@inproceedings{yang-etal-2024-unveiling,
title = "Unveiling the Generalization Power of Fine-Tuned Large Language Models",
author = "Yang, Haoran and
Zhang, Yumeng and
Xu, Jiaqi and
Lu, Hongyuan and
Heng, Pheng-Ann and
Lam, Wai",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.51",
doi = "10.18653/v1/2024.naacl-long.51",
pages = "884--899",
abstract = "While Large Language Models (LLMs) have demonstrated exceptional multitasking abilities, fine-tuning these models on downstream, domain-specific datasets is often necessary to yield superior performance on test sets compared to their counterparts without fine-tuning. However, the comprehensive effects of fine-tuning on the LLMs{'} generalization ability are not fully understood.This paper delves into the differences between original, unmodified LLMs and their fine-tuned variants. Our primary investigation centers on whether fine-tuning affects the generalization ability intrinsic to LLMs. To elaborate on this, we conduct extensive experiments across five distinct language tasks on various datasets.Our main findings reveal that models fine-tuned on generation and classification tasks exhibit dissimilar behaviors in generalizing to different domains and tasks.Intriguingly, we observe that integrating the in-context learning strategy during fine-tuning on generation tasks can enhance the model{'}s generalization ability.Through this systematic investigation, we aim to contribute valuable insights into the evolving landscape of fine-tuning practices for LLMs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2024-unveiling">
<titleInfo>
<title>Unveiling the Generalization Power of Fine-Tuned Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haoran</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yumeng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiaqi</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongyuan</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pheng-Ann</namePart>
<namePart type="family">Heng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wai</namePart>
<namePart type="family">Lam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While Large Language Models (LLMs) have demonstrated exceptional multitasking abilities, fine-tuning these models on downstream, domain-specific datasets is often necessary to yield superior performance on test sets compared to their counterparts without fine-tuning. However, the comprehensive effects of fine-tuning on the LLMs’ generalization ability are not fully understood.This paper delves into the differences between original, unmodified LLMs and their fine-tuned variants. Our primary investigation centers on whether fine-tuning affects the generalization ability intrinsic to LLMs. To elaborate on this, we conduct extensive experiments across five distinct language tasks on various datasets.Our main findings reveal that models fine-tuned on generation and classification tasks exhibit dissimilar behaviors in generalizing to different domains and tasks.Intriguingly, we observe that integrating the in-context learning strategy during fine-tuning on generation tasks can enhance the model’s generalization ability.Through this systematic investigation, we aim to contribute valuable insights into the evolving landscape of fine-tuning practices for LLMs.</abstract>
<identifier type="citekey">yang-etal-2024-unveiling</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.51</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.51</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>884</start>
<end>899</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unveiling the Generalization Power of Fine-Tuned Large Language Models
%A Yang, Haoran
%A Zhang, Yumeng
%A Xu, Jiaqi
%A Lu, Hongyuan
%A Heng, Pheng-Ann
%A Lam, Wai
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F yang-etal-2024-unveiling
%X While Large Language Models (LLMs) have demonstrated exceptional multitasking abilities, fine-tuning these models on downstream, domain-specific datasets is often necessary to yield superior performance on test sets compared to their counterparts without fine-tuning. However, the comprehensive effects of fine-tuning on the LLMs’ generalization ability are not fully understood.This paper delves into the differences between original, unmodified LLMs and their fine-tuned variants. Our primary investigation centers on whether fine-tuning affects the generalization ability intrinsic to LLMs. To elaborate on this, we conduct extensive experiments across five distinct language tasks on various datasets.Our main findings reveal that models fine-tuned on generation and classification tasks exhibit dissimilar behaviors in generalizing to different domains and tasks.Intriguingly, we observe that integrating the in-context learning strategy during fine-tuning on generation tasks can enhance the model’s generalization ability.Through this systematic investigation, we aim to contribute valuable insights into the evolving landscape of fine-tuning practices for LLMs.
%R 10.18653/v1/2024.naacl-long.51
%U https://aclanthology.org/2024.naacl-long.51
%U https://doi.org/10.18653/v1/2024.naacl-long.51
%P 884-899
Markdown (Informal)
[Unveiling the Generalization Power of Fine-Tuned Large Language Models](https://aclanthology.org/2024.naacl-long.51) (Yang et al., NAACL 2024)
ACL
- Haoran Yang, Yumeng Zhang, Jiaqi Xu, Hongyuan Lu, Pheng-Ann Heng, and Wai Lam. 2024. Unveiling the Generalization Power of Fine-Tuned Large Language Models. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 884–899, Mexico City, Mexico. Association for Computational Linguistics.