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Abstract

Large Language Models (LLMs) have demon-
strated remarkable progress in utilizing tools,
but their closed-source nature and high infer-
ence costs pose limitations on their adaptabil-
ity, necessitating a valid method that leverages
smaller, open-sourced models. In this paper,
we introduce Toolink, a comprehensive frame-
work that performs task-solving by first creat-
ing a toolkit and then integrating the planning
and calling of tools through a chain-of-solving
(CoS) approach. We first validate the efficacy
of Toolink in harnessing the model’s creativity
and CoS ability on ChatGPT. Subsequently, we
curate CoS-GPT, a chain-of-solving dataset de-
signed for tool-using, and finetune the LLaMA-
7B model. It results in LLaMA-CoS, a pow-
erful open-source model with advanced tool-
planning and tool-calling capabilities. Evalua-
tion of diverse tasks from BIG-bench demon-
strates its CoS ability matches that of ChatGPT
while its performance surpasses the chain-of-
thought approach. Further studies highlight the
generalization of LLaMA-CoS to unseen tasks
and showcase its capability in using toolkits
not explicitly tailored for the target task, affirm-
ing its robustness in real-world scenarios. All
codes and data are released1.

1 Introduction

Large Language Models (LLMs) such as
Codex (Chen et al., 2021), ChatGPT (OpenAI,
2022), and GPT4 (OpenAI, 2023) have made
significant strides in code generation, in-context
learning, and logical reasoning. However, they still
struggle with precise calculations and accessing
current information (Patel et al., 2021; Trivedi
et al., 2022; Lu et al., 2022b). To address these
issues, research has focused on equipping LLMs
with tools such as calculators (Cobbe et al., 2021;
Parisi et al., 2022; Schick et al., 2023), search
engines (Carlini et al., 2021; Thoppilan et al.,

1https://github.com/qiancheng0/Toolink
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# Calling Codes
# Step 1: Call …
out1 = [Tool1](…)
# Step 2: Call …
out2 = [Tool2](…)
…

Figure 1: An illustration of Toolink, which decomposes
tasks via toolkit creation and resolves queries through
Chain-of-Solving (CoS). Toolink can be adapted to
open-source LLaMA for enhanced tool usage.

2022; Schick et al., 2023), scratch pads (Nye
et al., 2021), calendars (Schick et al., 2023), and
image retrievers (Sheynin et al., 2022) to enhance
their capabilities, thus benefiting various tasks
including question-answering, math calculations,
and long-form generation. Recent studies have
also explored how LLMs can devise plans, make
decisions, and perform tool invocations (Shen
et al., 2023; Lu et al., 2023; Liang et al., 2023). By
combining them into a pipeline, these frameworks
aim to construct more advanced NLP systems for
improved task performance.

However, current tool-using pipelines heavily
rely on closed-source models with inaccessible pa-
rameters. It poses challenges particularly as fol-
lows: i) Limited adaptability: The closed-source
nature of major LLMs prevents them from cus-
tomization, resulting in a lack of flexibility to adapt
to tasks with specific requirements. ii) Low effi-
ciency and high inference cost: Many existing
LLMs can only be accessed online, which imposes
limitations on the inference rate and leads to high
expense. iii) Privacy and security concerns: Each
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query must be submitted to these closed-source
LLMs to obtain a tool-using solution, which raises
concerns regarding potential privacy breaches and
compromises data security.

To address these challenges, we propose Toolink,
a comprehensive framework to boost the tool-using
ability of open-source models with the help of
closed-source models. As shown in Figure 1,
Toolink first decomposes the target task by cre-
ating a toolkit for problem-solving, and then lever-
ages the open-source model to use tools to an-
swer queries in a chain-of-solving (CoS) approach.
Specifically, CoS disentangles the model’s rea-
soning through two stages: CoS-Planning, which
selects useful tools from the created toolkit and
plans their usages based on the specific query; and
CoS-Calling, which focuses on deriving the an-
swer by performing tool invocations in code for-
mat according to the plan devised. To effectively
train the open-source model in these abilities, we
employ ChatGPT to curate CoS-GPT, a training
dataset that aims to inspire the tool-using ability
of open-source models through CoS. Specifically,
we finetune LLaMA-7B (Touvron et al., 2023) into
LLaMA-CoS, which is equipped with strong tool-
using capabilities by linking toolkit creation with
the chain of problem-solving.

LLaMA-CoS can solve the queries offline with-
out uploading queries to closed-source models, en-
suring data security and privacy. Experiments fur-
ther illustrate that Toolink outperforms the chain-
of-thought (CoT) (Wei et al., 2022) on diverse tasks
from BIG-bench (Srivastava et al., 2022) and en-
ables LLaMA-CoS to showcase comparable CoS
ability to that of ChatGPT. In addition, LLaMA-
CoS can generalize to unseen tasks by planning
and calling tailored tools, and solve the target task
with a toolkit not specifically tailored for it. These
findings further affirm our framework’s robustness
in solving queries under real-world scenarios.

2 Related Work

Tool-based enhancement for LLMs. Language
models have been enhanced with external tools to
improve their expertise. Previous work focused
on equipping the LLMs with different tools in-
cluding a calculator to improve calculation accu-
racy (Cobbe et al., 2021; Parisi et al., 2022; Schick
et al., 2023), search engine to inquire factual knowl-
edge (Carlini et al., 2021; Thoppilan et al., 2022;
Schick et al., 2023), Python interpreter to execute

programs (Chen et al., 2022a; Gao et al., 2022), and
retriever to search textual information (Khandelwal
et al.; Borgeaud et al., 2022), etc.

More recent studies, such as HuggingGPT (Shen
et al., 2023), Chameleon-LLM (Lu et al., 2023),
VisualGPT (Wu et al., 2023) and TaskMa-
trix.AI (Liang et al., 2023), focus on assembling
plannings, execution, and reasoning about tools
into a robust pipeline. In addition to tool-using,
ART (Paranjape et al., 2023) builds toolkits based
on retrieved tasks from the manually built li-
brary, while LATM (Cai et al., 2023) and CRE-
ATOR (Qian et al., 2023) involve the LLMs’ tool-
making ability to offload their reasoning burden
and raise task performance. In contrast to their
prevalent use of closed-source LLMs to leverage
tools, Toolink offers unique advantages of tool use
for smaller, open-source models.

Adaptation of open-source models. One re-
search direction focuses on effective tuning of
open-source models, including the introduction
of lightweight modules such as Adapter (Houlsby
et al., 2019) and LoRA (Hu et al., 2021). These
modules are adapted to various model types in-
cluding LLaMA (Touvron et al., 2023), T5 (Raffel
et al., 2020), and other Transformers-based archi-
tectures (Pfeiffer et al., 2020), to save computa-
tional resources. For instance, GOAT (Liu and
Low, 2023) applies LoRA to improve LLaMA’s
arithmetic calculation ability, while LLaMA-
Adapter (Zhang et al., 2023) adopts Adapter and
zero-init attention to improve multi-modal task per-
formance.

Other works have investigated how instruction
tuning can make open-source models better un-
derstand and follow human requirements in both
text format (Longpre et al., 2023; Ouyang et al.,
2022) and visual domains (Liu et al., 2023). More
recent works also investigate the curation of instruc-
tion following data (Taori et al., 2023; Peng et al.,
2023) and construction of open-source tool-using
agents (Qin et al., 2023; Zeng et al., 2023). Toolink
builds upon the instruction-following paradigm and
focuses on tool-using ability through the disentan-
glement of CoS-Planning and CoS-Calling, which
makes learning more efficient.

