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Abstract
Entity Resolution (ER) is an essential task in
data integration and its goal is to find records
that represent the same entity in a dataset. Deep
learning models, especially large pre-trained
language models, have achieved state-of-the-art
results on this task. A typical ER pipeline con-
sists of Entity Blocking and Entity Matching:
Entity Blocking finds candidate record pairs
that potentially match and Entity Matching de-
termines if the pairs match. The goal of the en-
tity blocking step is to include as many match-
ing pairs as possible while including as few
non-matching pairs as possible. On the other
hand, the blocking task can also be considered
as an Information Retrieval (IR) task. How-
ever, state-of-the-art neural IR models that are
based on large language models have not been
evaluated on the ER task. What’s more, the gen-
eralization ability of state-of-the-art methods
for entity blocking is not well-studied but an
import aspect in real-world applications. In
this work, we evaluate state-of-the-art mod-
els for Entity Blocking along with neural IR
models on a wide range of real-world datasets,
and also study their in-distribution and out-of-
distribution generalization abilities.

1 Introduction

Entity Resolution (ER) aims to find data instances
that belong to the same entity, and is an essen-
tial problem in data integration (Getoor and
Machanavajjhala, 2012; Konda et al., 2016; Ra-
jaraman and Ullman, 2011). Over the decades of
study, the focus has shifted from rule-based meth-
ods (Singh et al., 2017) and machine learning-based
methods (Bilenko and Mooney, 2003; Konda et al.,
2016), to deep learning-based methods, especially
language model-based methods (Kasai et al., 2019;
Li et al., 2021; Miao et al., 2021; Mudgal et al.,
2018; Wang et al., 2022; Tu et al., 2022).

In various real-world applications, data instances
representing entities, such as product profiles or
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news articles, are commonly represented as text
items composed of words. A pair of text items is
deemed a match if they correspond to the same
real-world entity. One may compare every pair of
items to solve the problem, but the computational
cost of comparing each pair in a dataset to iden-
tify matches is prohibitively high, particularly for
large datasets where the number of all pairs grows
quadratically. To address this challenge, the entity
resolution (ER) pipeline typically contains two pri-
mary stages: blocking and matching. The blocking
stage aims to identify potential matches while ex-
cluding non-matching pairs, and the matching stage
verifies whether candidate pairs, obtained through
the blocking stage, indeed match. In the IR liter-
ature, this is a classic two-stage filter-and-refine
pipeline, where the first stage (Entity Blocking) is
a candidate generation phase.

In recent literature of ER, significant advances
in accuracy have been achieved through the fine-
tuning of Large Pre-trained Language Models
(PLMs) (Thirumuruganathan et al., 2021; Wang
et al., 2022; Peeters and Bizer, 2022; Li et al.,
2021; Miao et al., 2021). Compared to previous
methods, these PLM-based methods excel at cap-
turing the semantics of text items and correlations
of the words in the items. it has been demonstrated
that PLM-based methods achieve state-of-the-art
performance on both the blocking phase and the
matching phase of the ER pipeline in (Thirumuru-
ganathan et al., 2021; Miao et al., 2021; Li et al.,
2021; Wang et al., 2022).

Within the literature, the blocking stage is typ-
ically composed of two steps: embedding and
similarity search (Thirumuruganathan et al., 2021;
Wang et al., 2022). In the embedding step, pre-
trained language models are fine-tuned using either
unsupervised or supervised learning approaches to
encode entities into embeddings that encapsulate
their semantic meaning. Subsequently, in the simi-
larity search step, the search for similar item pairs
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is conducted directly on the embeddings.

On the other hand, the entity blocking task can be
viewed as an Information Retrieval (IR) task, which
has seen significant advancements in recent IR liter-
ature with the emergence of large language models
(PLMs). These PLMs play a crucial role in both
dense and sparse neural ranking models, such as
Contriever (Izacard et al., 2021), ColBERT (Khat-
tab and Zaharia, 2020), and Splade (Formal et al.,
2022). Dense models, such as Contriever (Izacard
et al., 2021) and ColBERT (Khattab and Zaharia,
2020), leverage pre-trained language models and
contrastive loss to learn dense representations for
text items. Although these dense neural IR mod-
els are primarily fine-tuned for question answering
tasks, they can be naturally applied in the entity
blocking task. Sparse retrieval models, exempli-
fied by Splade (Formal et al., 2022), predict the
importance of tokens in text items and combine
this importance with token embeddings generated
by large language models for ranking purposes.
These sparse neural IR models show potential for
the entity blocking task. Since the performance
of both dense and sparse LLM-based IR models
has yet to be thoroughly investigated within the
entity resolution literature, we also include them in
our reproducibility study to better understand the
advancement of both the IR and the ER literature.

