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Abstract

We present experiments on Automatic Speech
Recognition (ASR) for Bribri and Cabécar, two
languages from the Chibchan family. We fine-
tune four ASR algorithms (Wav2Vec2, Whis-
per, MMS & WavLM) to create monolingual
models, with the Wav2Vec2 model demonstrat-
ing the best performance. We then proceed to
use Wav2Vec2 for (1) experiments on training
joint and transfer learning models for both lan-
guages, and (2) an analysis of the errors, with
a focus on the transcription of tone. Results
show effective transfer learning for both Bribri
and Cabécar, but especially for Bribri. A post-
processing spell checking step further reduced
character and word error rates. As for the er-
rors, tone is where the Bribri models make the
most errors, whereas the simpler tonal system
of Cabécar is better transcribed by the model.
Our work contributes to developing better ASR
technology, an important tool that could facili-
tate transcription, one of the major bottlenecks
in language documentation efforts. Our work
also assesses how existing pre-trained models
and algorithms perform for genuine extremely
low resource-languages.

Resumen

Modelos multilingües para reconocimiento
de voz en lenguas chibchas. En este
artículo presentamos experimentos sobre re-
conocimiento de voz en bribri y cabécar, dos
lenguas de la familia chibchense. Se refinaron
modelos usando cuatro algoritmos: Wav2Vec2,
Whisper, MMS y WavLM, usando datos mono-
lingües para cada lengua. El mejor rendimiento
se obtuvo con Wav2Vec2. A continuación
se completaron (1) experimentos de entre-
namiento conjunto y de aprendizaje por trans-
ferencia para ambos idiomas, y (2) un análisis
de los errores en la transcripción, enfocado en
los errores tonales. Los resultados muestran
que el aprendizaje por transferencia es efec-
tivo para ambos idiomas, pero que es mejor
para el Bribri. Se usó una revisión ortográfica

post-procesamiento para reducir aún más los
errores por palabra y por caracter. Para el bribri
los tonos son el rasgo fonológico en el que el
modelo comete la mayor cantidad de errores.
Esto contrasta con el cabécar, que tiene un sis-
tema tonal más simple, y que el modelo maneja
mejor. Nuestro trabajo contribuye al desarrollo
del reconocimiento de voz, una herramienta
que facilita la transcripción, uno de los imped-
imentos durante la documentación lingüística.
Nuestro trabajo también describe el desempeño
de los modelos pre-entrenados al trabajar con
lenguas con recursos extremadamente bajos.

1 Introduction

This paper presents experiments on Automatic
Speech Recognition (ASR) for Bribri and Cabécar,
two languages belonging to the Chibchan family
and spoken in Costa Rica. The data available for
modeling is extremely limited, with only 143 min-
utes for Bribri and 54 minutes for Cabécar. In such
a context, conventional Natural Language Process-
ing (NLP) tools relying on deep neural networks
trained from scratch are not an option, but leverag-
ing pre-trained models offers a solution.

Our first steps will be to compare the perfor-
mance of different algorithms when tackling these
extremely under-resourced languages. We used
four ASR algorithms to finetune their base model
and thereby train monolingual models for Bribri
and Cabécar. We then used the best performing
algorithm, Wav2vec2, to train two additional types
of models: i) a joint model simultaneously trained
on both languages, and ii) a transfer learning model
initially trained on one language and subsequently
on the other. Then, we evaluated all models on each
language independently. Next, we applied a uni-
gram spell checker to correct the final output. Our
results indicate that transfer learning is effective
for both Bribri and Cabécar, with better perfor-
mance in transferring from Cabécar to Bribri. In
contrast, the joint models did not surpass the mono-
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lingual or transfer models. The post-processing
spell-checking contributed to reducing the Word
Error Rate (WER) for Cabécar. Finally, we per-
formed an error analysis of the monolingual and
transfer models to test our intuition that linguistic
tone presents more issues during transcription than
other aspects of Chibchan phonology.

ASR is potentially a valuable tool for field lin-
guists working in language documentation and re-
vitalization, given that their primary data source
comprises recorded interviews and elicitation ses-
sions with L1 speakers. ASR is also promising for
developing tools directly accessible to the members
of these indigenous communities. As speech serves
as a more immediate form of communication than
writing, ASR-based tools could be used for captur-
ing diverse communication interactions between
speakers, encouraging the use of the language.

The challenges inherent in working with these
languages are substantial, distinguishing it from
conventional NLP tasks. The audio files can
present less-than-ideal recording conditions, with
background noise, and the speakers may be elderly
community members, potentially with communica-
tion difficulties. The impact of tokenization tools
remains unclear, especially considering that the
writing systems may not be stable.

On the other hand, engaging with these lin-
guistically diverse languages not only stress-tests
our models but also encourages inclusivity in re-
search. The complexities involved in address-
ing their unique linguistic features contribute to
a broader understanding of the capabilities and lim-
itations of ASR in diverse linguistic contexts.

1.1 ASR for Low-Resource Languages
Automatic Speech Recognition (ASR) has gained
recognition as a valuable tool for field linguists
working in language documentation. While the
technology itself is not new (cf. Besacier et al.,
2014, for a survey on early approaches), achiev-
ing good results requires training on large cor-
pora. Many of the languages studied by field
linguists, however, are low-resourced, with some–
such as Bribri and Cabécar–considered acutely low-
resourced (Jimerson and Prud’hommeaux, 2018).
This categorization implies that these languages
are spoken by only a handful of individuals and
often lack a standardized writing system, which
complicates the creation of written materials.

