
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 805–819

June 16-21, 2024 ©2024 Association for Computational Linguistics

Assessing Factual Reliability of Large Language Model Knowledge

Weixuan Wang1, Barry Haddow1, Alexandra Birch1, Wei Peng2

1 School of Informatics, University of Edinburgh
weixuan.wang@ed.ac.uk, bhaddow@ed.ac.uk, a.birch@ed.ac.uk

2 Huawei Technologies Co., Ltd.
peng.wei1@huawei.com

Abstract

The factual knowledge of LLMs is typically
evaluated using accuracy, yet this metric does
not capture the vulnerability of LLMs to
hallucination-inducing factors like prompt and
context variability. How do we evaluate the
capabilities of LLMs to consistently produce
factually correct answers? In this paper, we pro-
pose MOdel kNowledge relIabiliTy scORe
(MONITOR), a novel metric designed to di-
rectly measure LLMs’ factual reliability. MON-
ITOR is designed to compute the distance be-
tween the probability distributions of a valid
output and its counterparts produced by the
same LLM probing the same fact using dif-
ferent styles of prompts and contexts. Experi-
ments on a comprehensive range of 12 LLMs
demonstrate the effectiveness of MONITOR in
evaluating the factual reliability of LLMs while
maintaining a low computational overhead. In
addition, we release the FKTC (Factual Knowl-
edge Test Corpus) to foster research along this
line1.

1 Introduction

Recently, large pre-trained language models
(LLMs) have been used as de facto storage for
factual knowledge (Petroni et al., 2019). However,
applying LLMs to real-world scenarios inevitably
leads to language generation deviating from known
facts (aka “factual hallucination” (Chang et al.,
2023)) due to multiple causes. For example, Cao
et al. (2021) argued that the performance of an
LLM is over-estimated due to biased prompts over-
fitting datasets (also referred to as the framing ef-
fect in Jones and Steinhardt (2022)) and in-context
information leakage.

Given the variability of LLMs’ performance un-
der different prompts and contexts, it becomes evi-
dent that relying solely on accuracy as an evalua-
tion metric is insufficient. We also need to gauge

1https://github.com/Vicky-Wil/MONITOR

how robust LLMs are to variations in prompting.
In Figure 1 we show examples of factual probes
where either the framing of the prompt, or the con-
text to the prompt, is varied, leading to the issue of
“accuracy instability”.

(a) Prompt framing effect

(b) Effect of in-context interference

Figure 1: ‘Accuracy instability” during language gener-
ation under various prompts.

Prompt framing effect: An LLM generates dif-
ferent predictions depending on how prompts are
framed. Predictions are associated with prompts
instead of factual knowledge learned in LLMs. As
shown in Figure 1(a), for a fact represented in
a triplet ⟨ Cunter, is located in, Switzerland ⟩ ,
the generated predictions for re-framed prompts

“Which country is Cunter situated?” and “Cunter
is located in Switzerland. True or False?” are
non-factual.

Effect of in-context interference: An LLM
leverages in-context information during its decod-
ing stage, but this information may negatively af-
fect an LLM’s prediction during knowledge prob-
ing. As shown in Figure 1(b), for the same fact,
when presented with a context “England.” concate-
nated with the prompting question “Which country
is the location of Cunter?”, an LLM generates a
non-factual prediction “England”.

How do we assess the reliability of factual
knowledge of LLMs under the effects of these
hallucination-inducing factors? Investigations into
the behaviors of language models during knowl-
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edge probing (Petroni et al., 2019; Kassner and
Schütze, 2020; Gupta, 2023) have mainly used met-
rics like precision and accuracy to quantify errors
under a specified factor like prompt framing (Jones
and Steinhardt, 2022) or mis-primed information
(Kassner and Schütze, 2020). Despite the insights
gained by showing the instability of LLMs during
knowledge probing, these studies are subject to two
limitations:

Figure 2: The same top-1 answer with different output
probabilities from two LLMs.

No Exploration of Uncertainty. Metrics like
top-one accuracy may capture the ordering of pre-
dictions in the output space, but they lack the reso-
lution to reflect on the degree of factual knowledge
being learned by LLMs. Figure 2 depicts an ex-
ample where two LLMs (Models A and B) may
produce the same result even though their output
probabilities vary. By equating the performance of
Model A with that of Model B, one introduces a
level of approximation in representation, which
can be regarded as a source of uncertainty. In
this paper, we directly use the output probabilities
and construct a high-resolution metric to perform
knowledge assessment.

Limited Scope. Previous works focus on under-
standing the effect of variability of a specific type.
We design experiments to investigate the combined
effects of multiple causes of accuracy instability:
prompt framing and in-context interference during
knowledge assessment. In addition, few studies
have experimented on LLMs with billions of pa-
rameters. In contrast, we investigate the knowledge
reliability of 12 freely downloadable LLMs with
a range of parameter sizes and origins (with and
without instruction fine-tuning).2

In this paper, we propose a novel distance-
based approach MOdel kNowledge relIabiliTy
scORe (MONITOR) which captures the deviation
of output probability distributions under contexts of
prompting variance, interference from mispriming

2Only freely downloadable LLMs are used as we need to
access to the output probability distributions.

(Kassner and Schütze, 2020) and positively-primed
prompts.

We perform experiments on a comprehensive
set of knowledge probing tasks and investigate the
effectiveness of MONITOR in assessing LLMs’
factual reliability. Through experiments with a
large variety of different facts, we show that a
lower-MONITOR LLM is less likely to suffer from
“accuracy instability” issue. Computing MON-
ITOR takes only one-third GPU hours of those
consumed by a comprehensive accuracy reliability
study, making MONITOR a low-cost metric for
assessing factual knowledge reliability of LLMs.
Our contributions are:

1. We propose a novel method to assess the
factual reliability of LLMs in the presence
of the prompt framing effect and in-context
interference. The proposed metric, MON-
ITOR, can be used in conjunction with an
end-to-end metric (i.e., accuracy) as part of a
multi-dimensional approach to LLM knowl-
edge evaluation.

