
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 870–883

June 16-21, 2024 ©2024 Association for Computational Linguistics

Neurocache: Efficient Vector Retrieval for Long-range Language Modeling

Ali Safaya Deniz Yuret
asafaya19@ku.edu.tr dyuret@ku.edu.tr

KUIS AI Center
Computer Engineering Department

Koç University

Abstract

This paper introduces Neurocache, an approach
to extend the effective context size of large lan-
guage models (LLMs) using an external vector
cache to store its past states. Like recent vec-
tor retrieval approaches, Neurocache uses an
efficient k-nearest-neighbor (kNN) algorithm
to retrieve relevant past states and incorporate
them into the attention process. Neurocache
improves upon previous methods by (1) stor-
ing compressed states, which reduces cache
size; (2) performing a single retrieval operation
per token which increases inference speed; and
(3) extending the retrieval window to neigh-
boring states, which improves both language
modeling and downstream task accuracy. Our
experiments show the effectiveness of Neuro-
cache both for models trained from scratch
and for pre-trained models such as Llama2-
7B and Mistral-7B when enhanced with the
cache mechanism. We also compare Neuro-
cache with text retrieval methods and show
improvements in single-document question-
answering and few-shot learning tasks. We
made the source code available under: https:
//github.com/alisafaya/neurocache

1 Introduction

Recent advancements in natural language process-
ing have been significantly driven by the develop-
ment of large language models (LLMs) such as
GPT-3, GPT-4, Llama, and Llama2 (Brown et al.,
2020; OpenAI, 2023; Touvron et al., 2023a,b).
While demonstrating impressive capabilities, these
models are constrained by limited context window
sizes. This limitation becomes apparent in tasks
that require understanding long documents, such as
document summarization and academic literature
review, where processing hundreds of thousands of
tokens is necessary.

Various methods, including sparse attention
(Child et al., 2019; Beltagy et al., 2020; Zaheer
et al., 2020), have been explored to address this

Figure 1: Performance and Scalability of Neurocache
vs. Memorizing Transformers (Wu et al., 2022) on
PG-19: The graph illustrates Neurocache’s consistently
lower token perplexity and faster inference times across
various cache sizes on the Project Gutenberg-19 dataset,
demonstrating its efficiency and scalability.

limitation. However, these approaches often strug-
gle to utilize their extended contexts (Liu et al.,
2023) fully. Recent research by Xu et al. (2023)
shows that retrieval-augmented models with shorter
contexts (4K tokens) can match the performance
of models with longer contexts (16K/32K tokens),
maintaining efficiency during inference. This em-
phasizes the potential of retrieval-augmented strate-
gies in LLMs.

In response to these challenges, we introduce
Neurocache. Neurocache employs an efficient k-
nearest-neighbor (kNN) strategy for retrieving rele-
vant past states from a compressed external vector
cache. This approach is designed to optimize hid-
den state caching and retrieval, thereby enhancing
language modeling quality and increasing inference
speed.

870

https://github.com/alisafaya/neurocache
https://github.com/alisafaya/neurocache

Neurocache advances over exiting methods by
reducing the cache size through the storage of com-
pressed states, performing a single retrieval op-
eration per token to boost inference speed, and
extending the retrieval window to include neigh-
boring states for improved language modeling and
downstream accuracy. Figure 1 illustrates the ad-
vantages of Neurocache in terms of inference speed
and language modeling accuracy over methods like
Memorizing Transformers (Wu et al., 2022).

Our evaluation of Neurocache encompasses both
models trained from scratch and established pre-
trained models such as Llama2-7B and Mistral-7B
(Touvron et al., 2023b; Jiang et al., 2023), demon-
strating its effectiveness in enhancing language
models for downstream tasks. Specifically, we
highlight Neurocache’s improvements in single-
document question-answering and few-shot learn-
ing tasks when compared to traditional text retrieval
methods. Moreover, Neurocache’s integration ex-
tends the maximum context length of these models
to 128K tokens, indicating its significant impact on
long-document processing.

In summary, Neurocache represents a substan-
tial step forward in addressing the challenges of
processing long documents in LLMs, offering a
blend of efficiency, adaptability, and enhanced per-
formance. Our comprehensive experiments and
analysis showcase Neurocache’s potential in revo-
lutionizing the understanding of long documents in
natural language processing.

2 Related Work

Transformers have made significant advancements
in natural language processing but face challenges
in processing long contexts. Various methods have
been developed to extend the context window while
maintaining computational efficiency (Huang et al.,
2023).

Recent methods include the continued training
or fine-tuning of short-context language models
(Nijkamp et al., 2023; Chen et al., 2023b), posi-
tional interpolation (Chen et al., 2023a), ALiBi
(Press et al., 2022), and sparse and efficient atten-
tion designs (Child et al., 2019; Beltagy et al., 2020;
Zaheer et al., 2020). These approaches reflect the
evolving landscape of solutions for managing ex-
tended attention windows in large language models
(LLMs).

However, language models still encounter diffi-
culties in processing longer contexts (Liu et al.,

2023). Studies have indicated that retrieval-
augmented models with shorter contexts (4K) can
surpass models with longer contexts (16K/32K) in
performance (Xu et al., 2023).

Prominent strategies in this area are Text Re-
trieval and Vector Retrieval. Text Retrieval involves
identifying and processing the most relevant seg-
ments of long documents. Vector Retrieval, on the
other hand, integrates relevant hidden representa-
tions of the input, like hidden states or key-value
pairs, into the model.

