
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 8382–8397

June 16-21, 2024 ©2024 Association for Computational Linguistics

David helps Goliath: Inference-Time Collaboration Between
Small Specialized and Large General Diffusion LMs

Xiaochuang Han♠♢ Sachin Kumar♣
Yulia Tsvetkov♠ Marjan Ghazvininejad♢

♠University of Washington ♢Meta AI ♣Carnegie Mellon University
{xhan77, yuliats}@cs.washington.edu♠ sachink@cs.cmu.edu♣ ghazvini@meta.com♢

Abstract

Diffusion-based language models are emerg-
ing as a promising alternative to autoregressive
LMs: they approach the competence of autore-
gressive LMs while offering nuanced controlla-
bility at inference time. While autoregressive
LMs have benefited immensely from scaling
and instruction-based learning, existing stud-
ies of diffusion LMs have been conducted on
a smaller scale. Starting with a recently pro-
posed diffusion model SSD-LM, in this work
we first explore methods to scale it from 0.4B
to 13B parameters, proposing techniques to im-
prove its training and inference efficiency, and
to finetune the model to follow instructions.
Armed with a more powerful, general purpose
diffusion LM, we introduce the primary con-
tribution of this work – SSD-2 – an approach
to easily ensemble at inference time a large
general-purpose diffusion LM with smaller, but
specialized and contextualized diffusion LMs.
We show that SSD-2 facilitates novel ensem-
bles with 100x smaller models that can be cus-
tomized and deployed by individual users. We
find that compared to autoregressive models,
the collaboration between diffusion LMs is
more effective, leading to higher-quality model
responses due to their ability to dynamically
incorporate bi-directional contexts.1

1 Introduction

Following the footsteps of diffusion-based gener-
ative models for continuously valued data such as
images, audio, and video (Ho et al., 2020; Kong
et al., 2021; Ho et al., 2022), recent works have at-
tempted to replicate these successes on discrete text
data (Austin et al., 2021; Li et al., 2022c; Han et al.,
2022; Strudel et al., 2022; Dieleman et al., 2022).
Several studies have shown that diffusion-based
language models (LMs) perform competitively to
their autoregressive counterparts, and even surpass

1https://github.com/xhan77/ssd-2.

Figure 1: Inference-time collaboration between a large
general model and a small user model that incorpo-
rates user-specified knowledge. The collaboration be-
tween autoregressive models performs decoding token-
by-token, while the collaboration between diffusion
models refines a block of generated tokens iteratively
with bi-directional contexts (§3).

them at post-hoc controllable text generation (Li
et al., 2022c; Han et al., 2022).

Meanwhile, autoregressive language models
(Brown et al., 2020; Touvron et al., 2023) have
emerged as general-purpose solutions capable of
holding conversations with humans and solving
tasks by following instructions (Ouyang et al.,
2022; Wang et al., 2022; Longpre et al., 2023; Taori
et al., 2023; Chiang et al., 2023; Xu et al., 2023).
Their abilities are primarily due to two factors: scal-
ing the model parameters as well as pretraining
datasets, and instruction finetuning with carefully
curated datasets (Ouyang et al., 2022).

However, as the models become increasingly im-
mense and proprietary, it is difficult for individual
users to customize the system with their own data
(e.g., specialized knowledge) due to cost or privacy
reasons (§3). A primary contribution of this work is
to illustrate a novel setup of inference-time collabo-

8382

https://github.com/xhan77/ssd-2

ration between LMs and show a unique advantage
of diffusion LMs compared to autoregressive mod-
els in this scenario. With diffusion models’ itera-
tive generation design over a span of bi-directional
contexts, multiple diffusion LMs with different ca-
pabilities can be easily ensembled at the sequence
level at test time, leveraging advantages of each
LM in the ensemble.

As a preliminary to our experiments, we first
present an exploratory study to scale and incorpo-
rate instruction-following and conversational ca-
pabilities in diffusion-based LMs. We introduce
SSD-2, an improved version of recently introduced
simplex-based diffusion LM SSD-LM (Han et al.,
2022) proposing several modifications to its train-
ing and inference procedures. We incorporate these
improvements in scaling SSD-2 to 13B parameters,
up from 0.4B in SSD-LM. We show that similarly
to autoregressive LMs, by finetuning with curated
instruction datasets, SSD-2 is well-suited to follow
chat-style instructions.

We then present our main case study highlight-
ing the setup of inference-time collaboration: we
augment a general-purpose large SSD-2 model
with 13B parameters with a 100x smaller, user-
accessible model. This setup allows incorporat-
ing user-provided knowledge into the generation
process without directly inputting it into the large
model (which can be undesirable due to cost or
privacy reasons, more details in §3). We show that
SSD-2’s instruction finetuned model is substan-
tially more effective at this collaboration than the
autoregressive baselines, leveraging bi-directional
contexts in the ensemble.

2 Background

Semi-autoregressive simplex-based diffusion LM
(SSD-LM) is trained to generate text in blocks of to-
kens by performing diffusion in the simplex space
of the model vocabulary (Han et al., 2022). For
text continuation tasks, it has shown competitive
performance against autoregressive models (e.g.,
GPT-2; Radford et al., 2019) when trained with a
similar number of model parameters and pretrain-
ing data. Furthermore, it naturally enables post-hoc
control in generated text using off-the-shelf classi-
fiers, outperforming prior approaches to controlling
autoregressive models. Below we briefly overview
the training and decoding algorithm of SSD-LM.

Training The core idea behind the training of
diffusion models (Ho et al., 2020) is to add a se-

ries of progressive noise to the input data repre-
sentations and learn a model to reverse this pro-
cess, reconstructing the original data at different
noise levels. Assume we have a sequence of tokens
{w0, . . . , wc−1, wc, . . . , wc+B−1}, where we con-
dition on a context of length c, {w0, . . . , wc−1} (or
w<c), and learn to generate the subsequent block of
text {wc, . . . , wc+B−1} (or wc:c+B using a Python-
style notation) containing B tokens. In SSD-LM, a
progressive Gaussian noise is added to the block of
text wc:c+B .

w̃c:c+B
0 = logits-initialization(wc:c+B)

w̃c:c+B
t =

√
ᾱtw̃

c:c+B
0 +

√
1− ᾱtϵ

where logits-initialization(·) maps each discrete
token to a base, almost-one-hot logits repre-
sentation in the model’s vocabulary space V ,
{−K,+K}|V |. A noise schedule ᾱt controls the
level of noise ϵ ∼ N (0,K2I) added to the base
representation, where timestep t ∼ U(1, T) and
larger t means a noisier representation.

SSD-LM’s training loss on wc:c+B is condi-
tioned both on the noisy representation w̃c:c+B

t

and the prior context w<c to the block.

Et[− log pθ(w
c:c+B | w̃c:c+B

t ,w<c)]

= Et

j<c+B∑

j=c

− log pθ(w
j | w̃c:c+B

t ,w<c)

The model has access to a locally bi-directional
context through the noisy representation. In con-
trast, the canonical autoregressive training loss for
wc:c+B would be

∑j<c+B
j=c − log pθ(w

j | w<j),
conditioned on the uni-directional left context only.