3 Toolink Framework

As shown in Figure 2, Toolink first adopts toolkit
creation to break down the target task through
generating potential tools for task-solving (§ 3.1).
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Step1
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CoS-Calling

Result: True

The useful tools are 
[update_location] and 
[update_orientation].

The start location is (0, 0) 
and assume we face North.

We use [update_orientation] 
to get the new orientation.

We use [update_location] to 
get the new location.

CoS-Planning

(Navigate) Please judge if you will return to the starting point after these actions:

Step1: Take 4 steps; Step2: Turn around; Step3: Take 1 step; Step4: Take 3 steps; Step5: Turn around

start = (0,0)
orient =“N”

# 10 steps
loc = update_location(

start,orientation,10)

# turn around
orient = update_
    orientation(orient,

“around”)
…
if loc == start:

print(“True”)
else: ...

N

W

S

E
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# It takes the current location(x, y), 
# orientation(N, E, S or W), and steps, and
# returns the new location after action.

def update_orientation(orientation, turn_direction) 

# It takes the original orientation (N, E, S or W) 
# and turn direction(left, right or around),
# and returns the new orientation. 

def update_location(current_location, orientation, steps)

Toolkit Creation Chian-of-Solving (CoS) Tool Using

Figure 2: A problem solving chain of Toolink pipeline. We show an example from task Navigate. Toolink first
creates a toolkit generally applicable to the task, and then approaches the specific query through CoS, which involves
planning and calling of the created tools.

Then, the model links these created tools to address
specific queries by selecting pertinent tools from
the toolkit, planning their uses, and performing tool
invocations (§ 3.2). This new reasoning approach,
referred to as chain-of-solving (CoS), not only en-
ables the effective and coherent application of tools
but also facilitates the tool-using adaptation on the
open-source model (§ 3.3).

3.1 Toolkit Creation
Toolkit creation decomposes a general task into
modular and essential tools for problem-solving,
facilitating more flexible tool utilization.

Overview. Given the target task T , toolkit cre-
ation breaks it down into more manageable com-
ponents t1, t2, ..., tn through generating a toolkit
KT = {k1, k2, ..., kn}, where ki(i ≤ n) repre-
sents the tool to solve the subtask ti. We illustrate
our approach in Figure 2A, where the target task
T = Navigate is decomposed into t1 (movement
in a single direction) and t2 (change of orientation).
Each component is represented by a specific imple-
mentation encapsulated within a function tool.

Toolkit Making. We utilize ChatGPT for task
decomposition. For each task T , we provide Chat-
GPT with a task description and a few data samples
DT-sample, expecting them to facilitate the model’s
understanding of task T ’s objective and identify
commonalities among queries. The prompting de-

tails are presented in Appendix A and Figure 6.
Note that our design requires only a few data points
as demonstrations fed into the closed-source Chat-
GPT, leaving the entire testing set for local process-
ing to maintain privacy.

Tool Details. Each tool ki within the toolkit KT

is comprised of a concise introduction and its cor-
responding code implementation. The introduction
provides a brief overview of ki’s utility, inputs, and
outputs, facilitating effective planning and calling
in subsequent steps.

3.2 Chain-of-Solving
Chain-of-solving (CoS) involves deliberate plan-
ning and decision-making for tool invocation,
which bridges the gap between toolkit creation and
downstream tool use for task query resolution. CoS
is disentangled into CoS-Planning and CoS-Calling.
This separation allows for a more transparent and
interpretable reasoning path, thereby enhancing the
applicability of CoS to open-source models.

CoS-Planing. The CoS-Planning stage entails
selecting useful tools from a toolkit KT in response
to a specific query of task T . It employs natural
language-based reasoning chains, referred to as a
plan, to determine the most effective way to utilize
the selected tools to solve the given query.

In Figure 2B, the model devises strategies for
employing tools to update the location and orien-
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Category Set Name Source Number

Tool-Using Tool-Planning Augmented 4.4K
Tool-Calling Augmented 4.4K

Code
Generation

Python-Simple New 2.0K
Python-Specific New 2.0K

Math Augmented 2.5K
Algorithm Github 2.3K
LeetCode LeetCode 0.8K

Rectification Sources Above 1.6K

Total - - 20.0K

Table 1: The statistics about the sources and number of
data points in each category of CoS-GPT. Augmented
represents augmented from an existing dataset.

tation, with additional initial conditions that serve
as a guiding hint. Planning plays a crucial role
in establishing a link between toolkit creation and
decision-making, thus reducing the cognitive bur-
den associated with tool-use reasoning.

CoS-Calling. The CoS-Calling stage entails the
utilization of selected tools and interpretation of the
plan into program language to perform tool calls.
The plan generated in the previous stage serves as
the guidance for program implementation. During
the tool execution, all results from the tool invoca-
tions are implicitly captured and used to extract the
final answer for the given query.

Figure 2C illustrates this process, where the
model simulates the entire navigation process using
code as the underlying medium. In this example,
the model derives the final correct answer, thereby
demonstrating a successful CoS-Calling process.

3.3 Open-Source Model Adaptation
Considering the limited adaptability, high infer-
ence cost, and privacy concerns posed by closed-
source models, we aim to enhance the CoS ability
in open-source models. We propose the CoS-GPT,
a specialized training dataset that emphasizes the
planning and calling of tools, along with code gen-
eration. These elements are crucial for boosting the
model’s CoS ability. The statistics related to CoS-
GPT are presented in Table 1. Furthermore, for
each specific target task T , we employ DT-sample

to generate a task-specific dataset. This is achieved
by augmenting each sample query with suitable
tools, thereby facilitating a more effective training
of task T on the open-source models.

Construction of CoS-GPT. To enhance the open-
source model’s skills in applying tools for problem-
solving, we construct CoS-GPT from scratch to

Category Task Name

Mathematics Arithmetic, Matrix Shape,
Chinese Remainder

Common Sense Date Understanding, Navigate

Logical Reasoning Dyck Language, Boolean Expression

Decomposition Tracking Shuffled Objects

Table 2: The categories of 8 BIG-bench tasks tested.

improve the model’s CoS ability from planning,
calling, and coding. We include the first two as-
pects as they are essential for CoS within Toolink,
and the last aspect as it serves as the medium for
tool-using.

For data points about planning and calling,
we enhance the AQUA-RAT (Ling et al., 2017),
GSM8K (Cobbe et al., 2021), and TabMWP (Lu
et al., 2022a) datasets, comprising graduate-level
math problems, numerical reasoning tasks, and di-
verse table contents, with toolkits. Each query is
augmented with a toolkit containing both useful
and redundant tools. The model’s objective for
planning is to select and plan the use of useful
tools, while for calling, the objective is to learn
how to call the chosen tools through codes. We
apply ChatGPT to simulate this process and uti-
lize their responses for dataset construction. Please
refer to Appendix E.1 for more details.

Data points for code generation encompass di-
verse sources, including augmentation from exist-
ing datasets, GitHub repositories, and newly gener-
ated data, detailed in Appendix E.2. Each query ad-
heres to an instruction-following pattern and aims
to enhance the open-source model’s understanding
of code while expanding its versatility in making
informed decisions when performing CoS.

Construction of Task-Specific Data. For each
target task T , we construct 200 tool-augmented
data points (100 each for plan and call) from the
publicly available samples DT-sample, and use them
to tune the open-source model together with CoS-
GPT. Similar to the construction process for tool-
using data in CoS-GPT, we first augment T with
a toolkit KT . Next, we employ ChatGPT to select
useful tools for each query and generate the calling
decision. The decision’s output is compared against
the standard answer, and minor adjustments may
be made to ensure the augmented data’s validity.