In real-world applications of large-scale entity
resolution (ER), labeled data is often only available
for a small subset of the entire dataset or not avail-
able at all. What’s more, it is not always feasible
to use a large corpus of diverse real data during the
training process, and real customer data is some-
times inaccessible during the training process due
to various constraints such as privacy and security.
Hence, it is crucial to assess the generalization ca-
pabilities of PLM-based methods, for the blocking
task—an aspect largely unexplored in recent litera-
ture. Besides, commonly used datasets for evaluat-
ing entity resolution are not specifically designed
for evaluating generalization.

In this paper, we examine the reproducibility
and generalization ability of deep learning meth-
ods based on large language models (PLMs) for
entity blocking. We conduct an evaluation and
comparison of state-of-the-art methods from both
the entity resolution and information retrieval lit-
erature as well as non-PLMs based methods, pre-
pare new datasets and experimental settings that are
specifically designed for evaluating generalization

abilities of entity blocking methods.

2 Problem Definition

The Entity Resolution (ER) process frequently op-
erates on two distinct tables A and B, each con-
taining item profiles. The primary objective is to
identify all pairs (x, y) where x ∈ A ∧ y ∈ B and
both x and y correspond to the same real-world en-
tity - these pairs are referred to as matches. When
focusing on identifying duplicates within a single
dataset, we consider B = A for the remaining defi-
nitions in this section.

Figure 1 provides an example with two ta-
bles, each containing product profiles with iden-
tical attributes (“Product Name”, “Manufacturer”,
“Price”). Solid arrows in the figure represent
matches, i.e., the second profile in Table A matches
the first profile in Table B, and the third profile in
Table A matches the third profile in Table B. The
dashed arrow denotes an unmatched pair: the sec-
ond item in Table A does not match the second
item in Table B.

To use pre-trained language models for process-
ing item profiles, the raw texts are first serialized
the same way as in existing methods (Li et al., 2021;
Miao et al., 2021; Wang et al., 2022): for each data
entry e = (attri, vali)1≤i≤k, we let serialize(e) ::=
[COL] attr1 [VAL] val1 ... [COL] attrk [VAL]
valk, where [COL] and [VAL] are special tokens
that indicate the beginning of attribute names and
values respectively. For example, the first item
in the left table in Figure 1 can be serialized as
follows: [COL] Product Name [VAL] instant im-
mersion spanish deluxe 2.0 [COL] Manufacturer
[VAL] topics entertainment [COL] Price [VAL]
39.99

Definition 2.1 (Embedding). An embedding model
Memb with d dimensions takes a serialized item
profile x as input, and outputs a real vector
Memb(x) ∈ Rd. Given a distance function dist,
such as euclidean distance, for a pair of profiles
(x, x′), the value of dist(x, x′) is small if and only
if (x, x′) constitutes a match.

In the interest of simplicity, we normalize
all output vectors, implying that the L-2 norm
∥Memb(x)∥2 = 1 for each data item x ∈ D.

Definition 2.2 (Entity Blocking). Entity Blocking,
as a critical step in the entity resolution process,
involves generating a candidate set of pairs C =
{(x, y)|x ∈ A, y ∈ B} from tables A and B of
item profiles.
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Product Name Manufacturer Price

instant immersion spanish deluxe 2.0 topics entertainment 39.99

adventure workshop 4th-6th grade 7th edition encore software 29.99

sharp printing calculator sharp el1192b 45.63

Product Name Manufacturer Price

encore inc adventure workshop 4th-6th grade 7th edition encore 26.49

adventure workshop 4th-6th grade 8th edition NULL 39.99

new-sharp shr-el1192bl two-color printing calculator 
12-digit lcd black red

sharp 45.99

Figure 1: Entity Resolution: determine the matching entries from two datasets.

If we denote the ground-truth matches as G,
the aim of the blocking step is to maximize re-
call |C ∩G|/|G|, while minimizing the size of the
candidate set |C|. A smaller |C| for the same recall
implies fewer non-matching pairs in C and higher
precision, leading to reduced computational cost
for the subsequent matching phase. For a given
blocking model, a larger candidate set generally en-
hances recall but diminishes precision. Therefore,
striking a balance between recall and precision is a
necessity in real-world applications.