In this context, pre-trained models have emerged
as a game changer, as they provide a robust acous-

tic model from their pre-training data from several
high-resourced languages. Thus, numerous stud-
ies have concentrated on bootstrapping the avail-
able data from the low-resourced target language
to enhance the text language model. Common tech-
niques include self-training with data generated by
the model under training itself or text-to-speech
systems (Bartelds et al., 2023), and data augmen-
tation with external sources such as dictionaries
(Hjortnaes et al., 2020; Arkhangelskiy, 2021).

Interestingly, some studies have found that a
good match of domains is more important than
model size for good performance (Liu et al., 2023;
Arkhangelskiy, 2021). Additionally, factors such
as transliteration and standardization to common
orthographies (e.g., changing French -eur to Span-
ish -or in a FR→ES system) (Khare et al., 2021)
enhances system performance.

1.2 Transfer Learning
Transfer learning is a widely adopted technique
to leverage knowledge from one low-resource lan-
guage to another. In the context of Machine Trans-
lation (MT), it is common practice to pre-train on
a pair of languages with high resources and sub-
sequently to fine-tune on the pair with limited re-
sources (Zoph et al., 2016; Kocmi and Bojar, 2018).
The effectiveness of this approach depends on the
linguistic similarities between the source and target
languages. Notably, a greater overlap in vocabu-
lary between the source languages tends to result
in more significant gains, as evidenced by stud-
ies like Nguyen and Chiang (2017) or Dabre et al.
(2017). However, such overlap is not a necessary
condition to see improvements. Interestingly, when
pre-training on ASR data and then fine-tuning on
speech-to-text translation, even a non-related lan-
guage helps, as the acoustic model plays a main
role in the overall gain (Bansal et al., 2019).

1.3 Joint Learning
Another common method of transfer learning
across languages is multilingual neural machine
translation (NMT), i.e., translation systems that in-
corporate more than two languages. In contrast
to the approach mentioned in §1.2 where a par-
ent model undergoes training on a high-resource
language pair and a child model is subsequently
fine-tuned on a low-resourced pair, in multilingual
NMT, multiple languages are fed simultaneously
into the model (Dabre et al., 2020). A commonly
used configuration involves complete parameter
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sharing among languages, where corpora are con-
catenated, and sequences are distinguished by a spe-
cial language tag token. This approach works well
in data-rich settings, even with a massive amount
of languages (Bapna et al., 2022; Fernandes et al.,
2023). In low-resource settings, additional consid-
erations such as language similarity are crucial for
success (Huang et al., 2023). A recent technique
involves using adapters—additional feed-forward
layers added to the transformer while keeping the
transformer’s parameters unchanged (Rebuffi et al.,
2017; Houlsby et al., 2019). This technique has
proven beneficial for low-resourced languages, as
reported by Chronopoulou et al. (2023), who re-
ports gains of up to 2 BLEU points for several
languages. Ranathunga et al. (2023) provides an
overview of NMT work for low-resourced lan-
guages.

Similar to NMT, research on multilingual ASR
also finds that adding new languages presents chal-
lenges, especially when working with limited data,
given that the base models are predominantly pre-
trained on English data (Srivastava et al., 2023).
Strategies such as data augmentation with self-
training (Srivastava et al., 2023) and transliterat-
ing the input into a common writing system have
been found effective (Verma et al., 2023). Research
on massively multilingual models by Tjandra et al.
(2023) propose architectural modifications in the
input and output embedding space. They find that
the tokenization has an essential role in unifying
the scripts across diverse languages and maintain-
ing a relatively small vocabulary size, thereby di-
rectly influencing performance. They also report
that grouping languages based on their similarity
benefits performance.

1.4 Chibchan Languages
Here we will study two Indigenous languages
from Costa Rica: Bribri and Cabécar. They be-
long to the Chibchan family, which has languages
in Honduras, Costa Rica, Panama and Colombia.
Bribri is spoken by approximately 7000 people,
and Cabécar is spoken by approximately 11000
in Southern Costa Rica (INEC, 2011). Both lan-
guages are classified as vulnerable (Moseley, 2010;
Sánchez Avendaño, 2013), which means that there
are children in the community who are no longer
learning the language. There is some NLP work
for these languages. Notably, the AmericasNLI
corpus (Mager et al., 2021) includes data from
Bribri. There is also work on machine transla-

tion (Feldman and Coto-Solano, 2020; Ebrahimi
et al., 2023a; Jones et al., 2023; Ebrahimi et al.,
2023b, 2022b), forced alignment (Coto-Solano
and Solórzano, 2016; Solórzano and Coto-Solano,
2017; Coto-Solano et al., 2022), speech recognition
(Coto-Solano, 2021), dependency parsing (Coto-
Solano et al., 2021), natural language understand-
ing (Ebrahimi et al., 2022a; Kann et al., 2022) and
analysis of word embeddings (Coto-Solano, 2022).

2 Experiments

In this section we will describe the data sources, the
algorithms used for ASR training, and the methods
for evaluating the experiments.