2.1 Text Retrieval

Text retrieval methods focus on processing rele-
vant segments of long documents. Integrating re-
trieval mechanisms into language models, such as
REALM (Guu et al., 2020), DPR (Karpukhin et al.,
2020), RETRO (Borgeaud et al., 2021), and RALM
(Ram et al., 2023), has enhanced model perfor-
mance in various tasks.

A limitation of Text Retrieval is its dependency
on external retrievers for identifying relevant seg-
ments of the context, often employing algorithms
like BM25 (Robertson and Zaragoza, 2009), Con-
triever (Izacard et al., 2022), and others (Borgeaud
et al., 2021; Ram et al., 2023; Karpukhin et al.,
2020).

2.2 Vector Retrieval

Vector retrieval methods extend the context window
by incorporating relevant hidden states from an
external cache of past inputs’ representations.

Memorizing Transformers present a novel adap-
tation to the traditional transformer decoder struc-
ture for handling lengthy documents. They pro-
cess documents in smaller segments and use a dy-
namically updated external cache to track previous
key-value pairs. These models employ an approx-
imate k-nearest-neighbor (kNN) lookup over this
cache, merging dense self-attention on the current
context with external-attention over retrieved key-
value pairs, thus effectively extending the context
length (Wu et al., 2022).

Unlimiformer is a vector retrieval method, partic-
ularly suited for sequence-to-sequence models like
BART (Lewis et al., 2020). It extends encoding
length by using a kNN index over all input token
hidden states, focusing on the top-k input tokens
through kNN distance-based attention scores in
each decoder layer’s cross-attention head (Bertsch
et al., 2023).

871

2.3 Neurocache

Neurocache is a vector retrieval method designed
for processing long documents in large language
models (LLMs). It employs a kNN strategy to ef-
ficiently retrieve compressed past states from an
external vector cache. This approach contrasts with
methods like Memorizing Transformers and Un-
limiformer, particularly in terms of computational
efficiency and cache size management.

Neurocache’s notable features include storing
compressed states to reduce cache size and perform-
ing a single retrieval operation per token, which ac-
celerates inference speed. Additionally, it expands
the retrieval window to include neighboring states,
enhancing language modeling and downstream task
performance.

Crucially, Neurocache shows adaptability with
established pre-trained models like Llama2-7B
and Mistral-7B, extending their maximum context
length capabilities to 128K tokens. This adapt-
ability demonstrates Neurocache’s potential in im-
proving long-document processing capabilities of
current LLMs.

In this context, Neurocache presents a balanced
approach to vector retrieval, combining efficiency
and adaptability to enhance long-context process-
ing in natural language processing models.

3 Method

3.1 Neurocache Overview

Neurocache addresses the challenge of process-
ing long documents using Transformer decoders,
leveraging a k-nearest-neighbor (kNN) search for
efficient retrieval and integration of relevant past
states. The process begins by segmenting the long
text sequences into smaller segments, each contain-
ing n tokens, fitting the model’s attention window
size.

State Compression: Text segments are sequen-
tially processed via a Transformer decoder stack
(Vaswani et al., 2017). At the rth layer of the
decoder, hidden states Hr ∈ Rn×h are acquired
and subsequently projected into a compressed form
C ∈ Rn×d using a learned projection matrix Wp.
This compression step enhances the efficiency for
the subsequent kNN retrieval.

State Retrieval: For each compressed state c ∈
Rd within C, we identify the top-k most simi-
lar states Cret ∈ Rk×d from the cache Ccache ∈

Rm×d. This selection is based on the L2-distance
between each state in C and the states in the cache.

Cache Updating: The cache Ccache is updated
with the compressed states C, maintaining a fixed
size of m entries. This is achieved by discarding
the oldest n states, adhering to a First-In-First-Out
strategy. The update occurs post-retrieval, reinforc-
ing the commitment to retrieving only relevant past
states.

Cache Augmented Layers: Using the states Cret

retrieved in the previous step. Starting from the (r+
1)th layer, the cache-augmented layers Lj , where
j > r, integrate a specialized attention mechanism.
Each layer uses unique projection matrices W j

k ,
W j

v , and W j
q to generate keys Kj

ret and values V j
ret

from Cret, and queries Qj from the hidden states
Hj . The cache attention mechanism is defined as:

CA(Q,Kret, Vret) = softmax

(
QKT

ret√
dkey

)
Vret

In this formula, Q are the queries derived from
Hj , while Kj

ret and V j
ret are keys and values de-

rived from Cret, with dkey serving as a normaliza-
tion factor. The output of cache attention is pro-
cessed by an output matrix W j

o before being com-
bined with self-attention outputs through a residual
connection.

Contextual Retrieval Window: When retrieving
the top-k similar cached states, Neurocache also
considers additional states surrounding these top-k
states within a defined Retrieval Window. This ex-
panded retrieval captures not only the most similar
states but also their immediate neighbors, provid-
ing a richer context for the model’s processing.

Consider the cached states Ccache =
[c1, c2, . . . , cm], and a query q for which the
cached states ci and cj are identified as the top-2.
With an even Retrieval Window size w, the
retrieved set would include not just ci and cj , but
also the cached states [ci−(w/2)−1, . . . , ci+w/2]
and [cj−(w/2)−1, . . . , cj+w/2], truncated at the
boundaries of the cache.

Extended Cache-Attention: We enhance the con-
textual awareness of each token during the cache-
attention operation by granting access to the re-
trievals of preceding tokens. Similar to the con-
textual retrieval window, this feature broadens the
current token’s context.