Decoding At inference time, given a context
w<c, SSD-LM generates a block wc:c+B through
an iterative denoising algorithm, backtracking the
noise timesteps from t = T to 1. Each iteration
t consists of three main steps: (1) predict logits
representation wc:c+B

logits,t for the decoding text block
using the learned model, (2) project the logits to an
almost-one-hot representation ŵc:c+B

t in the base
space {−K,+K}|V | (with optional modifications),
(3) add a Gaussian noise corresponding to timestep
t− 1 to the projected representation and proceed
to the next iteration.

wc:c+B
logits,t = logitsθ(w

c:c+B | w̃c:c+B
t ,w<c)

ŵc:c+B
t = logits-projection(wc:c+B

logits,t)

w̃c:c+B
t−1 =

√
ᾱt−1ŵ

c:c+B
t +

√
1− ᾱt−1z

8383

where θ is the trained diffusion model and w̃c:c+B
T

is initialized with a Gaussian noise.

3 SSD-2

In the age of LLMs, individual users of NLP mod-
els may often face a dilemma when they wish to
customize the system with their own data. On one
hand, it is difficult for user-owned devices to fit
very large models and smaller models are usually
not powerful enough. On the other hand, upload-
ing their data to a commercial host of large mod-
els for finetuning or long in-context learning is
expensive and also may not be desirable due to pri-
vacy risks. We aim to address this dilemma in this
work by proposing a collaborative inference-time
algorithm between two diffusion models: a large
general-purpose model (such as ones only acces-
sible through an API) and a small model which a
user can customize (§3.2).

We first present SSD-2 building on top of SSD-
LM with several modifications to improve its train-
ing and decoding efficiency (§3.1). We train SSD-
2 with a larger pretraining corpus and more pa-
rameters (ranging from 0.1B to 13B) than SSD-
LM and fine-tune it to follow instructions (§4).
Next, we present how different versions of SSD-2
(general-purpose large models and user-enhanced
small models) can be effectively interpolated at in-
ference time, outperforming their autoregressive
counterparts (§5).

3.1 Algorithmic improvements over SSD-LM

Figure 2 describes the training and decoding al-
gorithms of SSD-2. We highlight the changes in
SSD-2 over SSD-LM below.

Self-conditioning The core idea behind self-
conditioning (Chen et al., 2022) is that at iteration t,
the model takes as input not just the noised sample
w̃c:c+B

t , but also a clean output from the previous
timestep t+ 1, wc:c+B

logits,t+1. This allows the model
to reuse useful information in the previous predic-
tion and focus on refining it in the current timestep,
allowing convergence in fewer iterations. That is,
for T > t ≥ 1:

wc:c+B
logits,t = logitsθ(w

c:c+B | w̃c:c+B
t ,wc:c+B

logits,t+1,w
<c)

More specifically, the noisy representation w̃c:c+B
t

and the previous timestep prediction wc:c+B
logits,t+1 are

combined before the transformer blocks of θ, along

with the positional embeddings and timestep em-
beddings as follows:2

h̃ = Wdiff[sm(w̃t)] +Wpred[sm(wlogits,t+1)]

+ Embpos(c : c+B) + Embdiff-time(t/T)

h<c = Embctx(w
<c) + Embpos(< c)

+ Embctx-time(t/T)

wc:c+B
logits,t = Transformer[concat(h<c, h̃)]c:c+B

To train the model to learn to reuse the predicted
logits, we add an additional forward pass during
the training phase, activated with a probability p =
0.5. We predict wc:c+B

logits,t disabling gradient back-
propagation, and use it in the new cross entropy
loss − log pθ(w

j | w̃c:c+B
t ,wc:c+B

logits,t,w
<c).

Removing context length sampling for efficiency
The original training algorithm of SSD-LM first
samples a context length c ∼ U(1, |w| − B) for
each example, encodes the context bi-directionally
and computes the diffusion loss for a block of B
tokens following that context. The bi-directional
encoding of the context w<c cannot be shared
across different context sizes c for the same ex-
ample. Moreover, when the sequence length |w|
is large, a high variance in the sampled c across
devices in distributed training reduces the effective
batch size, slowing down the training considerably.
Therefore, in the pretraining and finetuning of SSD-
2, we eliminate sampling different c’s while equiv-
alently modeling the same training loss as shown
in Figure 2 for all |w|

B blocks in one data, by using
a special attention mask. The transformer modules
of SSD-2 encode the context w<c uni-directionally
while preserving the bi-directional attention for the
diffusion generation block wc:c+B . This leads to a
2x speedup in our pilot pretraining. More details
can be found in §A.

Sharded models across time-ranges and early
stopping in decoding We observe that at test
time SSD-2 often shows distinct behaviors at dif-
ferent timestep ranges. We empirically divide the
number of iterations into five ranges of equal sizes.
In the beginning of decoding (t ∈ (0.8T, T]), when
the noise level is very high, there is no discernable
pattern in which the model’s intermediate predic-
tions (argmaxwc:c+B

logits,t) in different iterations differ

2As a shorthand, we dropped the superscript for token po-
sitions c to c+B, and use sm for softmax, Emb for the em-
bedding layer, and Wdiff and Wpred for the embedding matrix
for the noisy representation and self-conditioning prediction.

8384

Algorithm 1 Training (at a given c)

1: w̃c:c+B
0 = logits-initialization(wc:c+B)

2: t ∼ Uniform({1, . . . , T})
3: ϵ ∼ N (0,K2I)

4: w̃c:c+B
t =

√
ᾱtw̃

c:c+B
0 +

√
1− ᾱtϵ

5: r ∼ Bernoulli(0.5)
6: if r = 0 then
7: Take a gradient descent step on

∇θ[
∑j<c+B

j=c − log pθ(w
j | w̃c:c+B

t ,w<c)]
8: else
9: With gradient calculation disabled, calculate

wc:c+B
logits,t = logitsθ(w

c:c+B | w̃c:c+B
t ,w<c)

10: Take a gradient descent step on
∇θ [

∑j<c+B
j=c − log pθ(w

j | w̃c:c+B
t ,wc:c+B

logits,t ,w<c)]

11: end if

Algorithm 2 Decoding (at a given c)

1: w̃c:c+B
T ∼ N (0,K2I)

2: for t = T, . . . , 1 do
3: if t = T then
4: wc:c+B

logits,t = logitsθ(w
c:c+B | w̃c:c+B

t ,w<c)
5: else
6: wc:c+B

logits,t = logitsθ(w
c:c+B | w̃c:c+B

t ,wc:c+B
logits,t+1,w

<c)

7: end if
8: Ensemble with other models if applicable,

all-reduceΘ,λ(w
c:c+B
logits,t)

9: ŵc:c+B = logits-projection(wc:c+B
logits,t)

10: z ∼ N (0,K2I)

11: w̃c:c+B
t−1 =

√
ᾱt−1ŵ

c:c+B +
√
1− ᾱt−1z

12: end for
13: return argmax w̃c:c+B

0

Figure 2: Training and decoding algorithms for SSD-2. The training algorithm describes the training objective at an
arbitrary context length c. The decoding algorithm can be applied multiple rounds by appending the generation
from one round to the context for the next. The decoding may stop after a fixed number of rounds or until a special
end-of-sequence token is encountered.

from each other. Larger changes often happen at
t ∈ (0.6T, 0.8T] after which the majority of the
content is in place, and for t ∈ (0.4T, 0.6T] only
minor changes happen sparsely to make a grammat-
ical correction or settle down on an uncertain word
choice. Finally, for t ∈ (0, 0.4T], the sequence
does not update at all in most cases. We hence hy-
pothesize that the first three timestep ranges require
different capabilities from the model. In SSD-2,
we propose to optionally train three separate mod-
els θ(0.4,0.6), θ(0.6,0.8), and θ(0.8,1.0) for the three
ranges.3 We still train a single model at pretraining
to save resources and only perform this step during
a final finetuning as described in §4.4 We start the
decoding at t = T and stop at t = 0.4T , saving
40% of the inference computation.5

3.2 Inference-time collaboration

As shown in SSD-LM (Han et al., 2022) and
prior work in other domains (Dhariwal and Nichol,
2021), diffusion models are naturally suited to al-
low for controlling the properties of the model
outputs by interpolating the model outputs with
gradients from a control function such as a clas-
sifier. Follow-up studies have extended this idea

3A similar setup has also been explored in image diffusion
as expert denoisers (Feng et al., 2022; Balaji et al., 2022).