2.1 Data

The Bribri data includes 143 minutes of transcribed
audio from 28 different speakers. This comes from
an online oral corpus (Flores-Solórzano, 2017) and
from the recordings included in the book Së́bliwak
Francisco García ttö̀ Las palabras de Francisco
García (Jara Murillo, 2022). These two sources
use different orthographies. For example, in the
first one, the word mother is written ‘amì’, whereas
in the second one it can be written ‘ãm`̃ı’ or even
‘mì’. We standardized the transcriptions into a uni-
form orthographic representation, which can then
be converted to either of the human orthographies
in use. The Bribri transcriptions contain 20674
words in 2653 utterances (7.8 words per utterance),
with a total of 3422 unique words. The utteraces
are 3.2 ±2.1 seconds long on average. The record-
ings include data from three different dialects of
Bribri: Amubri, Buenos Aires and Salitre.

The Cabécar data totals 54 transcribed min-
utes from 13 different speakers. The data comes
from interviews included in a Cabécar dictionary
(González Campos and Obando Martínez, 2020).
They contain 8602 words in 594 utterances (14.4
words per utterance). The transcriptions contain
1206 unique words, and each of the utterances is
5.5 ±2.4 seconds long. The data contains only one
dialect of Cabécar, the Chirripó dialect.

2.2 Monolingual Training

Our first task was to establish a baseline for the
Chibchan multilingual models. We tested four al-
gorithms: XLSR-53 Wav2Vec2 (Conneau et al.,
2020), Whisper (Radford et al., 2022), MMS
(Pratap et al., 2023), and WavLM (Chen et al.,
2022). We fine-tuned to train separate models for
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each of the two Chibchan languages. (In the case
of MMS, we also tested the inference from the
pre-trained model for Cabécar). These models are
not strictly monolingual, as the base multilingual
models come pretrained with acoustic data from nu-
merous other high-resource languages. But, in or-
der to facilitate the comparison with the Chibchan-
Transfer and the Chibchan-Joint models, we will
refer to these as the monolingual models. For each
of these we used the maximum of available data:
143 minutes for Bribri and 54 for Cabécar. We
randomly shuffled the data several1 times to make
different train/dev/test sets, with ratios of 80%, 10%
and 10%. With this we will obtain an average word
and character error rate for each algorithm. We
will compare the performance of these algorithms
and use the best-performing one for the rest of the
experiments. (The hyperparameters for each algo-
rithm can be found in Appendix B).

In order to study the progression of training with
different masses of data, we randomly selected au-
dio files up to certain time durations, so that we
could train for smaller datasets and observe the re-
duction in error rate. For Bribri, we made random
sets of [5, 10, 15, 30, 45, 60, 90, 120, 154] minutes.
For Cabécar, we made random sets of [5, 10, 15,
30, 45, 54] minutes. For each of these, we made
ten randomly shuffled train/valid/test sets with the
data available, and split that data into 80%, 10%
and 10%. For each of these ten training runs, we
selected the earliest model that had the lowest val-
idation word error rate (WER) before overfitting.
Then, we used that model to get the median of the
character error rate (CER) and the WER of the test
files. Finally, we averaged the value of those ten
medians; these are the values presented in table 2
and figures 1 and 2.

2.3 Transfer and Joint Training

In order to carry out the transfer learning experi-
ments, we first selected the best performing Bribri
and Cabécar models as our foundation. We then
used these models to continue fine-tuning on the
other language. We used a similar evaluation pro-
cedure as the one described for the monolingual
training: We trained five randomly shuffled sets for
each of the time durations (e.g. 5 sets made up of
5 minutes of Bribri each, another 5 sets totaling 10
minutes of Bribri each, etc). We trained the model

1For each language there were randomly shuffled 10 sets
for Wav2Vec2, and 5 for the other algorithms.

and extracted the CER and WER for the test set,
and then averaged the values across the five runs.

The next experiment we conducted was to train
a (Chibchan) multilingual joint model. All of the
transcriptions for both languages were poooled to-
gether. From these, we randomly selected files
until the set reached a total duration of [5, 10, 15,
30, 45, 60, 90, 120, 150, 197] minutes. We carried
this process out three times for each time point.
Each of those was split into 80%, 10% and 10% for
the train/valid/test sets. The evaluation was then
performed separately for each language, measuring
the CER and WER for the Bribri and Cabécar test
transcriptions

2.4 Post-training corrections

End-to-end models do not depend on statistical n-
gram models to correct the orthographic output of
the algorithm. This advantage is very desirable in
high resource languages, as it allows the program
to spell unknown words, while still learning the
language’s orthography. However, in low resource
scenarios, the data might not suffice for the system
to learn the orthography well (and in previous, sta-
tistical ASR, the system would be restricted to the
words occurring in its n-gram language models).

As a simple way to overcome these issues, we ap-
plied a unigram spell checker to correct the output.
We started with Norvig’s (2021) statistical unigram
spell check algorithm, and made one modification:
If (i) the source sentence and the ASR hypothesis
transcription have the same number of words, and
(ii) the word in sourcei is not the same as the word
in hypi, then we will assume that the word hypi
is a spelling mistake and it will be changed to a
different, existing word in the corpus. This allows
the system to preserve the words that are already
correctly transcribed, while giving it a chance to
improve its results by changing potential nonwords.

We applied the spell checking to the output of
each of our experimental conditions: (i) the mono-
lingual models for Bribri and Cabécar, (ii) the
Bribri-to-Cabécar and Cabécar-to-Bribri transfer
models, and (i) the joint models, evaluated on the
Bribri and Cabécar test transcriptions. We then
calculated the CER and WER between the source
and the corrected sentences.