2. We construct the FKTC (Factual Knowledge
Test Corpus) by developing question answer-
ing probing prompts (210,171 prompts in to-
tal) based on 16,167 triplets of 20 fact datasets
from T-REx corpus (Elsahar et al., 2018). We
will release FKTC to the public to foster re-
search works along this line.

2 Related Work

Petroni et al. (2019) demonstrated that factual
knowledge can be directly extracted from lan-
guage models without needing an external knowl-
edge source. However, extracting knowledge (aka
knowledge probing) from language models is error-
prone due to various biases. For example, Elazar
et al. (2021) showed that the consistency of knowl-
edge extracted is generally low when the same fact
is queried with different prompts. Many works
in prompt engineering attempt to automatically
construct prompts outperforming manual prompts
(Shin et al., 2020; Jiang et al., 2020; Zhou et al.,
2023; Kojima et al., 2022). Cao et al. (2021) argued
that the decent performance of a language model is
ascribed mainly to the application of these biased
prompts, in other words “better” prompts are found
to over-fit the answer distribution of the test set in-
stead of reflecting on LLMs’ generalization ability
to predict factual knowledge.
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LLMs are sensitive to in-context information.
Kassner and Schütze (2020); Gupta (2023) showed
that language models fail on most negated probes
and are easily misled by misprimes added to the
probing context. On the other hand, Zhao et al.
(2021); Si et al. (2023); Webson and Pavlick (2022)
found the presence of context biases in few-shot
probing results. The works mentioned above fo-
cused on pinpointing issues affecting LLMs’ fac-
tual prediction. Few studies were motivated to
develop evaluation approaches insensitive to the
hallucination-inducing causes. Recently, Raj et al.
(2023) presented a framework for evaluating the
consistency of LLMs based on accuracy. Zhu et al.
(2023) designed a benchmark for assessing the ro-
bustness of LLMs to adversarial instruction attacks,
measuring the corresponding end-to-end perfor-
mance drops. Dong et al. (2023) proposed a new
metric to measure factual knowledge capability un-
der the bias caused by aliases (alternative names for
entities or relations) by reducing the effect of entity
and relation aliases in the factual probing. Without
tackling other factors like the prompt framing effect
and in-context interference (and their interactions),
the scope of the study is limited.

3 LLMs in Hallucination

In this section, we investigate LLMs’ accuracy un-
der the influence of various hallucination-inducing
causes mentioned above. We design five for-
mats of prompts to demonstrate two categories of
hallucination-inducing causes during knowledge
probing (Table 1). Twelve LLMs with a wide range
of parameter size (from 560 million to 30 billion pa-
rameters) are covered in this study and experiments
(in Section 5), including foundation language mod-
els of OPT (Zhang et al., 2022), Galactica (Taylor
et al., 2022), and instruction finetuned language
model of BLOOMZ (Muennighoff et al., 2023),
Vicuna (Zheng et al., 2023), Flan-T5 (Chung et al.,
2022), WizardLM (Xu et al., 2023), Flan-UL2 (Tay,
2023; Tay et al., 2023), LLaMa-30b-instruct-2048
(upstage, 2023).

3.1 Effect of Prompt Framing on Accuracy

We design three probing templates based on the ⟨
“subject”,“relation”,“object” ⟩ to show the effect of
prompt framing on LLMs, depicted below, and for
each task, we use seven paraphrased prompts to
ensure diversity:

Word Prediction (WP) Template: Given the

Prompt frames
(1) WP: [X] is located in _
(2) QA: Which country is [X] situated in?
(3) FC: Statement: [X] is located in [Y]. The statement is True of False?
In-context interference
(4) [Y]. Which country is the location of [X]?
(5) [Y_]. Which country is the location of [X]?

Table 1: Examples of designed probing task templates
extending the P17 (a fact dataset containing 931 subject-
object pairs with the “country” relation from T-REx
(Elsahar et al., 2018)). [Y] is the object wrt the subject
[X], [Y_] is an entity weakly related to [X].

“subject” and the prompt template, LLMs perform
word prediction to complete the sentence, e.g., the
template (1) in Table 1.

Question-Answer (QA) Template: In the QA
template, question prompts are constructed from
paraphrasing templates in T-REx (Elsahar et al.,
2018) targeting each fact. For example, a template
“[X] is located in [Y].” for a triplet ⟨ [X], is located
in, [Y] ⟩ can be paraphrased to “Which country is
[X] situated in?”.

Fact Checking (FC) Template: An FC prompt
is designed as a verification statement based on
a template in T-REx, e.g., “Statement: [X] is lo-
cated in [Y]. The statement is True or False?”. We
build the positive checking probe (FC-pos) and
negative checking probe (FC-neg) corresponding
to whether the statement is factual or not. For a
negative fact-checking prompt, we average the pre-
diction accuracy for five random entities chosen
from the same category.

The probing results are shown in Table 2 as accu-
racy in predicting P17 factual knowledge for each
involved LLM under prompting biases presented
in terms of WP, QA, and FC templates. The per-
formances of LLMs in predicting the fact test data
vary significantly under prompt variability. Abnor-
mal performances of LLMs between QA and WP
template-based probes (bold numbers of Vicuna-
7b) and between the FC probes for positive and neg-
ative interference (bold numbers of BLOOMZ-1b1)
are strong evidences of the prompt framing effect.
The fluctuation under WP, QA, and FC templates
shown as box plots in Figure 9 (Appendix A.1) fur-
ther demonstrates the effect of prompt framing on
the performances of LLMs.

