
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 1244–1258

June 16-21, 2024 ©2024 Association for Computational Linguistics

E5: Zero-shot Hierarchical Table Analysis using Augmented LLMs via
Explain, Extract, Execute, Exhibit and Extrapolate

Zhehao Zhang1∗, Yan Gao2, Jian-Guang Lou2

1Dartmouth College, 2Microsoft Research Asia
zhehao.zhang.gr@dartmouth.edu
{yan.gao, jlou}@microsoft.com

Abstract

Analyzing large hierarchical tables with
multi-level headers presents challenges due to
their complex structure, implicit semantics,
and calculation relationships. While recent
advancements in large language models
(LLMs) have shown promise in flat table
analysis, their application to hierarchical tables
is constrained by the reliance on manually
curated exemplars and the model’s token
capacity limitations. Addressing these chal-
lenges, we introduce a novel code-augmented
LLM-based framework, E5, for zero-shot
hierarchical table question answering. This
approach encompasses self-explaining the
table’s hierarchical structures, code generation
to extract relevant information and apply
operations, external code execution to prevent
hallucinations, and leveraging LLMs’ reason-
ing for final answer derivation. Empirical
results indicate that our method, based on
GPT-4, outperforms state-of-the-art fine-tuning
methods with a 44.38 Exact Match improve-
ment. Furthermore, we present F3, an adaptive
algorithm designed for token-limited scenarios,
effectively condensing large tables while main-
taining useful information. Our experiments
prove its efficiency, enabling the processing
of large tables even with models having
limited context lengths. The code is avail-
able at https://github.com/zzh-SJTU/
E5-Hierarchical-Table-Analysis.

1 Introduction

In the digital era, structured data, especially in the
form of hierarchical tables, plays a crucial role
in information representation. Unlike flat tables,
hierarchical ones utilize multi-level headers (Lim
and Ng, 1999; Chen and Cafarella, 2014; Wang
et al., 2021), offering a nuanced organization of
complex datasets. They’re widely used in areas

∗∗Work done during Zhehao Zhang’s internship at Microsoft
Research Asia.

like finance, scientific research, and business struc-
tures. Three main challenges with hierarchical ta-
ble analysis are: (1) Complex Structure: Their
multi-level, bi-dimensional indexing is intuitive for
humans but confusing for models. (2) Implicit Cal-
culation Relationships: They often have aggregated
rows and columns without obvious indications. (3)
Implicit Semantic Relationships: Hierarchical ta-
bles contain numerous cross-row, cross-column,
and cross-level relationships that aren’t clearly in-
dicated (Cheng et al., 2022a).

As large language models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2022; Chung et al., 2022;
Black et al., 2022; Biderman et al., 2023; Tou-
vron et al., 2023a; OpenAI, 2023a; Touvron et al.,
2023b; OpenAI, 2023b; Rozière et al., 2023) have
exhibited significant progress in diverse NLP tasks
(Qin et al., 2023; Ziems et al., 2024), recent works
(Chen, 2023; Ye et al., 2023; Jiang et al., 2023)
start to apply LLMs on flat table analysis based on
the models’ in-context learning ability using few-
shot examplers. Ye et al. (2023) introduce the Dater
framework, which seeks to decompose table reason-
ing tasks using Codex (Chen et al., 2021a). Besides,
Jiang et al. (2023) presents StructGPT, which uti-
lizes an invoking-linearization-generation approach
to apply LLMs on structured data. However, when
transitioning to hierarchical table analysis, these
methodologies encounter specific constraints: (1)
these methods depend heavily on manually curated
in-context exemplars, which are extremely expen-
sive and inflexible for generalization (2) Given the
substantial size of some hierarchical tables, directly
inputting them as exemplars for in-context learn-
ing can surpass the model’s token capacity, making
these methods infeasible. In light of these chal-
lenges, our study emphasizes zero-shot learning
without the need for exemplars, aiming for a more
efficient and universally applicable approach across
diverse datasets. To the best of our knowledge,
we are the first to investigate hierarchical table

1244

https://github.com/zzh-SJTU/E5-Hierarchical-Table-Analysis
https://github.com/zzh-SJTU/E5-Hierarchical-Table-Analysis

analysis using LLMs and study table analysis in a
zero-shot manner.

