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Abstract

Sentence embeddings are crucial in measuring
semantic similarity. Most recent studies em-
ployed large language models (LLMs) to learn
sentence embeddings. Existing LLMs mainly
adopted autoregressive architecture without ex-
plicit backward dependency modeling. There-
fore, we examined the effects of backward de-
pendencies in LLMs for semantic similarity
measurements. Concretely, we propose a novel
model: backward dependency enhanced large
language model (BeLLM). It learns sentence
embeddings via transforming specific attention
layers from uni- to bi-directional. We exten-
sively experiment across various semantic tex-
tual similarity (STS) tasks and downstream ap-
plications. BeLLM achieves state-of-the-art
performance in varying scenarios. It shows that
auto-regressive LLMs benefit from backward
dependencies for sentence embeddings. 1

1 Introduction

Sentence embedding is fundamental in natural lan-
guage processing (NLP). It captures essential se-
mantics in text, benefiting various semantic sim-
ilarity measurement scenarios (Gao et al., 2021),
such as semantic matching (Lu et al., 2020) and
clustering (Reimers and Gurevych, 2019).

In previous work, the primary efforts employed
smaller-scale bi-directional models (Peters et al.,
2018; Reimers and Gurevych, 2019; Gao et al.,
2021) to extensively explore the context to learn
sentence embeddings. However, in the paradigm
revolution of LLMs and the increasingly large
model scales, most advanced NLP models adopted
autoregressive (decoder-only) architectures with
forward dependency modeling only (Touvron et al.,
2023). While some recent efforts used LLMs for
sentence embeddings (Li and Li, 2023; Jiang et al.,
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1 The code is available at: https://github.com/4AI/
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Figure 1: Two sample sentences A and B from STS-B
dataset in dashed boxes. LLaMA predicted 0.8 similar-
ity for A and B without backward dependency modeling
(in grey). The ground-truth similarity is 0.5 because of
differences in the playground in snow and shore.

2023), limited attention has been paid to studying
how backward dependency affects sentence embed-
ding learning in autoregressive architectures.

To illustrate the potential help of backward de-
pendencies in sentence embedding, Figure 1 illus-
trates two samples from STS-B (Cer et al., 2017)
dataset. To enable LLaMA for sentence embed-
dings, we prompt it inspired by Jiang et al. (2023)
and observe that LLaMA exhibits a very high simi-
larity despite the different locations of events. The
possible reason is that the uni-directional model
LLaMA cannot extensively capture backward de-
pendency, which indicates the relations between
the representative word “play” and its different
playgrounds. This observation highlights the poten-
tial benefits of engaging backward dependencies in
LLMs for learning sentence embeddings.

To the best of our knowledge, our work is the
first to extensively investigate the effects of back-
ward dependencies in autoregressive LLMs archi-
tectures for sentence embedding learning.

We start our study with a pilot analysis to quan-
titatively examine the autoregressive capabilities
of LLMs in capturing dependencies. It is observed
that they are inferior to smaller-scale BERT in these
capabilities. The results suggest the benefits of
engaging backward dependencies in LLMs to en-
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hance their dependency-capturing capabilities.

To incorporate backward dependency into LLMs,
we propose a novel model, BeLLM, for sentence
embedding learning. Our core idea is to convert
specific attention layers in the transformer decoder
from uni- to bi-directional. We first conduct a
degradation experiment to determine which atten-
tion layers should be converted bi-directional. It
aims to explore the relations between transformer
decoder layers and the performance of STS tasks
(for semantic similarity measurement). It is ob-
served that when uni-directional layers exceed a
turning point, the STS performance will notablely
decrease. Furthermore, the turning point occurs at
the penultimate layer for all LLMs we examined.
We then convert the last layer bi-directional by re-
moving their causal masks. In doing so, BeLLM in-
volves both uni- and bi-directional layers to balance
generation and dependency-capturing capabilities.

To train BeLLM, we first employ a representa-
tive word strategy to generate a representative word
for a sentence via prompt engineering. Representa-
tive word embedding hence serves as the sentence
embedding. Then, we apply contrastive learning
(Gao et al., 2021) to pull embeddings of similar
sentences close and push apart those not.