3 Results

In this section we will present four results: (i)
the quantitative measurements of the character and
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word error rates for models trained on Bribri and
Cabécar data, using different algorithms, (ii) the dif-
ferences in performance between the monolingual,
joint and transfer models, (iii) a qualitative analysis
of the differences in the transcriptions from the dif-
ferent models, and (iv) an error analysis of different
components of Bribri phonology and how those are
transcribed by the best performing models.

3.1 Algorithm Comparisons

Table 1 shows the average results for the monolin-
gual models, trained on all the available data (143
minutes for Bribri and 54 minutes for Cabécar).
Each of the numbers is the average and standard
deviation from the training runs for each language.

Bribri Cabécar
CER WER CER WER

W2V2 34 ±2 76 ±2 21 ±2 48 ±4
Whisper 36 ±3 79 ±4 29 ±2 63 ±3
MMS-FT NA NA 59 ±2 83 ±3
MMS-Inf NA NA 49 ±1 95 ±1
WavLM 95±4 100±0 164±9 100±0

Table 1: Average and standard deviation of the me-
dian error for ASR algorithms: XLSR-53 Wav2Vec2
(W2V2), Whisper, MMS using Fine-Tuning on Cabé-
car (MMS-FT), MMS using only inference for Cabécar
(MMS-Inf), and WavLM. These are trained on 143 min-
utes of Bribri and 54 minutes of Cabécar.

Wav2Vec2 was the best performing model for
both languages. This difference in performance
might be due to the fact that Wav2Vec2 has a more
balanced dataset in the pretraining, which might
allow it to observe a wider range of linguistic be-
havior in low resource languages. Whisper, for ex-
ample, has a larger proportion of English compared
to other languages, which might bias it against un-
derstanding linguistic characteristics distinct from
those found in English. The other base models
are probably pretrained on poor quality data (e.g.
bibles), and therefore they might be a poor match to
the way the language is written in the community.

Because Wav2Vec2 had the better performance,
we used this algorithms to perform the training of
the joint and transfer models.

3.2 Joint and Transfer Training Results

Figure 1 shows the error rates for Bribri models
trained using different amounts of data, starting
with only 5 minutes of data, and ending with all
of the data available (143 minutes). As expected,

results improve as the training data increases. For
example, in the case of the monolingual data, 5 min-
utes of Bribri result in an average of CER=61 and
WER=97, whereas the maximum amount of data
reduces the average error to CER=34 and WER=76.
The learning shows steady progress, but the rate of
error reduction starts to slow down after 60 min-
utes of data, particularly for the CER. Figure 2
shows that this trend is also visible in the Cabécar
monolingual models, but here the performance is
overall better, despite having less data to train from.
When using only 5 minutes, Cabécar has an aver-
age CER=39 and WER=74, which is later reduced
to CER=21 and WER=48 when using all of the
data (54 minutes). The Cabécar data shows a faster
rate of error lowering. When both of them are mea-
sured at 45 minutes of training data, both Bribri
and Cabécar have similar rates of character error
reduction: ∆CER=18 for Cabécar (CERCab:45=21)
and ∆CER=20 for Bribri (CERBr:45=41). How-
ever, the Cabécar has a greater word error reduc-
tion: ∆WER=25 (WERCab:45=49) compared to
only ∆WER=14 for Bribri (WERBr:45=83).

The joint training models produced gains for
Bribri and loses for Cabécar. When measured
on the highest amount of data (54 minutes for
Cabécar and 143 for Bribri), the transcriptions
from the Bribri joint model had CER=33 and
WER=73, which are improvements of ∆CER=1
and ∆WER=3 compared to their equivalent mono-
lingual models. On the other hand, Cabécar had
worse performance: ∆CER=-4 and ∆WER=-12,
which means that the monolingual models were
better. Table 2 summarizes these results.

Transfer learning showed improvements for
Bribri and neutral results for Cabécar. This might
be because of the differences in the datasets: Bribri
has a more complex and less “clean” dataset, as
it includes songs, interviews with more noise, and
wider intralinguistic variation. Therefore, it might
not contribute as much to the Cabécar data, whereas
the smaller but cleaner Cabécar set might con-
tribute more to the Bribri. The transfer from
Cabécar to train on Bribri data showed improve-
ments of ∆CER=2 (from CERBr:Monolingual=34
to CERBr:Transfer=32) and ∆WER=6 (from
WERBr:Monolingual=76 to WERBr:Transfer=70).
The best overall model for Bribri was this trans-
fer model. The transfer into Cabécar, on the other
hand, showed no improvement at all.

Spell checking also had complex and sometimes
opposite effects: When it comes to the word error, it
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Figure 1: Average error rates for Bribri experiments

Figure 2: Average error rates for Cabécar experiments

aided the transcription of Cabécar, and it produced
worse results in the transcription of Bribri. But
when it comes to the character error rate, spell
checking increased the error for both languages.
As for Bribri, the CER became worse by ∆CER=-
3∼4, and the WER became worse by ∆CER=-3∼-
6. On the other hand, in the case of Cabécar, the
CER also became worse (∆CER=-1∼2), but the
WER became better by ∆WER=1∼5. In fact, the
best overall model for Cabécar was the model that
combined transfer with the spell checking.