3.2 Effect of In-context Interference

To explore the effect of in-context interference
bias, we add probes with misprimed (Kassner and
Schütze, 2020) interference by concatenating con-
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LLMs Size WP QA FC-
pos

FC-
neg

BLOOMZ-560m 0.56 14.73 26.09 28.77 73.78
BLOOMZ-1b1 1.1 14.96 28.29 0.11 99.89
Galactica-1b3 1.3 2.36 46.43 86.05 12.29
OPT-2b7 2.7 28.27 55.67 75.80 22.07
BLOOMZ-3b 3 20.46 30.69 58.29 81.95
Vicuna-7b 7 34.89 73.25 91.19 85.67
BLOOMZ-7b1 7.1 26.26 33.72 88.32 64.98
Flan-T5-XXL 11 51.47 31.01 88.05 78.78
Vicuna-13b 13 38.96 78.15 90.87 89.68
WizardLM-13b 13 34.66 78.55 87.71 93.89
Flan-UL2 20 21.57 46.44 79.51 73.58
LLaMa-30b-ins. 30 67.94 87.72 96.99 86.69

Table 2: Accuracy of various LLMs in predicting P17
fact dataset. The performances of LLMs have under-
gone significant variations for different prompting tem-
plates. The unit of “size” is billion.

LLMs × [Y] [Y_]
BLOOMZ-560m 25.91 66.17 (+40.26) 14.50 (-11.41)
BLOOMZ-1b1 27.74 64.02 (+36.28) 16.99 (-10.75)
Galactica-1b3 53.81 56.39 (+2.58) 10.42 (-43.39)
OPT-2b7 58.00 77.23 (+19.23) 19.83 (-38.17)
BLOOMZ-3b 35.38 79.05 (+43.67) 24.30 (-11.08)
Vicuna-7b 82.71 99.67 (+16.96) 16.71 (-66.00)
BLOOMZ-7b1 39.03 70.57 (+31.54) 26.40 (-12.63)
Flan-T5-XXL 37.85 42.53 (+4.68) 29.77 (-8.08)
Vicuna-13b 84.21 90.76 (+6.55) 44.58 (-39.63)
WizardLM-13b 85.61 55.75 (-29.86) 47.09 (-38.52)
Flan-UL2 33.44 47.58 (+14.14) 33.19 (-0.25)
LLaMa-30b-ins. 90.76 99.46 (+8.70) 47.78 (-42.98)

Table 3: The effect of probing the P17 fact dataset with
QA templates (4) and (5) in Table 1, where “×” means
experimental results with the original QA templates,
“[Y]” means results using the factual information as in-
context information, and “[Y_]” refers to results using
non-factual in-context information of entities weakly
related to “[X]”.

texts in terms of factual/non-factual information
preceding the associated QA prompt (template (2)
in Table 1). Table 3 captures the accuracy of LLMs
in a comparative study using factual entity probes
and misprimes consisting of weakly associated en-
tities. We observe a strong interference effect from
nonfactual antecedents for all 12 LLMs. A fac-
tual entity (positive interference) can improve the
accuracy by up to +43.67 while a weakly related
entity (negative interference) reduces the accuracy
by -66.00 at most.

4 Methodology

In this section, we introduce MONITOR, a
distance-based score, to assess how the factual
knowledge of LLMs is affected by the previously
mentioned prompt framing and in-context interfer-
ence.

Firstly, we introduce a new variable (i) to rep-
resent hallucination-inducing in-context informa-
tion into the initial knowledge representation triplet
⟨ subject, relation, object ⟩. The newly formed

Figure 3: A primary anchor (in red font) corresponds to
its multiple foreign anchors with different output proba-
bilities (blue fonts) when an LLM is exposed to different
prompts and context interference. “PFD” and “IRD”
refer to the two distance measurements defined as the
prompt-framing degree and interference-relevance de-
gree.

knowledge representation quadruple can be ex-
pressed as ⟨ s, r, o, i ⟩. The information i can be
further categorized into two variables: we use a fac-
tual object entity to implement a positive informa-
tion i+; and the negative information i− represents
interference when predicting o. For example, “Eng-
land” is considered as an i− when acting as a noisy
condition to negatively affect an LLM in predicting
a desirable outcome ⟨ Switzerland ⟩ for a fact ⟨
Cunter, is located in, Switzerland ⟩. Corresponding
to an object, P (o|s, r, i) is the probability of the
model generating the object o with the conditions
of subject s, prompt framing expression r, and the
in-context information i.

To quantify the effect of i on LLMs, we establish
“anchor” as a reference point, which is the gold
answer with its probability in the output space. A
“primary anchor” (shown as the red font “Switzer-
land 0.9117” in Figure 3) is defined as an enforced-
accurate answer with its probability produced by an
LLM in response to a knowledge probe. A primary
anchor is produced by prompting an LLM with a
QA template prefixed with positive information i+

(i.e. template (4) in Table 1). A primary anchor
has multiple foreign anchors with various output
probabilities (i.e., “Switzerland” in blue fonts in
Figure 3) when an LLM is exposed to different
prompts and in-context interference. Foreign an-
chors are generated using paraphrased Templates
(2)3 and (5)4 presented in Table 1. By calculat-
ing the distance (using the probability changes)
between a primary anchor and its corresponding
foreign anchors in the influenced output space, we

3QA template without in-context information
4QA template with negative in-context interference
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can measure how reliable an LLM is in predicting
facts in the test set.

MONITOR consists of two distance-based mea-
surement components: Prompt-framing Degree
(PFD) and Interference-relevance Degree (IRD).