Open-Source Model Finetuning. Together with
CoS-GPT, we apply the tool-augmented data points
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from all target tasks to finetune the open-source
model. We expect the derived tool-augmented
open-source model to excel in applying useful
tools for problem-solving. By planning and calling
through CoS, this model links the created toolkit
with specific queries, which realizes the final goal
of the Toolink framework.

4 Experiments

To evaluate the effectiveness of Toolink, we first
conduct a validation test using ChatGPT. We select
eight distinct tasks from the BIG-bench dataset (Sri-
vastava et al., 2022) to investigate whether Toolink
can effectively leverage ChatGPT’s creativity and
tool-using capability to improve task performance.

Subsequently, we finetune the open-source
LLaMA-7B model following the adaptation pro-
cess outlined in § 3.3. This results in LLaMA-CoS,
a model capable of linking the created toolkit with
specific tool use through CoS. We evaluate the ef-
fectiveness of LLaMA-CoS in utilizing tools on the
same set of eight tasks and showcase its excellence.

4.1 Validation Evaluation

Settings. To evaluate the effectiveness of Toolink,
we conducted a validation test using ChatGPT on
eight tasks of diverse categories from BIG-bench,
as detailed in Table 2. For each task, we first em-
ploy ChatGPT to create a toolkit, outlined in § 3.1.
The total number of tools in the toolkit created
for each task is shown in Table 3, with the tool’s
implementation details provided in Appendix B.
Equipped with these tools, ChatGPT is presented
with instructions and demonstration examples to
perform CoS for problem-solving, detailed in Ap-
pendix C.

Baselines. We compare CoS against two base-
lines: i) Vanilla baseline, where ChatGPT directly
produces the final answer. ii) CoT baseline (Wei
et al., 2022), where ChatGPT performs chain-of-
thought reasoning before providing an answer.

Evaluations. We evaluate the ability of ChatGPT
to leverage plans and calls to perform CoS. The
accuracy is measured by matching the model’s fi-
nal output to the correct answer. In addition, we
also evaluated the individual contributions of CoS-
Planning and CoS-Calling separately.

During CoS-Planning, the model is asked to se-
lect useful tools and plan their uses given the cre-
ated toolkit. The planning accuracy is thus mea-

sured by the following metric:

ACC = max{|Kcorrect| − |Kerror|
|Kcorrect|+ |Kerror|

, 0}, (1)

where |Kcorrect| denotes the number of correct
(useful) tools in the toolkit selected in the model’s
generated plan, while |Kerror| denotes the number
of incorrect (redundant) tools selected.

During CoS-Calling, the model is asked to im-
plement the plan using code as the medium, after
the useful tools are selected. The accuracy is thus
measured by matching the output from the final
execution with the correct answer. Please refer to
Appendix D for more details regarding the sepa-
rated test of CoS-Planning and CoS-Calling.

Results. The results are presented in Table 3.
ChatGPT which uses tools through the CoS ap-
proach achieves significantly improved perfor-
mance compared to other baselines, with notable
margins of superiority. Further, the accuracy for
CoS-Calling and CoS-Planning individually is even
higher, indicating successful reasoning in each step
of CoS which links toolkit creation with specific
uses. These findings affirm the validity of Toolink,
establishing a strong basis for its potential transfer-
ability to smaller, open-sourced models.

4.2 Experiments on LLaMA-CoS
Our primary objective is to apply Toolink to
smaller, open-sourced models. To this end, the
models from the LLaMA family (Touvron et al.,
2023) stand out due to their capability to perform
reasoning and generate codes. Considering the
affordability of computational resources, we se-
lect LLaMA-7B as the representative base model
to evaluate the performance of Toolink on open-
source models.

Obtaining LLaMA-CoS. We follow the adapta-
tion process outlined in § 3.3 and finetune LLaMA-
7B with CoS-GPT and eight sets of task-specific
tool-augmented data. The eight tasks are the same
ones as those we test in § 4.1. Applying the training
setting detailed in Appendix F, we derive a power-
ful variant, LLaMA-CoS, that excels in using tools
through CoS.

Settings. We use LLaMA-CoS as the representa-
tive finetuned open-source model for testing. Build-
ing upon the validation test conducted on ChatGPT,
we evaluate LLaMA-CoS’s performance on the
same set of eight tasks from BIG-bench. We keep
all the metrics the same as in § 4.1

835



Task Arith. Date U. Matrix S. Navigate Chinese R. Dyck L. Boolean E. Tracking S. Average

Num. of Tools 5 3 5 2 2 4 2 4 3.38

Vanilla 77.78 68.67 40.90 65.16 0.0 19.40 80.70 23.67 47.03

CoT 79.44 68.67 80.46 87.96 0.0 19.42 75.88 40.78 56.58

CoS 100.00 69.28 93.67 85.30 95.14 52.46 97.37 99.11 86.54

CoS-Planning 100.00 66.16 95.18 94.78 100.00 74.58 95.39 99.85 90.74

CoS-Calling 100.00 90.96 97.44 88.44 95.67 98.55 93.42 100.00 95.56

Table 3: We record the number of tools in the toolkit created for each task and demonstrate the accuracy (%) of
ChatGPT on 8 BIG-bench tasks under different settings. We report the results of Vanilla, CoT baselines, and our
CoS method, and report the performance of CoS-Planning and CoS-Calling separately.

Method Model Arith. Date U. Matrix S. Navigate Chinese R. Dyck L. Boolean E. Tracking S.

CoT
(Prompting
w/ demo)

Alpaca 19.89 39.76 5.62 47.11 0.0 0.0 57.46 0.44
LLaMA-7B 39.44 33.73 12.58 39.70 0.0 2.90 50.44 14.22
ChatGPT 79.44 68.67 80.46 87.96 0.0 19.42 75.88 40.78

CoT (Tuned) LLaMA-CoT 50.44 49.40 70.82 71.64 0.0 35.27 62.72 28.44

CoS
(Prompting
w/ demo)

Alpaca 17.78 7.83 3.00 48.60 7.56 1.00 94.74 6.78
LLaMA-7B 55.89 17.47 10.65 45.90 23.80 35.83 99.12 0.67
ChatGPT 100.00 69.28 93.67 85.30 95.14 52.46 97.37 99.11

CoS (Tuned) LLaMA-CoS 100.00 74.10 91.01 99.56 95.44 98.21 100.00 99.56

Table 4: The accuracy (%) of baselines and LLaMA-CoS on the 8 BIG-bench tasks. LLaMA-CoS employs planning
and calling of tools, which beats all CoT baselines by large margins and is on par with ChatGPT’s CoS ability.

Baselines. As a comparison to CoS, we employ
the chain-of-thought (CoT) reasoning as the base-
line. We evaluate both methods under two sce-
narios: i) Prompting with demonstrations on Al-
paca, LLaMA-7B, and ChatGPT, and ii) Finetuning
specifically on the LLaMA-7B model. We referred
to the LLaMA-7B tuned with CoT data as LLaMA-
CoT, while our model, LLaMA-CoS, is specially
tuned for tool use through CoS.

Results. We present the results in Table 4. No-
tably, LLaMA-CoS achieves an impressive average
accuracy of 94.74%, outperforming all the CoT
baselines, whether tuned or not, by a substantial
margin. Compared to ChatGPT, which exhibits
strong reasoning and tool-using capabilities under
the CoS setting, our tuned model can still achieve
comparable performance. These results highlight
the effectiveness of CoS in outperforming tradi-
tional CoT methods and demonstrate the successful
transfer of tool-using abilities from closed-source
LLMs to smaller, open-source models.