3.3 Qualitative results
Table 3 shows examples of transcriptions for Bribri,
going from the better to the worst performing condi-
tions. The spoken sentence “e’ ta bua’ i wö̀ ta’ mía
shalë̂lë̂ ta sulû i mía" [if you do it like that] you’ll
get a good harvest; if it’s far apart it’ll go bad is
best transcribed by the transfer model, which has
several words completely correct (e.g. “bua’" good
and “mía" to go), and several words with transcrip-

tions that are close enough to the actual word to be
understandable (e.g. *tsulû instead of “sulû" bad,
and *shaalë̀lë́ instead of shalë̂lë̂ far apart). The
transfer model only produced one major mistake,
fusing the words “wö̀ ta’" to have a harvest into
*ö̀a. The transcription from the joint model is not
as good but it is still better than the monolingual
transcription. The joint model fuses some words
together (*wö̀kta instead of “wö̀ ta’" to have a har-
vest, but, if read out loud, it is still understandable.
When examined at the character level, both the
transfer and joint transcriptions show issues with
the tone, confusing the low-rising tones in shalë̂lë̂
with high or falling tones.

The quality of transcription degrades for the
other methods. The transcriptions are progressively
more difficult to read, and the monolingual tran-
scription has a number of nonwords which hinder
comprehension. The corrected transcriptions are
even worse, despite being made up of words that
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CER WER
Type of model Not corrected Corrected Not corrected Corrected

Bribri Monolingual 34 37 76 79
Joint 33 37 73 77
Transfer 32 35 70 76

Cabécar Monolingual 21 22 48 47
Joint 25 27 60 55
Transfer 21 22 48 43

Table 2: Average error rates for Bribri and Cabécar models at the maximum number of train/valid/test items (Joint =
197 minutes, other Bribri models = 143 minutes; other Cabécar models = 54 minutes)

Condition Sentence CER WER
Source e’ ta bua’ i wö̀ ta’ mía shalë̂lë̂ ta sulû i mía
Translation you’ll get a good harvest; if it’s far apart it’ll go bad
Transfer e’ ta bua’ i ö̀a mía shaalë̀lë́ ta tsulû mía 20 42
Joint e’ ta bua’ i wö̀kta mía shé klë́lë ta tsulù i mí 20 50
Monolingual e’ ta bua’ i ö̀ a mía sh lë̂lè ta tsulûû mìa 20 58
Transfer (corrected) e ta bua i ta mía chaléla ta sulû mí 30 58
Joint (corrected) e ta bua i dö̀ka mía i shalë̀blë ta sulû mi 34 67
Monolingual (corrected) e ta bua rè ta mía shka ë̀alè’ ta sulû mí 34 75

Table 3: Example transcriptions for Bribri

Condition Sentence CER WER
Source bö́tkä i rä i ká cha ijé cha
Translation These two are not his
Transfer (corrected) bótkë́i rä i ká cha ijé cha 11 25
Monolingual (corrected) bótäwkë́ i rä i kicha ijë cha 22 37
Monolingual buótkë́ i rä i ká chá ijé chá 26 38
Joint (corrected) bá kë́ jí rä ká cha ijé cha 30 50
Transfer bóäkë́b kä́ i kácsha ijé cha 33 62
Joint bá kë́ ñí räá iká cha ijé cha 33 75

Table 4: Example transcriptions for Cabécar

exist. This might be because the corrections were
not done with a probabilistic language model, but
with a unigram spell checker. An example of this
problem is the monolingual corrected transcription,
which can be roughly translated as and then good
fixed, go walk only maybe, bad from. At this point,
comprehensibility is severely compromised.

Table 4 shows examples of Cabécar transcrip-
tions, where the conditions are again ordered from
better to worse. All models showed some con-
fusion at the beginning of the phrase, and often
fused the words “bö́tkä i” these two. There is also
some phone confusion, particularly with the central
vowel ä. Here, as mentioned in the previous sec-
tion, the corrected models achieve much better per-
formance, and it is the non-corrected models that

produce unintelligible transcriptions. For example,
the joint model’s transcription can be roughly trans-
lated as you no flat, no-that of, his no. Interestingly,
neither the Bribri nor the Cabécar joint models pro-
duced words in the wrong language. The Bribri
outputs from the joint model only contain Bribri
or Bribri-like words, and the Cabécar output only
contains Cabécar words. This is a positive signal
that the model could differentiate between the two
languages during the learning process.

3.4 Error Analysis

Given that many languages in the Americas are
tonal, an important and common question arises
among linguists who might use ASR to accel-
erate documentation: Does ASR systems tran-
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scribe tones worse than other types of sounds?
The Wav2Vec2 base model is pretrained on tonal
languages such as Mandarin, Cantonese, Kin-
yarwanda, Lao, Vietnamese and Zulu, so a priori it
should learn to distinguish tones adequately. How-
ever, does it show lower accuracy in transcribing
tones relative to consonants or vowels? This sec-
tion seeks to answer this question.

The first part of the experiment was to trans-
form the Bribri and Cabécar transcriptions into
strings that separate the different phonemes they
contains. Table 5 has examples of such strings.
In the “all” condition, we included the same tran-
scriptions we used in the previous sections. In the
“tone” condition, we inserted a character for each of
the orthographic tonal diacritics in the languages.
In Cabécar and Bribri those where H (high) and
L (non-diacritic low). Bribri also has the ortho-
graphic tones F (falling), G (glottal low rise) and
R (low rise)2. Therefore, the phrase Ìs be’ shkèna
“How are you?” would be transformed into H G HL.

We repeated this process with other aspects of
Bribri phonology. We used a “consonant” represen-
tation where Ìs be’ shkèna becomes s b shkn. The
“vowel” representation includes the vocalic quali-
ties of each of the vowels (i e ea), and the “nasal”
representation contains information for whether the
vowels in the text are oral or nasal (O O ON).