872

Figure 2: Documents are segmented into sequences of n tokens and processed sequentially through a Transformer
decoder stack. For each text segment, mid-layer hidden states H ∈ Rn×h are projected into a compact representation
C ∈ Rn×d using a learned weight matrix Wp ∈ Rd×h. This projection enhances the efficiency of kNN retrieval of
the most relevant past states Cret ∈ Rn×k×d from the cache Ccache. These states Cret are used by cache-augmented
layers to generate keys/values for cache attention. The output of cache attention is added to the self-attention
output before being fed to the feed-forward network (FFN). Finally, the cache Ccache is updated to include C while
maintaining a constant size of m entries.

Specifically, for a token positioned at i in a se-
quence, denoted as ti, and with a predefined con-
text size c, the cache-attention mechanism includes
not only its own retrieved states Ci

ret but also the
states retrieved for the preceding c− 1 tokens. For
example, if c = 4, the cache-attention for ti would
integrate the keys Ki−3:i

ret and values V i−3:i
ret from

tokens ti−3:i.
Please refer to Appendix B for more detailed

description on Neurocache.

3.2 Neurocache Adaptation

Adapting pre-trained decoder language models for
Neurocache use is a straightforward process that
significantly enhances their capability to efficiently
process long documents. For the layers augmented
with Neurocache, denoted as Lj where j > r,
the adaptation involves initializing cache-attention
weight matrices (W j

k ,W
j
v ,W

j
q ,W

j
o) by duplicat-

ing weights from the corresponding self-attention
layers of the pre-trained models. Simultaneously,
the projection matrix Wp is randomly initialized to
transform hidden states into compact forms suitable
for Neurocache retrieval.

Furthermore, we integrate Low-Rank Adapters
(LoRA) (Hu et al., 2022) into the feed-forward

networks of the cache augmented layers. LoRA,
introducing a minimal number of parameters, plays
a key role in adapting the models to cache attention
without compromising their original strengths.

During training, we freeze the original parame-
ters of the pre-trained model and focus solely on
training the newly added weights, specifically the
LoRA weights, and the cache-attention weight ma-
trices (W j

k ,W
j
v ,W

j
q ,W

j
o), along with the projec-

tion matrix Wp. This training, using a causal lan-
guage modeling objective on a corpus of long doc-
uments, enables the models to efficiently utilize the
Neurocache system.

3.3 Retrieval Overhead

When analyzed per token, the computational over-
head of retrieval in our method stems from the fol-
lowing components, which underline the primary
computational efforts in the kNN retrieval.
Distance Computation: For each token, the rele-
vance is assessed by calculating the L2-distance be-
tween the token’s compressed hidden state c ∈ Rd

and each of the m cached states, resulting in a
complexity of O(d×m) per token, where d is the
dimension of the compressed hidden state c and m
is the total number of cached entries.

873

Method Retrieval Entry
Frequency Size

Neurocache (Ours) 1 d
Memorizing Transformer a 2a× f
Unlimiformer l × h e

Table 1: Space and time complexity of methods based
on cache queries per token (Retrieval Frequency) and
cache entry dimensions per token (Entry Size). Here,
d is the compressed dimension in Neurocache, a the
number of attention heads, f head size, e hidden size,
and l layers with cache attention.

Top-k Search Over Distances: Identifying the
top-k closest states from these distances involves a
complexity of O(m+ k) for every token1.

3.4 Comparative Analysis
The Neurocache model demonstrates computa-
tional advantage over alternatives like the Memo-
rizing Transformer (Wu et al., 2022) and the Unlim-
iformer (Bertsch et al., 2023) by performing only
one cache query per token. This approach signifi-
cantly reduces the computational burden. In con-
trast, the Memorizing Transformer requires multi-
ple cache queries for each token, specifically one
for every attention head. Consequently, this leads
to an a-fold increase in complexity per token, both
for distance computation, O(a×d×m), and top-k
retrieval, O(a× (m+ k)), where a is the number
of attention heads, and m is the cache size.

The Unlimiformer, needing l × a queries per
token, further increases retrieval complexity. For
instance, a Transformer with 24 layers and 12 at-
tention heads in the Memorizing Transformer con-
figuration would need 12 cache accesses per to-
ken. If the Unlimiformer uses half of its layers
for augmentation, as per (Bertsch et al., 2023), the
requirement rises to 12× 12 = 144 cache accesses
per token. Neurocache’s strategy of one query per
token significantly streamlines this process without
compromising accuracy.

Table 1 outlines these models’ retrieval fre-
quency and cache entry size, emphasizing Neuro-
cache’s efficiency. The table compares the number
of cache queries per token and each cache entry’s
size across the different methods.

4 Language Modeling

We assess Neurocache’s effectiveness via two ex-
perimental approaches: pre-training language mod-

1We assume an algorithm with quicksort-style partitioning
is used.

els from scratch and adapting established pre-
trained models. For pre-training, TransformerXL
(Dai et al., 2019) serves as our baseline, against
which we compare Neurocache and Memorizing
Transformer (Wu et al., 2022). In terms of adap-
tation, we focus on pre-trained models including
OPT-1.3B, Llama2-7B, and Mistral-7B (Zhang
et al., 2022; Touvron et al., 2023b; Jiang et al.,
2023).

4.1 Datasets

Our experiments employ two distinct raw text cor-
pora: PG-19, a well-established benchmark for
long-form language modeling, and LongPile, a di-
verse dataset derived from the Pile.

PG-19: This corpus comprises a collection of
books written in English and published before
1919, sourced from Project Gutenberg. It is rec-
ognized as a standard benchmark for evaluating
models on long-form text (Rae et al., 2020; Wu
et al., 2022; Hutchins et al., 2022).

LongPile: Extracted from the Pile corpus (Gao
et al., 2020), LongPile features extensive docu-
ments from varied sources including "Books3,"
"Gutenberg (PG-19)," "OpenWebText2," "Pile-
CC," and "Wikipedia (en)." The selection criterion
ensures that each document surpasses 20K tokens,
making it suitable for testing models’ performance
on longer texts.

