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Abstract
Language technologies that accurately model
the dynamics of events must perform common-
sense reasoning. Existing work evaluating com-
monsense reasoning focuses on making infer-
ences about common, everyday situations. To
instead investigate the ability to model unusual,
unexpected, and unlikely situations, we ex-
plore the task of uncommonsense abductive
reasoning. Given a piece of context with an
unexpected outcome, this task requires reason-
ing abductively to generate an explanation that
makes the unexpected outcome more likely in
the context. To this end, we curate and release
a new English language corpus called UNcom-
monsense. We characterize the performance
differences between human explainers and the
best performing large language models, finding
that model-enhanced human-written explana-
tions achieve the highest quality by trading off
between specificity and diversity. Finally, we
experiment with several imitation learning al-
gorithms to train open and accessible language
models on this task. When compared with the
vanilla supervised fine-tuning approach, these
methods consistently reduce lose rates on both
common and uncommonsense abductive rea-
soning judged by human evaluators.

1 Introduction
The ability to perform commonsense reasoning is
crucial for understanding the dynamics of every-
day events, both for humans and for natural lan-
guage processing systems. However, most existing
commonsense reasoning benchmarks focus on the
ability to model common events (Sap et al., 2019;
Talmor et al., 2019; Lin et al., 2020b), i.e., given
a commonly encountered situation, what common-
sense inferences can be made? Comparatively less
effort has been devoted to evaluating a different
class of inputs: unusual scenarios, improbable situ-
ations, and implausible events.

* Wenting, Lorraine, and Alane’s work done at AI2. Lor-
raine and Alane are co-last authors.

Context: Cameron tried sushi for the first time, and really disliked it.

Uncommon Outcome: Cameron will want to stay and eat more sushi.

UNcommonsense  
Abductive 
Reasoning

Explanations:

Naturally follows the context.
Makes outcome more likely.

Leaves little information gap in-between.

Despite disliking the taste 
of sushi, Cameron decided to stay 

and eat more sushi plates to avoid 
disappointing his partner, who was 

excited about sharing…

Figure 1: Given a context and an uncommon outcome,
uncommonsense abductive reasoning aims to produce
an explanation so that the unlikely outcome becomes
likely. The explanation needs to follow the three rules
noted with the check marks.

Understanding and reasoning about these situ-
ations is crucial for the fairness and reliability of
language technologies. For example, most LLMs
are trained on English data. They are accustomed to
Western cultural norms, and therefore non-English
culture could be considered uncommon in current
LLM-based NLP systems, e.g., wearing shoes in-
doors is normal in Western culture, but is often
viewed as disrespectful in Asian households. Be-
ing able to reason about uncommon situations helps
LLMs serve individuals from diverse cultural back-
grounds more effectively. Uncommon situations
could also be associated with important and high-
risk scenarios (Weidinger et al., 2022). Consider a
situation where an individual tries out a massage
chair and subsequently develops small, itchy, and
red welts on their back. One explanation may be
that this person is allergic to vibrations, a rare yet
real medical condition called vibratory urticaria.
While this is an uncommon situation, an NLP sys-
tem that incorrectly interprets or handles this sit-
uation could lead to severe consequences, for ex-
ample a misdiagnosis of a more common condition
unrelated to the chair.

To bridge this gap, we introduce UNCOMMON-
SENSE, a benchmark that explicitly challenges
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models to reason about implausible, yet still pos-
sible, events. UNCOMMONSENSE is an English-
language corpus consisting of 20k unique contexts
paired with explicitly uncommon outcomes. We
source uncommon outcomes from the incorrect an-
swers in several multiple choice commonsense rea-
soning benchmarks, which were designed to chal-
lenge models to identify the most likely outcome
among multiple candidates, given a context. Given
these contexts and uncommon outcomes, we crowd-
source 41k abductive explanations, which provide
a plausible explanation of how an uncommon out-
come could have arisen, given an input context.
See Figure 1 for an example. UNCOMMONSENSE

complements existing commonsense reasoning cor-
pora (e.g., Mostafazadeh et al., 2016a; Bhagavat-
ula et al., 2020; Rudinger et al., 2020) that focus
on reasoning about common events.1

We examine the gap between human and model
performance in generating abductive uncommon-
sense explanations, finding subtle differences in
explanation quality. Given a few demonstrations,
the top-performing LLM GPT-4 (OpenAI, 2023)
produces more specific explanations than those ac-
quired through crowdsourcing; however, these ex-
planations are less diverse. While their explana-
tions often lack sufficient details to connect con-
texts to outcomes, workers recruited through crowd-
sourcing excel at creating a broader picture of pos-
sible intermediate events. To combine the creativ-
ity of human authors and the specificity of LLM-
generated explanations, we experiment with using
an LLM to refine crowd-authored explanations by
filling in more details. Though LLM-generated
explanations are generally preferred over the origi-
nal crowd-written explanations, we find that LLM-
refined crowd-written explanations hold a notable
advantage over those generated only by an LLM.

Generating abductive explanations for uncom-
mon outcomes without conditioning on a human-
written starting point remains a challenge, particu-
larly for publicly available models. Specifically, we
find that the purely offline learning approach of su-
pervised fine-tuned models suffer from compound-
ing errors during generation. This is particularly
problematic for our task, which generally requires
lengthy explanations that bridge the gap between
a context and an uncommon outcome. To this end,
we experiment with two online imitation learning

1Data is available at huggingface.co/datasets/
allenai/UNcommonsense

methods to improve the performance of open and
accessible language models on abductive reason-
ing. When compared with supervised fine-tuning,
these methods show an absolute 10% increase in
win rates against the strong GPT-4 baseline when
evaluated by workers on both commonsense and
uncommonsense abductive reasoning.

2 Uncommonsense Abductive Reasoning
Given a natural language context x and outcome y,
the task of abductive reasoning requires generating
a natural language explanation z that augments the
context, making the outcome more probable (Bha-
gavatula et al., 2020). In uncommonsense abduc-
tive reasoning, we focus on situations where an
outcome y is very unlikely to happen in context x.
For example, in Figure 1, our context “Cameron
tried sushi for the first time, and really disliked it.”
is paired with the unlikely outcome “Cameron will
want to stay and eat more sushi.”. One possible
abductive explanation of this outcome is that “...
Cameron decided to stay and eat more sushi plates
to avoid disappointing his partner, who was excited
about sharing...”. When the context is augmented
with this explanation, it becomes significantly more
likely that the outcome will occur.