Transcription
Translation How are you?
All ìs be’ shkèna
Tone H G HL
Consonant s b shkn
Vowel i e ea
Nasal O O ON

Table 5: Different transcriptions of the Bribri phrase
How are you?. These are used to analyze the different
types of errors in the model.

We performed these transformations on both the
gold standard transcriptions and the hypotheses
produced by the transfer models. We used the mod-
els trained on the maximum data, 143 minutes for
Bribri and 54 for Cabécar. (The results for the
monolingual model are in Appendix A). We then

2Bribri has five phonological tones (Jara, 2018; Coto-
Solano, 2015): high, falling, low rise, low and neutral. The
low rise is expressed orthographically with a apostrophe (a
glottal stop), or a circumflex diacritic. The low and neutral
tones are both unmarked in the orthography, and they are both
expressed by using just the vowel without any diacritics.

calculated the word and character error rates for
each of these subrepresentations. Here, the “word”
error rate means that the total number of words
where at least one tone was wrong, for example.
The “character” error rate means a mistake in a
single tonal marker, for example. The medians for
these results are in table 6.

Bribri Cabécar
Error WER CER WER CER
All 71 35 50 22
Tone 57 30 40 17
Consonant 54 29 38 16
Vowel 53 26 42 20
Nasal 48 19 37 13

Table 6: Medians for the error rates of the transfer mod-
els for different subrepresentations of the data.

First we will analyze the data for Bribri. A
Kruskall-Wallis3 test shows that there are signif-
icant differences between the different subrep-
resentations (χ2(4)=226, p<0.00001). A post-
hoc analysis with a Benjamini Hochberg (BH)
correction (Benjamini and Hochberg, 1995) re-
vealed that Bribri tones have significantly more
errors (WER=57, CER=30) than the consonants
(WER=54, CER=29, p<0.005), the quality of vow-
els (WER=53, CER=26, p<0.005) or the oral/nasal
contrasts (WER=48, CER=19, p<0.00001).

Let’s now analyze the Cabécar data. A Kruskall-
Wallis test shows that there are significant dif-
ferences between the different phoneme types
(χ2(4)=89, p<0.00001). A post-hoc analysis with a
BH correction shows that Cabécar tones (WER=40,
CER=17) have fewer errors than the vowel qual-
ities (WER=42, CER=20, p<0.05). On the other
hand, tones have more errors than the nasality con-
trasts (WER=37, CER=13, p<0.005), and there was
no significant difference between the tones and the
consonants (WER=38, CER=16, p=0.07).

This evidence suggests that tones are more diffi-
cult for the model to transcribe if the tonal system
is complex enough. The Bribri tonal system is the
more complex of the two. It has five orthographic
indications for tone (high, falling, apostrophe low
rising, glottal low rising, no-diacritic low) and the
model makes more errors when transcribing these
tonal marks than when transcribing consonants or
vowels. On the other hand, the Cabécar tonal sys-

3The distributions do not meet the assumptions of normal-
ity, and therefore a non-parametric test was used.
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tem is simpler. It only has two orthographic tones
(high and no-diacritic low), and the model makes
fewer errors when marking it, relative to the Cabé-
car vowels. It might also be the case that the Cabé-
car data is more internally consistent and the Bribri
data has more variation (see section 4), and that
this makes the Cabécar tones even easier to learn.

From these results we can infer that tones can be
more difficult to transcribe than other aspects of a
language’s orthography, particularly if the record-
ings are in a more conversational style, and if the
tonal system is relatively complex.

4 Discussion

Regarding the type of learning, transfer learning
proved effective for both Bribri and Cabécar, with
superior performance for Bribri. The joint models
did not surpass the effectiveness of the monolingual
ones, but at least for Bribri, they closely followed
the performance of the transfer-based models. Re-
garding the post-processing, spell-checking only
contributed to reducing the WER for Cabécar.

Contrary to findings in the multilingual NMT
literature, where transfer approaches involving se-
quential training of languages tend to underper-
form compared to joint approaches where both lan-
guages are input simultaneously, our results present
the opposite trend–the transfer approach yielded
better results. The result that both transfer and
joint models outperformed in Bribri compared to
Cabécar strongly suggests that the “cleanliness” of
the data is a very important and determinant factor.
The Cabécar data, characterized by fewer genres
and speakers from a single geographic region, pro-
vides a more consistent signal that may result in
fewer structural errors. Despite having more Bribri
data, the model seemingly grasps Cabécar better,
enabling better generalization to the Bribri data.

In contrast to multilingual NMT techniques, our
joint model does not use language tags when in-
putting both languages. Introducing language tags
would require modifications to the audio files. We
posit that such modifications could enhance the
model’s ability to distinguish between the lan-
guages more accurately, especially given the subtle
“bumps” observed in the Cabécar plots which might
be hinting a potential confusion. Additionally, this
change might improve regularization by effectively
increasing the number of training examples, align-
ing with the patterns observed in the multilingual
NMT literature (Huang et al., 2023). These tags

will be added in future work.

The correction post-processing was more effec-
tive for Cabécar, suggesting once again that varia-
tion in the Bribri data is high, and that the Cabécar
data has greater consistency. The Cabécar data also
has lower lexical diversity, a factor which might
directly impact the spell-checker’s performance.