4This setup could further be improved by considering mod-
els of different sizes for the three ranges where θ(0.4,0.6) and
θ(0.8,1.0) could contain fewer parameters as they arguably per-
form simpler tasks to reduce the effective inference time. We
leave it as future work.

5We report a comparison between the decoding speed of
SSD-2 and the original SSD-LM in §D

to classifier-free guidance where diffusion models
with and without controlling attributes can be in-
terpolated contrastively using a weighted sum of
their outputs (Ho and Salimans, 2021). We explore
a new setup of the latter idea for enabling collab-
oration between two versions of SSD-2 where we
interpolate the output logits of the models. Intrin-
sic to the diffusion paradigm, this interpolation is
sequence-level and through many iterations it lever-
ages benefits of the bi-directional context.

Setup We first define a core model θcore which is
computationally expensive to train or deploy (e.g.,
a large model which can only be loaded on mutiple
GPUs). We assume the model is good at general-
domain instruction following. We then define a
user model θuser which is computationally friendly
for a typical user to run on their personal device or
a cloud device to their control. It allows incorporat-
ing data of their specific interest which they may
not prefer to input to the large model. For both the
core and user models, we also assume they do not
have access to each others’ model parameters.

We also assume a prompting instruction winst
which both the models have access to, and expert
data Duser that only the user model and not the
core model has access to (see Figure 1). During
inference,

• θcore only takes in the prompt winst,
fθcore(winst).

• θuser can be finetuned with Duser, or use Duser
in in-context learning. In this work, we ex-
periment with the latter setup, where the user

8385

model takes in both the user expert data and
the instruction as input, fθuser(Duser,winst).

• Additionally, we assume the model size
|θcore| ≫ |θuser| (the size difference is 100x in
our experiments).

We will discuss the specific instantiation of the
setup in §5. In the section below, we first intro-
duce a prominent collaboration algorithm when
θcore and θuser are autoregressive, and then propose
a novel algorithm when the models are diffusion-
based SSD-2.

Method The collaboration between θcore and
θuser is essentially an ensemble of the model out-
puts. One prominent way of approaching it is
through a weighted average of the models’ logits at
inference time.6 For autoregressive LMs, this aver-
aging can be performed at the token level where the
logits are first combined and then transformed into
probability distribution like a product-of-experts
ensemble (e.g., Liu et al. (2021)).

wc ∼ pcollab(w
c | Duser,winst,w

<c)

= softmax[(1− λuser) logitsθcore
(wc | winst,w

<c)

+ λuser logitsθuser
(wc | Duser,winst,w

<c)]

We also consider an extension of this setup where
we add a contrastive term to θuser without the input
Duser, to promote the pointwise mutual information
between the expert data and the generation condi-
tioned on the instruction (Malkin et al., 2021).7

wc ∼ softmax[(1− λuser) logitsθcore
(wc | winst,w

<c)

+ λuser(1 + α) logitsθuser
(wc | Duser,winst,w

<c)

− λuserα logitsθuser
(wc | winst,w

<c)]

For SSD-2, the process of generating tokens is
intrinsically different from autoregressive models.
However, since it preserves the notion of logits
in its iterative decoding procedure (wc:c+B

logits,t), we
propose a similar logits-averaging method for a
diffusion θcore and θuser, performing an ensemble
for a block of tokens at each diffusion timestep.

6Training-time ensemble can be achieved through methods
like parameter-averaging (Li et al., 2022a). However, it is
not the focus of this work since our models have drastically
different shapes and we do not assume the models have access
to the parameters of other models.

7We set the contrastive hyperparameter α = 1.0 through-
out the evalution, though the results with α = 0.0 follow a
similar trend.

wc:c+B
core-logits,t = logitsθcore

(wc:c+B | winst,w
<c, w̃c:c+B

t)

wc:c+B
user-logits,t = logitsθuser

(wc:c+B | Duser,winst,w
<c, w̃c:c+B

t)

wc:c+B
¬user-logits,t = logitsθuser

(wc:c+B | winst,w
<c, w̃c:c+B

t)

wc:c+B
logits,t = (1− λuser)w

c:c+B
core-logits,t

+ λuser(1 + α)wc:c+B
user-logits,t − λuserαw

c:c+B
¬user-logits,t

The above procedure is instantiated through the
operation all-reduceΘ,λ(w

c:c+B
logits,t) in Figure 2. Fig-

ure 1 describes both the autoregressive and dif-
fusion collaboration in our setup illustratively. It
is noteworthy that for diffusion models, this man-
ner of collaboration is only straightforward in a
simplex-based model such as SSD-2. Diffusion
variants proposed in the literature operating on to-
ken embeddings (§6) are not trivially suitable for it
due to a mismatch in the models’ embedding space.

4 Experimental Setup

Pretraining Existing work on diffusion LMs is
limited to modest model sizes below the order of
1B parameters (Li et al., 2022c; Han et al., 2022;
Dieleman et al., 2022). For example, SSD-LM
has the same size as RoBERTA-large (Liu et al.,
2019) with 0.4B parameters. It is unclear whether
diffusions LMs have the ability to scale like au-
toregressive LMs.8 To answer this question, we
pretrain three versions of SSD-2 with 0.1B, 2.7B,
and 13B parameters, on a subset of a large corpus
C4 (Raffel et al., 2020). Instead of pretraining from
scratch, we initialize these models using publicly
available OPT models (Zhang et al., 2022).9 We
consider a maximum sequence length of 500 (up
from 200 in SSD-LM), with a diffusion block size
B = 25. On the 13B SSD-2 model for our main
evaluation, we first do 50K warmup steps with-
out self-conditioning and then start a 100K-step
pretraining with the full algorithm. It uses approxi-
mately 38B tokens from the C4 data in total. Other
pretraining hyperparameters can be found in §B.
We show the pretraining losses of SSD-2 over time
in §C. Based on the trend of pretraining losses and
the scale of our pretraining data compared to recent
work,10 we conjecture that our SSD-2 models are

8In fact, Strudel et al. (2022) show for embedding-based
diffusion models, scaling up the embedding dimensions may
hurt the performance in certain cases.

9Han et al. (2022) find initializing from pretrained non-
diffusion models help the convergence of diffusion losses in
SSD-LM.

10For example, the LLaMA 13B model (Touvron et al.,
2023) uses 1T tokens from multiple corpora including C4,
whereas we use 38B tokens from C4 only.

8386

still considerably undertrained. Due to our com-
puting budget, we leave to future work a potential
continued pretraining over current SSD-2 models
on larger and better curated data.