4.2 Pre-training

Our baseline for pre-training is the TransformerXL
model (Dai et al., 2019), which we compare against
Neurocache and the Memorizing Transformer (Wu
et al., 2022). In these experiments, both Neuro-
cache and the Memorizing Transformer are config-
ured with a fixed storage size of 16K during train-
ing, expanding to 128K for evaluation to assess
their ability to generalize to larger storage sizes.

In Neurocache, we set the augmented layer
threshold r at 3 ∗ nlayers/4, leading to the com-
pression of outputs from the 9th layer of a 12-layer
model. The hidden states H , originally of size
h = 1024, are compressed by a factor of 4, result-
ing in a reduced size of d = 256. We use a retrieval
window w = 2 to fetch the top-k cached states and
their right neighbors for cache-attention in layers
10 to 12. Extending cache-attention to include pre-
vious tokens’ retrievals with c = 2, we set k = 16,
resulting in 64 neighbors in total. This setup was
determined through hyperparameter optimization

874

Model Params PG-19 LongPile
16K 128K 16K 128K

Training from scratch
TRANSFORMERXL 184M 14.442 14.442 15.857 15.857
MEMORIZING TRANSFORMER 184M 13.636 13.494 14.966 14.818
NEUROCACHE 184M 13.511 13.352 14.425 14.110

Neurocache adaptation
OPT-1.3B 1.3B 12.199 12.199 19.446 19.446

+NEUROCACHE 1.4B 11.306 11.227 17.626 17.377

LLAMA2-7B 6.7B 7.359 7.359 9.075 9.075
+NEUROCACHE 7.1B 7.117 7.078 8.401 8.308

MISTRAL-7B 7.2B 7.863 7.863 9.380 9.380
+NEUROCACHE 7.5B 7.684 7.636 8.581 8.493

Table 2: Comparison of token perplexity for different models and cache sizes on PG-19 and LongPile datasets.
Neurocache outperforms Memorizing Transformer, and presents a significant reduction in perplexity across both
pre-training and adaptation experiments, underscoring the adaptability to larger cache sizes.

(details in Appendix A). Additionally, we modify
the FFN dimensionality of the Neurocache from
4096, consistent with the baseline and Memoriz-
ing Transformer, to 3776 to ensure parity in model
sizes.

The Memorizing Transformer, adhering to its
original design (Wu et al., 2022), caches key-value
pairs from its 9th layer. We align its retrieval setting
with Neurocache by setting k = 64, thus retrieving
the top-64 key-value pairs for each attention head
per token.

The pre-training involves 100,000 steps with
a batch size of 128 and a context size of 1,024.
Adafactor (Shazeer and Stern, 2018) is used for
optimization, with a learning rate warming up over
the first 1,000 steps, peaking at 2× 10−2, and then
decaying to 1× 10−3.

Neurocache’s performance on the PG-19 and
LongPile datasets surpasses that of the Memoriz-
ing Transformer, as evidenced by its lower token
perplexities, detailed in Table 2. Additionally, we
assess the scalability of Neurocache in compari-
son to Memorizing Transformers across various
cache sizes. The results, illustrated in Figure 1,
demonstrate Neurocache’s computational advan-
tage, maintaining its superior performance across
different cache sizes.

4.3 Adaptation

We extend our adaptation strategy to pre-trained
models such as OPT-1.3B, Llama2-7B, and Mistral-
7B (Zhang et al., 2022; Touvron et al., 2023b; Jiang
et al., 2023). The adaptation process is identical to

that described in Section 3.2, ensuring a smooth in-
tegration of Neurocache with the pre-trained model
weights.

We set the rank parameter r to 16, the scale pa-
rameter α to 32, and turn off bias in LoRA. Added
weight matrices and adapter weights are trained on
the PG-19 and LongPile datasets’ training splits
for 25,000 steps, employing the Adam optimizer
(Kingma and Ba, 2015) with a decaying learning
rate of 1× 10−4. We configured Neurocache using
the same settings as the pre-training experiments.
This adaptation process consumes approximately
200 Nvidia A100 GPU Hours per model.

The successful adaptation is evident in the sig-
nificant improvement in token perplexity on both
datasets, as detailed in Table 2. The subsequent sec-
tion discusses the impact of these improvements on
zero-shot performance in downstream tasks.

5 Downstream Evaluation

We assess the performance of models augmented
with Neurocache, particularly Llama2-7B and
Mistral-7B adapted on LongPile, using seven dis-
tinct downstream tasks from the LongBench suite
(Bai et al., 2023). These tasks cover a range
of scenarios, including single-document question-
answering (QA), multi-document QA, and few-
shot learning. We utilize a zero-shot evalua-
tion approach for the single-document and multi-
document QA tasks. Conversely, in the few-shot
learning tasks, a small set of examples is provided
to the models, serving as part of the extended con-
text.

875

Method
Single-doc QA Multi-doc QA Few-shot Learn.