To our knowledge, no existing datasets explic-
itly study abductive reasoning for uncommon sit-
uations. We fill this gap by collecting the UN-
COMMONSENSE dataset, which contains contexts
paired with both uncommon outcomes and expla-
nations that rationalize these uncommon outcomes.
Table 1 presents several examples from UNCOM-
MONSENSE, with explanations written by humans.
In this section, we describe our process for col-
lecting UNCOMMONSENSE, including collecting
uncommon outcomes and abductive explanations.

2.1 Uncommon Outcomes

We first collect pairs of contexts and uncom-
mon outcomes. We source contexts from two
existing commonsense datasets: SocialIQA (Sap
et al., 2019) and ROCStories (Mostafazadeh et al.,
2016b). Each uncommon outcome is either human-
written or LLM-generated.

un-SocialIQA. SocialIQA is a multiple-choice
question answering dataset created to evaluate rea-
soning about social interactions. Each example
consists of a context x, a question q, and three
answer choices A, one of which is correct. To
pick the uncommon outcome, we identify the least
likely answer choice (among the incorrect ones) by
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Context Uncommon Outcome Explanation

Kai bought a Kindle from Amazon and used
it all of the time.

Kai will want to return the Kin-
dle and go back to reading phys-
ical books only.

After a month of reading books with
the Kindle, the free book trial ran out
and Kai decided that reading books on
the Kindle was not worth paying for.
The return period for the Kindle has
not ended yet.

Tracy went shopping at the market and
brought many good items at the super market
like fish and meat.

Tracy will want to get angry. Tracy realized that many of the items
she bought were already expired, and
the shopkeepers had knowingly sold
her expired meats.

Scott was hungry. He decided to cook dinner.
He cooked tacos. He made enough to share
with a friend.

His friend was so offended he
asked Scott to leave.

Scott made the tacos with beef and
didn’t tell his friend until after they ate,
even though he know that his friend
was a strict vegetarian.

Drew order a small ice cream cone at the
Drive Thru. He drove to the front window to
wait for his order. The cashier handed the ice
cream with one of her hands. Drew took the
ice cream cone and turned it upside down.

Drew kept his car clean this way. He just dumped the whole thing into a
small plastic cup he kept in the car and
then he ate it out of the cup.

Table 1: UNCOMMONSENSE examples. The first two examples are from un-SocialIQA and the next two examples
come from un-RocStories; explanations are written by crowdworkers.

we computing argmina∈A−p(a|x, q) with GPT-3,
where A− is the set of two incorrect answers. We
then use LLM prompting2 to combine the ques-
tion and the least likely incorrect answer choice
into a declarative sentence, which we take as the
uncommon outcome y.

All original SocialIQA answer choices are
human-written. To further diversify uncommon
outcomes, we additionally generate new improba-
ble answer choices using few-shot prompting with
LLMs. We use 6-shot prompting with GPT-43 to
produce one improbable answer for a randomly
sampled subset of SocialIQA contexts and ques-
tions, then combine the question and generated
answer into into uncommon outcomes using the
same procedure above.

un-RocStories. The ROCStories Cloze Test in-
cludes examples of four-sentence stories paired
with two sentence-length endings. The original
task is to predict which of the two endings is more
likely. In UNCOMMONSENSE, we take each four-
sentence story as the context x and the incorrect
ending as the uncommon outcome y.

Filtering out common outcomes. To focus on
uncommon scenarios, we exclude examples where

2All prompting templates can be found in Appendix D.
3We use gpt4-0314 for all generation tasks, including un-

common outcomes, explanations, and during online learning.

outcomes are obvious in the context.4 We prompt
GPT-4 to rate the likelihood of the outcome given
the context on a scale from 1 to 5, and remove
examples with ratings of 4 or 5. Filtering with this
criterion removes 0.7% of un-RocStories examples
and 1.82% of un-SocialIQA examples.

2.2 Explanations for Uncommon Outcomes

We crowdsource explanations of uncommon out-
comes z on Amazon Mechanical Turk (MTurk)
from 156 unique workers, with a pay rate of 15
USD/hour.5 We also experiment with using an
LLM both to generate explanations from scratch
given contexts paired with uncommon outcomes,
and to enhance crowd-written explanations. Specif-
ically, we use GPT-4, which has demonstrated
strong reasoning abilities on a wide range of tasks.

Explanation Writing. We first conduct a paid
qualification task that identifies 204 workers who
write high-quality explanations, who are then in-
vited to participate in explanation writing tasks.
Tasks are launched in small batches, and we
evenly distribute tasks across workers in each batch,
which, by design, ensures that no worker writes too
many explanations. Due to the subjectivity on eval-
uation for this task, we emphasize collecting a wide
variety of explanations on the development and test
sets, creating no less than three tasks for each pair

4Both human-written and LLM-generated outcomes can
be too obvious without filtering.

5Appendix E contains additional details on crowdsourcing.
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un-RocStories un-SocialIQA

# of context-outcome (x, y) pairs, with y sourced from...
Human 1,775 / 765 / 999 5,531 / 543 / 999
LLM 0 / 0 / 0 8,699 / 931 / 705

# of explanations z, sourced from...
Crowd 8,428 / 4,240 / 4,835 14,563 / 4,407/ 5,238
C+LLM 8,333 / 4,203 / 4,771 14,469 / 4,390 / 5,209
LLM 17,548 / 7,556 / 9,919 14,324 / 4,422 / 5,112

Table 2: Basic statistics of UNCOMMONSENSE. Counts
in cells report the number of examples split across the
train/dev/test sets.

of context and outcome collected in Section 2.1.
We also perform extensive quality control on col-
lected explanations, described in Appendix E. We
also use this task to identify the outcomes that are
impossible given their contexts, asking workers
to mark these examples and provide their reason-
ing. We remove examples marked as impossible by
more than half of its annotators.

LLM-Enhanced Crowd-written Explanations.
We prompt LLMs to enhance crowd-written expla-
nations. We instruct GPT-4 to add details that better
connect contexts and outcomes.

LLM-Generated Explanations. We use 3-shot
prompting with GPT-4 to generate explanations for
each context-outcome pair.

LLM-Enhanced LLM-Generated Explanations.
To directly investigate the effect of LLM-based
explanation enhancement, we also apply LLM en-
hancement to one randomly-chosen LLM explana-
tion for each context-outcome pair, using the same
prompting method that was used to enhance Crowd
explanations. We refer to these LLM-enhanced
LLM-generated explanations as LLM2.