Instruction finetuning While Han et al. (2022)
show the effectiveness of pretrained SSD-LM in
general-domain text continuation, in this work, we
primarily investigate the use of SSD-2 in down-
stream fine-tuning tasks, particularly on chat-style
instruction following.11 We finetune the models
with the DOLLY dataset12 containing 15K human-
collected instructions and responses (Databricks,
2023). DOLLY covers categories like open/closed-
QA, brainstorming, and creative writing, though
it may still be less powerful than the distillation-
based data in terms of size and quality.13 We
finetune on 95% of the DOLLY data and use the
rest for held-out evaluation. We finetune with a
batch size of 384 and for 500 or 1000 steps for the
0.1B/2.7B/13B models. As a baseline, we finetune
the autoregressive model OPT (0.1B/2.7B/13B) on
DOLLY with the same setup.

5 Experiments

5.1 Inference-time collaboration

As introduced in §3.2, a main focus of this work is
to explore the advantages of a diffusion-based LM
SSD-2 in a collaboration setup: interpolating the
outputs of a large, general model θcore and a small
model θuser enhanced by user expert data Duser.

We use the 13B-parameter SSD-2 finetuned with

11We make an additional change while finetuning SSD-2
to address end of sequence (EOS) issues in variable length
sequences in the downstream datasets. Since a sequence could
terminate in the middle of a diffusion block, while training, we
pad the sequence with the EOS token to the nearest boundary
of a diffusion block of size B. We do not mask this padding
while computing the loss. We use the standard padding token
after the last diffusion block boundary. At inference, if the
generated text block argmax w̃c:c+B

0 in the final iteration
contains an EOS token, we prune the trailing tokens after the
first EOS token in the block.

12https://huggingface.co/datasets/databricks/
databricks-dolly-15k. We deliberately choose to finetune
with DOLLY because as opposed to other similar datasets (e.g.
the ones used to train models like Alpaca (Taori et al., 2023)
and Vicuna (Chiang et al., 2023)), DOLLY has an open-source
license and does not depend on distillations from OpenAI
models.

13We did not explore other earlier instruction tuning data
like Wang et al. (2022) and Longpre et al. (2023) since they
align less with the chat scenario of our interest. Furthermore,
such data can contain a considerable amount of questions that
have a very short answer (e.g., multiple choice). We leave for
future work to explore the applicability of diffusion on these
datasets.

DOLLY as θcore and the 0.1B finetuned SSD-2 as
θuser. We use OPT 13B and 0.1B finetuned with
DOLLY under the same collaboration setup as the
autoregressive baseline. DOLLY’s held-out test
prompts are used as winst. A subset of DOLLY

test examples is annotated with loosely related
Wikipedia passages to support the output answers;
we use these passages as a proxy for Duser. To
avoid prompts with trivial answers, we addition-
ally constrain the test instructions to those with an
original annotated response of at least 50 tokens.

Inference-time collaboration is effective if the
core model θcore generates better responses af-
ter collaborating with the 100x smaller but user-
enhanced θuser. We investigate a range of weights
λuser, starting from 0 where the output of the col-
laboration solely depends on the large θcore, and
gradually increasing λuser to incorporate more θuser.

Automatic evaluation We first conduct an auto-
matic evaluation, using state-of-the-art, production-
level LMs to evaluate the quality of our models’
generations, which have been shown to correlate
highly with human judgments and are easier to
scale (Liu et al., 2023). We use GPT-3.5-turbo to
rate our models’ responses to the test instructions
on a scale of 10, towards the aspects of relevance,
factuality, informativeness, coherence, and under-
standability. The specific prompting template we
used is detailed in §G.

Table 1 summarizes the automatic evaluation
results. We observe that when λuser = 0 (θcore
only, no Duser incorporated), the OPT model fine-
tuned with DOLLY consistently outperforms our
finetuned SSD-2.14 However, for OPT, collaborat-
ing with the small user model does not improve
the core model’s performance any further across
all considered weights. Within the experimented
weighting factors, λuser of 0.1 to 0.3 is relatively
optimal, though still leading to lower scores than
without collaboration.

In contrast, the small user model θuser improves
the core model’s performance in all tested at-
tributes in SSD-2. With appropriate weight factors
(λuser = 0.2, 0.3), the collaborated SSD-2 system
surpasses the best OPT performance in four of the
five metrics and matches the fifth. We highlight in
Table 1 the best absolute performance and the best

14We conjecture the reason is that SSD-2 is undertrained as
discussed in §4 and can have a larger domain gap w.r.t. the
DOLLY data. In §5.2, we compare the intrinsic instruction
following ability of SSD-2 and OPT using one-shot in-context
learning instead of finetuning.

8387

https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://huggingface.co/datasets/databricks/databricks-dolly-15k

λuser = 0 λuser = 0.1 λuser = 0.2 λuser = 0.3 λuser = 0.4 λuser = 0.5 λuser = 1.0

Relevance
OPT{core,user} 9.76 9.59 9.61 9.65 9.65 9.39 8.23
SSD-2{core,user} 9.72 9.65 9.91 9.85 9.64 9.52 7.16
∆collab OPT -0.17 -0.15 -0.11 -0.11 -0.37 -1.53
∆collab SSD-2 -0.07 +0.19 +0.13 -0.08 -0.20 -2.56
Factuality
OPT{core,user} 9.64 9.57 9.51 9.55 9.57 9.27 8.15
SSD-2{core,user} 9.34 9.49 9.63 9.64 9.56 9.48 7.26
∆collab OPT -0.06 -0.12 -0.08 -0.05 -0.29 -1.44
∆collab SSD-2 +0.14 +0.30 +0.31 +0.26 +0.15 -2.03
Informativeness
OPT{core,user} 9.30 9.20 9.12 9.27 9.06 8.95 7.41
SSD-2{core,user} 8.97 9.02 9.33 9.36 9.06 8.97 6.38
∆collab OPT -0.10 -0.18 -0.03 -0.24 -0.35 -1.89
∆collab SSD-2 +0.05 +0.36 +0.39 +0.09 0.00 -2.59
Coherence
OPT{core,user} 9.61 9.47 9.37 9.44 9.41 9.13 7.70
SSD-2{core,user} 9.41 9.35 9.65 9.59 9.25 9.17 5.84
∆collab OPT -0.14 -0.24 -0.17 -0.20 -0.48 -1.91
∆collab SSD-2 -0.06 +0.24 +0.18 -0.16 -0.24 -3.57
Understandability
OPT{core,user} 9.66 9.54 9.53 9.54 9.51 9.30 8.10
SSD-2{core,user} 9.53 9.56 9.72 9.67 9.42 9.34 6.21
∆collab OPT -0.12 -0.13 -0.12 -0.15 -0.36 -1.56
∆collab SSD-2 +0.03 +0.19 +0.14 -0.11 -0.19 -3.32

Table 1: Evaluation of the inference-time collaboration between the large core model θcore and the small user model
θuser. A negative impact led by θuser to θcore is marked in red, and a positive impact in blue. SSD-2 is substantially
more collaborative than the autoregressive OPT baseline.

performance gain due to the collaboration. We ad-
ditionally show that when λuser = 1, the small user
model θuser alone performs worse in SSD-2 than
in OPT. This further indicates that the observed
performance gain comes from an effective collabo-
ration rather than a significantly better θuser.

Human evaluation To corroborate our findings,
we further perform a human evaluation comparing
the outputs from SSD-2 and OPT under a collabo-
rative setup. For each test prompt, we show SSD-2
and OPT responses with λuser of 0.2 to the human
annotators as a randomized pair. We asked the
annotators to choose the preferred response while
allowing for annotating equally good responses
or equally bad responses. A total of 9 annotators
(graduate and undergraduate researchers in NLP,
not authoring this work) made 259 human prefer-
ence annotations over 94 test prompts, with each
response pair receiving 1-4 annotations. We show

in Table 2 that the collaboration between SSD-2
θcore and θuser is overall more preferred by humans
to the OPT models under the same setup. SSD-2
wins in 43 cases (45.7%) while loses only in 25
cases (26.6%). We additionally measure an aver-
age Cohen’s kappa coefficient between all pairs of
annotators who annotated the same subset of in-
stances. We observe κ=0.31 indicating a fair agree-
ment, especially that the task is highly subjective
by nature.