For experiments, we extensively evaluate sen-
tence embeddings learned by BeLLM on various
STS tasks. The main results indicate that BeLLM
can significantly outperform previous SOTA on
both the standard and the more challenging condi-
tional STS tasks. For example, BeLLM achieves
49.74 Spearman’s correlation compared to 47.50
from prior SOTA (Deshpande et al., 2023). It indi-
cates that BeLLM is effective by introducing back-
ward dependencies into LLMs. Then, our 7 down-
stream tasks experiments suggest that BeLLM’s
sentence embeddings can benefit various scenarios.
Finally, a case study shows that BeLLM can better
measure semantic similarities.

In summary, our contributions are three-fold:

• We explore the dependencies within LLMs and
provide quantitative evidence that adding backward
dependencies is helpful for sentence embeddings.

• We propose a novel backward dependency-
enhanced large language model, BeLLM, to learn
sentence embeddings in both uni- and bi-directions.

• Extensive experimental results demonstrate
that BeLLM can obtain SOTA results across vari-
ous STS tasks and downstream applications.

2 Quantitative Pilot Analysis

Before introducing BeLLM, we conduct a pilot
analysis to explore how advanced LLMs capture
dependencies in contexts. It is driven by the ob-
servations that mainstream LLMs (OpenAI, 2022;
Touvron et al., 2023) employ an autoregressive ar-
chitecture in an uni-directional manner. Intuitively,
it lacks the ability to learn backward dependencies
(Schuster and Paliwal, 1997), resulting in potential
inferiority to capture dependencies compared to
its bi-directional alternatives. Meanwhile, LLMs
possess remarkable emergent abilities (Wei et al.,
2022), implicitly benefit dependency capturing. We
consequently conduct a pilot analysis to quantify
whether explicit backward dependency modeling
would benefit advanced autoregressive LLMs.

AVG=0.17 AVG=0.15 AVG=0.35

Figure 2: Box plot of the sentence-level Spearman cor-
relation on the STS-B test set. The average sentence-
level Spearman correlations for LLaMA, ChatGLM, and
BERT are about 0.17, 0.15, and 0.35, respectively.

Our analysis is inspired by a phenomenon discov-
ered by Ethayarajh (2019). The study qualitatively
shows that bi-directional networks (e.g., ELMo (Pe-
ters et al., 2018) and BERT (Devlin et al., 2019))
demonstrate higher intra-sentence similarity (in-
dicated by word similarities) than uni-directional
networks (e.g., GPT-2). Here, we further explore
this finding from a quantitative perspective.

Concretely, we experiment on the STS-B test set
(Cer et al., 2017) and explore how models in uni-
and bi-directional architectures capture dependen-
cies. For the bi-directional model, we adopt BERT
(base) and select the embedding of the “CLS” to-
ken as the pivot token to represent the sentence
embedding. For the uni-directional, autoregres-
sive architecture, we employ two representative
LLMs: LLaMA (Touvron et al., 2023) (7B) and
ChatGLM (Zeng et al., 2022) (6B). They offer two
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different implementations of autoregressive archi-
tectures. For them, we choose the last token as the
pivot token following (Ethayarajh, 2019). Based
on pivot tokens, we compute their Spearman cor-
relation with the remaining tokens in a sentence to
reflect the dependency-capturing capabilities. The
results are shown in a box plot in Figure 2.

The results indicate that BERT shows a higher
Spearman correlation, implying its better capabil-
ity to capture dependencies compared to LLaMA
and ChatGLM. Interestingly, BERT achieves an
average score that is about twice as high as that of
LLaMA and ChatGLM. It is possibly attributed to
BERT’s bi-directional architecture allowing both
forward and backward dependency modeling. In
contrast, autoregressive models focus on forward
dependencies only. The results imply the potential
benefits of adding backward dependency modeling
to autoregressive models for sentence embeddings.

3 BeLLM

The above analysis has revealed the potential ben-
efits of adding backward dependencies to autore-
gressive LLMs. Consequently, this section will
describe our proposed model, BeLLM, with bi-
directional attention layers. Figure 3 shows the
overall framework of BeLLM. Subsequent sections
are organized as follows: Firstly, we present a
degradation experiment to examine how to add
backward layers. Then, we introduce the architec-
tures of BeLLM, followed by the training methods.

3.1 Degradation Experiment

To enable BeLLM to model backward dependen-
cies, we adopt a straightforward way to turn some
uni-directional layers of LLMs into bi-directional
ones. However, uni-directional layers are crucial
to LLMs’ language generation capabilities (Kaplan
et al., 2020), which may affect representative word
prediction for sentence embeddings (Section 3.3).