4.3 Results Analysis

Excellence in Both Planning and Calling. To
comprehensively assess the CoS method, we sim-

+0.0%

+3.6%

+0.8%

+1.4%

+1.3%

+0.0%
+0.9%

+10.3%

Figure 3: The improvement of performance when code
generation data points are involved during training.

ilarly report the individual contribution of CoS-
Planning and CoS-Calling in Table 5. Our results
demonstrate that CoS-Planning and CoS-Calling
separately surpass the performance achieved by
CoT-based models on all tasks. This validates the
model’s proficiency in both stages during CoS and
underscores the rationale behind designing CoS-
Planning and CoS-Calling to promote effective tool
use under the Toolink framework.

Necessity of Code Training. To evaluate the im-
pact of code generation data in CoS-GPT, we com-
pare the LLaMA-7B tuned with or without them.
The results in Figure 3 indicate that LLaMA-CoS
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Method Model Arith. Date U. Matrix S. Navigate Chinese R. Dyck L. Boolean E. Tracking S.

CoS-Whole LLaMA-CoS 100.00 74.10 91.01 99.56 95.44 98.21 100.00 99.56

CoS-Planning
(Prompting
w/ demo)

Alpaca 18.22 27.41 24.15 77.16 100.00 76.3 97.59 99.37
LLaMA-7B 74.11 27.71 25.02 77.16 100.00 93.80 97.59 100.00
ChatGPT 100.00 66.16 95.18 94.78 100.00 74.58 95.39 99.85

CoS-Planning LLaMA-CoS 100.00 85.84 89.62 97.14 100.00 99.19 97.59 100.00

CoS-Calling
(Prompting
w/ demo)

Alpaca 99.44 24.70 30.08 48.60 17.97 1.56 89.91 6.78
LLaMA-7B 74.70 51.20 55.49 43.77 24.81 25.67 94.30 1.56
ChatGPT 100.00 90.96 97.44 88.44 95.67 98.55 93.42 100.00

CoS-Calling LLaMA-CoS 100.00 91.57 95.56 98.88 94.18 98.55 95.61 88.44

Table 5: The accuracy (%) of CoS-Planning and CoS-Calling separately on 8 BIG-bench tasks. Results show
LLaMA-CoS has excellent ability in understanding and using tools through CoS.

Query (Dyck L.): You are asked to 

predict the closing parentheses of a 

Dyck-n prefix. What's the closing 

parentheses for prefix: ( < < > > ?

CoS-Planning:

The useful tool is 

get_closing_parenthesis and stack_pop. 

We use get_opening_parenthesis to get 

the opening parenthesis. Then we use 

stack_insert …

Analysis: The plan of Alpaca contradicts 

itself. It has only learned a response 

pattern but does not understand the tools.

CoS-Calling:

Analysis:  “?” is also extracted in 

expression, which leads to wrong answer. 

It indicates Alpaca still does not fully 

understand the task’s goal and 

requirement.

exp = "( < < > > ?"
for ch in expr:
 if ch in ['(','[','{','<']:
  stack = stack_insert(stack, ch)

...

Query (Date U.): Today is Sep 9, 1909. 

What is the date 10 days ago in 

MM/DD/YYYY?

CoS-Planning:

The useful tool is subtract_time and 

add_time. I should first use 

subtract_time to subtract 10 days from 

Sep 9, 1909. To calculate the date 10 

days ago, so I should then use add_time 

to add 10 days …

Analysis: LLaMA misinterpreted the 

question. The query only needs one step 

of reasoning, but the model’s plan falls 

into chaos with conflicting reasons.

CoS-Calling:

Analysis:  The calling misaligns with the 

plan and deviates from the correct 

answer even further away. It shows the 

LLaMA’s ignorance of how to actually 

use the tool in the toolkit.

start = "09/09/1909"
target = add_time(
 start,years=0,months=0,days=10)

print(target)

Alpaca LLaMA-7B

Figure 4: Detailed error analysis of Alpaca and LLaMA-
7B regarding CoS-Planning and CoS-Calling.

trained with code generation data achieves higher
accuracy, with an average improvement of 1.4%.
This validates the necessity of training on code
generation together with CoS ability. By incorpo-
rating these data points, the model learns to lever-
age codes as the medium for tool-using more ef-
fectively, which ultimately enhances task perfor-
mance.

Error Analysis of LLaMA-7B and Alpaca. We
discover from the results that the raw LLaMA-7B
and Alpaca’s performance lags far behind. To pro-
vide insights into why they fail to do CoS-Planning
and CoS-Calling even with demonstrations, we con-
duct a detailed error analysis in fig. 4.

Upon analyzing the errors made by both models,
we identified two primary tendencies: i) the models
tend to learn the pattern but often overlook the
utility of the tool and the purpose of the task; ii)

Task If in
CoS-GPT

CoS
Stage

LLaMA
-CoS ChatGPT

AQUA-RAT Planning 58.80 52.90
Calling 56.12 65.94

MATH Planning 65.83 52.61
Calling 50.75 43.25

TabMWP Planning 90.00 60.75
Calling 66.00 32.75

FinQA Planning 70.51 50.15
Calling 22.38 32.38

GSM8K Planning 61.29 53.83
Calling 57.25 36.50

Table 6: The accuracy (%) of CoS-Planning and CoS-
Calling on five diverse datasets applying LLaMA-CoS
or ChatGPT. Results show that LLaMA-CoS generally
beats ChatGPT and is robust to unseen tasks.

they frequently exhibit disarray in reasoning and
a misalignment between the tool plan and the tool
call. These issues contribute significantly to the
subpar performance of both models.

Diverse Usage of Toolkit. Throughout the exper-
iments, LLaMA-CoS exhibits diverse CoS-Calling
patterns. It is capable of sequentially calling differ-
ent tools to achieve a specific purpose, using tools
in a non-linear logic (in a loop or with conditions),
or performing nested tool calls, where the output
from one tool directly serves as the other tool’s
input. These abilities illustrate the robustness and
adaptability of LLaMA-CoS across diverse scenar-
ios. We provide case studies and more details in
Appendix G and Figure 5.

5 Further Studies

In this section, we show the generalization of
LLaMA-CoS to novel tasks and how it can use
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Seqencial Tool Calling: Multiply a matrix of shape (2,2,2) with a matrix of shape (2,2,1). Add the
result to a matrix of shape (2,2,1). Compute the kronecker product of the result with a matrix of
shape (2,4,3). Sum the result over the second axis.

Toolkit Creation

First use [multiply] to calculate the shape of product.
Next use [add_subtract_Hadamard] to calculate the shape of sum.
Then use [kronecker] to calculate the shape of kronecker product.
Last we use [sum_over_axis] and pass axis=1 (first axis is 0, second is 
1) to calculate the shape of the resulting matrix.

CoS-Planning

CoS-Calling

multiply(shape, shape)

kronecker(shape, shape)

sum_over_axis(a, axis)

transpose(shape)

add_subtract_hadamard(shape1, 
shape2)

(a) Sequential Tool Calling.

Conditional Tool Calling: You are asked to to predict the closing parentheses of a Dyck-n prefix. 
What's the closing parentheses for prefix: < ( [ < [ ] > ] ( [ ( ) ] ?

Toolkit Creation

If we encounter an opening 
parenthesis, we use [stack_insert] to 
insert the parenthesis into the stack.

If we encounter a closing parenthesis, 
we use [stack_pop] to remove the 
top element from the stack. 

Finally, we use 
[get_closing_parenthesis] to get the 
closing parenthesis of the remaining 
elements in the stack.