Overall, through automatic and human evalua-
tions, we show that SSD-2 offers unique benefits in
an interesting case of inference-time collaboration,
effectively fusing a general-purpose large model
and a small model enhanced by some expert data.

5.2 Ablation study: SSD-2 as a standalone
diffusion chat model

In this section, we divert from our main inference-
time collaboration setup and investigate the capabil-

8388

SSD-2collab
win

Draw OPTcollab
win

43 (45.7%) 26 (27.7%) 25 (26.6%)

Table 2: Human preference of the outputs from the
inference-time collaboration experiments, comparing
the diffusion-based SSD-2 and the autoregressive OPT.

ities of SSD-2 as a standalone language model. We
are interested in the instruction following ability in-
trinsic to the vanilla SSD-2 without inference-time
collaboration or any finetuning (like with DOLLY).
We compare original SSD-2 and OPT 13B in re-
sponding to the prompts from the Vicuna test set
(Chiang et al., 2023), which include problems of
open-ended question answering, creative writing,
etc.15 We formulate the setup as a one-shot in-
context learning problem. Before each Vicuna test
prompt, we add one fixed, handcrafted in-context
example from Zhou et al. (2023a) to help the mod-
els capture the format of the answers without chang-
ing the model parameters.

The main metric we report is the win rate from
an automatic evaluation based on GPT-4 (OpenAI,
2023). We follow the original evaluation template
as introduced in Chiang et al. (2023), prompting
GPT-4 to rate SSD-2 and OPT responses along with
explanations. As additional metrics, we also com-
pute the conditional perplexity of the responses
using external language models GPT-Neo-1.3B
(Black et al., 2021) and GPT-2-large (Radford et al.,
2019). While there are no gold answers to the Vi-
cuna test prompts, we use GPT-3.5’s responses
as reference answers and subsequently compute a
BERTScore w.r.t. them for the responses from SSD-
2 and OPT. As shown in Table 3, we overall ob-
serve a higher win rate, lower perplexity, and higher
BERTScore for our diffusion language model SSD-
2 compared to the autoregressive OPT. We addi-
tionally evaluate SSD-2 finetuned with DOLLY and
report results in §E. We show some qualitative ex-
amples of SSD-2’s generations in §F.

6 Related work

Diffusion-based language models have been receiv-
ing increasing attention as a potential alternative to
autoregressive language models. We identify three

15Out of the 80 Vicuna test prompts, we empirically find
both models constantly fail on prompts from the math and
coding categories. We therefore filter them out and keep the
rest 70 test cases for our experiments.

Win rate PPL
(GPT-Neo/GPT2)

BERTScore
(Precision/F1)

SSD-213B 52.3% 7.58 / 9.62 85.9 / 85.2

OPT13B 47.7% 8.44 / 10.08 85.3 / 84.9

Table 3: Original SSD-2 responding to Vicuna test in-
structions in an one-shot in-context learning setup. The
win rate is computed between SSD-2 and OPT mod-
els using the original GPT-4 evaluation introduced in
Chiang et al. (2023). BERTScore is computed for the
model responses w.r.t. the generations from GPT-3.5.

main categories of diffusion language models based
on how they represent discrete data like text. Dis-
crete diffusion language models represent language
naturally as categorical data, while the diffusion
or noising steps are often formulated as transition
matrices (Hoogeboom et al., 2021; Austin et al.,
2021; He et al., 2022; Reid et al., 2022; Zheng
et al., 2023; Zhou et al., 2023b). Embedding-based
diffusion language models often learn a mapping
between the discrete language tokens and an em-
bedding latent space, and the diffusion process is
on the embedding space via a series of Gaussian
noise (Li et al., 2022c; Gong et al., 2022; Diele-
man et al., 2022; Gao et al., 2022; Lovelace et al.,
2022; Yuan et al., 2022; Lin et al., 2022; Ye et al.,
2023; Chen et al., 2023; Tang et al., 2023; Balagan-
sky and Gavrilov, 2023). In this work, we focus
on simplex-based diffusion language models that
project discrete tokens to a simplex space and per-
form the diffusion process with a simple Gaussian
noise (Han et al., 2022; Mahabadi et al., 2023).
Our proposed inference-time collaboration setup
is most straightforward to apply to simplex-based
diffusion language models, since models with dif-
ferent sizes share the same simplex (vocabulary)
space. Embedding-based models over different la-
tent representation spaces are not suitable for a
direct representation interpolation. Furthermore,
to the best of our knowledge, SSD-2 is the first
of this line of literature to pretrain and finetune a
diffusion language model as a chat model, encour-
aging future work to compare and improve over
our work.

With autoregressive language models, various
efforts have been made towards building chat-style
instruction following models based on open source
language models (Touvron et al., 2023; Biderman
et al., 2023) to replicate strong production-level
closed source counterparts (Ouyang et al., 2022;

8389

OpenAI, 2023). Many of such work are concur-
rent to ours and collect high-quality finetuning
datasets by distilling prompts and responses from
OpenAI models (Taori et al., 2023; Chiang et al.,
2023; Xu et al., 2023). In this work, we delib-
erately seek fully open source data not depend-
ing on OpenAI models and adopt the DOLLY data
(Databricks, 2023). We expect our models can be
further improved with future releases of more cu-
rated chat-style instruction tuning datasets (Zhou
et al., 2023a).

One novel setup we explored in this work is
the inference-time collaboration between a large,
general-purpose diffusion chat model and small,
user-specific models. Inference-time collaboration
has been generally explored in autoregressive mod-
els via ensembles of logits, either in an interpola-
tion or contrastive manner (Liu et al., 2021; Malkin
et al., 2021; Li et al., 2022a; Peng et al., 2022;
Li et al., 2022b). In diffusion models, classifier-
free guidance in image generation (Ho and Sali-
mans, 2021) contrastively reconstruct representa-
tions with and without a controlling attribute using
a single model, whereas our work collaboratively
decode with models with different sizes and inputs.
We show an unique advantage of simplex-based
diffusion language models in such inference-time
collaboration compared to autoregressive language
models.

7 Conclusion

We present an exploratory step towards pretraining
a large simplex-based diffusion language model
SSD-2 and finetuning it with an open-source chat-
style instruction dataset. In a motivated setup
where large general models and small user models
are to collaborate with each other at inference time,
we find SSD-2 substantially more collaborative
than its autoregressive counterparts. These findings
show the promise of diffusion language models as
an instruction-following chat model and a worthy
alternative to autoregressive language models.

Limitations

In this work, we explore a novel setup of fusing
large general diffusion language models and small
customizable models enhanced with user expert
data. One limitation of the proposed fusion algo-
rithm is that it requires a search through a range of
candidate balancing factors λuser. Furthermore, a
selected balancing factor remains the same across

different diffusion timesteps, which is not neces-
sarily optimal. Future work can explore and learn
an optimal, dynamic schedule of the balancing fac-
tors. Another limitation of diffusion language mod-
els in general is a slow decoding speed compared
to autoregressive models. Though our proposed
SSD-2 model already includes improvements over
the original SSD-LM leading to faster decoding
speed (more details in §D), future work may fur-
ther adapt methods from image diffusion models
targeting specifically for efficient decoding (Song
et al., 2021; Nichol and Dhariwal, 2021; Rombach
et al., 2022; Meng et al., 2022).