4.1 Prompt-framing Degree

The prompt-framing degree (PFD) is the mean dis-
tance between the output probability distributions
of a primary anchor (P (o|s, r, i+)) and those pro-
duced by the same LLM using prompting frames
rj probing the same fact without any add-on con-
text (foreign anchors P (o|s, rj)). PFD evaluates
the similarity of two output probabilities between
prompting frame relation expressions r (the basic
prompt framing) and rj . It is defined as:

PFD =
1

R

R∑

j=1

1

Lc

Lc∑

l=1

|P (oc|sc, r, i+)l − P (oc|sc, rj)l| (1)

where R is the count of prompt framing expres-
sions for a subject, and the count of subject and
object in a fact dataset is S, c ∈

{
1, ..., S

}
. Lc

is the length of the anchor in terms of the number
of subwords in the c-th object. PFD is a cumula-
tive metric for assessing an LLM’s capability in
producing output probability distributions sharing
the same characteristics under various prompting
frames. PFD has a value between 0 and 1. The
smaller the value is, the more robust an LLM is
under the effect of prompt framing.

4.2 Interference-relevance Degree

Interference-relevance Degree (IRD) is the distance
between the output probability distributions of a
primary anchor (P (o|s, r, i+)) and the probability
distributions generated by the same LLM under
the influence of in-context interference (foreign
anchors P (o|s, r, i−)). IRD measures an LLM’s
capability to predict factual knowledge under the
effect of in-context interference.

IRD =
1

M

M∑

m=1

1

Lc

Lc∑

l=1

|P (oc|sc, r, i+)l − P (oc|sc, r, i−m)l| (2)

We define the count of positive and negative infor-
mation as one and M , respectively, corresponding
to an object. IRD has a value between 0 and 1. As
positive contextual information likely leads to fac-
tual knowledge generation, a smaller value of IRD
indicates a lower level of effect from in-context
interference biases.

4.3 MONITOR
The prompt-framing degree PFD and interference-
relevance degree IRD are integrated to produce
the proposed model knowledge reliability score
(MONITOR). MONITOR captures the quadratic
interaction of PFD and IRD, as illustrated in Eq 3
for a specified number of quadruples ⟨ s, r, o, i ⟩,
where the count of subject and object is S. A set
of coefficients (α1−3) is introduced to quantify the
contributions from PFD, IRD, and their interaction
on MONITOR. In this experiment, we consider
an equal contribution scenario (α1 = α2 = α3 =
0.33). The smaller the value of MONITOR, the
less degree an LLM is influenced by hallucination-
induced factors when producing factual outputs.
Taking the average output probabilities of primary
anchors for an LLM as the denominator, MON-
ITOR captures the degree of knowledge learned
by an LLM when assessing its factual knowledge.
MONITOR measures the effect of prompt framing
and interference per unit of average primary anchor
probability, demonstrating the strength of anchor
representations.

LLMs are resource-hungry even during their in-
ference phases. It is essential to ensure that an as-
sessment metric is computation-efficient. Combin-
ing PFD, IRD, and their interaction in one metric
can reduce the computation cost when evaluating
factual reliability. Considering a fact dataset with
R prompt frames, M negative interference, and one
positive interference, there are R ·M combinations
required to compute the average accuracy (and ac-
curacy range). In comparison, we only require
R + (1 + M) combinations to compute MONI-
TOR. The computation complexity for calculating
MONITOR (O(R+M)) is considerably lower than
that of accuracy (O(R ·M)).

MONITOR =

∑S
c

√
α1PFD2 + α2IRD2 + α3PFD ∗ IRD
∑S

c
1

Lc

∑Lc
l=1

P (oc|sc, r, i+)l
(3)

5 Experiments and Results

In this section, we describe how to apply MON-
ITOR to assess the factual knowledge of the 12
LLMs as mentioned above.

5.1 Data Setting
In this section, we describe how we develop a test
corpus to accommodate prompts with various styles
and in-context interference.

Expanding Probing Prompt: Based on 16,167
⟨ subject, relation, object ⟩ triplets from T-REx
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LLMs MONITOR ↓ avg↑ max ↑ min ↑ probs ↑
BLOOMZ-560m 0.701 27.770 40.411 15.062 0.467
BLOOMZ-1b1 0.692 30.055 43.369 16.654 0.501
Galactica-1b3 0.747 22.936 39.414 9.427 0.637
OPT-2b7 0.637 25.599 37.117 11.347 0.360
BLOOMZ-3b 0.686 30.638 44.760 16.760 0.610
Vicuna-7b 0.504 38.194 59.727 18.361 0.884
BLOOMZ-7b1 0.632 36.232 49.328 22.870 0.613
Flan-T5-XXL 0.630 32.968 48.864 19.868 0.798
Vicuna-13b 0.484 44.882 65.499 26.967 0.862
WizardLM-13b 0.560 51.477 66.036 33.076 0.774
Flan-UL2 0.684 32.723 51.442 16.319 0.711
LLaMa-30b-ins. 0.479 50.798 71.188 30.516 0.909
Correlation Pearson p-value
r(MONITOR,avg acc) -0.846 0.001

Table 4: Results are evaluated on FKTC with “bold”
numbers indicating the best measurement over the same
column category. The “avg”, “max”, and “min” mean
the average, maximum, and minimum accuracy across
the 20 fact datasets. The “probs.” depicts the probabili-
ties of primary anchors. “↓” means a smaller measure-
ment wins.

(Elsahar et al., 2018), we develop QA probing
prompts. We expand the probing prompt dataset
by paraphrasing using GPT-4 (OpenAI, 2023) to
create seven prompt frames for each triplet. In or-
der to maintain diversity of prompts, we choose
prompts with a similarity score (BLEU) below a
threshold (0.7). Moreover, we manually check the
paraphrased prompts to ensure validity.

Adding In-context Interference: Based on the
QA prompts constructed above, we create a test
dataset to explore the effectiveness of MONITOR
with in-context interference. The corpus FKTC
stands for “Factual Knowledge Test Corpus”. Fol-
lowing the template patterns (Templates 4 and 5) in
Table 1, we concatenate interference information
(in terms of positive and negative in-context infor-
mation) with the probing question for each subject.
The negative information is entities from the same
category weakly related to the corresponding sub-
ject, sampled from all objects that share the same
relation. This process is applied to all expanded
templates presented in Table 10 (Appendix A.2).