Critically, these improvements concerned the
WER, but the CER did not show much gain. One
plausible explanation is that the acoustic model
may already be saturated, meaning that it does not
benefit as much from additional data. Another pos-
sibility is that the pre-trained model lacks sufficient
typologically relevant knowledge for the Chibchan
languages under examination. For instance, lin-
guistic features like tones may be insufficiently
represented. This potential deficiency serves as an
example of how applying our methods in the con-
text of languages divergent from the typical scope
of languages in NLP papers allows us to assess the
effectiveness of our tools.

There is potential future work in expanding this
dataset to perform zero-shot transcriptions of other,
even lower-resourced Chibchan languages such as
Malecu and Ngäbere, and hopefully including them
into a large pan-Chibchan multilingual model in
the future. Such a model would enhance the tran-
scription accuracy of the existing languages.

5 Conclusions

We presented experiments on multilingual ASR
learning for Bribri and Cabécar, two extremely low-
resource languages spoken in Costa Rica. We have
shown that cross-lingual learning does take place
between languages, specifically from Cabécar to
Bribri. We have also shown that the quality of the
data is highly significant in resource-constrained
settings where each training data point holds con-
siderable weight.

Our results are promising but we have not ex-
plored the full potential of this technique. For ex-
ample, further data processing could involve the
inclusion of language tags and their correspond-
ing audio equivalents. Another possibility is is
selecting a subset of the Bribri data that aligns
more closely with the Cabécar data in terms of do-
main. Additionally, future research could consider
zero-shot evaluation on languages within the same
linguistic family.
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Limitations

There are a number of limitations in this paper.
First of all, the models attempt to be representative
of the languages, but they include relatively few
speakers, and in the case of Cabécar, only one of its
spoken dialects. Care needs to be taken to include
a larger diversity of speakers so that the model
doesn’t place implicit preference on one variety of
Cabécar over others.

Another important limitation is the amount of
computing power needed to train these models. The
experiments presented here were exhaustive, but
they were also time consuming: The XLSR-53
Wav2Vec2 experiments took 455 GPU hours, using
an Nvidia Tesla K80 GPU in a HPC infrastructure.
(This training was performed in parallel on 5∼7
GPUs, and it took approximately one week). The
inference is relatively quick and can be performed
on free cloud-based platforms, but it still requires a
GPU to run. This could be prohibitive for commu-
nities who might want to implement this system in
an offline environment.

Finally, the Bribri data is open, but the Cabécar
data is only partially available, and will be released
in the future. This might make it difficult for other
teams to work on Cabécar ASR.
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A Error analysis for the monolingual
models

We analyzed the errors of the monolingual models
trained with Wav2Vec2. Table 7 shows a summary
of the results. The most interesting result is that
the transfer model did reduce the tonal error rate.
For the monolingual Bribri data the median tonal
error rate was WER=62 and CER=38. Compare
this to the results for the Cab→Br transfer learning:
WER=57 and CER=30. The transfer did not help
the Br→Cab model. The tonal error for both the
monolingual and transfer models was WER=40
and CER=17. This adds to the results that indicate
that Bribri benefitted the most from the transfer of
information from another Chibchan language.

Bribri Cabécar
Error WER CER WER CER
All 76 38 50 22
Tone 62 32 40 17
Consonant 58 30 40 16
Vowel 58 29 43 20
Nasal 53 20 37 14

Table 7: Medians for the error rates of the monolingual
models trained XLSR-53 Wav2Vec2.

The statistical patterns found for the transfer
learning also appear here. A Kruskall-Wallis
test shows that there are significant differences
in the monolingual Bribri dataset (χ2(4)=587,
p<0.00001). A post-hoc analysis with a Benjamini
Hochberg correction revealed that Bribri tones
show have significantly more errors (WER=62,
CER=32) than consonants (WER=58, CER=30,
p<0.00001) the quality of vowels (WER=58,
CER=29, p<0.00001) or the nasalization marks
(WER=53, CER=20, p<0.00001).

As for the Cabécar data, a Kruskall-Wallis test
shows that there are significant differences in the

data (χ2(4)=89, p<0.00001). A post-hoc analysis
with a BH correction shows that Cabécar tones
(WER=40, CER=17) have fewer errors than the
vowel qualities (WER=43, CER=20, p<0.05). The
tone has more errors than the vowel nasality mark-
ings (WER=37, CER=14, p<0.005), and there were
no significant difference between the tones and the
consonants (WER=40, CER=16, p=0.15).

These results have the same pattern as those for
the transfer learning errors: The more complex
Bribri tones appear to cause the most difficulties
for the ASR models.

Figure 3 show the error rates for the tones, con-
sonants, and vowel features for both Bribri and
Cabécar, across different masses of training data,
when trained using Wav2Vec2. As for Bribri tones,
they are the most difficult linguistic feature to tran-
scribe in every type of training, and with all but the
smallest masses of data. (When the model only has
10 minutes of data, vowels have worse rates than
tones for the monolingual and transfer learning
models). As for the Cabécar models, vowels have
consistently higher error rates for all conditions.