3 Data Analysis

Table 2 contains basic statistics of the collected
data. UNCOMMONSENSE includes 3,539 con-
texts paired with uncommon outcomes in un-
RocStories and 17,408 in un-SocialIQA for a total
of 20,947 context-outcome pairs. We adopt the
same train/dev/test splits as the original releases
of RocStories and SocialIQA. In total, we col-
lect 41,711 crowd-written explanations (Crowd),
41,375 LLM-enhanced crowd-written explanations
(C+LLM), and 58,881 LLM-generated explana-
tions (LLM). We compare explanations from these
three sources using several metrics, including hu-
man preference judgments, explanation lengths,
and measures of explanation diversity.

UNCOMMONSENSE αNLG
l un-RocStories un-SocialIQA

(Human) (LLM)

5 0.0 0.0 0.0 0.1
4 0.0 0.0 0.0 31.8
3 29.4 50.7 25.8 40.3
2 63.1 42.1 59.6 19.9
1 7.5 6.9 14.5 0.9

Table 3: Proportion of outcomes assigned likelihoods
l ∈ {1 . . . 5} for examples in UNCOMMONSENSE cor-
responding to un-RocStories and un-SocialIQA (split
by human-authored and LLM-generated uncommon out-
comes), compared with αNLG.

Unlikely Outcomes. We utilize GPT-4 prompt-
ing to quantify, on a scale from 1 to 5, how likely
an outcome may occur given the context. Table 3
summarizes the ratios of outcomes broken down
by their scales with 1 being the most unlikely. In
αNLG, only 20.8% of outcomes have a scale of 1
or 2. Significantly more outcomes are rated 1 or
2 in un-RocStories (70.6% of outcomes) and un-
SocialIQA (49.0% of human-written and 74.1% of
LLM-generated outcomes). Compared to αNLG,
UNCOMMONSENSE poses a unique challenge of
abductive reasoning about uncommon outcomes.

Explanation Preferences. We first compare pair-
wise preferences of LLM explanations versus
Crowd, C+LLM, and LLM2 explanations. We ran-
domly sample 500 context-outcome pairs from
each UNCOMMONSENSE test set, and select the
same explanation from LLM that was randomly
chosen to be enhanced into LLM2. We then ran-
domly sample a single crowd-written explanation
for each pair from Crowd, along with its enhanced
counterpart in C+LLM. This selection procedure
allows us to directly compare the effect of applying
LLM-based enhancement to both crowd-written
and LLM-generated explanations.

We recruit crowdworkers who provided qual-
ity explanations during data collection to provide
pairwise preferences between Crowd, C+LLM, and
LLM2 explanations with LLM explanations based
on the same rules used for the explanation-writing
task (Section 2.2).6 Raters can select one of the two
explanations as better, or can mark ties between the
two as equally bad or equally good. Table 4 shows
that Crowd explanations are least often preferred
and C+LLM explanations are the most preferred.
While LLM can improve via LLM-based enhance-

6Figure 12 in the appendix shows the MTurk preference
evaluation template.
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un-SocialIQA un-RocStories
Crowd C+LLM LLM2 Crowd C+LLM LLM2

Win 30.8 43.2 33.8 19.2 28.4 26.4
Eql. good 33.4 34.8 41.2 37.0 45.6 42.4
Eql. bad 3.4 2.0 3.8 12.0 3.0 3.0
Lose 32.4 20.0 21.2 42.6 23.0 28.2

Fleiss’ κ 0.47 0.47 0.55 0.48 0.43 0.53

Table 4: Preference judgments given by crowdworkers comparing explana-
tions from LLM with explanations from Crowd, C+LLM, and LLM2.

l un-SocialIQA un-RocStories

2 77.35 71.63
1 90.90 75.85

Table 5: Non-lose rates of C+LLM
versus LLM, broken down by the like-
lihoods l of outcomes (l = 2 is more
likely, and l = 1 is less likely).

Context: The band walked to the front of the stage. They
began to perform. The electricity immediately went off.
Everyone couldn’t see where they were.
Outcome: People danced in the well lit room.
GPT4-generated Explanation (LLM): Someone in the
audience had a powerful flashlight, and they used it to
illuminate the room while the band continued to play
acoustically. This allowed everyone to continue dancing
despite the power outage. Comment: The explanation is
detailed, but it is a less likely continuation of the context.
Crowd-written Explanation (Crowd): Suddenly, they
found the light switch. Comment: The explanation is
likely to happen, but there is a large information gap in-
between.
Crowd-GPT4 Explanation (C+LLM): The band’s man-
ager quickly grabbed a flashlight and located the circuit
breaker, restoring power to the venue. With the electricity
back on, the lights illuminated the room, allowing every-
one to see and continue dancing to the band’s performance.
Comment: Starting with the crowd-written explanation
and refining it with an LLM results in plausible explana-
tions that include sufficient details to connect the context
and outcome.

Figure 2: Qualitative comparison between LLM expla-
nations, Crowd explanations, and C+LLM explanations.
In Comments, we make connections to the three rules in
explanation writing.

ment, these explanations are still less preferred
when compared to C+LLM. Finally, we include the
Fleiss’ κ score to demonstrate the inter-annotator
agreement rate between workers, where they all fall
within the range from 0.40 to 0.60.7 Figure 2 com-
pares explanations generated by LLM, Crowd, and
C+LLM for an example in un-RocStories. Table 5
presents the non-lose rates of C+LLM explanations
against LLM explanations broken down by likeli-
hoods.8 C+LLM explanations are preferable as the
likelihood of outcomes are less likely.

We note that in the analysis above, we provide
LLMs and crowdworkers with different instruc-
tions for producing explanations. The instructions

7Our preference-based ranking is a four-way classification.
Even though scores between 0.40 and 0.60 are considered
moderate agreement for the two-class case, it is more chal-
lenging to achieve these scores in the four-class case.

8The 100 test examples considered here only contain a
significant number of outcomes with likelihoods l = 1, 2.

un-SocialIQA un-RocStories

Crowd+LLM 44 35
Eql. good 33 30
Eql. bad 2 1
LLM 21 34

Table 6: Comparing Crowd+LLM explanations to LLM
explanations when both LLMs and crowdworkers are
provided the same instrutions for producing explana-
tions.
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Figure 3: Distribution of explanation lengths in un-
RocStories (top) and un-SocialIQA (bottom), computed
on the development sets of each data subset.

given to crowdworkers are more detailed than those
given to the LLMs. We further explore if giving
LLMs the same instructions we give to humans
will make LLMs perform better. We compare
Crowd+LLM and LLM explanations and present
the results in Table 6. We find that this instruction
improves explanations on un-RocStories but harms
explanations on un-SocialIQA. Therefore, LLMs
still cannot always benefit from detailed instruc-
tions even when they include more information on
what are considered good explanations.