To practically balance uni- and bi-directional
layers, we conduct a degradation experiment to ex-
plore the effects of uni-directional layer number on
STS performance. Here, we gradually removed lay-
ers from the last to the first 2 to reduce generation
capabilities and show the Standard STS benchmark
results in Figure 4. The results present a S-shaped
curve. It indicates that uni-directional layers are
generally helpful to sentence embeddings. How-

2We did not remove it reversely, i.e., from first to last, as
doing so would cause a malfunction in the generation ability.

ever, there is a turning point at the penultimate
layer, exceeding which we observe a consistent
performance drop for all three LLMs.

Such observations might be attributed to the ex-
treme anisotropy (common-word biases) in the last
layer of autoregressive LLMs, also shown in GPT-
2’s experiments (Ethayarajh, 2019). Consequently,
we convert the last attention layer from uni- to bi-
directional to introduce backward dependencies,
yet keeping most layers uni-directional.

3.2 Model Architecture

BeLLM exhibits layers of auto-regressive LLM
and BiLLM (bi-directional LLM) as follows.

For an input sentence s, we first obtain its word
embeddings with the following formula:

x = EmbeddingLLM (t)

t = TokenizerLLM (s).
(1)

We then fetch the layers from the first up to the
penultimate layer denoted as LLM1:n−1 (n indi-
cates the layer number). They keep autoregressive
architectures to handle language generation effec-
tively and their attention computation is as follows:

AttnLLM
i (Q,K,V) = SoftMax(

QK√
d

+M)V (2)

and

M =




0 −∞ −∞ −∞ −∞
0 0 −∞ −∞ −∞
... ... ... ... ...
0 0 0 0 −∞
0 0 0 0 0


 , (3)

where AttnLLMi is the i-th head of multi-head self
attention (Vaswani et al., 2017) in LLM. Q =
Wqx + b, K = Wkx + b, V = Wvx + b. M
denotes the causal mask. It ensures that the i-th
token is not visible to the i+ 1...L tokens (L is the
input token length) during attention computation,
which is crucial to training language generation.

Based on the experiments in Section 3.1, for the
last layer (after the turning point), we detach and
transform it from uni- to bi-directional to obtain
BiLLMn−1:n. Its attention is computed as follows:

AttnBiLLM
i (Q,K,V) = SoftMax(

QK√
d
)V, (4)

To engage backward dependencies, we remove the
casual mask to turn the last layer bi-directional
inspired by Li et al. (2023).
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Figure 3: The overall framework of BeLLM. It includes three steps: 1) It first examines how to balance uni- and
bi-directional layers with the degradation experiment and finds a turning point. 2) It transforms the attention layers
after the turning point from uni- to bi-directional by removing the causal mask. 3) It employs contrastive learning
to learn sentence embedding. Here, we visualize the dependencies of the representative word “play.” LLM only
captures the forward dependencies of “play” and BeLLM can capture both forward and backward dependencies.

Figure 4: Degradation results on the Standard STS
benchmark. X-axis: the number of uni-directional lay-
ers. Y-axis: the average Spearman’s correlations com-
puted with SentEval (Conneau and Kiela, 2018). The
down arrow indicates a dramatic performance drop.

At last, we couple autoregressive LLM (retain-
ing language generation capabilities) and BiLLM
(the bi-directional last layer engaging forward and
backward dependency modeling) components. The
formula to represent BeLLM is as follows:

h =
→

LLM
1:n

(x) +
⇄

BiLLM
n−1:n

(x). (5)

3.3 Training Methods
In the training of BeLLM, we first generate the
representative word of a given sentence as the pivot
to learn its embedding. Concretely, we employ
a prompt The representative word for {sentence}

is:" for BeLLM to produce the representative word,
where {sentence} is the placeholder for the actual
sentence. Then, the embedding of the representa-
tive word serves as the sentence embedding.

Finally, to enable sentence similarity training,
we adopt contrastive learning (Gao et al., 2021) to
optimize the contrastive objective as follows:

L = −
∑

i

log
ecos(hi,h

+
i )/τ

∑N
j=1

(
ecos(hi,h

+
j )/τ + ecos(hi,h

−
j )/τ

) ,

(6)

where N is the mini-batch size, h+
i and h−

i refer
to the positive and negative samples of hi, respec-
tively. τ is the temperature. cos(a, b) is the cosine
similarity function. This way, the embeddings of
semantically similar sentences are pulled closer
together while dissimilar ones are pushed apart.

