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Abstract

While large language models (LLMs) trained
with large-scale unsupervised learning acquire
a wide variety of world knowledge and skills,
its behavior does not necessarily align with
human preferences. RLHF methods achieve
successes in aligning LLM responses with hu-
man preferences and improving the controlla-
bility of LLM behavior with human instruc-
tion. However, RLHF methods are consider-
ably complicated to implement, computation-
ally expensive to train, and notoriously tricky
to tune. In this work, we propose Alignment
with Residual Energy-Based Model (ARM),
as a simple and flexible alternative to RLHF
methods. Our method is driven by an obser-
vation that we can learn an aligned policy by
minimizing a forward Kullback–Leibler (KL)
divergence from a target policy (in the form of a
residual energy-based model) to a parameteric
policy (LLM), instead of a reverse KL as in
RLHF methods. With samples from the energy-
based target policy, we can leverage the power
of DPO (or other offline methods) to learn an
aligned policy efficiently. ARM is simple to
implement and applicable in various data set-
tings. Our extensive experiments demonstrate
its strong performance across multiple datasets,
compared to strong baselines like PPO, DPO.

1 Introduction

Large language models (LLMs) have become ex-
tremely powerful and demonstrated remarkable ca-
pacities in various domains (OpenAI, 2023; Anil
et al., 2023). LLMs trained on very large unsuper-
vised datasets acquire a wide range of capacities
and skills, completing tasks zero-shot or few-shot
(Radford et al., 2019; Brown et al., 2020). The
large unsupervised corpus contains text with var-
ious goals and values, which are not necessarily
aligned with human preferences.

After unsupervised learning, instruction tun-
ing (Mishra et al., 2021; Sanh et al., 2021; Chung

Figure 1: Graphic illustration of ARM. In ARM, we
sample from a target policy, as an exponential tilting
of the SFT policy, with self-normalizing importance
sampling. We can then learn an aligned policy from
these samples with DPO (or any other offline methods).

et al., 2022; Wei et al., 2021) is often applied to
LLMs, which can significantly improve their ca-
pacities on instruction following and align their re-
sponses with human values or preferences. While
instruct tuning is straightforward, the most success-
ful class of methods for alignment is Reinforcement
Learning from Human Feedback (RLHF) (Chris-
tiano et al., 2017; Stiennon et al., 2020; Ouyang
et al., 2022). To apply RLHF, human preferences
data on model responses are first collected, and a
reward function is learned with the preference data
as a surrogate to human value. Given the surro-
gate reward function, RL methods can be applied,
where language models are optimized to produce
responses that receive high rewards while not drift-
ing too far away from a reference model (Schulman
et al., 2017).

Despite the success of RLHF, these methods
are often complicated to implement, expensive
to train, and tricky to tune. Recently, there is a
surge of interest in developing simpler alternatives
to RLHF methods such as DPO (Rafailov et al.,
2023), RRHF (Yuan et al., 2023). These meth-
ods are straightforward to implement and easier to
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Figure 2: Improvements of ARM over SFT model un-
der various settings. y-axis is the win-rate of LLM re-
sponses compared to human responses in the Anthropic-
Helpful-Harmless dataset.

train, yet they maintain the performance of RLHF
methods on human preference learning.

The reliance on complicated online RL methods
is because the reward maximization (with some
conservative constraint) in preference learning
amounts to minimizing a reverse Kullback–Leibler
(KL) divergence DKL

(
πθ || π∗), where π∗ is the

target response distribution or policy that aligns
with human preference, and πθ is parameteric pol-
icy (e.g., LLMs) we aim to learn (see Section 4
for more details). Optimizing the reverse KL is
not straightforward since sampling from πθ is not
differentiable, and we have to resort to online RL
methods to optimize this objective.