After applying these two processes (expanding
the probing prompts and adding in-context interfer-
ence) we produce 210,171 prompts focusing on 20
fact datasets.

5.2 Results and Analysis
5.2.1 Results on FKTC
The results evaluated on FKTC are shown in Ta-
ble 4, and the results of each fact dataset are shown
in Table 11 (Appendix A.3), where MONITOR
and the average accuracy (avg acc) are recorded
for each LLM across the 20 fact datasets in our
experiments. Each LLM’s minimal and maximal

accuracy are also recorded to show the accuracy
variability.

As shown in Table 4, LLaMa-30b-ins. stands out
as the most capable (with the smallest MONITOR
0.479) LLM, followed by Vicuna-13b (0.484) and
Vicuna-7b (0.504). Even though MONITOR is a
fundamentally different from an end-to-end met-
ric (like accuracy), it correlates significantly with
the average accuracy (0.846 Pearson coefficient).
MONITOR adds a dimension to a point-measured
metric (like accuracy) to show factual reliability of
LLMs under prompt and context variability.

As shown in Table 5 (bold italic fonts),
MONITOR can differentiate LLMs, for example,
BLOOMZ-3b and Vicuna-7b, with a similar aver-
age accuracy on P37, by considering distance and
probability information. We further discuss this in
Subsection 5.2.3.

We present a detailed view of the knowledge
assessment of LLMs by drilling down into specific
facts. Unlike the results mentioned above, showing
a general trend, the results disclosed here show
more detailed insights. As shown in Table 5, the
overall winning LLM (i.e., LLaMa-30b-ins.) can
lose its edge in predicting a particular fact (P37).

5.2.2 Accuracy Instability
We analyze the LLMs’ “accuracy instability” when
predicting P14125 with the results captured in Ta-
ble 6 and Figure 4. A variety of statistics, including
the base accuracy (“base acc”) and standard devi-
ation (“std”) of an LLM’s accuracy, are recorded
for comparisons. A significant correlation is ob-
served between accuracy standard deviation and
MONITOR (0.754), demonstrating that a lower-
MONITOR LLM is less likely to suffer from “accu-
racy instability” (Figure 5). Furthermore, as shown
in Figure 4, an LLM with a lower MONITOR has a
smaller value of accuracy standard deviation when
two LLMs with equivalent base accuracy are eval-
uated (bold fonts in Table 5). From an accuracy
stability viewpoint, one may choose an LLM with a
lower MONITOR. For example, we prefer Vicuna-
13b over WizardLM-13b, as the MONITOR of
Vicuna-13b is lower even though they have sim-
ilar accuracy.

5.2.3 Resolution Characteristics
It can be observed in Table 4 that the correlation
between MONITOR and average accuracy is sig-

5P1412: the fact dataset describing a relation of “languages
spoken, written, and signed”
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LLMs P178 P108 P37
MONITOR ↓ avg acc ↑ probs. ↑ MONITOR ↓ avg acc ↑ probs. ↑ MONITOR ↓ avg acc ↑ probs. ↑

BLOOMZ-560m 0.594 53.260 0.471 0.947 2.634 0.313 0.669 33.142 0.679
BLOOMZ-1b1 0.492 56.752 0.684 0.853 7.454 0.191 0.662 39.679 0.751
Galactica-1b3 0.595 27.763 0.543 0.876 0.686 0.393 0.639 42.444 0.703
OPT-2b7 0.470 64.119 0.348 0.739 12.420 0.343 0.471 52.866 0.419
BLOOMZ-3b 0.624 50.460 0.863 0.858 17.639 0.436 0.570 51.242 0.797
Vicuna-7b 0.339 64.575 0.969 0.620 32.756 0.969 0.432 51.384 0.931
BLOOMZ-7b1 0.492 60.865 0.865 0.770 31.340 0.443 0.462 61.114 0.827
FLAN-T5-XXL 0.368 67.065 0.852 0.676 29.968 0.855 0.650 34.773 0.865
Vicuna-13b 0.327 77.787 0.955 0.632 39.951 0.899 0.311 69.590 0.942
WizardLM-13b 0.411 84.878 0.850 0.626 54.735 0.769 0.467 69.907 0.856
Flan-UL2 0.613 49.968 0.792 0.844 23.942 0.836 0.575 56.731 0.738
LLaMa-30b-ins. 0.180 87.461 0.983 0.522 60.493 0.972 0.411 63.109 0.950

Table 5: Performance of various LLMs in predicting factual knowledge captured in the P178, P108, and P37 fact
datasets with “bold” numbers indicating the winning measurement over the same column category. P178, P108, and
P37 are fact datasets representing relations of “developer”, “employer” and “official language”, respectively. The
“bold and italic” fonts on P37 show how MONITOR can differentiate two LLMs (BLOOMZ-3b and Vicuna-7b)
with similar average accuracy.

LLMs MONITOR ↓ base acc ↑ std ↓
Flan-T5-XXL 0.772 51.713 31.023
OPT-2b7 0.536 64.027 12.087
Flan-UL2 0.706 67.029 33.981
BLOOMZ-560m 0.490 70.888 17.253
BLOOMZ-1b1 0.426 71.932 11.891
Galactica-1b3 0.659 74.086 26.576
BLOOMZ-7b 0.472 78.922 19.252
BLOOMZ-3b 0.456 79.143 18.016
Vicuna-7b 0.427 82.086 27.585
LLaMa-30b-ins. 0.543 85.340 34.131
WizardLM-13b 0.425 91.960 8.978
Vicuna-13b 0.190 93.099 5.768
Correlation Pearson p-value
r(MONITOR,std) 0.754 0.001

Table 6: LLMs with lower MONITOR are strongly cor-
related with smaller values of accuracy standard devia-
tion, indicating less influence from prompt and context
variability. “base acc” is the accuracy associated with
the base prompt evaluated on the P1412 fact dataset.