Quantitative Comparison of Explanations. We
investigate several distributional differences across
the four sources of explanations. Figure 3 shows
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Figure 4: Entropies of n-gram distributions in un-
RocStories (left) and un-SocialIQA (right), computed
on the development sets of each data subset.

the distribution of explanation lengths.9 Crowd
explanations are significantly shorter than LLM,
with an average length of 22.9 ± 11.3 tokens per
explanation in un-RocStories and 22.0 ± 11.9 in
un-SocialIQA, compared to an average of 38.2
± 9.9 and 25.5 ± 7.1 respectively for LLM. How-
ever, enhancing crowd-written explanations with
an LLM significantly increases their lengths over
LLM: C+LLM has an average explanation length
of 78.0 ± 24.4 tokens in un-RocStories and 78.3 ±
23.5 in un-SocialIQA. This pattern does not hold
for LLM-based enhancement of LLM-generated
explanations: LLM2 has average lengths of 35.6
± 10.8 and 25.9 ± 6.7 respectively, not significantly
different from LLM. Therefore, length of the expla-
nations produced by C+LLM can vary significantly.

In Figure 4, we investigate the entropy of the
distribution of n-grams from n ∈ {1, . . . , 5} across
the different sources of explanations.10 We use
entropy as a measure of lexical diversity (Jung et al.,
2023). We find trends similar to the analysis of
explanation lengths: while Crowd has generally
lower entropy than LLM, LLM enhancement of
crowd-written explanations results in significantly
higher entropy (C+LLM), while it has no effect on
LLM-generated explanations (LLM2). Therefore,
C+LLM results in the highest lexical diversity in
explanation writing.

Finally, in addition to using n-grams as a mea-
sure of diversity, we also perform embedding anal-
ysis to evaluate the semantic diversity of explana-
tions written by crowdworkers and GPT-4. In par-
ticular, we compute the embedding of each crowd

9We use nltk.wordpunct_tokenize (Bird et al.,
2009) for tokenizing explanations.

10As different data sources contain a different number of
explanations per context-outcome pair, we compute entropy
using 1,000 iterations of bootstrap sampling of one explana-
tion per context-outcome pair in each data subset.

explanation and each LLM explanation11, and we
compute the distance between every pair of expla-
nations for crowd explanations and LLM explana-
tions, respectively. We find that the average dis-
tance between LLM explanations is 1.26 ± 0.058,
while the average distance between crowd expla-
nations is 1.29 ± 0.052, suggesting that crowd ex-
planations are more semantically diverse than LLM
explanations.

4 Imitation Learning for Abductive
Reasoning

Existing methods for abductive reasoning focus
on performing supervised fine-tuning (SFT) with a
static dataset (Bhagavatula et al., 2020; Rudinger
et al., 2020). Training using static demonstration
data is vulnerable to exposure bias: during training,
the model learns to predict the next token in an
explanation conditioned on a gold-standard prefix;
however, when the model generates an entirely new
explanation during inference, it is conditioned on
its own previously generated tokens. This incon-
sistency between training and inference procedures
leads to error propagation at inference time, and a
reduction in the quality of explanations. To address
this issue, we experiment with several on-policy
imitation learning algorithms.

4.1 Background: Imitation Learning

In the task of abductive reasoning, a policy π
maps from the context x, an outcome y, and the
prefix sequence of an explanation z to a distri-
bution over the output vocabulary. Explanations
are generated token-by-token, with the jth token
zj ∼ π(· | x, y, z:j−1), and the entire explanation
sampled from π as z ∼ π(· | x, y).

Let π∗(·) be an expert policy and πθ(·) be a
learner policy with parameters θ. The objective
of imitation learning is to find parameters θ that
result in the learner policy assigning high probabil-
ities to expert demonstrated explanations.

Behavior Cloning (BC). BC uses expert demon-
strations D = {(x, y, z)}N and a supervised learn-
ing objective that train a learner policy to maximize
the probability of expert demonstrations. Existing
methods of using SFT is a type of behavior cloning.
A drawback of BC is the aforementioned exposure
bias problem; as a result, errors are more likely to
propagate during inference, where the learner fails

11We compute the embeddings using the OpenAI ada em-
bedding model (text-embedding-3-large).
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Algorithm 1 EaO: Using expert as an oracle.
1: Inputs: Initial learner policy parameters θ0, expert policy

π∗(·), dataset D = {(x, y)}N , block size k, initial prefix
size b, number of training epochs I .

2: D̃ ← ∅
3: for i = 0, . . . , I − 1 do
4: for (x, y) ∈ D do
5: z̃ ∼ πθi(· | x, y)
6: z∗ ∼ π∗(·| x, y, z̃:b)
7: D̃ ← D̃ ∪ {(x, y, z̃:bz∗)}
8: end for
9: θi+1 ← θi further optimized on D̃ with supervised

learning.
10: b← b+ k
11: end for
12: Returns: Learned policy parameters θI .

to recover from its own mistakes, as it was never
exposed to these mistakes during training.

Online Learning. To address the exposure bias
problem for sequence prediction tasks, Ross et al.
(2011) propose DAgger, where an expert policy is
used at training time to provide oracle continua-
tions to learner-generated prefixes. The learner pol-
icy is then optimized to maximize the probability of
oracle continuations, conditioned on sequence pre-
fixes generated by the learner. DAgger and its vari-
ants have been used in many NLP tasks, including
dependency parsing (Goldberg and Nivre, 2012),
instruction following (Anderson et al., 2017), and
language generation (Lin et al., 2020a).

4.2 Imitation Learning for Abductive
Reasoning

We explore two online imitation learning ap-
proaches that assume different levels of access to an
expert policy, which is in our case a top-performing
LLM. First, we assume access to the expert policy
at any point during training, which allows us to use
it as an oracle. Next, we consider a setting where
the expert may not be available at training time
(e.g., for cost reasons), and we only have a static
set of expert demonstrations.

EaO: Using expert as an oracle on-line. Al-
gorithm 1 formalizes our DAgger-inspired algo-
rithm, which we call "Expert as Oracle" (EaO). We
train with I total epochs over the training dataset
D = (x, y)N . Throughout learning, we maintain a
training dataset D̃ containing examples of contexts
and outcomes paired with explanations aggregated
during each epoch. In each epoch i, and for each
example (x, y), we use the current learner parame-
ters θi to sample an explanation z̃. Using a prefix
b of a fixed size, we then sample a continuation of

z̃:b using the expert policy π∗. Finally, we add an
example to D̃ that concatenates the first b tokens of
the learner’s sample with the expert’s completion.
After aggregating examples for the epoch, we apply
supervised training on examples in D̃ to acquire
updated parameters θi+1. After each epoch, we in-
crease the length of the prefix generated by learner
policy b by a fixed block size k.