NQA QSP MQA HQA MSQ TREC SAMS
F1 F1 F1 F1 F1 Acc. R-L

Input avg. length 35.4K 5.3K 8.1K 17K 19K 7.8K 11.3K

LLAMA2-7B
TRUNCATION 22.19 28.17 33.39 33.66 12.30 67.00 33.00
LONGLORA 21.92 27.58 30.10 29.17 11.05 69.50 30.29
TEXT RETRIEVAL 23.57 26.71 39.46 38.51 18.89 66.50 29.38
NEUROCACHE (Ours) 23.62 28.32 41.23 33.30 13.84 72.00 42.77

MISTRAL-7B
TRUNCATION 15.64 27.58 40.21 35.22 13.17 68.00 26.47
TEXT RETRIEVAL 14.24 28.67 41.87 40.92 21.17 66.00 18.06
NEUROCACHE (Ours) 20.08 31.01 44.15 35.49 14.00 70.00 35.86

Table 3: Zero-shot performance comparison of LLAMA2-7B and MISTRAL-7B using various long document
processing methods on the LONGBENCH benchmark tasks. Metrics include F1, Accuracy (Acc.), and Rouge-L
(R-L). NEUROCACHE excels in Single-doc QA and Few-shot Learning but faces challenges in Multi-doc QA
compared to text retrieval. Document lengths are provided for reference.

5.1 Datasets

The datasets in this evaluation present unique chal-
lenges, with average token lengths ranging from
5K to 35K, underscoring the need to process long
texts effectively.

5.1.1 Single-document QA

NarrativeQA (NQA) is a question-answering
dataset consisting of books from Project Gutenberg
and movie scripts. It includes about 30 question-
answer pairs per document, providing a robust test
for QA systems (Kočiský et al., 2018).

Qasper (QSP) contains questions and answers
extracted from NLP papers. This dataset offers
diverse question types, such as abstractive, extrac-
tive, yes/no, and unanswerable questions, making
it a comprehensive testbed for QA models (Dasigi
et al., 2021).

MultiFieldQA (MQA) is designed to test a
model’s ability to understand long contexts across
various fields, including legal documents, govern-
ment reports, and academic papers. It poses a
challenge with its questions dispersed throughout
lengthy documents (Bai et al., 2023).

5.1.2 Multi-document QA

HotpotQA (HQA) is a multi-document,
Wikipedia-based QA dataset. It requires reading
and reasoning across multiple documents and
includes questions necessitating sentence-level
supporting facts for complex reasoning (Yang
et al., 2018).

MuSiQue (MSQ) focuses on multihop reason-
ing in QA. It constructs multi-hop questions from
simpler, single-hop ones, demanding a systematic
approach and detailed control over the question
formation process (Trivedi et al., 2022).

5.1.3 Few-shot Learning

SAMSum (SAMS) presents a dialogue summa-
rization challenge with its dataset of messenger-like
conversations and human-annotated summaries2. It
tests a model’s ability to condense conversational
data into coherent summaries (Gliwa et al., 2019).

TREC serves as a dataset for few-shot learning
tasks in question type classification. Models are
tasked with categorizing questions into predefined
categories, providing a test of their classification
abilities (Li and Roth, 2002).

5.2 Models

In addition to Neurocache, our evaluation includes
three distinct approaches for extending the input
length of pre-trained language models. These ap-
proaches are Input Truncation, Text Retrieval, and
Position Interpolation (PI).

Truncation: This approach employs the original
Llama2-7B and Mistral-7B models without long-
context-specific modifications. Here, inputs ex-
ceeding the maximum size of 4,096 tokens are
truncated from the middle following (Bai et al.,
2023). This baseline serves as a reference to evalu-

2We use the rouge package: https://github.com/
pltrdy/rouge

876

https://github.com/pltrdy/rouge
https://github.com/pltrdy/rouge

ate the effectiveness of other methods in processing
extended documents.

Text Retrieval: Contrasting with Neurocache, this
approach involves selecting the most relevant text
segments to include in the input, keeping the total
length within the model’s maximum input size. We
divide the context into 200-word chunks, retrieving
the top-7 chunks using Contriever (Izacard et al.,
2022). These chunks, along with the input, are then
processed by the model. Using the top-7 chunks
balances performance and the 4K token limit. This
method, used in previous work (Bai et al., 2023;
Xu et al., 2023), differs from Neurocache, which
dynamically integrates relevant information from
the entire document via cache-augmented layers.

Position Interpolation (PI): PI (Chen et al.,
2023a) linearly down-scales input position indices
to fit the original context window size, avoiding
high attention scores that could disrupt the self-
attention mechanism. LongLoRA (Chen et al.,
2023b), leveraging PI, offers an efficient fine-
tuning method to expand the context size of pre-
trained models. It uses a sparse local attention
mechanism, enabling computation savings while
retaining performance. The fully fine-tuned Lon-
gLoRA model3, based on Llama2-7B, extends the
maximum input length to 16K tokens, aiming to
assess the effectiveness of efficient full-attention
methods for longer documents.

Neurocache: We utilize the Neurocache-adapted
Llama2-7B and Mistral-7B models in our evalua-
tion. These adaptations follow the configuration
detailed in Section 4 for pre-training. The mod-
els operate with a fixed cache size of 16K, ac-
commodating the length of most datasets in our
study. We split the documents into 2,048-token
segments, processing them sequentially to popu-
late the cache. Subsequently, the input, embedded
within the prompt, is fed to the model, which then
generates the corresponding answer.

5.3 Evaluation Setting

All evaluated models in this study are only pre-
trained and not fine-tuned on the downstream tasks.
They are assessed in a zero-shot setting, employing
greedy decoding for output generation.

As outlined by LongBench (Bai et al., 2023), the
model’s task is to produce an answer given input

3https://huggingface.co/Yukang/
Llama-2-7b-longlora-16k-ft

and context sequences. In single-doc QA tasks,
the input is a question paired with the document
as context. For multi-doc QA, the input consists
of multiple concatenated documents. In few-shot
learning tasks, such as TREC and SAMSum, the
context includes a set of examples, and the input
is a question or dialogue, respectively. The input
and answer are typically concise, while the context
can be a long sequence extending to thousands of
tokens.