In this work, we propose to optimize the for-
ward KL, DKL

(
π∗ || πθ

)
. As we will show later

(Section 4), the target distribution π∗ is a residual
energy-based model with a reference distribution
(usually the SFT distribution) as the base model
and the surrogate reward function as the (nega-
tive) residual energy term. We can sample from π∗

given a learned reference distribution and reward
function, and let’s denote it as Dπ∗ . If we learn
πθ from Dπ∗ with maximum likelihood estimation
(MLE), it is a variant of expert iteration (Anthony
et al., 2017). Besides MLE, we can learn it with
any other offline methods such as DPO. This work
focuses on DPO since it is simple and performs
well (Rafailov et al., 2023). We call our method of
learning policy from Dπ∗ as Alignment with Resid-
ual Energy-Based Model (ARM) due to the central
role of EBM in our method. See Figure 1 for a
illustration of ARM.

We conduct extensive experiments and demon-
strate that our method, ARM, yields substantial
improvements over SFT policies and outperforms
competitive baselines such as PPO and DPO. In
addition to standard benchmarks, we also examine
ARM when only non-pairwise preference data are
available and in low-resource settings. These exper-
iments highlight the applicability of our method to
diverse settings due to its simplicity and flexibility.
As a preview, Figure 2 displays the win-rate of SFT
and ARM policy responses under various condi-
tions, as compared to human preferred responses,
on the Anthropic Helpful-Harmless dataset (Bai
et al., 2022a).

Our contributions are summarized as follows:

• We propose a new learning method named
ARM for aligning LLMs with human prefer-
ences.

• ARM is simple to implement and flexible to
accommodate various data settings.

• Our experiments show that ARM outperforms
strong baselines such as PPO-based RLHF,
state-of-the-art RL-free method DPO, in tasks
including instruction following, summariza-
tion, and dialogue.

2 Related Works

Since unsupervised LLMs have demonstrated un-
precedented potentials in a wide variety of tasks
and domains (Radford et al., 2019; Brown et al.,
2020), much research has dedicated to study how
to improve the controllability of LLM behavior, in
order to align it with human value and ensure it to
follow human instructions.

One line of work focuses on instruction tun-
ing. Early works leverage academic datasets by
transforming them into instructional formats with
human-written prompt templates (Wei et al., 2021;
Sanh et al., 2021; Wang et al., 2022). This approach
is scalable and exhibits potentials in making unsu-
pervised LLMs follow instructions. However, its
performance significantly lags behind proprietary
models like GPT-4 (OpenAI, 2023) which most
likely collects a large scale of human-written high
quality instruction data. Recently, some researchers
attempt to collect high-quality instruction data from
strong proprietary models and use them to improve
open-sourced models’ instruction following capac-
ities (Xu et al., 2023a,b).
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Besides instruction tuning, RLHF is another
class of methods that demonstrate success in hu-
man preference learning (Christiano et al., 2017;
Stiennon et al., 2020; Ouyang et al., 2022). This ap-
proach learns a surrogate reward function from hu-
man preference data and considers LLMs as policy
models, and then applies RL methods to maximize
rewards assigned to the policy without excessively
drifting from some reference model. One popular
method, PPO (Schulman et al., 2017), is often used
in this setting. Motivated by the complexity of RL
methods, many recent works attempt to develop
simpler alternatives. DPO (Rafailov et al., 2023)
and RRHF (Yuan et al., 2023) are developed along
this line. Our work shares the same motivation.

Since collecting human feedback is expensive,
some works explore to use AI models to provide
feedback, and they offer potential solutions to the
scalability limitations of RLHF (Lee et al., 2023;
Bai et al., 2022b). Our method, once an SFT model
and a reward function are trained with human (or
other AI) data, our method characterizes sampling
instruction data and preference data from AI mod-
els and learning from these samples. Thus, our
work is also in line with these RLAIF works on this
aspect.

3 Preliminaries

Large language model training starts with unsu-
pervised learning where it is trained on very large
datasets with next token prediction. With scaling,
LLMs gain wide knowledge and capacities after
unsupervised training (Radford et al., 2019; Brown
et al., 2020).