SED: Using only static expert demonstrations.
For the setting where we have access only to a static
set of expert demonstrations, we propose an online
learning algorithm that similarly aims to avoid the
exposure bias problem of behavior cloning.12

We modify the loss function of behavior cloning,
which maximizes the probability of expert demon-
stration z, by adding two terms: (a) a term that
minimizes the probability of explanations gener-
ated by the learner policy during training z̃; and (b)
the KL divergence from initial policy for stabiling
the training process (Schulman et al., 2017). For-
mally, after sampling z̃ for each instance at each
iteration from the current policy, we optimize:

L(θ) = 1

N

∑

(x,y,z,z̃)∈D̃

{
− log πθ(z|x, y) + λ log πθ(z̃|x, y)

+ βKL (πθ0(·|x, y, z<t)||πθi(·|x, y, z<t))
}

(1)

5 Experiments
Evaluation. We evaluate the proposed imitation
learning methods with three sets of metrics. We fo-
cus on preference-based pairwise evaluation judged
by humans.13 We report performance on the same
100 randomly-sampled examples.14 In Appendix C,
we report two additional sets of metrics: (a) hu-
man judgements on seven binary questions (e.g.,
is the outcome more likely given the context and
the explanation than given the context alone?) that
evaluate different failure modes, and (b) a number
of reference-based automatic evaluation metrics,
e.g. BERTScore (Zhang et al., 2020b).

Base models. As baselines, we experiment with
3-shot prompting with GPT-3 (Brown et al.,
2020) and, following the state-of-the-art approach
for commonsense abductive reasoning (Khashabi

12Full pseudocode is in Appendix G.
13For simplicity, in this evaluation, we report equally good

and equally bad as the same category (Tie).
14We will maintain a leaderboard that provides human eval-

uation of these examples on model-generated explanations for
two years. We will also maintain the same human annotator
pool to increase reproducibility and ensure fairness.

8490



un-RocStories un-SocialIQA
Supervision Base Model Win Tie Lose Win Tie Lose

3-shot prompting GPT-3 13 20 67 33 13 54

SFT with LLM
GPT-2-XL 6 22 72 7 44 49
LLaMA-7B 13 35 52 25 38 37
FlanT5-XXL 16 28 56 16 47 37

SFT with C+LLM
GPT-2-XL 6 26 64 13 32 55
LLaMA-7B 21 31 48 19 39 42
FlanT5-XXL 11 32 57 27 32 41

Table 7: Experimental comparison of GPT-3 using few-shot prompting, and SFT with two sources of training
explanations on three different base models , using pairwise preference-based evaluation on the test set of LLM.

Task Uncommon? Sources of Explanations # of Explanations

αNLG N Crowd workers 76k
d-NLI N Crowd workers 200k

Arnaout et al. N Variants of BERT models N/A
TODAY Y Crowd workers 2.2k

Collins et al. Y Crowd workers 0.8k
UNCOMMONSENSE Y Crowd workers and GPT-4 41k

Table 8: Summary of the differences between the proposed dataset and the existing datasets.

Win Tie Lose

un-RocStories
SFT 6 22 72
SED 12 24 64
EaO 17 16 67

un-SocialIQA
SFT 7 44 49
SED 9 34 57
EaO 13 39 48

αNLG
SFT 13 20 67
SED 14 23 63
EaO 14 23 63

Sen-Making
SFT 12 41 47
SED 13 49 38
EaO 13 52 35

Table 9: Comparison between different imitation learn-
ing methods using pairwise preference-based evaluation
on the test set of LLM.

et al., 2022), on several open and accessible lan-
guage models: FlanT5-XXL (Chung et al., 2022),
LLaMA-7B (Touvron et al., 2023), and GPT-2-
XL (Radford et al., 2019). To compare the benefit
of different sources of training data, we perform
SFT on explanations in the training sets of LLM
(LLM-generated explanations) and C+LLM (LLM-
enhanced crowd-written explanations). Because
Crowd (crowd-written explanations) are the least
preferred subset in UNCOMMONSENSE, we do not
fine-tune on them. Appendix F contains additional
experimental details.

Can imitation learning improve a given model?
We apply our proposed imitation learning algo-

rithms, EaO and SED, to GPT-2-XL as the initial
learner policy. This is the weakest (but most com-
putationally accessible) base language model of the
three we consider for SFT. This choice is purpose-
ful, as our experiment intends to assess whether
imitation learning can improve a given LM. For
a fair comparison, we use the same expert policy
(GPT-4) for both EaO and SED. In addition to un-
commonsense benchmarks, we report performance
on two commonsense benchmarks, αNLG (Bhaga-
vatula et al., 2020) and Sense-making (Wang et al.,
2019) to show generalization of the methods.

5.1 Results

Baselines. Table 7 shows the performance of the
baseline systems. Unsurprisingly, explanations gen-
erated from few-shot GPT-3 are rarely preferred
by crowdworkers to those GPT-4 itself generated
(13% of the time). However, GPT-3 also underper-
forms the 25x smaller (but supervised fine-tuned)
LLaMA-7B (48% non-lose rate vs. GPT-4) and 16x
smaller FlanT5-XLL (44% non-lose rate vs. GPT-
4). In addition, having C+LLM to be supervision
sometimes leads to better performance than using
LLM as supervision but in other times hurts. We
hypothesize that despite LLM explanations being
worse than C+LLM explanations, they are easier
for the small models to learn. Finally, all methods
but one still lose to LLM explanations, indicating
that SFT alone is insufficient.
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Imitation Learning. Table 9 shows the perfor-
mance comparing SFT with the two imitation learn-
ing methods, SED and EaO, on four datasets when
using GPT-2-XL as the base moddel. On both UN-
COMMONSENSE and commonsense benchmarks,
SED and EaO show strong improvements against
SFT by reducing the losing rate to LLM expla-
nations or by increasing the win rates. Except
for αNLG, EaO, which trains using expert on-
line corrections to learner-generated sequence pre-
fixes, shows more promise than SED on most of
the datasets. However, SED, which is no more
costly than SFT, can significantly improve the per-
formance of the weak-but-accessible base model
GPT-2-XL on both commonsense and uncommon-
sense reasoning except on un-SocialIQA.