If the combined length of input and context ex-
ceeds the model’s maximum input capacity, only
the context is truncated. This truncation is done
from the middle of the context sequence, follow-
ing the approach in (Bai et al., 2023). We utilize
prompt templates provided by LongBench for con-
sistency. Neurocache and LongLoRA operate with
a maximum length of 16K tokens, truncating con-
texts longer than this limit. In contrast, the Text
Retrieval method processes the entire context, re-
gardless of length. To ensure comparability, all
models are evaluated on identical hardware with a
batch size of 1.

5.4 Results

The zero-shot evaluation results across various
downstream tasks are summarized in Table 3.
We compare the performance of Llama2-7B and
Mistral-7B, in their original and Neurocache-
adapted forms, against other long document pro-
cessing methods.

Single-document QA: In tasks like NarrativeQA,
Qasper, and MultiFieldQA, Neurocache-adapted
models show superior performance, demonstrat-
ing their effectiveness in processing long contexts
within single documents.

Multi-document QA: Performance in multi-doc
QA tasks, such as HotpotQA, reveals a varied pic-
ture. While Neurocache-adapted models are com-
petitive, they fall short of Text Retrieval methods.
For instance, in HotpotQA, Text Retrieval with the
Mistral-7B model achieves the highest F1 score
of 40.92. This finding suggests that, despite Neu-
rocache’s effectiveness in single-doc scenarios, it
may be less effective in multi-doc contexts com-
pared to text retrieval approaches.

Few-shot Learning: In few-shot learning tasks
like SAMSum and TREC, Neurocache shows
strong performance, particularly indicated by im-
proved Rouge-L scores in SAMSum. This under-

877

https://huggingface.co/Yukang/Llama-2-7b-longlora-16k-ft
https://huggingface.co/Yukang/Llama-2-7b-longlora-16k-ft

scores its capability to leverage few-shot examples
for generating accurate summaries.

These findings illustrate the strengths and chal-
lenges of different methods in handling long doc-
uments in language models. Neurocache excels
in single-document and few-shot learning scenar-
ios, while Text Retrieval methods have an edge in
multi-document tasks.

6 Conclusion

This paper introduced Neurocache, an approach
designed to improve long document processing in
language models. Neurocache employs a k-nearest-
neighbor (kNN) strategy for integrating relevant
past states from compressed hidden representations,
thus extending the context window of Transformer
decoders. Notably, Neurocache enhances the maxi-
mum context length of models like Llama2-7B and
Mistral-7B to 128K tokens.

Our findings indicate that Neurocache offers im-
provements in inference speed and language model-
ing accuracy. It demonstrates proficiency in single-
document question-answering and few-shot learn-
ing, though it faces challenges in multi-document
scenarios. Neurocache’s competitive performance
and adaptability highlight its potential utility in
various applications.

In summary, Neurocache contributes to the field
by enabling more efficient handling of extended
contexts in existing language models. Future
work may explore further optimizations for multi-
document tasks and the extension of Neurocache
to different model architectures and domains.

Acknowledgment

Ali Safaya was supported by the KUIS AI Center
fellowship. Deniz Yuret was partially supported
by HyperBee.ai. Moreover, parts of the results re-
ported in this paper were performed at TUBITAK
ULAKBIM, High Performance and Grid Comput-
ing Center (TRUBA resources).

Ali Safaya dedicates his work to the People of
Gaza.

7 Limitations

While Neurocache demonstrates progress in long
document processing with language models, sev-
eral limitations should be noted. Our evaluation is
confined to datasets like PG-19 and LongPile, and
tasks from the LongBench suite. These datasets,
despite their diversity, might not fully represent all

long-context scenarios. Performance may vary in
specialized domains like technical documents or
source code, which have distinct content character-
istics.

A notable limitation is Neurocache’s perfor-
mance in multi-document scenarios, suggesting
potential challenges in contexts that require inte-
gration of information from multiple sources. This
aspect is crucial for applications involving compre-
hensive data synthesis from various documents.

In terms of bias, Neurocache depends on the un-
derlying language models and datasets for training
and evaluation. Consequently, any inherent biases
in these components could influence Neurocache’s
outputs. An explicit analysis of model biases was
not conducted in this study, highlighting an area
for future exploration.

Another critical point is our reliance on a zero-
shot setting for evaluation. The performance of
Neurocache might differ if fine-tuning on down-
stream tasks or instruction datasets was employed.
This limitation suggests that our current findings
may not fully capture the model’s adaptability and
efficiency in diverse application scenarios.

In conclusion, while Neurocache presents a step
forward in handling long documents in natural lan-
guage processing, its effectiveness is influenced
by the nature of the data, model architecture, and
specific task requirements. Understanding these
limitations is vital for assessing its practical appli-
cability and guiding future improvements.

References
Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,

Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2023. Longbench: A bilingual, mul-
titask benchmark for long context understanding.
Computing Research Repository, arXiv:2308.14508.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. Com-
puting Research Repository, arXiv:2004.05150. Ver-
sion 2.