Moreover, our training methods can potentially
mitigate the common anisotropy problem in sen-
tence embeddings, which constrains the embed-
dings’ expressiveness. It happens because common
words can bias sentence embeddings, rendering the
learned embeddings to occupy a narrow cone in the
vector space instead of distributing uniformly. The
detailed discussions are shown in Appendix A.

4 Experimental Setup

Datasets. We evaluate sentence embeddings on
STS tasks following the common practices. It in-
cludes the standard and conditional STS as follows.
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICR-R Avg.

Closed-Source Models

openai-ada-002 ♢ 69.80 83.27 76.09 86.12 85.96 83.17 80.60 80.72

Unsupervised Models

GloVe (avg.) † 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERT
+flow ‡ 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
+whitening ‡ 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
+IS ‡ 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
+CT ‡ 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
+DiffCSE 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49
+SimCSE 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25

Supervised Models

InferSent † 52.86 66.75 62.15 72.77 66.87 68.03 65.65 65.01
USE † 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22
SBERT † 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
AnglE
+BERTbase ♡ 75.09 85.56 80.66 86.44 82.47 85.16 81.23 82.37
+LLaMA ♡ 79.00 90.56 85.79 89.43 87.00 88.97 80.94 85.96
SimCSE
+RoBERTlarge 77.46 87.27 82.36 86.66 83.93 86.70 81.95 83.76
+LLaMA ♡ 78.39 89.95 84.80 88.50 86.04 87.86 81.11 85.24

BeLLM (ours) 79.39 ±0.30 91.04 ±0.15 86.52 ±0.15 89.24 ±0.60 87.43 ±0.3 89.04 ±0.73 81.14 ±0.80 86.26 ±0.52

Table 1: Spearman’s correlation on the standard STS benchmark datasets. Higher scores indicate better sentence
embedding performance. Results marked with † are obtained from (Reimers and Gurevych, 2019), those with ‡
are from (Gao et al., 2021), those with ♡ are from (Li and Li, 2023). ♢ indicates the sentence embedding model
released by OpenAI, and its results are from (Muennighoff et al., 2022). Other results are based on reimplementation.
For BeLLM, we report the average scores in five runs with standard deviation (std) expressed as a percentage (%)
after ±. BeLLM outperforms all baselines significantly on average (p-value < 1%, paired t-test).

Standard STS. The standard STS (S-STS) bench-
mark consists of seven STS tasks: STS 2012-
2016 (Agirre et al., 2012, 2013, 2014, 2015, 2016),
SICK-R (Marelli et al., 2014), and STS-B (Cer
et al., 2017). They contain manual annotations of
sentence similarities to test the effectiveness of sen-
tence embeddings. For training and testing, we fol-
low the prior work (Reimers and Gurevych, 2019;
Gao et al., 2021) to train sentence embeddings on
MNLI (Williams et al., 2018) and SNLI (Bowman
et al., 2015) datasets. Then, the trained embeddings
are evaluated on the S-STS benchmark datasets.

Conditional STS. To test sentence embeddings
with a more challenging setup, we adopt the Condi-
tional Semantic Textual Similarity (C-STS) bench-
mark (Deshpande et al., 2023). Here, the pairwise
sentence similarity is labeled under varying con-
ditions with details in Appendix B. We follow the
setting of C-STS to train sentence embeddings and
test them with the C-STS official evaluation API.

Evaluation Metrics. For the automatic evalua-
tion of sentence embeddings, we follow previous

studies to use Spearman’s correlation. It compares
the ranks of pairwise embeddings and assesses the
ranked monotonic relations based on manual an-
notations. For the S-STS benchmark, we used the
SentEval (Conneau and Kiela, 2018) toolkit and
reported the results in the “all” setting following
prior work. For C-STS, we reported Spearman’s
correlation returned by its official evaluation API.