6 Related Work

αNLG (Bhagavatula et al., 2020) is the most
closely related task to UNCOMMONSENSE: both
require generating explanations to bridge contexts
and outcomes (except αNLG focuses on common,
everyday scenarios). d-NLI (Rudinger et al., 2020)
consider a related task of generating an explanation
explanation that weakens an outcome. Additional
works cover methods for generating explanations,
e.g., Du et al. (2022), Zhou et al. (2021), Wang
et al. (2019), Zhang et al. (2020a), inter alia.

Reasoning about uncommon but possible sce-
narios has been studied in other settings. Arnaout
et al. (2022) propose a method for identifying in-
formative negations about everyday concepts in
large-scale commonsense knowledge bases. Tang
et al. (2023) present a decoding method for produc-
ing less plausible explanations for everyday events.
Collins et al. (2022) create a small-scale bench-
mark containing about 800 curated uncommon
statements, along with explanations making sense
of these statements. UNCOMMONSENSE differs in
structure and focus from these prior works. Finally,
TODAY (Feng et al., 2023) proposes a temporal
reasoning task to study the order of two events.
Atypical order of two events could be uncommon,
and justifying the order is uncommonsense rea-
soning. Because UNCOMMONSENSE is not built
from reversing the order of temporal events, it en-
compasses a different set of uncommon situations,
including social reasoning, cultural reasoning, and
physical reasoning. With each situation, UNCOM-
MONSENSE also contains more than one explana-
tion, collected from both crowd workers and GPT-4.
We summarize the differences between UNCOM-

MONSENSE and existing datasets in Figure 8.
Finally, uncommonsense reasoning is closely re-

lated to defeasible reasoning (Rudinger et al., 2020;
Madaan et al., 2021a,b). Both defeasible reason-
ing and reasoning about uncommon situations are,
given context x and outcome y, finding an explana-
tion z that changes the original likelihood p(y|x)
by adding z: p(y|x, z). However, we note that fea-
sible reasoning itself does not place any constraint
on p(y|x). Reasoning about uncommon situations
falls on the long-tail distribution of defeasible rea-
soning as it focuses on the cases where p(y|x) is
very small.

7 Conclusion

We propose a new task, uncommonsense abductive
reasoning, designed to assess the ability of NLP
systems to reason about uncommon scenarios in ab-
ductive reasoning tasks. We explore two imitation
learning methods to improve accessible language
models on uncommonsense abductive reasoning.
Experiments show that access to expert behavior,
particularly when using the expert as an oracle in
online training, significantly improves the explana-
tion quality of smaller models.

Limitations

While our dataset offers advantages over existing
sources, we acknowledge the following limitations.
First, our dataset may suffer from social biases in
the data collection process, and the labeling pro-
cess may contain errors and inconsistencies. De-
spite best efforts to ensure high-quality annotations,
occasional human errors are possible. Additionally,
our dataset only contains uncommon situations in
English and thus lack of language diversity. Fi-
nally, our main preference-based evaluation relies
on human evaluators, which can be less producible
and costly. There is thus a large room for improve-
ment for more effective and affordable evaluation
methods.

Ethics Statement

This work aims to advance NLP and commonsense
reasoning by introducing a new benchmark, UN-
COMMONSENSE, which investigates abductive rea-
soning about uncommon events. It is important to
study these uncommon situations as they provide
valuable insights into the proper functioning of AI
systems in real-world, unpredictable circumstances.
However, we emphasize the need to ensure that the
generation of natural language explanations fol-
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lows ethical guidelines and respects privacy, diver-
sity, and fairness. We are committed to maintaining
transparency and sharing the code and data, foster-
ing open collaboration to address potential ethical
concerns and promote the responsible advancement
of AI technologies.
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l Context Outcome

4 Kate and Greg went to a little candy shop together. They looked
around at their options and made their choice. They went up
to the cashier and said what they wanted. The cashier, with
unwashed hands, bagged the candy without gloves.

Kate and Greg licked the candy gleefully.

3 I went to the post office yesterday. It took a while to get there
since it’s on the other side of town. Once I got there I mailed my
letters and headed home. It’s always easier to get home than to
get somewhere.

I could not find my way back from the post office.

2 My niece just got engaged. She is Chinese and her fiance is
Caucasian. Her parents had them over for a home cooked meal.
The fiance got nausea from the unfamiliar dishes and had to
leave.

My niece was thrilled that her fiance was sick.

1 Josh woke up early to get ready for the hike he had been planning.
After a shower, he made sure all his supplies were packed. He
left his house and drove to the park where he was going hiking.
Because it was early in the day Josh had the trail mostly to
himself.

Josh loathed the outdoors.

4 Jordan finished their test so fast and still got an A plus as always. Other students will be jealous.

3 Skylar gave Robin the permission to eat cake after Robin caused
some trouble.

Robin will want to refuse to eat the cake.

2 Austin brought tears to Tracy’s eyes when he brought her flowers. Austin will be hated.

1 Carson threw beer in Kendall’s face during a heated argument
with her.

Carson will receive a medal for their behavior.

Table 10: Example outcomes of different likelihood scores l ∈ {4, 3, 2, 1}.

A Qualitative Analysis of Outcomes
Table 10 presents example outcomes of different
likelihood scores.

B Processing Outcomes in SocialIQA
We use three types of questions: what will X want
to do next, what will happen to X, and how would
you describe X. We do the following steps to con-
struct the outcome.

1. We remove the correct answer choice, and we
are left with two incorrect answer choices.

2. We feed GPT3 (text-davinci-03) “{context}
{question} {answer}” and compute the answer
probability p (answer | context, question) and
choose the answer that has the lower probabil-
ity.

3. We prompt ChatGPT to combine the question
and the answer to be the outcome, in the six-
shot setting. When we receive a response from
ChatGPT, we check whether the original an-
swer is in the output, if it doesn’t contain the
answer, we send the same prompt to GPT-4.
If GPT-4 still fails, we mark the example and
manually combine the question and the an-
swer. Refer to 5 for the combining prompting

template.

Because SocialIQA contains many invalid answer
choices, the combining step often fails (e.g., the
question is “what will person X do next”, and the
answer is “sad”), we rely on ChatGPT to detect
such cases. We throw out the examples when Chat-
GPT refuses to do the combination.