Amanda Bertsch, Uri Alon, Graham Neubig, and
Matthew R Gormley. 2023. Unlimiformer: Long-
range transformers with unlimited length input. In
Advances in Neural Information Processing Systems.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann,
Trevor Cai, Eliza Rutherford, Katie Millican, George
van den Driessche, Jean-Baptiste Lespiau, Bogdan
Damoc, Aidan Clark, Diego de Las Casas, Aurelia
Guy, Jacob Menick, Roman Ring, Tom Hennigan,

878

http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/2004.05150

Saffron Huang, Loren Maggiore, Chris Jones, Albin
Cassirer, Andy Brock, Michela Paganini, Geoffrey
Irving, Oriol Vinyals, Simon Osindero, Karen Si-
monyan, Jack W. Rae, Erich Elsen, and Laurent Sifre.
2021. Improving language models by retrieving from
trillions of tokens. Computing Research Repository,
arXiv:2112.04426.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023a. Extending context window
of large language models via positional interpolation.
Computing Research Repository, arXiv:2306.15595.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2023b. Lon-
glora: Efficient fine-tuning of long-context large
language models. Computing Research Repository,
arXiv:2309.12307.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers. Computing Research Reposi-
tory, arXiv:1904.10509.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,
Noah A. Smith, and Matt Gardner. 2021. A dataset
of information-seeking questions and answers an-
chored in research papers. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 4599–4610, On-
line. Association for Computational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The Pile: An
800gb dataset of diverse text for language modeling.
Computing Research Repository, arXiv:2101.00027.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. SAMSum corpus: A human-

annotated dialogue dataset for abstractive summa-
rization. In Proceedings of the 2nd Workshop on
New Frontiers in Summarization, pages 70–79, Hong
Kong, China. Association for Computational Linguis-
tics.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In Proceedings of the
37th International Conference on Machine Learning,
Proceedings of Machine Learning Research, pages
3929–3938.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Yunpeng Huang, Jingwei Xu, Zixu Jiang, Junyu Lai,
Zenan Li, Yuan Yao, Taolue Chen, Lijuan Yang, Zhou
Xin, and Xiaoxing Ma. 2023. Advancing transformer
architecture in long-context large language models: A
comprehensive survey. Computing Research Reposi-
tory, arXiv:2311.12351.

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan
Dyer, and Behnam Neyshabur. 2022. Block-recurrent
transformers. In Advances in Neural Information
Processing Systems.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebas-
tian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. 2022. Unsupervised dense informa-
tion retrieval with contrastive learning. Transactions
on Machine Learning Research.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Computing
Research Repository, arXiv:2310.06825.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR).

Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris
Dyer, Karl Moritz Hermann, Gábor Melis, and Ed-
ward Grefenstette. 2018. The NarrativeQA reading
comprehension challenge. Transactions of the Asso-
ciation for Computational Linguistics, 6:317–328.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,

879

http://arxiv.org/abs/2112.04426
http://arxiv.org/abs/2112.04426
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2306.15595
http://arxiv.org/abs/2306.15595
http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v119/guu20a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/2311.12351
http://arxiv.org/abs/2311.12351
http://arxiv.org/abs/2311.12351
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
http://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.1162/tacl_a_00023

Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How language mod-
els use long contexts. Computing Research Reposi-
tory, arXiv:2307.03172.

Erik Nijkamp, Tian Xie, Hiroaki Hayashi, Bo Pang,
Congying Xia, Chen Xing, Jesse Vig, Semih
Yavuz, Philippe Laban, Ben Krause, Senthil Purush-
walkam, Tong Niu, Wojciech Kryściński, Lidiya
Murakhovs’ka, Prafulla Kumar Choubey, Alex Fab-
bri, Ye Liu, Rui Meng, Lifu Tu, Meghana Bhat,
Chien-Sheng Wu, Silvio Savarese, Yingbo Zhou,
Shafiq Joty, and Caiming Xiong. 2023. Xgen-7b
technical report. Computing Research Repository,
arXiv:2309.03450.

OpenAI. 2023. Gpt-4 technical report. Computing
Research Repository, arXiv:2303.08774.

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Confer-
ence on Learning Representations.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.
Compressive transformers for long-range sequence
modelling. In International Conference on Learning
Representations.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. Transactions of the Association for
Computational Linguistics.

Stephen Robertson and Hugo Zaragoza. 2009. The prob-
abilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval,
3(4):333–389.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Confer-
ence on Machine Learning, Proceedings of Machine
Learning Research, pages 4596–4604. PMLR.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. Comput-
ing Research Repository, arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and fine-
tuned chat models. Computing Research Repository,
arXiv:2307.09288.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. MuSiQue: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics, 10:539–554.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, page 6000–6010. Curran
Associates, Inc.

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins,
and Christian Szegedy. 2022. Memorizing transform-
ers. In International Conference on Learning Repre-
sentations.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee,
Chen Zhu, Zihan Liu, Sandeep Subramanian, Evelina
Bakhturina, Mohammad Shoeybi, and Bryan Catan-
zaro. 2023. Retrieval meets long context large lan-
guage models. Computing Research Repository,
arXiv:2310.03025.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2020. Big bird: Trans-
formers for longer sequences. In Advances in Neural
Information Processing Systems, volume 33, pages
17283–17297. Curran Associates, Inc.

880

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/C02-1150
https://aclanthology.org/C02-1150
http://arxiv.org/abs/2307.03172
http://arxiv.org/abs/2307.03172
http://arxiv.org/abs/2309.03450
http://arxiv.org/abs/2309.03450
http://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://arxiv.org/abs/2302.00083
https://arxiv.org/abs/2302.00083
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.mlr.press/v80/shazeer18a.html
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.1162/tacl_a_00475
https://doi.org/10.1162/tacl_a_00475
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=TrjbxzRcnf-
https://openreview.net/forum?id=TrjbxzRcnf-
http://arxiv.org/abs/2310.03025
http://arxiv.org/abs/2310.03025
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models. Computing
Research Repository, arXiv:2205.01068.

A Optimizing Neurocache
Hyperparameters

Effective processing of long documents in Neuro-
cache depends on the optimal tuning of various
retrieval hyperparameters. To this end, we conduct
a comprehensive hyperparameter search focused on
language modeling performance using the Project
Gutenberg-19 (PG) dataset.