CoS-Planning CoS-Calling

get_closing_parenthesis(opening)

get_opening_parenthesis(closing)

stack_insert(stack, element)

stack_pop(stack)

(b) Conditional Tool Calling.

Nested Tool Calling: Jane visits the bookstore on the 16th of each month starting from the
October of 2009. It is her 5th visit to the bookstore today. What is the date 24 hours later in 
MM/DD/YYYY?

Toolkit Creation
The starting day that she visits the bookstore is 10/16/2009. So I should use 
[add_time] to add 4 months to the October of 2009 to get the date today.
I am asked to calculate the date 24 hours later, so I should use [convert_hour]
to convert 24 hours into days and use [add_time] to add the days to today's 
date and get the target date.

CoS-Planning

CoS-Calling

add_time(start_day, years=0, 
months=0, days=0)

subtract_time(start_day, years=0, 
months=0, days=0)

convert_hour(hours)

(c) Nested Tool Calling.

Figure 5: Case Studies on the diverse CoS-Calling patterns in the main experiment.
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Task Toolkit Origin LLaMA-CoS ChatGPT

Dynamic
Cnt.

Raw 97.50 80.83
From Dyck L. 73.30 79.17

Unit
Interp.

Raw 70.83 80.83
From Arith. 65.83 80.00

Table 7: The accuracy (%) of ChatGPT and LLaMA-
CoS, with toolkit newly created for the target task (Raw)
or borrowed from other tasks. Our results show that
both ChatGPT and LLaMA-CoS can utilize tools not
specifically tailored for the target task through CoS.

toolkits that are not specially tailored for solving
the target task. These studies aim to illustrate the ro-
bustness of LLaMA-CoS in utilizing tools through
planning and calling.

5.1 Generalization to Novel Tasks

The eight evaluation tasks (Srivastava et al., 2022)
we previously used all have data points presented
during training, despite only leveraging a few pub-
licly available samples. To showcase the general-
ization ability of LLaMA-CoS, we further test it
on two new tasks: FinQA (Chen et al., 2022b) and
GSM8K (Cobbe et al., 2021). FinQA involves ques-
tions based on financial report data, while GSM8K
involves grade school math problems.

Together with AQUA-RAT, MATH, and
TabMWP, whose data are presented in CoS-GPT
(as detailed in § 3.3), we randomly select a
maximum of 400 test data points from each of
the five tasks, ensuring they do not appear in
CoS-GPT. We augment each data point with a
toolkit, following the method outlined in § 3.3
regarding how CoS-GPT is constructed. In
experiments, we follow the CoS-Planning and
CoS-Calling tests outlined in § 4.1.

We show in Table 6 that LLaMA-CoS achieves
high accuracy in both planning and calling stages
and could even beat ChatGPT in performance.
This affirms the effectiveness and robustness of
its CoS ability even applied to unseen tasks. As
our tests encompass math, finance, table reasoning,
etc, this finding also emphasizes the robustness of
LLaMA-CoS across diverse types of tasks.

5.2 CoS on Generic Toolkit

We further explore the ability of LLaMA-CoS to
use a generic toolkit instead of the one specifically
tailored for the target task. In real-world scenar-
ios, toolkits are usually designed to address diverse
tasks rather than tailored for a single task. We ex-

pect LLaMA-CoS and ChatGPT can apply toolkits
borrowed from other tasks to solve the target query
in a CoS approach.

To validate this, we source two additional tasks
from BIG-bench: Dynamic Counting and Unit In-
terpretation. For each task, we provide a toolkit
created explicitly for the target task or borrowed
from another task. Specifically, we pair Dynamic
Counting and Unit Interpretation respectively with
Dyck Language and Arithmetic.

Under these settings, we evaluate the perfor-
mance of both LLaMA-CoS and ChatGPT in Ta-
ble 7 and show that both LLaMA-CoS and Chat-
GPT can utilize a generic toolkit borrowed from
another task to solve target queries through CoS.
Though the performance still lags, these findings
nevertheless confirm our assumption that CoS can
increase the robustness of tool-using, and make our
Toolink more applicable to real-world scenarios.
We present more details in Appendix H.

6 Conclusions

We present Toolink, a tool-training framework
that effectively applies toolkits to solve problems
leveraging small, open-source language models.
Toolink offers increased flexibility in adapting to di-
verse downstream tasks while addressing concerns
related to high inference costs and privacy. Our
main contributions include i) empirically imple-
menting a framework that can effectively leverage
open-source models’ tool-using ability, ii) devis-
ing the chain-of-solving (CoS) method that links
toolkit creation and tool use through robust plan-
ning and calling, and iii) releasing the CoS-GPT
dataset that aims to enhance the model’s CoS capa-
bilities.

Specifically, our LLaMA-CoS model outper-
forms traditional CoT and achieves a comparable
performance to ChatGPT concerning tool-using.
We believe our study provides a solid foundation
for future researchers to explore and enhance the
tool-using capabilities of open-source models.

Limitations

Our experiments focus on equipping the open-
source model with tool-using capabilities through
the CoS approach, specifically in planning and call-
ing, while excluding the ability to create toolkits.
This limitation arises from the fact that the LLaMA-
7B primarily relies on provided demonstrations and
lacks the internal creativity required for toolkit cre-
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ation. Moreover, the absence of enough training
data further hampers the acquisition of this knowl-
edge. We acknowledge this challenge posed by
the transfer of the toolkit creation capability from
closed-source models and leave it as an avenue for
future research.

Additionally, it is important to note that though
the tasks tested in our study include diverse toolk-
its and queries, they are mostly sourced from the
BIG-bench dataset. To gain a more holistic un-
derstanding of the generalizability of our results,
future research should expand the application of
Toolink to a broader range of scenarios. This would
enable a more comprehensive assessment of the
framework’s efficacy and applicability.

Ethics Statement

We consider the following issues in this paper:
• Privacy is a crucial aspect to consider when uti-

lizing closed-source models such as ChatGPT
and GPT4. These models have the potential to
learn sensitive information internally, posing a
risk to personal privacy. In contrast, Toolink ad-
dresses this concern by leveraging only a limited
number of publicly available samples for toolkit
creation, leaving the majority of testing queries
blind to closed-source LLMs. This approach
reduces the possibility of mishandling data and
safeguards user privacy. By minimizing the ex-
posure of sensitive information, Toolink miti-
gates the risks associated with privacy breaches
when compared to closed-source models.

• Transparency is a key aspect that aims to en-
hance the interpretability and comprehensibil-
ity of AI systems from a human perspective.
In Toolink, we prioritize transparency through
the creation of toolkits that provide clear infor-
mation about their utility, inputs, and outputs.
Additionally, we disentangle the CoS into sep-
arate stages of planning and calling, which in-
creases the interpretability of the model’s rea-
soning for users. We also encourage future re-
search to further document the specific scenarios
in which our framework exhibits its maximum
effectiveness, as well as to outline potential risks
involved. This will contribute to a more compre-
hensive understanding of Toolink and facilitate
informed decision-making.

• Potential Bias is another critical aspect that we
prioritize addressing in our work. We acknowl-
edge that bias and discrimination can inadver-

tently manifest through problematic examples
present in the training data. To mitigate this
concern, we adopt a meticulous approach to cu-
rate the CoS-GPT dataset, which consists of
data points from various sources. We empha-
size diversity to minimize the presence of poten-
tially biased patterns during the data construc-
tion. Through these efforts, we aim to develop
the model’s tool-using and CoS ability that pro-
motes equitable and unbiased outcomes, foster-
ing trust and inclusiveness in the application of
AI systems.
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Appendix

A Prompt Pattern for ChatGPT Toolkit

We show the pattern of the prompt we apply for
the creation of toolkits leveraging GPT-3.5-turbo
in Figure 6. The temperature is set to 0.3 to ensure
the model clearly follows the instructions while
retaining its creativity to a certain extent. The max
length during generation is set to 1024. The prompt
shown mainly consists of the instruction for toolkit
creation, the demonstration of the format, sample
public data, and the task description.