C More Evaluation
We include additional automatic and human evalu-
ation results on baseline models and our proposed
imitation learning methods, SED and EaO. The
additional human evaluation is is a set of seven
human evaluation questions that target different
failure modes of generated explanations:

1. Is the explanation relevant to the context? (de-
noted as relevance x)

2. Is the explanation relevant to the outcome?
(denoted as relevance y)

3. Is the explanation not self-contradictory? (de-
noted as consistency z)

4. Is the explanation not contradictory to the con-
text? (denoted as consistency x)
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Consistency Relevance Plausibility
Supervision Model x y z x y z y

3-shot prompting GPT-3 76 92 97 100 97 74 75
GPT-4 94 91 99 98 95 90 85

SFT with LLM
LlaMA-7B 89 92 98 98 95 89 80
FlanT5-XXL 80 93 94 96 93 74 58
GPT-2-XL 88 92 92 97 94 80 83

SED with LLM GPT-2-XL 78 87 90 94 94 66 77

EoA with LLM GPT-2-XL 97 94 94 100 94 88 86

Table 11: Fine-grained human evaluation on un-RocStories.

Consistency Relevance Plausibility
Supervision Model x y z x y z y

Few-shot prompting GPT-3 93 92 99 100 94 93 84
GPT-4 98 92 100 99 97 95 90

SF with LLM
LlaMA-7B 93 94 100 99 97 90 88
FlanT5-XXL 94 91 97 96 96 88 80
GPT-2-XL 96 95 97 98 98 91 91

SED with LLM GPT-2-XL 94 84 97 97 85 92 73

EoA with LLM GPT-2-XL 91 95 97 97 94 87 88

Table 12: Fine-grained human evaluation on un-SocialIQA.

5. Is the explanation not contradictory to the out-
come? (denoted as consistency y)

6. Is it possible that explanation might occur
(given the context)? (denoted as plausibility
z)

7. Is the outcome more likely given the context
and the explanation than given the context
alone? (plausibility y)

The results are presented in Table 11 for un-
RocStories, Table 12 for un-SocialIQA, Table 13
for αNLG, and Table 14 for Sen-Making.

We also compute BERTScore, ROUGE-L, ME-
TEOR, SacreBLEU, and BLEURT for each method
and report the results in Table 15 for un-RocStories,
Table 16 for un-SocialIQA, Table 17 for αNLG,
and Table 18 for Sen-Making.

D Templates
We include the following prompting templates:

• Figure 5: The prompt to combine a question
and its answer into a single sentence on un-
SocialIQA with five demonstrations.

• Figure 6: The prompt to generate improbable
answers on un-SocialIQA with six demonstra-
tions.

• Figure 7: The prompt to estimate the outcome
likelihood given the context.

• Figure 8: The prompt to generate explanations
on un-SocialIQA with three demonstrations.

• Figure 9: The prompt to generate explanations
on un-RocStories with three demonstrations.

• Figure 10: The prompt to improve a crowd-
written explanation.

We also include the following MTurk templates:

• Figure 11: The template to collect crowd-
written explanations.

• Figure 12: The template to collect human pref-
erences.

E Crowdsourcing Details
Tasks which are allocated to a worker but not com-
pleted are later distributed to the entire group of
workers. We allow workers at least a week to com-
plete each of their allocated tasks, which allows
them sufficient time to complete the task and work
at their own pace.

E.1 Qualification.

We use a qualification task to recruit and train work-
ers to produce quality explanations of uncommon
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Consistency Relevance Plausibility
Supervision Model x y z x y z y

Few-shot prompting GPT-3 100 97 100 99 96 98 94
GPT-4 99 98 99 99 98 99 97

SFT with LLM
LlaMA-7B 99 97 99 95 97 98 91
FlanT5-XXL 95 92 95 93 81 96 85
GPT-2-XL 96 92 98 93 97 94 85

SED with LLM GPT-2-XL 97 91 99 95 93 96 84

EoA with LLM GPT-2-XL 97 95 98 97 97 98 90

Table 13: Fine-grained human evaluation on αNLG.

Consistency Relevance Plausibility
Supervision Model y y y

Few-shot prompting GPT-3 100 100 93
GPT-4 100 100 99

SFT with LLM
LlaMA-7B 91 95 86
FlanT5-XXL 85 98 84
GPT-2-XL 86 97 85

SED with LLM GPT-2-XL 92 98 91

EoA with LLM GPT-2-XL 87 95 83

Table 14: Fine-grained human evaluation on Sen-making.

Combine the following question and answer into a
sentence: What will Others want to do next? quit their job
and start their own business.
Others will want to quit their job and start their own
business.

Combine the following question and answer into a
sentence: How would you describe Remy? selfish
Remy is selfish.

Combine the following question and answer into a
sentence: What will happen to Quinn? they will
spontaneously combust
Quinn will spontaneously combust.

Combine the following question and answer into a
sentence: How would you describe Bailey? do not want a
healthy pet
Bailey does not want a healthy pet.

Combine the following question and answer into a
sentence: How would you describe Carson? like Carson
was mean
Carson is mean.

Combine the following question and answer into a sen-
tence: {question} {answer}

Figure 5: Prompting template for combining a question
and its answer.

Context: Sydney walked past a homeless woman asking
for change but did not have any money they could give to
her. Sydney felt bad afterwards.
Question: How would you describe Sydney?
An unlikely answer: ridiculous

Context: Jesse set Robin’s suitcase on fire after their fight
and messy breakup.
Question: What will Jesse want to do next?
An unlikely answer: decide not to reconcile

Context: Bailey asked Sasha’s grandma about church
because they wanted to know more about it.
Question: What will happen to Sasha?
An unlikely answer: they get yelled by Sasha’s grandma

Context: Bailey told Alex to send the letter overnight
since it was important.
Question: How would Alex feel as a result?
An unlikely answer: rushed

Context: Lee made copies so that everyone at the table
could follow along.
Question: What will Lee want to do next?
An unlikely answer: ask people stop reading the paper

Context: Taylor gave Kai a lot to think about.
Question: What will happen to Kai?
An unlikely answer: not talk to Taylor

Context: {context}
Question: {question}
An unlikely answer:

Figure 6: Prompting template for generating improbable
answers for SocialIQA examples.
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Supervision Model BERTScore ROUGE METEOR SacreBLEU BLEURT

3-shot prompting GPT-4 90.79 30.43 29.79 5.16 -21.74

SFT with LLM GPT2-XL 90.01 26.67 24.17 3.44 -35.22

SED with LLM GPT2-XL 89.76 26.08 22.64 2.94 -40.04

EaO with LLM GPT2-XL 89.91 26.79 25.72 3.94 -30.32

Table 15: Automatic evaluation on un-RocStories.