Acknowledgements

The authors would like to thank Alisa Liu, Jiacheng
Liu, Weijia Shi, Zihao Ye, members of TsvetShop,
and the anonymous reviewers for their insightful
discussions and feedback. We additionally thank
Shangbin Feng, Tianxing He, Abe Hou, Yuhan Liu,
Heng Wang, Jack Zhang, and Michael Zhang for
their helpful evaluation. X.H. gratefully acknowl-
edges funding from the UW-Meta AI Mentorship
program. This research is supported in part by
the Office of the Director of National Intelligence
(ODNI), Intelligence Advanced Research Projects
Activity (IARPA), via the HIATUS Program con-
tract #2022-22072200004. This material is also
funded in part by the DARPA Grant under Con-
tract No. HR001120C0124. We also gratefully
acknowledge support from NSF CAREER Grant
No. IIS2142739, NSF Grants No. IIS2125201,
IIS2203097, and the Alfred P. Sloan Foundation
Fellowship. The views and conclusions contained
herein are those of the authors and should not be in-
terpreted as necessarily representing the official
policies, either expressed or implied, of ODNI,
IARPA, or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for governmental purposes notwithstand-
ing any copyright annotation therein.

References

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel
Tarlow, and Rianne van den Berg. 2021. Structured
denoising diffusion models in discrete state-spaces.
In Proc. NeurIPS.

Nikita Balagansky and Daniil Gavrilov. 2023. De-
mocratized diffusion language model. ArXiv,
abs/2305.10818.

8390

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vah-
dat, Jiaming Song, Qinsheng Zhang, Karsten Kreis,
Miika Aittala, Timo Aila, Samuli Laine, Bryan Catan-
zaro, Tero Karras, and Ming-Yu Liu. 2022. ediff-i:
Text-to-image diffusion models with an ensemble of
expert denoisers. ArXiv, abs/2211.01324.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar van der Wal. 2023. Pythia:
A suite for analyzing large language models across
training and scaling.

Sid Black, Gao Leo, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Jiaao Chen, Aston Zhang, Mu Li, Alexander J. Smola,
and Diyi Yang. 2023. A cheaper and better diffu-
sion language model with soft-masked noise. ArXiv,
abs/2304.04746.

Ting Chen, Ruixiang Zhang, and Geo rey E. Hinton.
2022. Analog bits: Generating discrete data us-
ing diffusion models with self-conditioning. ArXiv,
abs/2208.04202.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Databricks. 2023. Databricks dolly 15k. https:
//huggingface.co/datasets/databricks/
databricks-dolly-15k.

Prafulla Dhariwal and Alex Nichol. 2021. Diffu-
sion models beat gans on image synthesis. ArXiv,
abs/2105.05233.

Sander Dieleman, Laurent Sartran, Arman Roshan-
nai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
Richemond, A. Doucet, Robin Strudel, Chris Dyer,
Conor Durkan, Curtis Hawthorne, Rémi Leblond,
Will Grathwohl, and Jonas Adler. 2022. Con-
tinuous diffusion for categorical data. ArXiv,
abs/2211.15089.

Zhidan Feng, Zhenyu Zhang, Xintong Yu, Yewei
Fang, Lanxin Li, Xuyi Chen, Yuxiang Lu, Jiaxi-
ang Liu, Weichong Yin, Shi Feng, Yu Sun, Hao
Tian, Hua Wu, and Haifeng Wang. 2022. Ernie-vilg
2.0: Improving text-to-image diffusion model with
knowledge-enhanced mixture-of-denoising-experts.
ArXiv, abs/2210.15257.

Zhujin Gao, Junliang Guo, Xuejiao Tan, Yongxin Zhu,
Fang Zhang, Jiang Bian, and Linli Xu. 2022. Dif-
former: Empowering diffusion model on embedding
space for text generation. ArXiv, abs/2212.09412.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,
and Lingpeng Kong. 2022. Diffuseq: Sequence to se-
quence text generation with diffusion models. ArXiv,
abs/2210.08933.

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov.
2022. Ssd-lm: Semi-autoregressive simplex-based
diffusion language model for text generation and
modular control. ArXiv, abs/2210.17432.

Zhengfu He, Tianxiang Sun, Kuan Wang, Xuanjing
Huang, and Xipeng Qiu. 2022. Diffusionbert: Im-
proving generative masked language models with
diffusion models. ArXiv, abs/2211.15029.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. In Proc.
NeurIPS.

Jonathan Ho and Tim Salimans. 2021. Classifier-free
diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applica-
tions.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J. Fleet. 2022.
Video diffusion models. ArXiv, abs/2204.03458.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini,
Patrick Forré, and Max Welling. 2021. Argmax flows
and multinomial diffusion: Learning categorical dis-
tributions. In Proc. NeurIPS.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and
Bryan Catanzaro. 2021. Diffwave: A versatile diffu-
sion model for audio synthesis. In Proc. ICLR.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike
Lewis, Tim Althoff, Noah A. Smith, and Luke Zettle-
moyer. 2022a. Branch-train-merge: Embarrassingly
parallel training of expert language models. ArXiv,
abs/2208.03306.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy
Liang, Jason Eisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. 2022b. Contrastive de-
coding: Open-ended text generation as optimization.
ArXiv, abs/2210.15097.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy
Liang, and Tatsunori Hashimoto. 2022c. Diffusion-
lm improves controllable text generation. ArXiv,
abs/2205.14217.

8391

http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://huggingface.co/datasets/databricks/databricks-dolly-15k

Zheng-Wen Lin, Yeyun Gong, Yelong Shen, Tong Wu,
Zhihao Fan, Chen Lin, Weizhu Chen, and Nan Duan.
2022. Genie: Large scale pre-training for text gener-
ation with diffusion model. ArXiv, abs/2212.11685.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A Smith,
and Yejin Choi. 2021. Dexperts: Decoding-time con-
trolled text generation with experts and anti-experts.
In Proc. ACL.

Yang Liu, Dan Iter, Yichong Xu, Shuo Wang, Ruochen
Xu, and Chenguang Zhu. 2023. G-eval: Nlg evalua-
tion using gpt-4 with better human alignment. ArXiv,
abs/2303.16634.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

S. Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won
Chung, Yi Tay, Denny Zhou, Quoc V. Le, Barret
Zoph, Jason Wei, and Adam Roberts. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. ArXiv, abs/2301.13688.

Justin Lovelace, Varsha Kishore, Chao gang Wan,
Eliot Shekhtman, and Kilian Q. Weinberger. 2022.
Latent diffusion for language generation. ArXiv,
abs/2212.09462.

Rabeeh Karimi Mahabadi, Jaesung Tae, Hamish Ivi-
son, James Henderson, Iz Beltagy, Matthew E.
Peters, and Arman Cohan. 2023. Tess: Text-
to-text self-conditioned simplex diffusion. ArXiv,
abs/2305.08379.

Nikolay Malkin, Zhen Wang, and Nebojsa Jojic. 2021.
Coherence boosting: When your pretrained language
model is not paying enough attention. In Annual
Meeting of the Association for Computational Lin-
guistics.

Chenlin Meng, Ruiqi Gao, Diederik P. Kingma, Ste-
fano Ermon, Jonathan Ho, and Tim Salimans. 2022.
On distillation of guided diffusion models. ArXiv,
abs/2210.03142.