Post fine-tuning of Memb, we apply the em-
bedding model Memb to each data item to gen-
erate high-dimensional vectors. In this work, we
use the high dimensional similarity search library
FAISS (Johnson et al., 2019) to find the k most sim-
ilar embeddings for every embedding, forming the
candidate set. We note that k is a tunable parameter
that controls the candidate set size and recall.

3 Reproducibility Dimensions of Entity
Blocking

For each data entry, the model Memb will con-
vert each serialized text into in an embedding.
In this study, we focus on utilizing a pre-trained
Transformer-based language model, such as BERT
(Devlin et al., 2018) and its variations like
RoBERTa (Robertson et al., 2009). Transformer-
based language models excel in generating highly
contextualized embeddings that offer enhanced un-
derstanding of textual information (Devlin et al.,
2018; Robertson et al., 2009; Wolf et al., 2020).

3.1 PLM-based Entity Blocking methods

Utilizing the embeddings directly generated by
off-the-shelf pre-trained language models (e.g.,
RoBERTa (Liu et al., 2019)) has been shown to
yield less competitive results (Li et al., 2021). Con-
sequently, recent studies in the entity resolution
(ER) literature have focused on fine-tuning pre-
trained language models with self-supervised learn-
ing objectives specifically for the entity blocking
step. These self-supervised methods involve sev-
eral data augmentation (DA) operators designed
for the ER problem (Li et al., 2021; Thirumuru-

ganathan et al., 2021; Wang et al., 2022) to gener-
ate similar item pairs for the training. For example,
a DA may randomly removes a small portion of
words from the profile and the modified profile and
the original profile still represent the same entity.

DeepBlocker (Thirumuruganathan et al., 2021)
proposes a set of deep learning solutions for entity
blocking and one of them employs Sentence-BERT
and minimizes the triplet loss. Its DA operator is
randomly deleteing up to 40% of the words and it
randomly sample negative examples to construct
training triplets. Since the authors do not open-
source their code for this specific solution, we im-
plement it and tune its performance to the best of
our knowledge. To train DeepBlocker, we replace
sentence-BERT with RoBERTa (Liu et al., 2019)
because it is empirically better in the entity resolu-
tion task (Li et al., 2021; Wang et al., 2022). We
generate 64 randomly augmented versions for each
item as positive examples and randomly sample 64
items in the training set as negative examples.

Sudowoodo (Wang et al., 2022) employs self-
supervised contrastive learning, combining state-
of-the-art contrastive learning methods SimCLR
(Chen et al., 2020) and Barlow Twins (Zbontar
et al., 2021). Its includes more diverse DA opera-
tors from (Li et al., 2021) and also token embed-
ding level DA operation cutoff (Shen et al., 2020).
For training Sudowoodo, we also use RoBERTa as
the pre-trained LM and apply Cutoff as the data
augmentation operator. We follow most of Su-
dowoodo’s experimental settings for evaluating the
ER task, but use Cosine Annealing Warm Restarts
for the learning rate scheduler.

3.2 Neural IR Models

In recent literature of Information Retrieval, PLM-
based neural retrieval models achieve state-of-the-
art performance.

Contriever (Izacard et al., 2021) is a recently
proposed neural retrieval model that uses con-
trastive learning to learn representations for docu-
ments and queries. The model is trained on a large
corpus of documents and queries, and it learns to
map them into a shared embedding space where
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documents and queries with similar semantics are
close to each other. Its contrastive learning involves
hard negative sampling where both in-batch and
cross-batch negatives are used for optimizing the In-
foNCE loss. For the entity blocking task, a straight-
forward way is to train the model on the entity
blocking data and generate embeddings for getting
candidate pairs by similarity search. We use the
authors’ code1 to fine-tune the checkpoint "face-
book/contriever" and train until the loss converges.

SPLADE (Formal et al., 2022) (Scalable Pro-
ductive Learning with Automated DEsign) is a re-
cent sparse neural retrieval model that uses a novel
architecture that combines dense and sparse repre-
sentations of documents and queries. The model
is trained to predict the probability of a document
being relevant to a given query. SPLADE has been
shown to outperform other state-of-the-art retrieval
models on several benchmark datasets. It can
seamlessly migrate to the entity blocking task by
preparing training triplets similar to DeepBlocker.
To train Splade for entity blocking, we modified
the authors’ code2 to load their pre-trained model
for fine-tuning, which achieves higher accuracy in
our evaluation. The checkpoint we fine-tuned is
“navar/splade-cocondenser-ensembledistil”.