Base Prompt What language is the official language of Haiti?

effect input output
BLOOMZ/Vicuna

prob.
BLOOMZ/Vicuna

pos. context French.{base} French/French 0.761/0.928
neg. context Irish.{base} French/French 0.411/0.622
framing {base} French/French 0.527/0.849

Table 7: Vicuna-7b outperforms BLOOMZ-3b in MON-
ITOR when evaluated on the P37 fact dataset by pro-
ducing correct answers with higher output probabilities
in response to positive, negative in-context interference
and prompt framing effect. {base} refers to the base
prompt.

nificant. How should one use MONITOR when
assessing the reliability of LLM knowledge?

We regard MONITOR as a high-resolution met-
ric because it directly uses output probabilities and
their changes (in terms of anchored distance) in-
duced by hallucination factors. MONITOR con-
siders both the output (nominal or qualitative data)
and the probability of the output (quantitative infor-
mation). Comparatively, assessing LLMs’ knowl-
edge with an end-to-end metric, such as accuracy, is

Figure 4: MONITOR can be used to differentiate LLMs’
factual knowledge reliability when models with an
equivalent base accuracy are evaluated. The box plots
show the related distributions of accuracy when testing
on P1412 fact dataset.

purely reliant on a nominal output from the softmax
layer of a transformer. It is shown in Table 5 that
two LLMs (BLOOMZ-3b vs. Vicuna-7b) with al-
most identical average accuracy on P37 fact dataset
have two distinctive values of MONITOR (0.570
vs 0.432). Delving into the log file of the inference
task, we gain in-depth insights into why Vicuna-7b
outperforms BLOOMZ-3b in the reliability score.
As shown in Table 7, despite their similarities in
the accuracy measurement, Vicuna-7b has much
higher output probabilities than those of BLOOMZ-
3b, contributing to the discrepancies in MONITOR.

Additionally, we plot out the probability distribu-
tion of the above two LLMs with almost identical
average accuracy but very distinctive MONITOR
(Figure 10 Appendix (A.5). It can be observed that

811



Figure 5: A significant correlation between MONI-
TOR and accuracy standard deviation when testing
the 12 LLMs on P1412 fact dataset, indicating lower-
MONITOR models are less likely to suffer from the
“accuracy instability” issue.

a more reliable LLM based on MONITOR, Vicuna-
7b, has a much higher percentage of solid output
probability (i.e., ≥ 0.8) than those of a volatile
LLM (BLOOMZ-3b). It is recommended to adopt
MONITOR when using accuracy alone cannot dif-
ferentiate LLMs’ knowledge reliability.

Cost MONITOR Average Accuracy MONITOR-saved
GPU hours 14.4 42.7 2.97X

Table 8: GPU hours consumed calculating MONITOR
and average accuracy on P1412 fact dataset for LLaMa-
30b-ins.“MONITOR-saved” denotes that GPU hours
saved from using MONITOR compared to accuracy.

5.2.4 Lower Computation Cost
We compare the GPU hours consumed by LLaMa-
30b-ins. in producing MONITOR and a full-scale
accuracy reliability score (average accuracy). The
experiment is to test the model on a specific fact
dataset (P1412) using 8 NVIDIA V100 GPUs. It
can be observed in Table 8 that using MONITOR
leads to a 2.97-fold resource saving in GPU hours
compared to applying an accuracy metric to a fac-
tual reliability evaluation. MONITOR is an eco-
nomical method to add a dimension to LLM knowl-
edge assessment when performing a full-scale reli-
ability study on accuracy is not an option.

6 Discussion

6.1 Attribution of In-Context Interference
To demonstrate the resilience of LLMs with differ-
ent MONITOR, we conduct an additional exper-
iment by applying the Integrated Gradients (Sun-
dararajan et al., 2017) technique implemented in
Sarti et al. (2023). By examining and visualizing

Danish .  Whatlanguage is the officiallanguage of Sotkamo ?

Answer:
 Finish
     

OPT-2b7

Danish .  Whatlanguage is the officiallanguage of Sotkamo ?

Answer:
Danish
     ×

BLOOMZ-3b

0.1

0.2

0.3

0.4
Attribution

Figure 6: Visualizing model behaviors of BLOOMZ-3b
and OPT-2b7 under the influence of an input with mis-
primed in-context interference. The input is “Danish.
What language is the official language of Sotkamo?”.

the attribution of input features to the model’s out-
puts, we can infer the reliability of LLMs with dif-
ferent MONITOR. We study the behaviors of two
LLMs (OPT-2b7 vs. BLOOMZ-3b) with distinc-
tive values of MONITOR (0.471 vs. 0.570). The
heat map shown in Figure 6 illustrates that a more
reliable model with a lower MONITOR, OPT-2b7,
is less influenced by in-context interference.

Figure 7: Significant correlation of MONITOR between
the 7-prompt group and the 4-prompt group when assess-
ing the reliability of 12 LLMs in the P178 fact dataset.

6.2 Prompt Ablation
We design an ablation study to investigate the con-
sistency of MONITOR across different prompt
settings by analyzing the MONITOR in the
P178 fact dataset. The MONITOR from an ex-
panded prompts group setting (consisting of seven
prompts) and a sub-sampled group with four
prompts are captured in Figure 7. We observe a
strong linear correlation between MONITOR of the
expanded group and those from the sub-sampled
group, indicating the scalability of MONITOR
across prompt settings. Additionally, it is noted
that MONITOR ranks LLMs in a consistent order
for different prompt settings as show in Figure 8.