To improve LLMs’ instruction following capac-
ity, the next step is instruction tuning or supervised
finetuning (SFT), where models are finetuned on in-
structions and human-written completions (Mishra
et al., 2021; Sanh et al., 2021; Wei et al., 2021).
Given a dataset, Dsft = {(x, y)} where x is an
instruction or a prompt and y is a human-written
completion, SFT is often done by

πsft = min
π

E(x,y)∼Dsft

[
− log π(y|x)

]
(1)

To align model behavior with human value,
RLHF is applied after learning the SFT policy.
This framework assumes 1) a latent reward func-
tion, r : X × Y → R, that captures human pref-
erence, and 2) preference models, Bradley-Terry
model (Bradley and Terry, 1952) or more general
Plackett-Luce model (Plackett, 1975; Luce, 2012),

that specify preference probability given the reward
function. Assume we have access to {(x, y0, y1)}
where y0, y1 ∼ πsft(y|x), the Bradely-Terry model
assumes human preference is captured by the fol-
lowing distribution,

p(y1 ≻ y0|x) =
exp (r(x, y1))

exp (r(x, y1)) + exp (r(x, y0))
.

(2)
We define z ∼ Bernoulli(p(y1 ≻ y0 | x)),

then we can generate a preference dataset, Dpref =
{(x, y0, y1, z)}. Given a parameteric form of re-
ward model, rϕ(x, y), it can be learned with the
negative log-likelihood loss:

L(ϕ) = −E(x,y0,y1,z)∼Dpref

[

z log σ(rϕ(x, y1)− rϕ(x, y0))+(
1− z

)(
1− log σ(rϕ(x, y1)− rϕ(x, y0))

)]

(3)

Given πsft(y|x) and rϕ(x, y), we would like to
learn a policy, πθ(y | x), with feedback from the
reward model. The objective is often formulated as
reward maximization with KL-constraint:

max
πθ

Ex∼D,y∼πθ(y|x)
[
rϕ(x, y)

]
−

βDKL
[
πθ(y | x) || πref(y | x)

]
,

(4)

where πref is often set to be πsft. This objective is
often optimized with online RL methods such as
PPO (Schulman et al., 2017).

As an alternative, Rafailov et al. (2023) proposes
direct preference optimization (DPO) where they
bypass direct reward modeling via a change of vari-
ables to define the preference loss as a function of
the policy directly. Therefore, the policy can be
trained with the preference loss directly. In particu-
lar, the DPO objective is as follows,

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[

log σ

(
β log

πθ(yw | x)
πref(yw | x)−

β log
πθ(yl | x)
πref(yl | x)

)]
, (5)

where yw is the preferred response given the
prompt x and yl is the dispreferred response.
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4 Methods

4.1 Motivations

As shown in prior works (Peters and Schaal, 2007;
Korbak et al., 2022; Go et al., 2023), the KL-
constrained reward maximization objective defined
in Equation 4 is equivalent to minimizing a reverse
KL divergence, DKL

(
πθ(y | x) || π∗(y | x)

)
where

πθ(y | x) is the parametric policy that we are try-
ing to align with human value and π∗(y | x) =
1

Z(x)πsft(y | x) exp
(

1
β rϕ(x, y)

)
.

We may learn πθ by minimizing DKL
(
πθ || π∗).

However, this approach faces two challenges. First,
optimizing a reverse KL leads to mode collaps-
ing. Second, it cannot be optimized end-to-end
due to the non-differentiability of sampling from
πθ (which has a discrete output space), and this is
why researchers resort to RL-based methods such
as PPO. While they produce language models with
impressive capacities, these methods are consid-
erably complicated to implement, tricky to tune,
and computationally expensive to train (e.g., four
LLMs need to be fit in GPU memory in PPO train-
ing).

4.2 Alignment with Residual Energy-Based
Model

In this work, we propose to learn πθ with the for-
ward KL, DKL

(
π∗(y | x) || πθ(y | x)

)
. Follow-

ing this principle, we develop a simple, efficient,
flexible, and highly-performant method, and recast
several heuristic-driven methods in a probabilistic
framework.

4.2.1 Residual Energy-Based Model
Our proposal is driven by the observation that the
target distribution π∗ is a residual energy-based
model (EBM) (Deng et al., 2019; Bakhtin et al.,
2021),

π∗(y | x) = 1

Z(x)
πsft(y | x) exp

(
1

β
rϕ(x, y)

)
,

(6)
where Z(x) is a normalizing factor known as par-
tition function, πsft is the SFT-learned distribution,
and 1

β rϕ(x, y) is the negative energy or the residual
in the residual EBM framework (rϕ is the learned
surrogate reward function, see Equation 3).