B Toolkits for tasks from BIG-bench

We show in Figures 8 to 15 the toolkits that GPT-
3.5-turbo created leveraging the prompt mentioned
in the previous section. Notice that we show the
final version of the toolkit, which may contain cer-
tain modifications based on human feedback. For
instance, in Figure 10, we have integrated addition,
subtraction, and hadamard operation into one sin-
gle tool, as all of them do not change the shape of
the given matrix. This will effectively reduce the
redundant tools and help the model learn with ease.

C Settings for Chain-of-Solving

C.1 Choice of Instruction
To inspire the models’ ability to plan and call
the tools during chain-of-solving (CoS), we ap-
ply clear instructions to prompt the model. For
CoS-Planning, we choose the instruction "You are
presented with a question and several tools that
may be useful. Select the useful tools and plan how
to solve the problem.", while for CoS-Calling, we
choose the instruction "Use the tool given in the
input to write code to solve the problem.". This ap-
plies to all the settings, including the LLaMA-CoS
because it is also tuned in an instruction-following
way.

C.2 Details about Demonstrations
For all the experiments leveraging ChatGPT, de-
spite the instructions, we also provide the model
with demonstration examples to showcase the for-
mat of planning and calling, as well as to better
leverage its potential. The temperature is set to 0.3
during generation, and the max output length is set
to 1024.

For the raw LLaMA-7B and Alpaca baselines
without being tuned, the demonstration exam-
ples are also applied to provide guidance, while

the LLaMA-CoS tuned under our Toolink frame-
work does not need demonstration examples as it
is already tuned under the instruction-following
paradigm.

D Separated Test of CoS-Planning and
CoS-Calling

In Toolink, planning and calling are combined as
a whole CoS process, where the plans generated
by the model are again fed back to itself to help
guide the generation of the final tool calling de-
cision. To disentangle their functions and better
understand their role, we employ tests to measure
their accuracy separately.

D.1 CoS-Planning Details

For the CoS-Planning test, we provide the model
with the instructions and all the available tools in
the toolkit. In Figure 7, we showcase the format of
the CoS-Planning prompt given to the model.

However, plans are generated in the form of nat-
ural language, whose accuracy is hard to measure.
For simplicity, we instead only measure if the cor-
rect tools are called upon to solve the given prob-
lem.

Suppose KT = {k1, k2, ..., kN} is the toolkit
with N tools for task T . For a specific query,
we denote the set of useful tools as Kuse ⊆ KT

and other redundant tools as Krdt ⊆ KT . Sup-
pose the set of tools called upon during planning
is Kcall ⊆ KT , then the correct tools called is
denoted as Kcorrect = Kcall ∩ Kuse, and the er-
roneous tools called Kerr = Kcall ∩Krdt. These
are the exact definitions of the variables that we
apply in Equation (1).

If all the useful tools are called correctly and
precisely, where Kcall = Tuse, the accuracy will
be 1.00. Note that this metric is relatively strict
because wrong calls will result in a reduction of
accuracy.

D.2 CoS-Calling Details

For the CoS-Calling test, the standard (correct)
plans will be provided to the model, instead of the
plans that the model previously generated. The
CoS-Calling test solely aims to investigate the
model’s ability to follow plans and generate the
correct calling decisions. Besides the plans and
instructions, only the useful tools with respect to
the given query are provided in the prompt, instead
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### Instruction:
You are asked to create a toolkit to solve the given task. Each tool in the toolkit should be a 
Python function that is helpful to solve the problems in the task. 
You will be given the related information about the task and the example queries to help you create 
the useful tools.
For each tool you create, please first state the tool’s name and its purpose, and then give its 
implementation using python code. Please wrap the code in ```python … ```. You can create 2 to 5 
tools for each task.

### Task 1
- Task Meta Information
The task asks the model to unscramble letters into a word. You should arrange the letters in correct 
order and output a valid English word.
- Sample Queries
1. Q: Please unscramble the letters into a word, and write that word: imitedl A: limited
2. Q: Please unscramble the letters into a word, and write that word: ermelonwat A: watermelon
3. Q: Please unscramble the letters into a word, and write that word: ttlebo A: bottle
Please create a toolkit including Python functions that are useful in solving the problem.
### Response
- Tool 1: 
permutations: this tool takes in a given string, generates all possible permutations of it, and 
returns them in a list.
```python
import itertools
def permutations(word):

perms = [''.join(p) for p in itertools.permutations(word)]
return perms

```
- Tool 2:
valid_word_lookup: this tool takes in a string, checks whether it’s a valid English word, and returns 
a bool value.
```python
import nltk
from nltk.corpus import words
def valid_word_lookup(word):

nltk.download('words')
english_words = set(words.words())
return word.lower() in english_words

```

### Task 2
- Task Meta Information
[Meta Information of the Target Task]
- Sample Queries
[Sample Queries for Toolkit Generation in QA Format]
Please create a toolkit including Python functions that are useful in solving the problem.
### Response

----------------------------------------------

----------------------------------------------

Figure 6: The pattern of the prompt given to GPT-3.5-turbo to generate the toolkit.

of all the tools from the toolkit. We showcase the
format of the prompt given to the model in Figure 7.

The accuracy of CoS-Calling is based on the
matching of the model’s output to the correct an-
swer. For tasks Arithmetic and Chinese Remain-
der, the accuracy is evaluated in numerical format;
for Matrix Shape, the accuracy is evaluated based
on the matching of dimensions list; for all other
tasks from BIG-bench, the accuracy is based on
the matching of strings between the model’s output
and the correct answer.

E Dataset Construction

In this section, we provide more details about how
CoS-GPT is constructed. We introduce respectively

the construction of tool-using data (including plan-
ning and calling) and code generation data. All the
data points aim to enhance the open-source model’s
CoS ability.

E.1 Construction of Tool-Using Data

For each query in AQUA-RAT, GSM8K, and
TabMWP, we first utilize ChatGPT to create a di-
verse set of tools that are potentially relevant to
the given query, forming the toolkit. We then pro-
vide this toolkit to ChatGPT and allow it to select
the most suitable tools. Subsequently, we prompt
ChatGPT to generate decision calls based on the se-
lected tools and manually verify the correctness of
the resulting outputs. If the final answer is correct,
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Prompt Format for Tool Plan:
### Instruction:
You are presented with a question and several tools that may be useful. Select the useful tools and 
plan how to solve the problem.
### Input:
- Question:
[Query from data]
- Available Tools:
1. [Name: Introduction about purpose, inputs, outputs]
2. [Name: Introduction about purpose, inputs, outputs]
...
### Response:

Prompt Format for Tool Call:
### Instruction:
[Query from data]
Use the tool given in the input to write python code to solve the problem.
### Input:
- Tool 1:
[Name: Introduction about purpose, inputs, outputs]
[Simplified Code Realization]
- Tool 2:
[Name: Introduction about purpose, inputs, outputs]
[Simplified Code Realization]
...
- Plan
[Plan from Model’s Tool Plan Response or the Standard (Correct) Plan]
### Response:

----------------------------------------

Figure 7: The format of the data (and prompt) for CoS-Planning and CoS-Calling.

we divide ChatGPT’s responses into two distinct
components, representing the planning stage and
the calling stage, which are then individually added
to the dataset. In this manner, the validity of our
data points can thus be guaranteed.