ColBERT (Khattab and Zaharia, 2020) is a neu-
ral retrieval model that uses a transformer-based
architecture and a pre-trained longformer model to
generate representations for documents and queries.
The model relies on fine-grained contextual late
interactionis to rank documents based on their rel-
evance to a given query. Like Splade, ColBERT
can be easily applied in the entity blocking task by
training with triplets. For ColBERT, we train the
model with our prepared training data following
their instructions3 and disabled the compression
for better accuracy.

3.3 Non-PLM based Methods

In the literature of both entity resolution and in-
formation retrieval, many work has focused on
non-PLM based methods. In this work, we also in-
clude two such methods that are empirically proven
to be effective: Sparkly (Paulsen et al., 2023)
and BM25 (Robertson et al., 2009). Specifically,
Sparkly is a TF-IDF based method and achieves
state-of-the-art performance on various datasets.

1https://github.com/facebookresearch/contriever
2https://github.com/naver/splade
3https://github.com/stanford-futuredata/ColBERT

Table 1: Statistics of Common ER Datasets.
Dataset TableA TableB # Matched Pairs

Abt-Buy (AB) 1,081 1,092 1,028
Amazon-Google (AG) 1,363 3,226 1,167

DBLP-ACM (DA) 2,616 2,294 2,220
DBLP-Scholar (DS) 2,616 64,263 5,347

Walmart-Amazon (WA) 2,554 22,074 962

Table 2: Statistics of Processed WDC Product Dataset
Dataset # clusters # profiles # Groundtruth Pairs

Computers_small 1,000 4,050 18,818
Sports_small 1,000 3,505 13,030

Computers_large 121K 165K 215K
Sports_large 257K 311K 222K

Mixed 233K 500K 3.1M

We use Sparkly Auto in our evaluations 4. For
BM25 evaluation, we use a widely used package 5.

3.4 In-Distribution and Out-of-Distribution
Generalization

In this work, in-distribution generalization refers to
the case where the model only see a small portion
of data from a large scale dataset and the model is
tested on the whole dataset. We expect PLM-based
methods to generalize well in this task because
PLMs have been exposed to a significantly large
corpse during its pre-training. Similarly, in this
work, out of distribution generalization represents
the scenario where the model is trained on data
from one domain but tested on other domains.

We evaluate the performance of state-of-the-art
PLM-based methods for entity blocking on five
small scale ER datasets as listed in table 1, and also
the WDC dataset, a large-scale product matching
dataset (Peeters et al., 2023).

The small ER datasets include various domains
such as product profiles and scholar articles, and
each dataset contains two tables from two different
sources. The goal of entity resolution is the find
matched items across two tables. The smallest
table in these datasets has 1k profiles while the
largest one has 64k profiles. They all have pair-
wise labels that indicate whether the pairs match
or not. We use this set of datasets to evaluate out-
of-distribution generalization abilities of different
methods, by training each model using the training
set of Abt-Buy and evaluating on five datasets.

The WDC dataset comprises 26 million product
profiles from 79 thousand websites, wherein pro-
files representing the same product are grouped
together with the same cluster ID. Out of 25
top-level catagories, we randomly select two

4https://github.com/anhaidgroup/sparkly
5https://pypi.org/project/rank-bm25/
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Figure 2: Comparison of Models trained on AB

product categories, “Computers_and_Accessories"
and “Sports_and_Outdoors", to evaluate the in-
distribution generalization of blocking models. We
select the following attributes: “title", “brand",
“price", “description", and “specTableContent" for
evaluation. The Computers dataset we use has
165K profiles, 121K clusters, and 215K match-
ing pairs. The Sports dataset has 311K profiles,
257K clusters, and 222K matching pairs. We use
“Computers_large" and “Sports_large" to denote
the whole sets of profiles in these categories re-
spectively. From each of the two categories, we
randomly sample 1000 clusters that have a size of
between 2 and 10 and use every pair of profiles
in each cluster as a matching example. We use
“Computers_small" and “Sports_small" to denote
these two small sets. To further evaluate out-of-
distribution generalization abilities, we construct
a mixture of four categories from WDC, namely
“Shoes," “Automotive," “Electronics," and “Jew-
elry," which we use "Mixed" to denote. This dataset
contains 500K profiles, 233K clusters, and 3.1M
matching pairs. Due to hardware limits, we do not
explore larger datasets in this work. The statistics
of our processed datasets is listed in table 2.

we limit the maximum cluster size when eval-
uating the performance (namely the recall of
groundtruth pairs) of blocking models. This is
because some clusters in the WDC dataset contain
over a thousand profiles, which can generate mil-
lions of matching pairs, thus dominating the testing
set. To address this, we randomly select 20 profiles
to represent a cluster if its size is larger than 20,
enabling us to eliminate the dominating effect of
large clusters and focus on the most common use
cases for entity resolution.

