

ChatGPT_QA 0.836 (0.007) 0.811 (0.007) 0.84 (0.007) 0.908 (0.007) 0.63 (0.014)
XLMR_ChatGPT 0.807 (0.013) 0.807 (0.012) 0.807 (0.012) 0.897 (0.008) 0.614 (0.025)
Radar_Vicuna7B 0.921 (0.007) 0.507 (0.024) 0.946 (0.005) 0.825 (0.02) 0.086 (0.089)

LLMDet 0.929 (0.008) 0.591 (0.025) 0.945 (0.004) 0.89 (0.013) 0.251 (0.048)

Falcon-7b*

ChatGPT_QA 0.783 (0.013) 0.778 (0.013) 0.783 (0.013) 0.874 (0.012) 0.556 (0.026)
XLMR_ChatGPT 0.766 (0.014) 0.755 (0.014) 0.767 (0.013) 0.84 (0.013) 0.512 (0.027)
Radar_Vicuna7B 0.966 (0.009) 0.784 (0.049) 0.968 (0.007) 0.967 (0.01) 0.576 (0.091)

LLMDet 0.803 (0.013) 0.601 (0.022) 0.838 (0.01) 0.801 (0.008) 0.266 (0.045)

Falcon-7b-Dolly

ChatGPT_QA 0.94 (0.006) 0.871 (0.011) 0.942 (0.006) 0.963 (0.007) 0.748 (0.021)
XLMR_ChatGPT 0.912 (0.007) 0.801 (0.014) 0.918 (0.005) 0.945 (0.008) 0.616 (0.025)
Radar_Vicuna7B 0.963 (0.008) 0.691 (0.044) 0.970 (0.006) 0.945 (0.02) 0.429 (0.083)

LLMDet 0.959 (0.007) 0.637 (0.05) 0.968 (0.005) 0.923 (0.017) 0.33 (0.1)

Human

ChatGPT_QA 0.869 (0.019) 0.612 (0.034) 0.892 (0.013) 0.877 (0.01) 0.27 (0.055)
XLMR_ChatGPT 0.812 (0.016) 0.669 (0.019) 0.83 (0.011) 0.857 (0.011) 0.364 (0.031)
Radar_Vicuna7B 0.931 (0.011) 0.858 (0.018) 0.933 (0.011) 0.958 (0.008) 0.719 (0.036)

LLMDet 0.792 (0.015) 0.741 (0.018) 0.801 (0.013) 0.845 (0.012) 0.495 (0.031)

GPT-3.5

ChatGPT_QA 0.876 (0.013) 0.857 (0.014) 0.878 (0.012) 0.933 (0.007) 0.719 (0.029)
XLMR_ChatGPT 0.809 (0.011) 0.774 (0.013) 0.815 (0.011) 0.885 (0.009) 0.558 (0.026)
Radar_Vicuna7B 0.967 (0.003) 0.612 (0.035) 0.976 (0.002) 0.923 (0.02) 0.331 (0.075)

LLMDet 0.892 (0.009) 0.64 (0.026) 0.911 (0.007) 0.869 (0.018) 0.337 (0.048)

GPT-4

ChatGPT_QA 0.823 (0.015) 0.817 (0.016) 0.823 (0.015) 0.905 (0.01) 0.635 (0.032)
XLMR_ChatGPT 0.867 (0.008) 0.867 (0.008) 0.867 (0.008) 0.937 (0.006) 0.735 (0.017)
Radar_Vicuna7B 0.874 (0.011) 0.655 (0.024) 0.892 (0.006) 0.878 (0.012) 0.353 (0.036)

LLMDet 0.941 (0.009) 0.552 (0.036) 0.956 (0.005) 0.903 (0.02) 0.152 (0.075)

Table 13: XGBoost classifier performance per generator model in terms of F1-score, ROC AUC and MCC across 10 runs. The
best scores per generator and performance metric are displayed in the bold-face.
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Figure 31: Feature importance for the classifiers by task
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Figure 32: Feature importance for the classifiers by generative model
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