Throughout these steps of data construction, we
also incorporate demonstration examples sampled
from the constructed dataset, thereby expanding the
dataset in a self-iterative manner. Figure 7 shows
detailed information about the format of the query.
Besides the query, we also provide the correspond-
ing CoS-Planning or CoS-Calling response and the
implementation of the toolkit with useful and re-
dundant tools.

E.2 Construction of Code Generation Data

The code generation data in CoS-GPT are sourced
from 6 different venues, including Python-Simple,
Python-Specific, Math, Algorithm, LeetCode, and
Rectification. The objective behind these cate-
gories is to enhance the model’s proficiency in
problem-solving through code utilization, calling
existing packages, applying reasoning, employing
algorithms, completing codes of challenging com-
petitions, and engaging in self-rectification.

For Python-Simple and Python-Specific, the for-
mer aims to boost the models’ ability to solve sim-
ple problems using codes, while the latter aims to

enhance the model’s ability to leverage code pack-
ages to solve more complex problems. Both these
two sets are generated using ChatGPT. We prompt
the model with instructions and demonstrations
and gather the code snippets the model generated
to solve the given problem.

The queries for the Math set are sampled from
the training set of MathQA (Amini et al., 2019)
and augmented with a code solution based on the
given query and reasoning, leveraging ChatGPT.
The generated programs are verified to ensure the
output answer is the same as the correct one origi-
nally, thus ensuring the validity of the augmented
data points. The Algorithm set is extracted from
the open-source Python algorithm repository, with
over 40 categories and more than a hundred diverse
algorithms. For each algorithm, we ask ChatGPT
to generate a query related to it and use a code
snippet to solve the problem. The codes and cor-
responding queries are then gathered and formed
into the instruction-following format.

For the LeetCode set, we directly extract the of-
ficial open-sourced problems and the code answers
from the website and form our data. The Rectifica-
tion set is gathered from the error codes generated
in the five sets before. The error tracebacks and
the bad code snippet are fed into ChatGPT, and
we leverage it to rectify the codes and generate a
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correct code snippet that can solve the given query
successfully. We gather the generated codes and
execute them again, retaining only the ones that
give a correct answer finally and form the set based
on these valid data points.

F Main Experiment Setting Details

For our main experiment, we finetuned the LLaMA-
7B model on four A100-80G GPUs, with a total
batch size of 32 and a learning rate of 1e-5. For
the model whose performance we demonstrate in
Table 4 and Table 5, its training dataset consists
of 1.6K target task-specific data points (8 tasks,
100 for planning and 100 for calling each), 4K
tool-using data and 3K code-generation data ran-
domly sampled respectively from the CoS-GPT
dataset. We trained the LLaMA-7B on these data
for 3 epochs and obtained LLaMA-CoS.

In addition, for the ablation study about the train-
ing on codes we perform in § 4.3, we apply 7K
tool-using data and remove all the code-generation
data points. We keep all the other settings the same
in this study.

G Case Studies of Diverse CoS Patterns

In Figure 5, we present three case studies highlight-
ing the diverse nature of LLaMA-CoS in applying
planning and calling for tool-using.

Firstly, LLaMA-CoS exhibits the ability to gen-
erate sequential plans involving different tools. In
the first case, the model simulates the operation on
matrices step by step in a linear way and finally
gets the correct result.

Secondly, LLaMA-CoS demonstrates profi-
ciency in executing complex tool calls within
branch-loop structures. In the second case, the
model learns to use different stack operations based
on the character met in the expression, and can call
the useful tool in a loop structure.

Lastly, the model showcases its competence in
performing nested tool invocations. In the third
case, the model is able to directly pass the con-
verted hour retrieved from the previous tool as the
input parameter for the next tool, which illustrates
a successful nested tool call.

These examples serve to show the robustness,
versatility, and adaptability of LLaMA-CoS across
a wide range of scenarios.

H CoS on Generic Toolkit Details

We source two new tasks, Dynamic Counting and
Unit Interpretation, from the BIG-bench. We apply
all the problems in Dynamic Counting for our test
of toolkit generalization. However, for Unit Inter-
pretation, we specifically select the data from LV
1 in order for the tools from task Arithmetic to be
properly applied. To ensure fairness, we expand
the dataset by interactively sampling new questions
with similar patterns from ChatGPT and incorpo-
rating them until the dataset reaches its original
full size. Note that we only aim to showcase the
toolkit’s generalization ability and compare the per-
formance of LLaMA-CoS and ChatGPT within this
work, so we deem expanding the dataset as fair and
reasonable under our settings.

We show the toolkits specially tailored for these
two new tasks in Figures 16 and 17. The LLaMA-
CoS model we apply is still the model we have
trained in the main experiment, detailed in Ap-
pendix F. All the other settings, including the Chat-
GPT applied under our framework, are kept the
same as that in the main experiment.
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Toolkit for task: Arithmetic
- Tool 1: 
add: it takes in two numbers and returns their sum
```python
def add(a, b):

return a + b
```
- Tool 2:
sub: it takes in two numbers a and b and returns a - b
```python
def sub(a, b):

return a - b
```
- Tool 3:
mul: it takes in two numbers and returns their product
```python
def mul(a, b):

return a * b
```
- Tool 4:
div: it takes in two numbers a and b and returns the integer value of a / b
```python
def div(a, b):

return int(a / b)
```
- Tool 5:
mod: it takes in two numbers a and b and returns a % b
```python
def mod(a, b):

return a % b
```

Figure 8: The toolkit for task Arithmetic.
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Toolkit for task: Date Understanding
- Tool 1: 
add_time: It takes in the start day in format MM/DD/YYYY, and calculate the date after y years, m 
months and d days. It returns a string in format MM/DD/YYYY.
```python
import datetime
def add_time(start_day, years=0, months=0, days=0):

start_date = datetime.datetime.strptime(start_day, "%m/%d/%Y")
new_date = start_date + datetime.timedelta(days=days)
if new_date.month + months > 12:

r = int((new_date.month + months) / 12)
new_date = new_date.replace(year=new_date.year + years + r, month=(new_date.month + months –

1) % 12 + 1)
else:

new_date = new_date.replace(year=new_date.year + years, month=new_date.month + months)
return new_date.strftime("%m/%d/%Y")

```
- Tool 2:
subtract_time: It takes in the start day in format MM/DD/YYYY, and calculate the date y years, m 
months and d days before this day. It returns a string in format MM/DD/YYYY.
```python
import datetime
def subtract_time(start_day, years=0, months=0, days=0):

start_date = datetime.datetime.strptime(start_day, "%m/%d/%Y")
new_date = start_date - datetime.timedelta(days=days)
if new_date.month - months <= 0:

r = int((new_date.month - months) / -12) + 1
new_date = new_date.replace(year=new_date.year - years - r, month=(new_date.month - months –

1) % 12 + 1)
else:

new_date = new_date.replace(year=new_date.year - years, month=new_date.month - months)
return new_date.strftime("%m/%d/%Y")

```
- Tool 3:
convert_hour: It takes the number of hours and convert it into days (integer).
```python
import math
def convert_hour(hours):

days = math.ceil(hours / 24)
return days

```

Figure 9: The toolkit for task Date Understanding.
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Toolkit for task: Matrix Shape
- Tool 1: 
multiply: it takes in two lists representing the shape of two matrix, and returns the shape of their 
product.
```python
def multiply(shape1, shape2):

if shape1[1] != shape2[0]:
raise ValueError("Matrix shapes are not compatible for multiplication.") 

result_shape = shape1[:-1] + [shape2[-1]]
return result_shape