4 Evaluations
We conduct the evaluations on a machine with a
12-core AMD Ryzen CPU (3.7GHz), 64GB main

memory, and a NVidia RTX 4090 GPU (24 GB
GPU memory). We limit the length of input to-
kens of text items to 128 for all methods. For each
evaluated method that involves training, we use the
same training data to ensure fair comparisons. We
followed the best practice of each selected method
according to their paper and official GitHub reposi-
tory, to conduct experiments in the entity blocking
task.

The main performance metric is recall in the
problem of entity blocking (Thirumuruganathan
et al., 2021; Wang et al., 2022). A higher recall can
always be achieved by including more candidate
pairs, but will a larger number of candidate pairs
will incur higher cost for the entity matching step
in entity resolution. To compare the effectiveness
of difference methods, we draw the curve that rep-
resent the relation between the size of the candidate
set (or the number of candidates) and the recall in
our evaluation. Each figure presented in this sec-
tion and the following section displays the recall
of the corresponding candidate set size on the y-
axis, and the number of candidate pairs obtained
by kNN search is shown on the x-axis. In our eval-
uation, k ranges from 1 to 20. This means we find
k candidates for each profile in the table, and the
total number of candidates equals k multiplies the
number of rows in the table. In comparing two
methods for entity resolution, our primary focus is
on the recall metric. This is because the ultimate
goal of entity resolution is to accurately identify
all data instances that correspond to the same en-
tity. Under the assumption of achieving equal recall
performance, the method that yields the smallest
candidate set size is considered as the best. This
is because a smaller candidate set size reduces the
computational overhead of downstream processing
and facilitates more efficient data handling.

We note that BM25 is not trainable and we use
BM25 directly on the datasets in our evaluations,
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so the curves of BM25 are not related to “out-of-
distribution” or “in-distribution”. We include the
performance of BM25 for easy comparisons with
other methods.

4.1 Out-of-Distribution Generalization

Figure 2 shows the out-of-distribution performance
of models trained on the Abt-Buy dataset. For
reference, we also include their performance on
Abt-Buy in Figure 2a. The ranking of model perfor-
mance on Abt-buy is Sparkly, Splade, Contriever,
Sudowoodo, BM25, ColBERT, and DeepBlocker.
This indicates that neural IR methods excel at the
entity blocking task.

Next, we compare the out-of-distribution gener-
alization ability of all methods in Figure 2b, 2c, 2d,
and 2e. DA is fairly easy dataset to solve and all
methods achieve good performance on it. Notably,
Splade and Contriever consistently out-performs
other methods and generalize exceptionally well.
Sudowoodo is also competitive in terms of out-of-
distribution generalization and achieves reasonable
performance on all datasets. ColBERT underper-
forms sudowoodo and experience obvious perfor-
mance drop on AG and DS. Lastly, DeepBlocker
is less competitive on all datasets but still general-
izes well on AG and DS. We only notice a signif-
icant performance drop on WA for DeepBlocker.
The reason why DeepBlocker underperforms Con-
triever and Sudowoodo is due to its training does
not gaurantee a robust representation learning - its
DA operator is simple and it simply randomly se-
lect negative examples. On the other hand, both
Contriever and Sudowoodo incorporates hard nega-
tive sampling techniques, which is a harder training
process for the models. Contriever and Sudowoodo
are closely related because both use contrastive
learning to learn robust representations of the pro-
files. Their main differences lie in that they use
different methods for building positive and neg-
ative pairs. Specifically, Contriever uses Inverse
Cloze Task and Independent Cropping for building
positive pairs, while Sudowoodo uses diverse data
augmentation operators to inject “noises” into the
original profiles. Furthermore, Contriever uses in-
batch and cross-batch negatives for its contrastive
learning, while Sudowoodo only uses in-batch neg-
atives but includes clustering-based negative sam-
pling to obtain hard negative examples. As shown
in Figure 2a, Contreiver and Sudowoodo have very
similar in-distribution performance. However, in

Figure 2b, 2c, 2d, and 2e, Sudowoodo underper-
forms Contriever, which indicates the strategy of
building training pairs in Contriever is better than
Sudowoodo for out-of-distribution generalization.