4.2.2 Self-Normalizing Importance Sampling
Since all the components in π∗(y | x) is known,
we can directly sample from it. Sampling from

Algorithm 1 Self-Normalizing Importance Sam-
pling.

Input: πsft(y | x), instruction x, number of
proposal samples to be drawn, n.
Output: completion y.
1. proposal sampling: Sample n samples
{y(1), ..., y(n)} from πsft(y | x).
2. resampling with residual energy: Sample
y ∼ p(y|x) = exp (rϕ(x,y)/β)∑n

i=1 exp (rϕ(x,si)/β)
.

EBM, especially discrete EBM, is still under ac-
tive research (Grathwohl et al., 2021). In this
work, we use self-normalizing importance sam-
pling (Shapiro, 2003; Grover et al., 2019). Deng
et al. (2019) has shown that it works well with
language-model-based EBM. The sampling pro-
ceeds in two steps: 1) sampling from the auto-
regressive language model πsft(y | x), 2) re-
sampling according to the negative energy term,
1
β rϕ(x, y). This sampling procedure is detailed in
Algorithm 1.

Given this particular choice of sampling method
(self-normalizing importance sampling) and the
fact the negative energy is defined by a surrogate re-
ward function, sampling from π∗(y | x) resembles
the well-known best-of-n inference (Dubois et al.,
2023) where it draws n responses from the SFT
model and returns the response with the highest
surrogate reward. The difference is that sampling
from π∗ is a probabilistic approach while best-of-n
is greedy.

4.2.3 Expert Iteration
With samples from π∗(y | x), we can learn θ by
minimizing the forward KL, DKL

(
π∗ || πθ

)
, which

amounts to maximum likelihood estimation (MLE)
of θ. That is,

max
θ

Ex,y∼Dπ∗ log πθ(y|x), (7)

where Dπ∗ = {x, y | x ∼ Dprompt, y ∼ π∗(y | x)}
and Dprompt is a collection of prompts. This is
a variant of expert iteration considering that re-
sponses from π∗ can be considered as "expert"
responses. This approach is summarized in Algo-
rithm 2.

4.2.4 ARM: Bradley-Terry
In our experiments, expert iteration works well
and consistently produces policy that outperforms
SFT policy. Considering the advantage of DPO
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Algorithm 2 Expert Iteration.

Input: π∗(y | x), prompt dataset Dprompt =
{x}.
Output: πθ(y|x).
1. sampling: Sample a completion y
from π∗(y|x) given x ∼ Dprompt with self-
normalizing importance sampling (Algorithm 1),
resulting in Dπ∗ = {(x, y)}.
2. learning: Learn θ from Dπ∗ via MLE, see
Equation 7.

Algorithm 3 ARM.

Input: π∗(y | x), prompt dataset Dprompt =
{x}.
Output: πθ(y|x).
1. sampling: Sample completions y0 and y1
from π∗(y|x) given x ∼ Dprompt with self-
normalizing importance sampling (Algorithm 1),
resulting in Dπ∗ = {(x, y0, y1)}.
2. scoring: Score y0 and y1, yielding rϕ(x, y0)
and rϕ(x, y1), and then compute the prefer-
ence probability (see Equitation 8), giving us
Dpreference = {(x, y0, y1, ρ)}.
3. learning: Learn θ from Dpreference via DPO,
see Equation 9.

over MLE (or the advantage of offline RL methods
over behavior cloning in general), the flexibility
of our framework allows us to do simple modifica-
tions on expert iteration to leverage DPO, which
results in alignment with residual energy-based
model (ARM). Expert iteration (see Algorithm 2)
follows two steps: 1) sampling and 2) MLE learn-
ing. In ARM, we 1) add a scoring step as the second
step where we collect preference scores using the
learned surrogate reward function, rϕ(x, y), and 2)
use DPO instead of MLE to train πθ.