Alexander Quinn Nichol and Prafulla Dhariwal. 2021.
Improved denoising diffusion probabilistic models.
In Proc. ICML.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke E. Miller, Maddie Simens, Amanda Askell, Pe-
ter Welinder, Paul Francis Christiano, Jan Leike, and
Ryan J. Lowe. 2022. Training language models to
follow instructions with human feedback. ArXiv,
abs/2203.02155.

Xiangyu Peng, Chen Xing, Prafulla Kumar Choubey,
Chien-Sheng Wu, and Caiming Xiong. 2022. Model
ensemble instead of prompt fusion: a sample-specific
knowledge transfer method for few-shot prompt tun-
ing. ArXiv, abs/2210.12587.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. JMLR.

Machel Reid, Vincent J. Hellendoorn, and Graham Neu-
big. 2022. Diffuser: Discrete diffusion via edit-based
reconstruction. ArXiv, abs/2210.16886.

Robin Rombach, A. Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. 2022 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 10674–
10685.

Jiaming Song, Chenlin Meng, and Stefano Ermon. 2021.
Denoising diffusion implicit models. In Proc. ICLR.

Robin Strudel, Corentin Tallec, Florent Altch’e, Yilun
Du, Yaroslav Ganin, Arthur Mensch, Will Grathwohl,
Nikolay Savinov, Sander Dieleman, L. Sifre, and
Rémi Leblond. 2022. Self-conditioned embedding
diffusion for text generation. ArXiv, abs/2211.04236.

Zecheng Tang, Pinzheng Wang, Keyan Zhou, Juntao
Li, Ziqiang Cao, and M. Zhang. 2023. Can diffu-
sion model achieve better performance in text gener-
ation? bridging the gap between training and infer-
ence! ArXiv, abs/2305.04465.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aur’elien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. ArXiv,
abs/2302.13971.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Is-
han Purohit, Ishani Mondal, Jacob Anderson, Kirby
Kuznia, Krima Doshi, Maitreya Patel, Kuntal Kumar
Pal, M. Moradshahi, Mihir Parmar, Mirali Purohit,
Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma,
Ravsehaj Singh Puri, Rushang Karia, Shailaja Keyur

8392

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Sampat, Savan Doshi, Siddharth Deepak Mishra, Su-
jan Reddy, Sumanta Patro, Tanay Dixit, Xudong
Shen, Chitta Baral, Yejin Choi, Noah A. Smith,
Hanna Hajishirzi, and Daniel Khashabi. 2022. Super-
naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks. In Conference on
Empirical Methods in Natural Language Processing.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley.
2023. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data. ArXiv,
abs/2304.01196.

Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and
Mingxuan Wang. 2023. Dinoiser: Diffused con-
ditional sequence learning by manipulating noises.
ArXiv, abs/2302.10025.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang,
and Songfang Huang. 2022. Seqdiffuseq: Text dif-
fusion with encoder-decoder transformers. ArXiv,
abs/2212.10325.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open
pre-trained transformer language models. ArXiv,
abs/2205.01068.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong.
2023. A reparameterized discrete diffusion model
for text generation. ArXiv, abs/2302.05737.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023a. Lima:
Less is more for alignment. ArXiv, abs/2305.11206.

Kun Zhou, Yifan Li, Wayne Xin Zhao, and Ji rong Wen.
2023b. Diffusion-nat: Self-prompting discrete diffu-
sion for non-autoregressive text generation. ArXiv,
abs/2305.04044.

A Eliminating the sampling of context
size c in training

In the original training algorithm of SSD-LM (Han
et al., 2022), they first sample a context length c ∼
U(1, |w|−B), and then compute the diffusion loss
for reconstructing a block of length B following
that context. When the sequence length |w| is large,
this can lead to a drastic variance in the values of
c. Implemented naively in a distribution training
setup, this setup wastes computations, and reduces
the effective batch size considerably slowing down
training. We eliminate the sampling of the context
length c in SSD-2 by processing multiple c’s in
parallel. To facilitate this, we encode the context

w<c uni-directionally while preserving the locally
bi-directional attention for the diffusion generation
block wc:c+B .

More specifically, assume we have a prompt
w<c0 and want to form the same training ob-
jective as in Figure 2 on all of the following n
text blocks wc0:c0+nB . We prepare a context se-
quence w<c0+(n−1)B and obtain h<c0+(n−1)B as
described previously in §3.1. We prepare a diffu-
sion sequence w̃c0:c0+nB and obtain h̃

c0:c0+nB
as

described previously. Then a forward pass of θ
works as below.

o<c0+(2n−1)B = Transformer[

concat(h<c0+(n−1)B, h̃
c0:c0+nB

); δ(c0, n,B)]

wc0:c0+nB
logits,t = oc0+(n−1)B:c0+(2n−1)B

where δ(c0, n,B) is a special attention mask for
the transformer model, allowing a reuse of the en-
coded contexts while preserving the original train-
ing loss:

δi,j =

1j≤i if i < c0 + (n− 1)B.
1j≤c0+kB or c0+(n−1+k)B<j<c0+(n+k)B

if c0 + (n− 1 + k)B < i < c0 + (n+ k)B,
for 0 ≤ k < n.

Row i of δ indicates the attention-accessible po-
sitions for the i-th input token of the transformer.
For example, assume the original context is [a]
and the target generation is in two blocks [b, c] and
[d, e]. The input sequence to the SSD-2 transformer
model is [a, b, c, b̃, c̃, d̃, ẽ], and the attention mask
is:

δ(1, 2, 2) =

1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 1 1 0 0
1 1 1 0 0 1 1
1 1 1 0 0 1 1

Comparing to regular language models, SSD-2 has
a uni-directional encoder and locally bi-directional
decoder. In a pilot pretraining session, we ob-
serve this change leads to a twice as fast training
speed compared to the original SSD-LM on a same
amount of training tokens.

B Pretraining hyperparameters

For the SSD-2 model of each size (13B/2.7B/0.1B),
we conduct two phases of training, a warmup phase

8393

without self-conditioning and a formal phase with
self-conditioning using the complete algorithm
shown in Figure 2. Throughout all pretraining
setups, we use a max sequence length of 500, a
learning rate of 1e-4, and a weight decay of 0.01.
For the 13B SSD-2, we train with a warmup batch
size of 768 for 50,000 steps (19B tokens) and a
formal batch size of 384 for 100,000 steps (19B to-
kens). For the 2.7B SSD-2, we train with a warmup
batch size of 256 for 100,000 steps (13B tokens)
and a formal batch size of 1024 for 100,000 steps
(51B tokens). For the 0.1B SSD-2, we train with
a warmup batch size of 2,048 for 200,000 steps
(205B tokens) and a formal batch size of 2,048
for 100,000 steps (102B tokens). We use Nvidia
V100 GPUs in distributed training, and the differ-
ent batch size and number of warmup steps across
different models are due to the models’ memory
footprint and the relative cluster traffic during our
pilot pretraining. Future work with a dedicated
group of computing resources can explore pretrain-
ing for longer to mitigate the undertraining issue
mentioned in §4.

C Pretraining losses

Figure 3 shows the pretraining losses of SSD-2
over time. We report the losses after the warmup
stage and average them across batches with a self-
conditioning p = 0.5 as described in Figure 2. We
see a sign of undertraining from the loss curves.
Due to our computing budget, we leave to future
work a potential continued pretraining over current
SSD-2 models on larger and better curated data.