4.2 In-Distribution Generalization

In this section, we present the results of
our in-distribution generalization evaluations on
small-scale training sets (Computers_small and
Sports_small), large-scale in-distribution testing
sets (Computers_large and Sports_large), and a
mix of in-distribution and out-of-distribution test-
ing set (Mixed) consisting of profiles from four
different product categories. We trained two mod-
els. The first model is trained on Computer_small
and its performance is shown in Figure 3. The
second model is trained on Sports_small and its
performance is shown in Figure 4. It is worth not-
ing that the small training sets are subsets of the
large testing sets. Therefore, the models have some
prior exposure to a small portion of profiles in the
large sets. That being said, none of the methods
have been exposed to any profiles in the Mixed
set during training because the Mixed set does not
overlap with the two training sets.

Figure 3a and Figure 4a display the perfor-
mance of these methods on Computer_small and
Sports_small respectively. Overall, on these two
datasets, ColBERT outperforms other datasets and
Splade is the runner-up. Sudowoodo and Con-
triever have almost identical performance while
DeepBlocker is less competitive. These results are
similar to the previous section and demonstrates
that neural IR models can achieve excellent per-
formance in the entity blocking task. However,
traditional methods, Sparkly and BM25, obviously
under perform PLM-based methods. Especially,
BM25 does not scale to larger datasets due to the
quadratic computation complexity.

Figure 3b and Figure 4b display the perfor-
mance of these methods on Computer_large and
Sports_large respectively and indicate the in-
distribution generalization abilities of these meth-
ods. Although ColBERT is the top-performer on
smaller datasets, there is a noticable performance
drop on these large datasets, which indicates an
inferior in-distribution generalization ability. Su-
dowoodo outperforms all other methods on Com-
puter_large and is very close to the top-performer
on Sports_large, which indicates an excellent in-
distribution generalization ability. Contriever has a
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Figure 3: Comparison of Models trained on Computers_small
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Figure 4: Comparison of Models Trained on Sports_small

noticable drop on Computer_large while still per-
forms well on Sports_large. Splade has a consistent
performance on both datasets and demonstrates ex-
cellent generalization abilities. DeepBlocker un-
derperforms other methods but its performance is
almost consistent in the in-distribution generaliza-
tion setting.

Finally, Figure 3c and Figure 4c show the per-
formance of these methods under the mixed out-
of-distribution generalization setting, where the
trained models are evaluated on a mixture of out-
of-distribution datasets. On these datasets, all of
the methods suffer a noticable performance drop
at k=20. We note that this is mainly caused by a
higher density of matched profiles in the dataset. To
explain, the number of profiles in Mixed is at most
more than 3 times larger than the two large datasets,
but the number of groundtruth pairs in Mixed is
around 15 times more. This caused the entity block-
ing task to be much harder and requires larger can-
didate set sizes to achieve higher recalls. Contriever
outperforms other methods under this setting, while
Sudowoodo and Splade are very close to it. Deep-
Blocker slightly underperforms the aforementioned
three methods. However, ColBERT sufffers a sig-
nificant performance drop and it falls far behind
other methods under this setting. This is likely due
to insufficient training examples involved during
this training. In order to achieve optimal perfor-
mance for Late-interaction methods like ColBERT,
it often requires quite a bit of data for training.
Therefore, ColBERT is not an idead choice when

only a limited number of training data is available.

4.3 Running Time Evaluation
Next, in Table 3, Table 4, and Table 5, we report de-
tailed running time separated by training, indexing,
and retrieval, for various entity blocking methods
on different datasets.

Among the considered methods, DeepBlocker,
Sudowoodo, and Contriever require the least
amount of time for training their models, while
Splade requires at least 3 times longer time. No-
tably, ColBERT needs the longest training time,
exceeding 10 hours for each training set.