Given an instruction x, we can sample two re-
sponses, y0 and y1, from π∗(y|x). Bradley-Terry
model (Equation 2) is then used to assign pref-
erence scores with the surrogate reward model,
rϕ(x, y). In particular, for y1 being preferred over
y0, y1 ≻ y0, the preference probability, ρ, is

ρ = p(y1 ≻ y0|x)

=
exp (rϕ(x, y1))

exp (rϕ(x, y1)) + exp (rϕ(x, y0))
, (8)

and for y0 ≻ y1, we have 1− ρ. As such, we build
a preference dataset by sampling from π∗(y | x)
and the Bradley-Terry preference model, and let’s

denote it as Dpreference = {(x, y1, y2, ρ)}. With the
preference dataset, πθ can be learned by minimiz-
ing the following objective,

LARM(θ) = −E(x,y0,y1,ρ)∼Dpreference

[

ρ log σ

(
β log

πθ(y1 | x)
πsft(y1 | x)

− β log
πθ(y0 | x)
πsft(y0 | x)

)
+

(1− ρ) log σ

(
β log

πθ(y0 | x)
πsft(y0 | x)

−

β log
πθ(y1 | x)
πsft(y1 | x)

)]
. (9)

It is a modified version of the original DPO objec-
tive (Rafailov et al., 2023). Notice that is a proba-
bility value or soft label. This is accessible because
we have the learned surrogate reward model (in-
stead of the latent reward function of human). This
learning approach is summarized in Algorithm 3.

The original DPO learning is off-policy since
it’s trained with samples from a variety of policies
(e.g., human, other LLMs). In contrast, our method
is more on-policy since it learns from samples of an
exponentially-tilted SFT-policy. In addition, ARM
directly learns from surrogate reward value instead
of chosen-versus-rejected binary feedback as in the
original DPO. Given a well-learned reward func-
tion, our approach has an advantage.

4.2.5 ARM: Plackett-Luce
The Bradley-Terry model is one choice of reward
model. The Plackett-Luce model (Plackett, 1975;
Luce, 2012) is a generalization of the Bradley-Terry
model when the number of responses is more than
two. One practical reason why Bradley-Terry is
chosen over Plackett-Luce is because it is more
expensive to collect preference data over multi-
ple responses. In our framework, preference data
used to train πθ(y|x) 1 are collected from a learned
reward function. Thus, it is trivial to collect prefer-
ence over multiple responses given a prompt. We
next briefly introduce the Plackett-Luce model and
show how our method can be extended to the case
with Plackett-Luce as the reward model.

As the Bradley-Terry model, the Plackett-Luce
model also assumes that human preference is pro-
portional to the value of each choice under some
latent reward function, when presented a set of
choices. In the LLM context, given a prompt x and

1Note that the preference data used to train the surrogate
reward function is still collected from human feedback.
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AlpacaFarm TL;DR Summarization Anthropic-HH

SFT 36.7 43.7 52.7
Expert Iteration 41.9 57.2 62.4
PPO 46.8 63.5 63.6
DPO 46.8 65.8 67.3
Best-of-n 45.0 64.6 70.1
Ours 50.1 71.0 77.7

Table 1: Win-rates on AlpacaFarm, TL;DR Summarization, and Anthropic-HH.

Non-Pairwise Preference Data

AlpacaFarm TL;DR Summarization Anthropic-HH

SFT 36.7 43.7 52.7
Expert Iteration 41.7 45.0 57.1
DPO N/A N/A N/A
Best-of-n 43.3 46.2 68.4
Ours 48.2 47.4 72.5

Table 2: Win-rates on AlpacaFarm, TL;DR Summarization, Anthropic-HH when we only have access to non-
pairwise preference data.

a set of K LLM responses {y1, . . . , yK}, human
would give a permutation τ : [K] → [K], based on
their ranking of the responses. The Plackett-Luce
model states the distribution of the permutations
(rankings) is,

p(τ |y1, . . . , yK , x) =

K∏

k=1

exp(r(x, yτ(k)))∑K
j=k exp(r(x, yτ(j)))

,

(10)
where yτ(1) is the highest ranked response. No-
tice that when K = 2, Equation 10 reduces to the
Bradley-Terry model (Equation 2). Rafailov et al.
(2023) shows that DPO can be generalized to the
Plackett-Luce model too by parameterizing the re-
ward function r(x, y) as log-ratios of policies. In
particular,

pθ(τ |y1, . . . , yK , x) =

K∏

k=1

exp
(
β log

πθ(yτ(k)|x)
πsft(yτ(k)|x)