Baselines and Comparisons. For S-STS, we
considered widely adopted unsupervised and su-
pervised sentence embedding baselines. 1) The
unsupervised baselines include GloVe (Penning-
ton et al., 2014) with average pooling , BERT-flow
(Li et al., 2020), BERT-whitening (Su et al., 2021),
and other BERT-based baselines trained with con-
trastive learning: IS-BERT (Zhang et al., 2020),
CT-BERT (Carlsson et al., 2020), SimCSE (Gao
et al., 2021), and DiffCSE (Chuang et al., 2022). 2)
The supervised baselines include InferSent (Con-
neau et al., 2017), USE (Cer et al., 2018), SBERT
(Reimers and Gurevych, 2019), AnglE (Li and
Li, 2023), and supervised SimCSE. In addition to
open-source models, we also compared with pop-
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ular closed-source openai-ada-002 (Muennighoff
et al., 2022) embeddings.

For C-STS, we employed few-shot LLM of
Flan-T5 (Chung et al., 2022), Tk-Instruct (Wang
et al., 2022), GPT-3.5 (OpenAI, 2022), GPT-4
(OpenAI, 2023), and supervised SimCSE (fine-
tuned) (Gao et al., 2021).

For baselines’ benchmark results, we will report
the scores from the original papers and prior work.

Model Settings. BeLLM employed LLaMA2-
7B model (Touvron et al., 2023) as the backbone.
For efficient training, we used the LoRA technique
(Hu et al., 2021; Dettmers et al., 2024) for fine-
tuning with lora_r = 32, lora_alpha = 32, and
lora_dropout = 0.1. In this setting, the train-
able parameters are about 80M, smaller than BERT-
base’s 110M. We trained the model on 4 RTX 3090
Ti GPUs. We chose the batch size by searching on
the values {16, 32, 64, 128}. The initial learning
rate was set to 2e− 4 via grid search on validation
data. For a fair comparison with baselines, we set
the random seed to 42 following SimCSE (Gao
et al., 2021) for main experiments. We also test
using different random seeds to verify BeLLM’s
robustness in the ablation study (Section 5.3).

5 Experimental Results

The following will first present the main results
with intrinsic evaluation (Section 5.1), followed
by the extrinsic transfer task results in Section 5.2.
To provide more insight, we will then analyze the
ablation study and case study results in Section
5.3 and 5.4, respectively. At last, we further ex-
amine the intra-sentence dependency of BeLLM to
supplement the pilot analysis in Section 2.

5.1 Main Comparison Results

We first discuss the main results in S-STS and the
more challenging C-STS benchmarks.

Standard STS. We show S-STS benchmark re-
sults in Table 1 and draw the following observa-
tions. First, supervised models generally outper-
form unsupervised models; it suggests that sen-
tence embedding cannot be effectively learned by
shallow features, and human supervision can pro-
vide positive help. Second, the LLM-based models
perform better than the BERT-based models, imply-
ing that larger model scales help capture sentence
semantics. Third, our proposed BeLLM model per-
forms the best in all S-STS datasets. It consistently

outperforms AnglELLaMA and SimCSELLaMA,
with 0.3% and 1.02% improvements in average
score, respectively. These results indicate the effec-
tiveness of incorporating backward dependencies
into LLMs for sentence embeddings.

Model Spearman’s Correlation

Flan-T5XL † 24.80
Flan-T5XXL † 29.20
Flan-UL2 † 23.20
Tk-Instruct3B † 4.90
Tk-Instruct11B † 17.10
GPT-3.5 † 15.50
GPT-4 † 43.60

SimCSE
+RoBERTalarge (prior SOTA) † 47.50
+LLaMA 48.64

BeLLM (ours) 49.74 ±0.25

Table 2: Results on the C-STS benchmark. † denotes re-
sults from (Deshpande et al., 2023). Prompts for LLMs
can be retrieved from (Deshpande et al., 2023). BeLLM
results are the average in five runs. The reported stan-
dard deviation (std) value is expressed as a percentage
(%) after the ± symbol. BeLLM outperforms all base-
lines significantly (p-value < 1%, paired t-test).

Conditional STS. To allow sentence embedding
evaluation in a more challenging setup, we further
employ the C-STS dataset to assess semantic sim-
ilarities in conditions. Here, we devise a prompt
to enable LLM to summarize the given sentence
in one representative word by putting the condi-
tions into the context. The prompt is as follows:
Given the context {condition}, summarize the sen-
tence {sentence} in one word:", where {condition}
and {sentence} are placeholders for the actual input
condition and sentence, respectively.