Our exploration encompasses a range of val-
ues for key hyperparameters: the number of
retrieved neighbors (k) with values in the set
[None, 8, 16, 32, 64, 128, 256], the retrieval win-
dow size (w) tested with [1, 2, 4], the cache-
attention context size (c) evaluated at [1, 2, 4], and
the encoding dimension of hidden states (d) ex-
plored across [1024, 512, 256, 128, 64]. This sys-
tematic investigation aims to identify the opti-
mal configurations that enhance Neurocache’s ef-
ficiency and effectiveness in handling large-scale
textual data.

Number of Retrieved Neighbors (k): The influ-
ence of k, the number of retrieved neighbors, on
model performance is examined. Table 4 shows
that increasing k generally leads to a decrease in
perplexity, indicating improved performance. How-
ever, the computational cost also increases propor-
tionally with k. We pick k = 64 due to the di-
minishing returns and the increasing cost of larger
values.

k PG (16K) PG (64K)

None 14.739 14.739
8 14.362 14.398
16 14.242 14.259
32 14.186 14.190
64 14.117 14.118
128 14.069 14.037
256 14.052 13.988

Table 4: Perplexity for varying number of neighbors k.

Retrieval Window Size (w): Adjusting w while
fixing the total number of neighbors at 64, we find

that a window size of w = 2 is optimal, as per
Table 5. This setting likely benefits the model’s
causal processing by including both the top-k entry
and the subsequent one. We fix w = 2 for the
subsequent experiments.

k w PG (16K) PG (64K)

64 1 14.117 14.118
32 2 13.720 13.578
16 4 13.745 13.596

Table 5: Perplexity for varying retrieval window size w.

Attention Context Size (c): Table 6 shows that
the cache-attention context size c = 2 achieves the
lowest perplexity, indicating optimal performance
when extending cache-attention to both the current
and previous tokens’ retrievals. We fix c = 2 for
the subsequent experiments.

k c PG (16K) PG (64K)

32 1 13.720 13.578
16 2 13.704 13.564
8 4 13.791 13.661

Table 6: Perplexity for varying context size c.

Encoding hidden states (d): Finally, we assess
the impact of encoding hidden states into smaller di-
mensions d, as compared to the original h = 1, 024.
Table 7 demonstrate performance degradation as
smaller sizes of compression are used.

d PG (16K) PG (64K)

1024 13.704 13.564
512 13.740 13.594
256 13.779 13.641
128 13.853 13.730
64 13.983 13.891

Table 7: Perplexity for varying d.

B Neurocache Algorithm

• The cache Ccache is initialized to store com-
pact representations, with a maximum capac-
ity of m entries.

• The long document D is segmented into se-
quences of n tokens each.

881

http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068

Algorithm 1 Neurocache Processing
Require: Long document D, Segment size n, Number of transformer layers L, Number of lower layers r, Cache memory size

m, Projection dimensions h to d, Number of nearest states k
Ensure: Updated cache Ccache after processing each segment
1: Initialize cache Ccache with size m× d
2: Divide document D into segments S = (s1, s2, . . .)
3: for each segment s ∈ S do
4: Hr ← Process s through lower r standard decoder layers
5: C ←Wp ·Hr ▷ Project hidden states to compact representation
6: Cret ← Retrieve top-k nearest states from Ccache based on L2-distance to C
7: for j ← r + 1 to L do
8: Qj ←W j

q ·Hj ▷ Generate queries for cache attention
9: Kj

ret ←W j
k · Cret ▷ Generate keys for cache attention

10: V j
ret ←W j

v · Cret ▷ Generate values for cache attention
11: CA← Apply cache attention using Qj ,Kj

ret, V
j
ret

12: CA← CA ·W j
o ▷ Apply output projection for cache attention

13: Hj ← Combine CA with self-attention outputs and Hj

14: end for
15: Update cache Ccache with C, discard oldest if cache exceeds m
16: end for

• Each segment si undergoes sequential pro-
cessing through the transformer decoder lay-
ers.

• At the middle rth layer, the hidden states Hr

are converted into a compact representation
C.

• The nearest cached states Cret to C are re-
trieved from C using a k-nearest-neighbor
(kNN) method.

• In each augmented layer j > r, cache atten-
tion is calculated using the generated queries
Qj , keys Kj

ret, and values V j
ret.

• The output of cache attention CA is merged
with the self-attention outputs and subse-
quently processed through a feed-forward net-
work (FFN).

• After processing each segment, the cache C
is updated with the new compact representa-
tion C, and the oldest entries are discarded as
needed to maintain the cache size.

The cache-attention mechanism in the aug-
mented layers is designed to focus on the most
relevant information retrieved from the cache, akin
to the approach in Memorizing Transformers (Wu
et al., 2022). Cache-attention implementation is
given in Figure 3.

882

def cache_attention(
ret_keys ,
ret_vals ,
queries

):
Attention computation over states retrieved from the cache.
ret_keys: Retrieved keys (bsz , n_queries , n_heads , n_neighbors , head_dim)
ret_vals: Retrieved values (bsz , n_queries , n_heads , n_neighbors , head_dim)
queries: Queries (bsz , n_queries , n_heads , head_dim)

Calculate attention weights.
ret_attn = einsum("...qhd ,...khd ->...qk", queries , ret_keys)
ret_attn = softmax(ret_attn , dim=-1)

Compute the weighted sum of extended values.
attn_output = einsum("...qk ,...khd ->...qhd", ret_attn , ret_vals)
return attn_output

Figure 3: This implementation showcases the cache-attention computation in the model. It calculates the attention
weights through a dot product between the queries and keys, applies a softmax to obtain probabilities, and then
computes the weighted sum of the extended values to generate the final attention output.

883