Figure 3: Pretraining losses across training steps (with
self-conditioning, after the warmup stage). We con-
jecture that the models can benefit from more training
given more resources.

D Decoding speed

Though the decoding of SSD-2 is still significantly
slower than an autoregressive language model, it
achieves a great speedup compared to the original
SSD-LM. We use a same setup as the reported SSD-
LM decoding in Han et al. (2022). Conditioning
on 50 prompting tokens, we record the speed of
generating the next 25 tokens with timestep T =
1000 on a Nvidia V100 GPU.

The 0.4B SSD-LM takes 25 seconds. By con-
trast, though our 2.7B SSD-2 and 13B SSD-2 are
7x and 33x larger than SSD-LM, they only take 22
seconds and 48 seconds respectively, indicating a
significant speedup.16

E Standalone SSD-2 finetuned with
DOLLY

Following §5.2, we evaluate the outputs from the
finetuned models, SSD-2-DOLLY and OPT-DOLLY,
on both DOLLY’s held-out test set and Vicuna’s test
set. As shown in Table 4, we find that against very
strong baselines pretrained on much larger datasets,
our model still wins on a moderate percentage of
test examples. Compared to LLaMA (which is
trained on 1T tokens for much longer but not fine-
tuned for chat), SSD-2 performs marginally better.
It is overall mildly less preferred than the OPT-
DOLLY model on both DOLLY’s and Vicuna’s test
sets, and significantly less than the Alpaca model.
We emphasize that compared to OPT and LLaMA-
based models, SSD-2 is currently pretrained with a
relatively small, single-corpus dataset,17 and fine-
tuned on an open-source dataset much smaller com-
pared to its non-open-source licensed counterparts
that Alpaca relies on. We believe if trained on simi-
lar datasets, SSD-2 can fill the current performance
gap considerably.

F Qualitative examples

In Table 5, we show some qualitative examples
of our finetuned diffusion language model, SSD-
2-DOLLY’s outputs. The outputs are generated by

16It is worth noting that we add a timestep embedding when
encoding the context in SSD-2 (§3.1). During inference across
timesteps, to reuse the encoded states of the context, we quan-
tize the input timestep t to the context timestep embedding
layer, tquantized = t−(t mod Q). We use Q = 50 throughout
the work and do not find the quantization to negatively impact
the generation quality empirically.

17Despite that we initialize SSD-2 with the OPT weights at
the beginning of pretraining, the diffusion objective is funda-
mentally different from a causal language modeling objective,
and the encoded knowledge of OPT may not transfer well.

8394

Comparing against Win Draw Lose

On Dolly’s test set
OPT-Dolly-13B 41.4% 0% 58.6%

On Vicuna’s test set
LLaMa-13B 51.4% 0% 48.6%
OPT-Dolly-13B 37.1% 0% 62.9%
Alpaca-13B 20.0% 1.4% 78.6%

Table 4: Quantitative evaluation of the finetuned SSD-
2’s outputs against those of autogressive baselines based
on ratings of GPT-4. We report the percentage our SSD-
2 wins / draws / loses to the baseline models.

the 13B model to the queries from the Vicuna test
set (Chiang et al., 2023), on open-ended question
answering, creative writing, etc. We empirically
find that the generations have an overall reasonable
format and content.

G Evaluation templates

We show in Table 6 the templates we used to evalu-
ate model responses via GPT-4 or GPT-3.5-turbo.
For the inference-time collaboration results, apart
from the five evaluated attributes described in §5,
in the template we additionally queried for a rating
of conciseness and human preference. However,
we consider conciseness a less relevant attribute
compared to the other attributes and GPT-3.5-turbo
less qualified to give ratings of human preference.
We filtered them out in our main results but they
hold a similar trend as the results of the other five
attributes.

8395

Prompt: How can I improve my time management skills?

Time management is in short, an important skill to develop. A person needs to learn how to manage
their time more effectively. Here are a few techniques that can help you do that:

1. Prioritizing: One of the first things that you should try in order to improve your time
management skills is to identify which tasks have high priority and need to be given immediate
attention, and those that have low priority but can be postponed until a later date.
2. Multi-tasking: Although it might feel productive to handle more than one task at the same time
, it's actually less efficient at managing our time. It's better to focus on one thing at a time,
and fully dedicate 100% of our efforts to it.

3. Delegating: It's perfectly fine to say no to some tasks or even ask for help when needed. It's
sometimes considered a sign of weakness, but delegation will allow us to free up our time so

that we can work on the things that really matter.
4. Being organized: Making a list will not only help us keep track of tasks that need to get done
each day, but it will also help us avoid feeling overwhelmed by all the ideas and thoughts

running through our heads at any given moment.
By following these tips, you'll be able to significantly improve your time management skills!

Prompt: Write a symphony concert review, discussing the orchestra’s performance and overall
audience experience.

It was a magical night at Symphony Hall on Saturday, as the Boston Symphony Orchestra, under the
baton of Andin Mehta, performed Tchaikovsky's Symphonies No. 5 and No. 6. Tchaikovsky has always
been one of my favorite composers, and these two symphonies are among his most beautiful. They
are full of sweeping melodies, lyrical string writing, and lush orchestral textures that
transport you to a different world each time you listen.
And Mehta did an incredible job in leading the BSO through these masterpieces. He brought out
every nuance in the music - from the quiet tenderness of the first movement to the pulsing energy
of the Allegroagio to the breathtaking crescendo of the Finale.

The entire experience was absolutely magical: I couldn't have asked for a better way to spend a
Saturday night! And I would highly recommend this performance for anyone who is a fan of
Tchaikovsky or classical music in general.

Table 5: Qualitative examples of SSD-2-DOLLY’s responses to instructions. We show the first and last prompt from
the Vicuna test set. The outputs of our diffusion chat model have an overall reasonable format and content, though
being inaccurate in details like the conductor’s name and the tempo terminology.

8396

Evaluation template used to compare SSD-2’s re-
sponses with baseline models’ responses (§5.2),
following Chiang et al. (2023).

[Question]
{test instruction}

[The Start of Assistant 1's Answer]
{baseline model's response}

[The End of Assistant 1's Answer]

[The Start of Assistant 2's Answer]
{SSD-2's response}

[The End of Assistant 2's Answer]

[System]
We would like to request your feedback on the
performance of two AI assistants in response to
the user question displayed above.
Please rate the helpfulness, relevance, accuracy,
level of details of their responses. Each
assistant receives an overall score on a scale
of 1 to 10, where a higher score indicates
better overall performance.
Please first output a single line containing
only two values indicating the scores for
Assistant 1 and 2, respectively. The two scores
are separated by a space. In the subsequent line,
please provide a comprehensive explanation of
your evaluation, avoiding any potential bias and
ensuring that the order in which the responses
were presented does not affect your judgment.

Evaluation template used to rate responses from
either the baseline models or SSD-2 w.r.t. different
attributes (§5).

Rate the response below to an instruction, from
the aspects of relevance, factuality,
informativeness, conciseness, coherence,
understandability, and overall human preference,
each on a scale of 10 (format: x/10).

========

Instruction: {test instruction}

Response: {model response}

========

Please give the ratings now.

Table 6: Evaluation templates used in §5.2 and §5.
The first template was used with GPT-4 (tempera-
ture=0.2), whereas the second was used with GPT-3.5-
turbo (greedy) since we need significantly more queries
across different λuser’s. In the comparative evaluation
using the first template, flipping the order of the base-
line model’s response and SSD-2’s response leads to a
similar result.

8397