Regarding indexing and retrieval time, Deep-
Blocker, Sudowoodo, and Contriever use very
similar embedding processes and they all employ
FAISS-GPU for kNN search. This results in simi-
lar performance for these three methods, although
the indexing time of contriever is longer than other
methods. FAISS-GPU creates index and performs
similarity search on the GPU and is an order of
magnitude faster than FAISS-CPU in our evalu-
ation and the searching time for each dataset is
less than half a minute in all of our evaluations.
Next, Splade requires the least indexing time, while
its retrieval is significantly slower than that of the
FAISS-GPU-based methods, especially on large
scale datasets. Its scalability over the dataset size
is limited. We note that Splade’s slow retrieval
is partially due to the sequential nature of its cur-
rent retrieval code - it can only process one query
in GPU at a time. Finally, ColBERT is the most
computationally expensive method, requiring the
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Table 3: Training Time of each evaluated method.
Datasets DeepBlocker Sudowoodo Contriever Splade ColBERT
Abt-Buy 6m30s 3m94s 32m54s 1h33m 10h14m

Computers_small 24m51s 8m42s 33m02s 1h34m 10h19m
Sports_small 36m15 10m18s 32m50 1h33m 10h28m

Table 4: Indexing Time for all samples in each dataset.
Datasets DeepBlocker Sudowoodo Contriever Splade ColBERT
Abt-Buy 2.8s 2.5s 2.4s 8.3s 35.5s

Amazon-Google 2.7s 2.4s 2.1s 7.2s 28.8s
DBLP-ACM 5.1s 5.0s 4.9s 8.7s 38.8s

DBLP-Scholar 42.1s 41.3s 40.6s 37.7s 10.1s 37.4s
Walmart-Amazon 19.5s 22.8s 26.2s 9.8s 37.2s
Computers_small 7.5s 7.4s 16.35s 3.1s 39.6s

Sports_small 8.9s 9.0s 14.11s 3.0s 15.2s
Computers_large 2m05s 2m04s 11m13s 1m27s 7m25s

Sports_large 3m53s 3m53s 21m19s 2m46s 10m22s
Mixed (computer) 6m13s 6m13s 35m8s 4m24s 14m37s

Mixed (Sports) 6m25s 6m13s 33m53s 4m24s 13m43s

Table 5: Retrieval Time for all samples in each dataset. DNF=Did Not Finish within 1 week
Datasets DeepBlocker Sudowoodo Contriever Splade ColBERT BM25 Sparkly
Abt-Buy 0.43s 0.40s 0.39s 16s 5.8s 2.1s 26.2s

Amazon-Google 0.41s 0.44s 0.40s 35s 12.25s 6.9s 31.9s
DBLP-ACM 0.40s 0.39s 0.41s 25s 10.51s 19.3 27.6s

DBLP-Scholar 0.78s 0.81s 0.80s 10m40s 4m19s 8m11s 57.1s
Walmart-Amazon 0.50s 0.52s 0.49s 3m14s 1m24s 2m41s 38.2s
Computers_small 0.44s 0.55s 0.43s 35s 9m47s 1m38s 36.7

Sports_small 0.41s 0.47s 0.43s 30s 4m31s 1m37 31.6s
Computers_large 2.93s 2.98s 2.83s 29m47s 45m52s DNF 2m39s

Sports_large 6.92s 7.83s 6.89s 1h15m34s 1h39m46 DNF 1m37s
Mixed 15.10s 15.40s 15.34s 2h20m02s 5h32m0s DNF 13m24s

longest training on all datasets and the longest re-
trieval time on many datasets, although its indexing
time is acceptable.

In this work, we use IndexFlatL2 in FAISS-GPU,
which is a basic method. The FAISS-GPU library
consists of various kNN search techniques6 includ-
ing quantization, LSH-based methods, and graph-
based search. These techniques can be potentially
useful for PLM-based entity blocking on larger
scale datasets.

5 Related Work

The field of Entity Resolution (ER) - the process of
determining data items that represent the same real-
world entity - has been a significant area of research
over the past few decades (Getoor and Machanava-
jjhala, 2012; Konda et al., 2016). This process typi-
cally consists of two primary phases: blocking and
matching. While a considerable body of work has
proposed deep learning techniques for the matching
phase (Kasai et al., 2019; Peeters et al., 2020; Li

6https://github.com/facebookresearch/faiss/wiki/Faiss-
indexes

et al., 2021; Miao et al., 2021; Akbarian Rastaghi
et al., 2022; Yao et al., 2022), the literature on
techniques for the blocking phase remains com-
paratively sparse. Most recently, (Papadakis et al.,
2023) and (Zeakis et al., 2023) perform experimen-
tal studies on traditional blocking workflows and
embedding-based nearest-neighbor search methods.
They analyze the relative performance of the main
representatives per category over numerous estab-
lished datasets. However, these works do not study
the generalization capabilities of state of the art
methods in the literature, and they overlook latest
advancements in the Information Retrieval (IR) lit-
erature which is important because the entity block-
ing problem can also be solved using IR methods.
Our work focuses on the generalization capabilities
of latest advancements in both the entity resolution
and information retrieval literature.