B Model hyperparameters

We use the following hyperparameters with the
Wav2Vec2 v2 models trained in our experiments:

1 from transformers import Wav2Vec2ForCTC ,
Wav2Vec2Processor ,

Wav2Vec2FeatureExtractor ,
Wav2Vec2CTCTokenizer ,
TrainingArguments

2

3 tokenizer = Wav2Vec2CTCTokenizer(
4 "./vocab.json",
5 unk_token="[UNK]",
6 pad_token="[PAD]",
7 word_delimiter_token="|" )
8

9 feature_extractor =
Wav2Vec2FeatureExtractor(

10 feature_size =1,
11 sampling_rate =16000 ,
12 padding_value =0.0,
13 do_normalize=True ,
14 return_attention_mask=True )
15

16 processor = Wav2Vec2Processor(
feature_extractor=feature_extractor ,
tokenizer=tokenizer)

17

18 model = Wav2Vec2ForCTC.from_pretrained(
19 "facebook/wav2vec2 -large -xlsr -53",
20 attention_dropout =0.1,
21 hidden_dropout =0.1,
22 feat_proj_dropout =0.0,
23 mask_time_prob =0.05,
24 layerdrop =0.1,
25 ctc_loss_reduction="mean",
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Figure 3: Average error rates for specific types of phonemes and linguistic features.

26 pad_token_id=processor.tokenizer.
pad_token_id ,

27 vocab_size=len(processor.tokenizer),
28 ignore_mismatched_sizes=True )
29

30 training_args = TrainingArguments(
31 output_dir=folderModelFiles ,
32 group_by_length=True ,
33 per_device_train_batch_size =2,
34 gradient_accumulation_steps =1,
35 evaluation_strategy="steps",
36 num_train_epochs =30,
37 fp16=True ,
38 save_steps =400,
39 eval_steps =100,
40 logging_steps =50,
41 learning_rate =3e-4,
42 warmup_steps =500,
43 save_total_limit =38 )

For any parameter not explicitly listed, we use the
default value.

These are the hyperparameters for Whisper:

1 modelType = "openai/whisper -large -v2"
2

3 training_args = Seq2SeqTrainingArguments
(

4 output_dir=folderModelFiles ,
5 per_device_train_batch_size =16,
6 gradient_accumulation_steps =1,
7 learning_rate =1e-5,
8 warmup_steps =500,
9 max_steps =4000,

10 gradient_checkpointing=True ,
11 evaluation_strategy="steps",
12 per_device_eval_batch_size =8,
13 predict_with_generate=True ,
14 generation_max_length =225,
15 fp16=True ,
16 save_steps =400,
17 eval_steps =100,
18 logging_steps =25,
19 report_to =["tensorboard"],
20 load_best_model_at_end=True ,
21 metric_for_best_model="wer",
22 greater_is_better=False )

These are the hyperparameters for MMS:
1 from transformers import

TrainingArguments , Trainer
2

3 training_args = TrainingArguments(
4 output_dir=output_path ,
5 group_by_length=True ,
6 per_device_train_batch_size =16,
7 evaluation_strategy="steps",
8 num_train_epochs =4,
9 gradient_checkpointing=True ,

10 fp16=False ,
11 save_steps =200,
12 eval_steps =100,
13 logging_steps =100,
14 learning_rate =1e-3,
15 warmup_steps =100,
16 save_total_limit =2 )
17

18 trainer = Trainer(
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19 model=model ,
20 data_collator=data_collator ,
21 args=training_args ,
22 compute_metrics=compute_metrics ,
23 train_dataset=data_train ,
24 eval_dataset=data_test ,
25 tokenizer=processor.

feature_extractor )
26

27 from safetensors.torch import
save_file as safe_save_file

28 from transformers.models.wav2vec2.
modeling_wav2vec2 import
WAV2VEC2_ADAPTER_SAFE_FILE

29

30 adapter_file =
WAV2VEC2_ADAPTER_SAFE_FILE.format(
target_lang)

31 adapter_file = os.path.join(
training_args.output_dir ,
adapter_file)

32

33 safe_save_file(model._get_adapters ()
, adapter_file , metadata ={"format":
"pt"})

These are the hyperparameters for WavLM:
1 processor = AutoProcessor.

from_pretrained("patrickvonplaten/
wavlm -libri -clean -100h-base -plus")

2 model = WavLMModel.from_pretrained("
patrickvonplaten/wavlm -libri -clean
-100h-base -plus")

3

4 model = AutoModelForCTC.from_pretrained(
5 "patrickvonplaten/wavlm -libri -clean

-100h-base -plus",
6 ctc_loss_reduction="mean",
7 pad_token_id=processor.tokenizer.

pad_token_id )
8

9 training_args=TrainingArguments(
10 per_device_train_batch_size =4,
11 gradient_accumulation_steps =2,
12 learning_rate =1e-5,
13 warmup_steps =500,
14 max_steps =1800,
15 gradient_checkpointing=True ,
16 fp16=True ,
17 group_by_length=True ,
18 evaluation_strategy="steps",
19 per_device_eval_batch_size =4,
20 save_steps =600,
21 eval_steps =100,
22 logging_steps =25,
23 load_best_model_at_end=True ,
24 metric_for_best_model="wer",
25 greater_is_better=False )

The technical specifications for the computer
running the Wav2Vec2 models are available in the
Limitations section. The Whisper and WavLM
models were run on the same computers. Each of
the WavLM models took approximately 40 min-
utes to train, for a total of seven hours. Each of
the Whisper models took approximately 5 hours

to train, for a total of 50 hours. The MMS mod-
els were run on a AMD Ryzen Threadripper PRO
5975WX 32-Cores, using 2 NVIDIA GeForce RTX
3090 Ti GPUs and 256GB of ECC DDR4 memory.
Each run with the adapter took approximately 5
minutes, for a total of 50 minutes.
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