)

∑K
j=k exp

(
β log

πθ(yτ(j)|x)
πsft(yτ(j)|x)

) (11)

Similar to ARM based on the Bradley-Terry
model (see Section 4.2.4 and Algorithm 3), we
can learn the aligned policy πθ(y | x) with the fol-
lowing three steps: 1) sample K model responses,
{y(i)1 , . . . , y

(i)
K }, from πsft(y | x), given a prompt

x(i); 2) score the K responses with rϕ(x, y), yield-
ing {rϕ(x, y(i)1 ), . . . , rϕ(x, y

(i)
K )}; 3) update θ by

minimizing a generalized DPO loss,

CE(pEBM(τ |y1, . . . , yK , x), pθ(τ |y1, . . . , yK , x)),
(12)

where CE(p, q) is the cross-entropy from p
to q, and pEBM(τ |y1, . . . , yK , x) is the rank-
ing distribution computed following Equation 10
with surrogate reward values from step 2)
({rϕ(x, y(i)1 ), . . . , rϕ(x, y

(i)
K )}).

5 Experiments

In this section, we empirically evaluate our pro-
posed method, ARM. We first examine its perfor-
mance on three datasets. After validating its perfor-
mance in standard settings, we next explore how
ARM works in two other interesting settings: 1)
we only have access to non-pairwise human feed-
back 2) we only have access to a limited amount
of pairwise human feedback. These experiments
aim to demonstrate the flexibility of our method
and applicability to realistic scenarios. In the afore-
mentioned experiments, we focus on ARM based
on the Bradley-Terry model (see Section 4.2.4).
We then compare ARM based on Bradley-Terry
versus Plackett-Luce. In the end, we do an abla-
tion on the number proposal samples used in the
self-normalizing importance sampling, n (see Al-
gorithm 1).
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TL;DR Summarization Anthropic-HH

2k 8k 2k 8k

SFT 43.7 43.7 52.7 52.7
Expert Iteration 46.3 47.8 56.4 59.7
DPO 47.5 52.6 57.2 60.6
Best-of-n 48.2 51.9 58.1 62.3
Ours 51.9 64.2 69.2 73.9

Table 3: Win-rates on TL;DR Summarization and Anthropic-HH when we only have access to a limited amount of
preference data (2k and 8k).

5.1 Experiment setup

We conduct experiments on three datasets. Each
dataset contains two subsets: 1) an SFT dataset
Dsft = {(x(i), y(i))}Ni=1; 2) a human preference
dataset Dpref = {(x(i), y(i)w , y

(i)
l )}Ni=1. We first

learn an SFT model with Dsft and a reward model
with Dpref, and then train a policy model with our
proposed method, ARM (see Algorithm 3).

We first consider AlpacaFarm (Dubois et al.,
2023). It provides a suite of datasets and evaluation
methods that enables research and development for
learning from feedback. The datasets build upon
Alpaca data (Taori et al., 2023) by splitting it into
multiple subsets and collecting pairwise feedback
data. We use the SFT split (10k) and pairwise pref-
erence split (10k) as Dsft and Dpref respectively in
our experiments. Alpaca data cover diverse top-
ics and models trained on it has shown non-trivial
instruction following capacities.

The second dataset is the Reddit TL;DR summa-
rization dataset (Völske et al., 2017). In TL;DR, x
is a post from reddit.com with a variety of topics
(sbureddits), and y is summary written the origi-
nal poster (TL;DR). We use the filtered version by
Stiennon et al. (2020). It has 123k posts as Dsft.
Stiennon et al. (2020) also collected 64k summary
comparison on the TL;DR dataset, which we use
as Dpref.

Our third dataset is Anthropic’s Helpful and
Harmless (HH) dataset where each instance con-
sists of a conversation between a human and an
AI assistant. In HH, x is a human query (poten-
tially with some conversation history), and y is a
response generated by a large (unknown) language
model. HH has 170k examples. It does not have a
separate Dsft set, while each instance has a query
and two responses (chosen and rejected). We use
the collection of query and chosen response as our
Dsft.