Supervision Model BERTScore ROUGE METEOR SacreBLEU BLEURT

3-shot prompting GPT-4 90.79 30.43 29.79 5.16 -21.74

SFT with LLM GPT2-XL 90.01 26.67 24.17 3.44 -35.22

SED with LLM GPT2-XL 89.76 26.08 22.64 2.94 -40.04

EaO with LLM GPT2-XL 89.91 26.79 25.72 3.94 -30.32

Table 16: Automatic evaluation on un-SocialIQA.

A: {context}
B: {outcome}
On the scale from 1 to 5, how likely is B given A?

Figure 7: Prompting template for estimating the likeli-
hood of the outcome given the context.

Context: Cameron decided to have a barbecue and
gathered her friends together.
Outcome: Others feel bored and uninterested.
Explanation of the outcome: Other than eating the food,
there weren’t other activities planned.

Context: Jan needed to give out jobs for an upcoming
project at work.
Outcome: Others will take a nap instead of working.
Explanation of the outcome: The others don’t get paid
more for doing the jobs Jan gave out.

Context: Remy was an expert fisherman and was on the
water with Kai. Remy baited Kai’s hook.
Outcome: Remy will eat a sandwich.
Explanation of the outcome: It’s been too long before
they feel the weight of a fish, and Remy is hungry.

Context: {context}
Outcome: {outcome}
Explanation of the outcome:

Figure 8: Prompting template for generating explana-
tions for un-SocialIQA examples.

Context: My friends all love to go to the club to dance.
They think it’s a lot of fun and always invite. I finally
decided to tag along last Saturday. I danced terribly and
broke a friend’s toe.
Outcome: My friends decided to keep inviting me out as I
am so much fun.
Explanation of the outcome: My friends thought the way
I dance is really funny and they couldn’t stop laughing.

Context: On the fourth of July, Lilly baked a lemon
blueberry cake. She brought it to her boyfriend’s house
and they had a bbq. After dinner they drove into the city
to watch fireworks. When the show was over, they got
donuts from a food truck.
Outcome: Lilly had a terrible date.
Explanation of the outcome: Lilly’s boyfriend kept
complaining that the donuts were way better than the
lemon blueberry cake she made, and her boyfriend just
threw the cake away.

Context: Jennifer was bored one Saturday. She decided to
alleviate her boredom with a hike. She drove to a national
park to go hiking. Jennifer hiked for hours.
Outcome: Jennifer thought hiking was stupid.
Explanation of the outcome: She realized the Saturday
was a holiday, and the hiking trails in the national park
were too crowded that it took her longer than usual to
finish.

Context: {context}
Outcome: {outcome}
Explanation of the outcome:

Figure 9: Prompting template for generating explana-
tions for un-RocStories examples.
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Supervision Model BERTScore ROUGE METEOR SacreBLEU BLEURT

3-shot prompting GPT-4 92.49 34.31 41.58 6.04 -31.02

SFT with LLM GPT2-XL 92.45 33.52 37.13 6.35 -39.81

SED with LLM GPT2-XL 92.41 33.39 37.05 6.37 -39.40

EaO with LLM GPT2-XL 92.17 32.21 37.36 5.81 -38.75

Table 17: Automatic evaluation on αNLG.

Supervision Model BERTScore ROUGE METEOR SacreBLEU BLEURT

3-shot prompting GPT-4 91.40 32.94 47.80 4.99 -16.01

SFT with LLM GPT2-XL 92.00 36.74 47.28 6.97 -18.00

SED with LLM GPT2-XL 91.89 36.22 46.58 5.80 -18.57

EaO with LLM GPT2-XL 91.89 36.07 47.41 5.88 -16.68

Table 18: Automatic evaluation on Sen-Making.

Can you improve this explanation so that it becomes more
specific to the context and makes the outcome more likely
to happen?

Context: {context}
Outcome: {outcome}
Explanation for the outcome:{explanation}

Figure 10: Prompting template for improving an expla-
nation.

outcomes. In the qualification task, each worker is
asked to write an explanation for five pre-chosen
contexts paired with uncommon outcomes, includ-
ing one pair chosen as an attention check. Three
paper authors manually grade the explanations to
check if they make the outcomes more likely, nat-
urally follow the contexts, and leave little infor-
mation gaps in-between. We qualify workers who
provide at least three high-quality explanations, re-
sulting in qualifying 204 out of 520 workers.

E.2 Quality Control for Crowd-written
Explanations.

To ensure the quality of crowd-written explanations,
we maintain active communication with workers,
and detect and filter low-quality explanations. We
engage with workers through an online group chat
and periodically provide personalized feedback to
individual workers. We detect low-quality expla-
nations through multiple manual and automatic
filters, e.g., checking for contradictions between
the worker-written explanation and the context and
outcome. We dequalify 22 workers who contribute
more than two low-quality out of five randomly
sampled explanations, and remove all of their ex-

planations from the dataset.
Additionally, we have following automatic ways

to verify workers’ explanations:

• We use GPT3 to check contradiction between
a context and its corresponding explanations.

• We use GPT2 to check relevance to the context
via p(y|x, z)− p(y|z) > ϵ.

• In each launch, we sample one explanation
from each worker, and we send individual
feedback to the workers who violate our rules
and filter out the workers who contributed bad
explanations to us

• We check how many examples are marked
impossible to explain by each worker, and re-
move workers who use such marks too often.

F Experiment Model Details
We implement both the baseline and the proposed
approaches with Hugging Face Transformers (Wolf
et al., 2020). We train all models with a learn-
ing rate of 0.00001 and a batch size of 8. We
perform grid search with λ ∈ {1, 0.1, 0.01} and
β ∈ {0.1, 0.01, 0.001}, and we choose the best
performing checkpoint on the development set. In
DAgger, we set epochs I to be five and block size
k to be 2 tokens.

G Static expert demonstrations
pseudo-code

The pseduocode for the static expert demonstra-
tions algorithm introduced in §4.2 is given in Algo-
rithm 2.
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Figure 11: A screenshot of mturk template for collecting explanations.
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Figure 12: A screenshot of mturk template for doing pair-wise preference evaluation.
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Algorithm 2 Online learning with static expert
demonstrations.
1: Inputs: Initial learner policy parameters θ0, dataset D =
{(x, y, z)}N , number of training epochs I .

2: D̃ ← ∅
3: for i = 0, . . . , I − 1 do
4: for (x, y, z) ∈ D do
5: z̃ ∼ π(. | x, y)
6: D̃ ← D̃ ∪ {(x, y, z, z̃)}
7: end for
8: θi+1 ← θi further optimized on D̃ using the objective

in Equation 1.
9: end for

10: Returns: Learned policy parameters θI .
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