```
- Tool 2:
kronecker: it takes in two list representing the shape of two matrix, and returns the shape of their 
kronecker product.
```python
def kronecker(shape1, shape2):

if len(shape1) != len(shape2):
raise Exception("The number of dimensions of the two matrices is not equal")

result_shape = [dim1 * dim2 for dim1, dim2 in zip(shape1, shape2)]
return result_shape

```
- Tool 3:
sum_over_axis: it takes a list representing the shape of the matrix, and the dimension of the axis 
that is to be sum up. It returns the shape of the resulting matrix.
```python
def sum_over_axis(shape, axis):

if axis >= len(shape):
raise ValueError("Invalid axis dimension.")

result_shape = shape[:axis] + shape[axis+1:]
return result_shape

```
- Tool 4:
transpose: it takes a list representing the shape of a matrix to be transposed, and returns the shape 
of the resulting matrix.
```python
def transpose(shape):

result_shape = list(reversed(shape))
return result_shape

```
- Tool 5:
add_subtract_hadamard: it takes two lists representing the shape of two matrices for add, sbstract
and hadamard, and returns the shape of the resulting matrix.
```python
def add_subtract_hadamard(shape1, shape2):

assert shape1 == shape2
return shape1

```

Figure 10: The toolkit for task Matrix Shape.
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Toolkit for task: Navigation
- Tool 1: 
update_orientation: It takes the original orientation(N, E, S or W) and turn direction(left, right or 
around), and returns the new orientation. It should be used only if not always face forward.
```python
def update_orientation(orientation, turn_direction):

orientations = ["N", "E", "S", "W"]
current_index = orientations.index(orientation)
if turn_direction == "left":

new_index = (current_index - 1) % 4
elif turn_direction == "right":

new_index = (current_index + 1) % 4
elif turn_direction == "around":

new_index = (current_index + 2) % 4
else:

raise ValueError("Invalid turn direction.")
return orientations[new_index]

```
- Tool 2:
update_location: It takes the current location(x, y), orientation(N, E, S or W), and steps, and 
returns the new location after action.
```python
def update_location(current_location, orientation, steps):

x, y = current_location
if orientation == "N":

new_location = (x, y + steps)
elif orientation == "E":

new_location = (x + steps, y)
elif orientation == "S":

new_location = (x, y - steps)
elif orientation == "W":

new_location = (x - steps, y)
return new_location

```

Figure 11: The toolkit for task Navigation.

Toolkit for task: Chinese Remainder
- Tool 1: 
divide_remain: it takes in a, b, and c, and checks if the remainder of a divided by b is equal to c.
```python
def divide_remain(a, b, c):

return a % b == c
```
- Tool 2:
check_validity: it takes into a list of possible answers, and filters the list of answers based on 
the upper bound x.
```python
def check_validity(answers, x):

return [answer for answer in answers if answer <= x]
```

Figure 12: The toolkit for task Chinese Remainder.
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Toolkit for task: Dyck Language
- Tool 1: 
get_closing_parenthesis: This tool takes in an opening parenthesis and returns the corresponding 
closing parenthesis.
```python
def get_closing_parenthesis(opening):

openings = ['(', '[', '{', '<']
closings = [')', ']', '}', '>']
if opening in openings:

return closings[openings.index(opening)]
else:

return None
```
- Tool 2:
get_opening_parenthesis: This tool takes in an closing parenthesis and returns the corresponding 
opening parenthesis.
```python
def get_opening_parenthesis(closing):

openings = ['(', '[', '{', '<']
closings = [')', ']', '}', '>']
if closing in closings:

return openings[closings.index(closing)]
else:

return None
```
- Tool 3:
stack_insert: This tool takes in a stack and an element and returns the stack with the element 
inserted at the top.
```python
def stack_insert(stack, element):

stack.append(element)
return stack

```
- Tool 4:
stack_pop: This tool takes in a stack and returns the stack with the top element removed.
```python
def stack_pop(stack):

if len(stack) > 0:
stack.pop()

return stack
```

Figure 13: The toolkit for task Dyck Language.

Toolkit for task: Boolean Expression
- Tool 1: 
evaluate_expression: this tool takes in an expression as a string, evaluates it using Python's eval() 
function, and returns the result.
```python
def evaluate_expression(expression):

try:
result = eval(expression)
return result

except SyntaxError:
return "Invalid expression"

```
- Tool 2:
extract_valid_expressions: this tool takes in a string and extract the valid string that represents 
the expression.
```python
def extract_valid_expressions(question_string):

expression = question_string.split(':')[1].split('is')[0].strip()
return expression

```

Figure 14: The toolkit for task Boolean Expression.
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Toolkit for task: Tracking Shuffled Objects
- Tool 1: 
create_object_dict: this tool takes in a list of people and their initial object, and returns a 
dictionary mapping each person to their object.
```python
def create_object_dict(people, objects):

object_dict = dict(zip(people, objects))
return object_dict

```
- Tool 2:
update_object_dict: this tool takes in an object dictionary, a list of object trades, and updates the 
object dictionary based on the trades.
```python
def update_object_dict(object_dict, trades):

for trade in trades:
person1, person2 = trade.split(' and ')
object_dict[person1], object_dict[person2] = object_dict[person2], object_dict[person1]

return object_dict
```
- Tool 3:
parse_trades: this tool takes in a string of trades and returns a list of individual trades.
```python
def update_object_dict(object_dict, trades):

def parse_trades(trades_str):
trades = trades_str.split('. Then, ')
trades[0] = trades[0].replace('At the start', '')
trades[-1] = trades[-1].replace('At the end', '')
return trades

```
- Tool 4:
get_final_object: this tool takes in a object dictionary and returns the object held by the target 
person finally.
```python
def get_final_object(object_dict, target_person):

return object_dict[target_person]
```

Figure 15: The toolkit for task Tracking Shuffled Objects.

Toolkit for task: Dynamic Counting
- Tool 1: 
get_closing_parenthesis: This tool takes in an opening parenthesis and returns the corresponding 
closing parenthesis.
```python
def get_closing_parenthesis(opening):

pairs_open = {'(': ')', '[': ']', '{': '}', '<': '>'}
if opening in pairs_open:

return pairs_open[opening]
else:

return None
```
- Tool 2:
find_open_remaining: This tool takes in a sequence of parenthesis and returns the single reamining
opening paraenthesis that is not closed.
```python
def find_open_remaining(parenthesis):

parenthesis = parenthesis.split(" ")
pairs_open = {'(': ')', '[': ']', '{': '}', '<': '>'}
pairs_close = {')': '(', ']': '[', '}': '{', '>': '<'}
stack = []
for p in parenthesis:

if p in pairs_open:
stack.append(p)

elif p in pairs_close:
if pairs_close[p] in stack:

stack.remove(pairs_close[p])
return stack[0]

```

Figure 16: The toolkit for task Dynamic Counting.
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Toolkit for task: Unit Interpretation (LV1)
- Tool 1: 
same_ratio_calculate_first: This tool assumes that a : b = x : y. x is the first position. It takes 
in a, b and y and returns x.
```python
def same_ratio_calculate_first(a, b, y):

return (a / b) * y
```
- Tool 2:
same_ratio_calculate_second: This tool assumes that a : b = x : y. y is the second position. It takes 
in a, b and x and returns y.
```python
def same_ratio_calculate_second(a, b, x):

return (b / a) * x
```

Figure 17: The toolkit for task Unit Interpretation (LV 1).
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