In AlpacaFarm experiments, we use the pre-
trained SFT and reward models by Dubois et al.
(2023) in order to ensure a fair comparison between
our results and reported results. Their models are
based on LLama-1-7B-base (Touvron et al., 2023a).
In our experiments, our base model is LLama-2-
7B-base (Touvron et al., 2023b).

To evaluate our methods, we compute the win-
rate of model responses against preferred responses
by human. The comparison is done by GPT-4 (gpt-
4-0314). Dubois et al. (2023) has demonstrated
that the consistency between GPT-4 and humans
on model ranks. The prompts we use in evaluation
are provided in the Appendix B.

We use the original implementation of DPO by
the authors (Rafailov et al., 2023) and the TRLX
for PPO training (Castricato et al., 2023). Other-
wise, our model training is based on Huggingface
transformers (Wolf et al., 2020). For DPO, we use
β = 0.1 in all experiments. For best-of-n and self-
normalizing importance sampling, we use n = 32
(see Section 5.6 for an ablation). Additional exper-
iment details are given in Appendix A.

5.2 Main results

Our primary results across the three datasets are
summarized in Table 1. In comparison to SFT,
all methods show sizeable advancements. Simple
training method, Expert Iteration, achieves a 14%
to 30% improvement over SFT. The standard RLHF
method, PPO, and the recently-popularized simpler
alternative, DPO, show even greater enhancements
beyond Expert Iteration. Notably,the inference-
based method, best-of-n , performs surprisingly
well, yielding comparable or superior win rates
when compared to both PPO and DPO.

Last but not least, our proposed method, ARM,
improves the win-rates significantly. In comparison
to the previously top-performing methods, PPO,
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DPO, and best-of-n , our method also exhibits sub-
stantial improvements, ranging from 7% to 15%.

5.3 Learn from non-pairwise preference
RLHF methods and recently-developed alterna-
tives assume there exists at least of two responses
given an instruction or a prompt. Nevertheless,
this is not always the case. In most deployed-
chatbot settings, human users interact with an LLM-
based assistant and may provide a binary feed-
back (e.g., thumbs-up versus thumbs-down) to an
LLM response. The same instruction or prompt
almost never appears twice. Therefore, we may
end up with a non-pairwise preference dataset,
Dnon-pairwise = {(x(i), y(i), z(i))}Ni=1 where z ∈
{0, 1} or z ∈ {like, dislike}. Methods like DPO
is not applicable in the setting without pairwise
preference data. Our method, however, is flexible
and can be applied.

We only need to make a simple modification
by training a surrogate reward function from the
non-pairwise data Dnon-pairwise. In particular, the
reward function can be trained with the following
loss function,

L(ϕ) = −E(x,y,z)∼Dnon-pairwise

[
z log σ(rϕ(x, y))+

(1− z)(1− log σ(rϕ(x, y)))

]
(13)

Then a policy can be learned via the same ARM
procedure as defined in Algorithm 3.

We conduct experiments based on pairwise
datasets (AlpacaFarm, TL;DR summarization,
Anthropic-HH). First, we simulate non-pairwise
preference data by randomly sampling y from
{yw, yl} and denote z = 1 if y = yw and
z = 0 if y = yl, resulting in Dnon-pairwise =
{(x(i), y(i), z(i))}Ni=1. Then we train a reward func-
tion according to Equation 13. Following steps
proceed exactly the same as the pairwise setting.

The experiment results are displayed in Table 2.
First, ARM outperforms Expert Iteration and best-
of-n . Second, our method still yields substantial
enhancements over the SFT model, especially on
AlpacaFarm and Anthropic-HH.

5.4 Learn from limited amount pairwise data
In this section, we investigate our method in low-
resource settings. In particular, for TL;DR sum-
marization and Athropic-HH, we sample 2k and
8k pairwise preference data. The results are sum-
marized in Table 3. First, ARM is able to produce

significant improvements over SFT policy, and the
improvements are larger compared to baselines.
Second, although in the 2k setting, the ARM per-
formance is clearly weakened compared to the full
dataset performance (see Table 1), it is quite surpris-
ing that our method with 8k data (accounting for
10% or less of the full dataset) can recover a large
proportion of the performance of the models trained
with the full dataset, especially on Anthropic-HH.