The results are presented in Table 2. We observe
that LLMs, such as GPT-3.5 and GPT-4, yield in-
ferior results in few-shot settings compared to su-
pervised SimCSE with fine-tuning. It implies that
C-STS is challenging and cannot be well solved
by few-shot LLMs; fine-tuning can helpfully boost
the results of a smaller-scale model. Among fine-
tuned models, the results are consistent with S-STS:
larger model sizes and backward dependencies
both contribute positively. Combining their effects,
BeLLM achieves the SOTA performance. It demon-
strates a 1.10% improvement over SimCSELLaMA

without modeling backward dependency and a re-
markable 2.24% gain over the prior SOTA model,
SimCSE (RoBERTalarge).
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Model MR CR SUBJ MPQA SST2 TREC MRPC Avg.

GloVe † 77.25 78.30 91.17 87.85 80.18 83.00 72.87 81.52
Skip-thought ‡ 76.50 80.10 93.60 87.10 82.00 92.20 73.00 83.50

Avg. BERT † 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94
BERT-CLS † 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
IS-BERT ‡ 81.09 87.18 94.96 88.75 85.96 88.64 74.24 85.83
DiffCSE ♢ 82.82 88.61 94.32 87.71 88.63 90.40 76.81 87.04

SimCSE
+RoBERTa ⋆ 83.37 87.76 95.05 87.16 89.02 90.80 75.13 86.90
+LLaMA ♣ 90.40 92.90 96.88 91.57 95.11 95.40 75.13 91.06

BeLLM (ours) 90.79 ±0.28 93.43 ±0.50 96.53 ±0.55 92.01 ±0.32 95.77 ±0.30 95.45 ±0.67 75.48 ±0.59 91.35 ±0.48

Table 3: Accuracy of transfer task results based on different sentence embeddings. †: results from Reimers and
Gurevych (2019); ‡: results from Zhang et al. (2020); ⋆: results from Gao et al. (2021). ♢: results from Chuang et al.
(2022); ♣: results from Jiang et al. (2023). BeLLM’s results are the average of five runs. The reported standard
deviation (std) value is expressed as a percentage (%) after the ± symbol. The paired t-test suggests that the average
improvements of BeLLM compared to LLaMA are significant, with corresponding p-values of 4.06%.

5.2 Transfer Task Results

To assess the benefits of sentence embeddings in
downstream tasks, we evaluate our model on seven
transfer tasks: MR (Movie Reviews) (Pang and
Lee, 2005), CR (Customer Reviews) (Hu and Liu,
2004), SUBJ (Subjectivity) (Pang and Lee, 2004),
MPQA (Multi-Perspective Question Answering)
(Wiebe et al., 2005), SST2 (Stanford Sentiment
Treebank) (Socher et al., 2013), TREC (Text Re-
trieval Conference) (Voorhees and Tice, 2000), and
MRPC (Microsoft Research Paraphrase Corpus)
(Dolan et al., 2004). The transfer task results are
measured by SentEval (Conneau and Kiela, 2018)
toolkit. Following common practices, we train a
logistic regression classifier using sentence embed-
dings as features and used default configurations
of SentEval for a fair comparison.

The results are presented in Table 3. As can be
seen, BeLLM achieves superior performance com-
pared to the baselines, obtaining the best results
on average and in 6 out of 7 tasks. These results
indicate that incorporating backward dependencies
to LLMs can helpfully learn sentence embeddings,
which benefit downstream task performances.

5.3 Ablation Study

We have shown the overall effectiveness of BeLLM.
Here, we further analyze the effects of its varying
settings with an ablation study results in Table 4.
From the turning point ablation results, we find
bi-directional attention layers are useful to BeLLM,
yet converting all attention layers into bi-directional
results in deficient performance. It is possibly be-
cause uni-directional attention layers are crucial in

language generation for representative word predic-
tion. Consequently, finding a good balance of uni-
and bi-directional attention layers plays a crucial
role in sentence embeddings.

From the model scale results, we find that the
13B BeLLM outperforms the 7B BeLLM. This
aligns with the finding that larger model scales are
more effective in capturing sentence semantics, as
indicated in the main findings.

From the random seed results, we follow Wu
et al. (2023) to use different random seeds. It is
observed that this yields even better performance
than fixed ones, suggesting BeLLM is robust.

From the bi-directional strategy results, we ob-
serve that the “modification” strategy yields better
results than the “addition” strategy. This implies
that the increase in trainable parameters to LLMs
by adding new attention layers will increase the
difficulty of fine-tuning the model. It demonstrates
that modifying the uni-directional attention layer
by removing casual masks is effective.