6.3 Influence of Instruction Fine-tuning
Furthermore, in order to conduct a more detailed
difference analysis between the foundation model
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Figure 8: The consistency of MONITOR when assess-
ing LLM’s factual reliability in predicting P178 facts
across different prompts settings.

and the instruction fine-tuned model, we compare
the foundation model BLOOM-7b1 and instructed
model BLOOMZ-7b1. Both models share the
same architecture and are evaluated on the P1412
dataset, as illustrated in Table 12. The compar-
ison reveals that the instruction fine-tuning (IFT)
approaches have an impact on the probability distri-
bution. Specifically, the probability of the primary
anchor in the foundation BLOOM-7b1 is 0.137, sig-
nificantly lower than that in the IFT BLOOMZ-7b1
(0.541), resulting in higher MONITOR values and
lower accuracy. This observation further supports
the notion that instruction fine-tuning can enhance
the reliability of Language Models.

LLMs MONITOR ↓ avg↑ max ↑ min ↑ probs ↑
BLOOM-7b1 0.813 13.985 55.782 1.361 0.137
BLOOMZ-7b1 0.471 58.904 81.863 39.828 0.541

Table 9: Results are evaluated on P1412 dataset with
comparing between BLOOM-7b1 (foundation model)
and BLOOMZ-7b1 (IFT model).

7 Conclusion

In this paper, we show that large language models
are subject to the influence of various hallucination-
inducing causes. We propose a novel distance-
based metric, directly computing the output proba-
bilities and their changes to address “accuracy in-
stability” caused by the prompt framing effect and
in-context interference. A comprehensive set of
experiments demonstrates that the proposed MON-
ITOR is a high-resolution economic method suit-
able for evaluating the reliability of large language
model knowledge. MONITOR can be used in con-
junction with an end-to-end metric (i.e., accuracy)
as part of a multi-dimensional approach to LLM
knowledge evaluation. The constructed FKTC, con-
sisting of 210,171 question answering prompts on

20 fact datasets, will be made available to the pub-
lic to foster research along this line.

Limitations

We focus on proposing MONITOR to assess the
reliability of factual knowledge of LLMs during
knowledge probing. Whether MONITOR can be
generalized to a wider scope of tasks (e.g., sum-
marization) warrants a future study. Additionally,
the initial setup of contribution coefficients of PFD,
IRD, and their interaction on MONITOR should
be further investigated to establish an empirical
benchmark. Currently MONITOR applies exact
matching to obtain anchors to measure the reliabil-
ity of LLM knowledge. Extending the automatic
evaluation to anchors consisting of sentences is
challenging. Our approach needs to access to the
output probability distributions of an LLM, there-
fore is not applicable to SOTA commercialized
LLMs such as GPT4. Additionally, FKTC is devel-
oped based on the latest version of T-REx bench-
mark dataset. The quality of the factual knowledge
contents in FKTC is reliant on the alignment accu-
racy of T-REx. Even though we could argue that
FKTC has already accommodated over 210 thou-
sand prompts in the gold dataset to successfully
support MONITOR in assessing LLMs behaviors
under prompt and context variability, it can still be
extended to host more knowledge categories.

Licensing and Intended Use

FKTC is based on a widely adopted T-REx bench-
mark dataset, which is publicly available under a
Creative Commons Attribution-ShareAlike 4.0 In-
ternational License. FKTC is released to the public
under the same license, consistent with the original
intended use.
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A Appendix

A.1 Prompt Framing Effect
We paraphrase each fact dataset in three prompting
templates (WP, QA, and FC) so that each template
can be used to produce seven prompts. For exam-
ple, the template “Which country is the location
of [X]?” could be paraphrased as: “Which country
is [X] situated in?”, “Which country can [X] be
found?”, “Which country is the geographical posi-
tion of [X]?”, “Which country is the site of [X]?”,
“In Which country is [X] situated?”, “Whereabouts
is [X] located?”. In this way, context diversity and
semantic invariance are guaranteed. Figure 9 shows
the “accuracy instability” of LLMs under the effect
of prompt framing in predicting P17 facts based on
three tasks (WP, QA, and FC).

A.2 Templates Examples
Table 10 shows all templates and corresponding
prompts on 20 fact datasets.

A.3 MONITOR for All LLMs Experimented
on FKTC

Table 11 shows the results of various LLMs evalu-
ated on each fact dataset from FKTC.

A.4 Correlation between MONITOR and
Accuracy

Table 12 shows the Pearson correlation between
MONITOR and average accuracy, evaluated on the
20 fact datasets from FKTC corpus.

A.5 Probability Distribution
Figure 10 shows the probability distribution of
two LLMs (BLOOMZ-3b and Vicuna-7b) with al-
most identical average accuracy but very distinctive
MONITOR.

A.6 Analysis on LLMs Scale
To further verify if MONITOR of LLMs follows
the law of scaling, where larger LLMs are more
knowledge-reliable, we present how MONITOR
changes across BLOOMZ series for each specific
fact dataset (shown in Figure 11). While MON-
ITOR of LLMs may not conform to the scaling
law at the granularity of each fact, their aggregated
values in a comprehensive scope of experiments do
follow the rule of scale (shown in Figures 11-12).
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(a) QA (b) WP

(c) FC-pos (d) FC-neg

Figure 9: Box plots show the “accuracy instability” of LLMs under the effect of prompt framing in predicting P17
based on three tasks (WP, QA, and FC).

Figure 10: A comparison of the probability distribution
of anchors between BLOOMZ-3b and Vicuna-7b on
P37. The population percentages with a solid probability
(i.e., ≥ 0.8) are 59% and 85% for BLOOMZ-3b and
Vicuna-7b, respectively.