5.5 Bradley-Terry versus Plackett-Luce

In this section, we compare the performance of
ARM with Bradley-Terry or Plackett-Luce as the
preference model. We conduct experiments with
both TL;DR summarization and Anthropic-HH. As
shown in Table 4, In both datasets, ARM with
Plackett-Luce slightly underperforms ARM with
Bradley-Terry. This is an intriguing observation.
First, intuitively ARM with Plackett-Luce learns
from more data and should potentially perform
better. Second, a previous theoretical work also
shows the advantage of Plackett-Luce (Zhu et al.,
2023). Our current hypothesis to the weaker per-
formance of Plackett-Luce is that Plackett-Luce
requires more preference accurate labels compared
to Bradley-Terry, since it learns from more nuanced
comparisons, while the surrogate reward function
is noisy. We invite future work to further explore
this interesting issue.

5.6 How many proposal samples we need?

As shown in Algorithm 1, to sample from π∗(y |
x), we need first sample n proposal samples form
πsft(x). In this experiment, we ablate on the num-
ber proposal needed for good performance of our
method. As shown in Table 5, as n increases from
16 to 32, we observe a clear improvement on win
rate. However, further increasing n yields no im-
provement.

6 Conclusion

In this work, we propose Alignment with Residual
Energy-Based Model (ARM) as a simple alterna-
tive to complicated RLHF methods. The core idea
is to learn from samples drawn from a target policy
in the form of a residual energy-based model, with
powerful offline methods like DPO. Our proposed
method is characterized by its simplicity and high
performance, as demonstrated in diverse tasks and
various data settings.
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TL;DR Summarization Anthropic-HH

Plackett-Luce 69.8 76.3
Bradley-Terry 71.0 77.7

Table 4: Win-rates on TL;DR Summarization and Anthropic-HH with Bradley-Terry versus Plackett-Luce as the
human preference model.

n win-rate

16 47.8
32 50.1
64 49.7
128 50.6

Table 5: Ablation on the number of proposal samples,
n, in the self-normalizing importance sampling.

7 Limitations

ARM with Plackett-Luce is a potentially powerful
method since it leverages the flexibility of ARM
and enables πθ(y|x) to learn from multiple compar-
isons. However, the current work did not elucidate
the reason that it does not outperform ARM with
Bradley-Terry. We find that this question intriguing
and hope future work can further investigate it.

Even though the goal of this paper is to align
LLMs with human preference, the resulting model
still have the risk of producing harmful content.
The resulting model should be extensively tested
before it is deployed in real-world settings.
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A Additional Experiment Details

In both SFT and reward function training, we first
warm up the learning rate to 2e-5 and cosine decay
it to 2e-6, and models are trained with 3 epochs.
DPO and PPO training follow the default settings
in Rafailov et al. (2023) and Castricato et al. (2023).
All model training are done with 8 Nvidia A100
GPUs. AlpacaFarm experiments cost 1-2 hours,
while TL;DR and Anthropic experiments cost 4-6
hours.
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B Evaluation Prompts

We use the same evaluation prompts as in (Rafailov
et al., 2023).

GPT-4 win rate prompt for TL;DR summa-
rization.
Which of the following summaries does a better job of summarizing the most \
important points in the given forum post, without including unimportant or \
irrelevant details? A good summary is both precise and concise.

Post:
<post>

Summary A:
<Summary A>

Summary B:
<Summary B>

FIRST provide a one-sentence comparison of the two summaries, explaining which \
you prefer and why. SECOND, on a new line, state only "A" or "B" to indicate your \
choice. Your response should use the format:
Comparison: <one-sentence comparison and explanation>
Preferred: <"A" or "B">

GPT-4 win rate prompt for Anthroptic-HH.
For the following query to a chatbot, which response is more helpful?

Query: <the user query>

Response A:
<either the test method or baseline>

Response B:
<the other response>

FIRST provide a one-sentence comparison of the two responses and explain \
which you feel is more helpful. SECOND, on a new line, state only "A" or \
"B" to indicate which response is more helpful. Your response should use \
the format:
Comparison: <one-sentence comparison and explanation>
More helpful: <"A" or "B">
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