5.4 Case Study
To better understand why BeLLM performs well,
we conduct a text retrieval experiment on the test
split of the flickr30k dataset (Young et al., 2014).
It contains images, each with 5 captions. We
used the first caption vector to retrieve the top
4 similar sentences using the faiss vector search
framework (Johnson et al., 2019). For strict ac-
curacy (correct cases only count for the top 4 re-
trieved captions exactly matching the 4 references),
SimCSERoBERTa, SimCSELLaMA, and BeLLM
obtains 16.4%, 18.4%, and 20.2%, respectively. It
shows that BeLLM’s sentence embeddings superi-
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Ablation Models Spearman’s ρ

Turning Point

BeLLM (last bi-layer) (default) 86.26
BeLLM (no bi-layer) 85.24
BeLLM (all bi-layers) 75.55

Model Scale

BeLLM7B 86.26
BeLLM13B 86.87

Random Seed

fixed random seed 42 86.26
different random seeds (3 runs) 86.29

Bi-directional Strategy

Modification 86.26
Addition 84.35

Table 4: The results of BeLLM ablations with the av-
erage Spearman’s correlation (Spearman’s ρ) of S-STS.
Last bi-layer: bi-directional layer at the last layer; no
bi-layer and all bi-layers: the BeLLM ablation with no
and all bi-directional layers. Modification: removing ca-
sual masks; Addition: adding new bi-directional layers.

orly reflect semantic similarities for retrieval.
We then examine a case in Table 5. In the query

caption, “police officer” is the subject, and “fe-
male” is its subject modifier; their relations can
be learned through forward dependency; “hat” and
“sunglasses” are objects, and their relations to “po-
lice” should be indicated by backward dependency.
SimCSERoBERTa has a smaller model scale, which
limits its ability to exploit global context. As a re-
sult, its top results even messed up the subject. De-
spite having a larger model scale, SimCSELLaMA

exhibits inferior results due to the lack of backward
dependency modeling. For this reason, most of the
retrieved results missed 1-2 objects. On the con-
trary, BeLLM performs the best, and the top two
captions exactly match the references. The results
indicate the superiority of BeLLM in exploiting
context to learn high-quality sentence embeddings.

5.5 Discussion of Enhanced Dependency

Finally, we experiment on the intra-sentence de-
pendencies for BeLLM to supplement Section 2.
Figure 5 depicts the dependencies change from
NLI-trained LLaMA to BeLLM. As can be seen,
BeLLM exhibits much higher overall Spearman’s
correlation scores than LLaMA. This evidence
again demonstrates that transforming the last at-
tention layer bi-directional effectively enhances the
capabilities of capturing dependency and is helpful

Q: A female police officer wears an officer’s hat and sunglasses.

SimCSERoBERTa

#1 An officer stands next to a car on a city street.

#2 A police woman smiling and wearing sunglasses and a hat.

#3 Young, smiling, blond female police officer from New York
standing outside on a sidewalk.

#4 An officer in a black uniform and hat stands to the left of a
large structure with other officers in the background.

SimCSELLaMA

#1 A female police officer in a cap and navy uniform smiles
while wearing sunglasses outside of a shop.

#2 Young, smiling, blond female police officer from New York
standing outside on a sidewalk.

#3 An officer stands next to a car on a city street.

#4 An officer in a black uniform and hat stands to the left of a
large structure with other officers in the background.

BeLLM

#1 A female police officer in a cap and navy uniform smiles
while wearing sunglasses outside of a shop.

#2 A police woman smiling and wearing sunglasses and a hat.

#3 Young, smiling, blond female police officer from New York
standing outside on a sidewalk.

#4 An attractive young New York City police woman pauses
on the sidewalk.

Table 5: The top 4 retrieved sentences by RoBERTa,
LLaMA, and BeLLM from the flickr30k dataset. The
words with green color represent the keywords.

in exploiting sentence context for embeddings.

AVG=0.13 AVG=0.21

Figure 5: The sentence-level Spearman correlation plot
for NLI-trained LLaMA and BeLLM on STS-B test set.

6 Related Work

BeLLM is in line with sentence embeddings. In
contrast to early attempts focusing on embeddings
on the word level (Mikolov et al., 2013), sentence
embeddings capture sentence-level semantics to
understand context better. Many previous studies
adopted unsupervised approaches to utilize large-
scale unlabeled text. Here, a popular method is
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to use BERT-alike transformers (Li et al., 2020;
Su et al., 2021) to encode sentence embeddings.
Based on that, contrastive learning (Zhang et al.,
2020; Gao et al., 2021; Chuang et al., 2022; Zhuo
et al., 2023) was further exploited to explore se-
mantic similarities for sentence embeddings with
self-supervision.