Blocking is pivotal as it minimizes the number of
pairs to be compared in the matching phase. This
is particularly vital considering the number of po-
tential pairs can potentially reach the square of the
dataset size, making a naive approach computation-
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ally prohibitive, especially when employing intri-
cate models such as deep neural networks (Wang
et al., 2022; Li et al., 2021). These networks may
need to process millions or even billions of items.
The goal of the blocking phase is to identify as
many genuine matches as feasible while maintain-
ing a minimal candidate set.

The research community has proposed a vari-
ety of blocking techniques, including rule-based
blocking (Das et al., 2017; Gokhale et al., 2014;
Paulsen et al., 2023), schema-agnostic blocking
(Simonini et al., 2019), meta-blocking (Simonini
et al., 2016), deep learning techniques (Thirumu-
ruganathan et al., 2021; Zhang et al., 2020), and
Locality-Sensitive Hashing (LSH)-based blocking
techniques (Borthwick et al., 2020). These methods
can manage billions of items for entity matching.
Most recently, sparkly (Paulsen et al., 2023) is a
TF-IDF based method and achieves state-of-the-
art performance on various datasets. However, its
success relies on sophisticated tuning of the pa-
rameters for each specific dataset, which cannot
generalize in the out-of-distribution setting.

Recently, pre-trained language models, such as
BERT-based models, have been leveraged to en-
capsulate the semantics of text items (Li et al.,
2021; Wang et al., 2022; Peeters and Bizer, 2022).
These models are refined using contrastive learn-
ing methods and/or labeled data to generate item
embeddings. Similar item pairs can then be dis-
cerned by executing a similarity search on the em-
beddings. For instance, Peeters et al. (Peeters
and Bizer, 2022) proposed R-SupCon, a supervised
contrastive learning model for product matching,
utilizing the learned embeddings for blocking.

Entity blocking can also be framed as an Infor-
mation Retrieval (IR) task. Recent literature in IR
(Tonellotto, 2022) has seen methods such as DPR
(Karpukhin et al., 2020), GTR (Ni et al., 2021), and
Contriever (Izacard et al., 2021), which utilize Pre-
trained Language Model-based (PLM) methods to
learn dense document representations. Candidate
pairs can be identified by conducting a similarity
search on these dense representations using FAISS
(Johnson et al., 2019). Conversely, Splade++ (For-
mal et al., 2022) learns sparse representations and
constructs an inverted index for lexical matching.
This fundamentally circumvents the necessity for
pair-wise comparison and scales appropriately to
large datasets. The out-of-distribution generaliza-
tion capabilities has been studied in the IR liter-

ature (Thakur et al., 2021), and the evaluations
incidate neural retrievers or rankers can poorly gen-
eralize to different domains/datasets .

6 Conclusion

In this paper, we study the reproducibility of large
language model based methods for entity blocking.
Our study shows that state-of-the-art PLM-based
methods from both the entity resolution and infor-
mation retrieval literature performs generally well
in the in-distribution generalization evaluations for
the entity blocking task. We also provide detailed
break up of the running time for comprehensive un-
derstanding of each part of these PLM-based meth-
ods. The majority of these methods also demon-
strate excellent out-of-distribution generalization
abilities. We highlight the challenge of achieving
good performance when the density of matched
profiles is higher on larger mixed datasets.

Limitations

Unlike traditional entity blocking methods, PLM-
based methods requires training on real data
samples, either labeled data or unlabeled data.
Although PLM-based methods have empirically
shown success on a wide range of real-world
datasets, they typically require more computational
resources than traditional entity blocking methods.
For example, the training and embedding of these
methods requires the usage of GPUs to be effective,
while traditional methods do not need GPUs and
are more accessible to broader users. Despite that,
the practice of training PLM-based methods for the
entity blocking task is a promising direction.

Ethical Considerations

Statement of Intended Use The foundation of
our research is built upon open-source datasets
sourced from e-commerce platforms and computer
science bibliography platforms. These datasets are
characterized by a diverse array of descriptions re-
lated to everyday consumer products and research
papers. It is crucial to note that when our work
is applied to scenarios like customer profile con-
solidation, where the data involves attributes of
human demographics, strict measures for data pri-
vacy must be enforced. This includes the essential
step of de-identification or anonymization of such
data to protect individual privacy.
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