Figure 11: The BLOOMZ series adheres to the scale law
for the specific facts with smaller MONITOR for bigger
models. The horizontal axis represents the model’s size
in billions, and the vertical axis represents the results of
MONITOR.
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Fact Relation Object Type Template Prompt example Count
P17 country sovereign state [X] is located in [Y]. Which country is the location of [X]? 12,103
P19 place of birth city [X] was born in [Y]. Where was [X] born? 12,272
P20 place of death city [X] died in [Y]. In what place did [X] pass away? 12,389
P27 country of citizenship sovereign state [X] is [Y] citizen. What country is [X] a citizen of? 12,558
P30 continent continent [X] is located in [Y]. Which continent is [X] located in? 12,675
P37 official language language The official language of [X] is [Y]. What language is the official language of [X]? 12,558
P101 field of work organization [X] works in the field of [Y]. What is [X]’s area of expertise? 9,048
P103 native language Indo-European languages The native language of [X] is [Y]. What is the native language of [X]? 12,701
P108 employer business [X] works for [Y]. Which organization does [X] work for? 4,979
P127 owned by company [X] is owned by[Y]. Which company is the owner of [X]? 7,059
P159 headquarters location sovereign state The headquarter of [X] is in [Y] . In what city is [X] headquartered? 12,571
P176 manufacturer manufacturer or producer [X] is produced by [Y]. What is the manufacturer of [X]? 12,766
P178 developer organisation [X] is developed by [Y] Which company is the creator of [X]? 7,696
P264 record label record label [X] is represented by music label [Y]. What is the record label for [X]? 5,577
P276 location sovereign state [X] is located in [Y]. What is the location of[X]? 12,467
P364 original language of film or TV show Nostratic languages The original language of [X] is [Y]. What is the native language of [X]? 11,128
P495 country of origin sovereign state [X] was created in [Y]. Which country was [X] created in? 11,817
P740 location of formation sovereign state [X] was founded in [Y]. Which city was [X] founded in? 12,168
P1376 capital of country [X] is the capital of [Y]. Which country’s capital is [X]? 3,042
P1412 languages spoken, written or signed Indo-European languages [X] used to communicate in [Y]. What language did [X] previously speak to communicate? 12,597

Table 10: Examples of template for different fact datasets and the corresponding prompts we build in this work.

Fact Dataset BLOOMZ
-560m

BLOOMZ
-1b1

Galactica
-1b3

OPT
-2b7

BLOOMZ
-3b

Vicuna
-7b

BLOOMZ
-7b1

Flan-T5
-XXL

Vicuna
-13b

WizardLM
-13b

Flan
-UL2

LLaMa-
30b-ins.

P17 0.782 0.780 0.852 0.541 0.785 0.523 0.714 0.690 0.544 0.602 0.788 0.395
P19 0.866 0.927 0.914 0.858 0.898 0.719 0.873 0.882 0.629 0.752 0.918 0.817
P20 0.810 0.926 0.942 0.849 0.921 0.671 0.873 0.888 0.667 0.725 0.893 0.803
P27 0.704 0.746 0.868 0.597 0.706 0.460 0.724 0.674 0.489 0.573 0.786 0.490
P30 0.809 0.839 0.801 0.748 0.887 0.652 0.546 0.670 0.611 0.680 0.815 0.617
P37 0.669 0.662 0.639 0.471 0.570 0.432 0.462 0.650 0.311 0.467 0.575 0.411
P101 0.899 0.822 0.919 0.888 0.877 0.816 0.838 0.879 0.823 0.927 0.858 0.857
P103 0.512 0.515 0.671 0.468 0.457 0.424 0.451 0.599 0.296 0.506 0.561 0.410
P108 0.947 0.853 0.876 0.739 0.858 0.620 0.770 0.676 0.632 0.626 0.844 0.522
P127 0.522 0.613 0.676 0.627 0.712 0.547 0.545 0.437 0.382 0.438 0.621 0.346
P159 0.829 0.851 0.858 0.755 0.800 0.523 0.751 0.731 0.478 0.479 0.758 0.454
P176 0.684 0.461 0.457 0.527 0.609 0.244 0.632 0.290 0.437 0.467 0.518 0.322
P178 0.594 0.492 0.595 0.470 0.624 0.339 0.492 0.368 0.327 0.411 0.613 0.180
P264 0.887 0.923 0.916 0.863 0.748 0.678 0.887 0.883 0.606 0.661 0.799 0.560
P276 0.707 0.699 0.751 0.650 0.737 0.535 0.674 0.639 0.489 0.557 0.664 0.515
P364 0.756 0.762 0.850 0.662 0.780 0.576 0.751 0.786 0.619 0.714 0.774 0.599
P495 0.802 0.834 0.868 0.661 0.695 0.413 0.715 0.716 0.476 0.530 0.790 0.499
P740 0.941 0.961 0.961 0.858 0.931 0.689 0.905 0.837 0.646 0.669 0.882 0.647
P1376 0.505 0.451 0.606 0.602 0.352 0.299 0.202 0.158 0.501 0.555 0.202 0.079
P1412 0.490 0.426 0.659 0.536 0.456 0.427 0.472 0.772 0.190 0.425 0.706 0.543

Table 11: MONITOR for all involved LLMs experimented on FKTC corpus.

Figure 12: The BLOOMZ and Vicuna series adhere to
the scale law based on the overall MONITOR results
obtained from experiments on 20 fact datasets. The hori-
zontal axis represents the size of a model in billions, and
the vertical axis represents the results of MONITOR.
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Pearson P17 P19 P20 P27 P30 P37 P101 P103 P108 P127
correlation -0.579 -0.709 -0.685 -0.826 -0.648 -0.867 -0.474 -0.767 -0.889 -0.926
p-value 0.048 0.009 0.013 0.001 0.023 0.001 0.119 0.004 0.001 0.001

P159 P176 P178 P264 P276 P364 P495 P740 P1376 P1412
correlation -0.941 -0.941 -0.828 -0.950 -0.703 -0.740 -0.899 -0.919 -0.872 -0.900
p-value 0.001 0.001 0.001 0.001 0.011 0.006 0.001 0.001 0.001 0.001

Table 12: Pearson correlation between MONITOR and the average accuracy, evaluated on FKTC corpus.
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