To better align sentence embeddings to human
senses, other prior studies (Conneau et al., 2017;
Cer et al., 2018) employed labeled data for su-
pervised sentence embedding learning. Here, pre-
trained language models typically worked as the
backbone architectures (Reimers and Gurevych,
2019; Su, 2022). Following that, there is growing
attention to the use of pre-trained LLMs for sen-
tence embeddings (Li and Li, 2023; Jiang et al.,
2023). However, existing works employed com-
monly used autoregressive LLMs, neglecting the
potential benefits of backward dependencies to sen-
tence embeddings. Viewing this gap, we exten-
sively explore the effects of backward dependen-
cies in LLMs for sentence embeddings.

7 Conclusion

Our work has pointed out the benefits of coupling
forward and backward dependencies in LLMs for
sentence embeddings. We have introduced BeLLM,
a novel LLM with backward dependency-enhanced
sentence embedding learning. In extensive experi-
ments, BeLLM has achieved state-of-the-art perfor-
mance across varying STS and downstream tasks.

Limitations

BeLLM has large-scale parameters, which can hin-
der its efficiency when applied to real-world appli-
cations. Addressing this challenge is an essential
aspect of our future work. We plan to optimize the
model, ensuring it remains practical and efficient
for real-world applications.
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A Discussion of Anisotropy Problem

Our proposed representative word strategy and con-
trastive learning can mitigate the anisotropy issue.

Firstly, our proposed representative word strat-
egy can help alleviate this issue since representa-
tive words are typically not high-frequency words.
For instance, in our experiment using the BeLLM
model, the representative word for the sentence “I
am unhappy because it is raining” is “unhappy”,
which is not as commonly used as words like “it”
and “is”. Our quantitative experiment in the STS-
B dataset indicates that approximately 91.74% of
representative words are not high-frequency words.

Furthermore, the use of contrastive learning can
alleviate this problem further. Here, we give a
theoretical explanation. Following Wang and Isola
(2020), the contrastive learning objective of Eq. 6
can be formulated as follows:

Lcontrastive = E(x,x+)∼ppos

[
−f(x)T f(x+)/τ

]

+ E
(x,x+)∼ppos

(x,x−
i )∼pdata

[
log

(
ef(x)

T f(x+)/τ +
∑

i

ef(x
−
i )T f(x)/τ

)]
,

(7)

where x+ and x− are the positive and negative ex-
amples of x, respectively. ppos denotes positive in-
stances. pdata is uniform over finite samples ximi=1.
f(x)T f(x+)/τ measures the alignment (similar-
ity). Since the term

∑
ef(x

−
i )T f(x)/τ is always pos-

itive, the loss function inherently favors smaller
values for E

[
−f(x)T f(x+)/τ

]
, i.e., it can be op-

timized well. Suppose the encoder is perfectly
aligned, i.e., P[f(x) = f(x+)] = 1, then minimiz-
ing Eq. 7 equally minimizes following equation:

E
(x,x+)∼ppos

(x,x−
i )∼pdata

[
log

(
e1/τ +

∑

i

ef(x
−
i )T f(x)/τ

)]
, (8)

To minimize it, all sentence embeddings should be
pushed away from each other to form a uniform
distribution. The uniform distribution of sentence
embeddings can eliminate the effect of the common
words and thus alleviate the anisotropy problem.

B Examples of CSTS

Table 6 shows an example of C-STS. Each sample
in C-STS includes three fields: sentence 1, sen-
tence 2, and condition. The sentence pair exhibits
varying similarities based on different conditions.
The same sentence pair can be classified as either
high similarity or low similarity under different
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Sentence 1: An older man holding a glass of wine
while standing between two beautiful ladies.

Sentence 2: A group of people gather around a
table with bottles and glasses of wine.

Condition Similarity

The people’s demeanor 5

The number of bottles 1

Table 6: An example from the C-STS validation set,
where the same sentence pair has different similarities
based on different conditions. A similarity score of 1 in-
dicates dissimilar, while a score of 5 represents similar.

conditions. The scale ranges from 1 (dissimilar) to
5 (similar).
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