In this work, we propose E5, a code-augmented
framework for hierarchical table question answer-
ing (QA) tasks in a zero-shot manner using LLMs.
We formulate the process of solving this task as
the following steps: (1) self-Explaining the hierar-
chical structures of the complex table to enhance
LLMs’ comprehension of the underlying semantic
associations between headers (2) Generating code
to Extract related rows and columns and apply ap-
propriate logic operations (e.g., filter, sort, etc) (3)
using external code interpreter to Execute the gen-
erated code and Exhibit observations to mitigate
hallucinations (4) Extrapolating the observations
to get the final answer, leveraging the reasoning
capabilities of LLMs via natural language. Ex-
periment results on benchmark datasets show that
based on GPT-4, our proposal surpasses state-of-
the-art (SOTA) fine-tuning methods by a signifi-
cant margin (44.38 on Exact Match). Besides, com-
pared with another tool-augmented LLM agent,
ReAct (Yao et al., 2022), E5achieves noticeable
improvement on multiple metrics with a significant
increase in efficiency and stability.

To additionally study the practical token-limited
scenario, we propose F3, an adaptive algorithm to
condense large tables while keeping as much use-
ful information as possible within the constraints
of the token length. Comprehensive experiments
prove that not only does F3save computational re-
sources while maintaining decent performances but
also makes it possible to process large tables using
models with relatively small context lengths.

2 Related Works

2.1 Tool-Augmented LM

To address complex tasks and mitigate halluci-
nations, advanced external tools such as web
browsers, calculators, search engines, Python in-
terpreters, and diverse modality models have been
integrated into LLMs (Nakano et al., 2021; Shus-
ter et al., 2022; Cheng et al., 2022b; Chen et al.,
2022; Cobbe et al., 2021; Paranjape et al., 2023;
Shen et al., 2023; Lu et al., 2024; Chern et al.,
2023; Mialon et al., 2023; Song et al., 2023; Tang
et al., 2023). Toolformer (Schick et al., 2023) trains
LLMs to use multiple tools in a self-supervised
manner. However, it must fine-tune the parameters
of the LLM, making it impossible to apply it to
close-sourced LLMs like GPT-4. Yao et al. (2022)

propose ReAct (Yao et al., 2022), a prompt-based
paradigm for integrating reasoning and acting for
LLMs, which can be effectively applied to various
NLP tasks. However, it heavily relies on metic-
ulously curated exemplars of (Thought, Act,Obs)
triplets, making the method resource-intensive and
constraining its adaptability across diverse tasks.

2.2 LMs for Table Analysis

Numerous studies (Yin et al., 2020; Herzig et al.,
2020; Liu et al., 2021; Deng et al., 2022) have pre-
trained Language Models (LMs) (such as BART
(Lewis et al., 2020)) on combined tabular and tex-
tual data to learn integrated representation, which
can generally obtain the best-known performance
on table-associated tasks (Chen, 2023). Chen
(2023) first investigate GPT-3’s (Brown et al.,
2020) in-context leaning ability over tabular data.
Zhang et al. (2023) introduce CRT-QA, the first
TableQA dataset featuring complex reasoning ques-
tions over flat tables, and propose an effective
code-augmented method named ARC to solve this
task.Ye et al. (2023) propose the Dater framework
to decompose table reasoning tasks using Codex
(Chen et al., 2021a). Jiang et al. (2023) propose
StructGPT, employing an invoking-linearization-
generation procedure to apply LLMs on structured
data. However, these methods depend heavily on
manually created in-context exemplars, which is
extremely expensive or even impractical when
the table is extremely large. To the best of our
knowledge, we are the first to investigate large
hierarchical table analysis using LLMs and study
table QA in a zero-shot setting.

3 Task Description

The hierarchical table analysis task is a variant of
the table-based QA problem, specifically tailored
for hierarchical tables. Formally, the task involves
processing a hierarchical table T with multi-level
headers, a query Q, and a prompt P that contextu-
alizes the query, through a model M. The model
outputs an answer A, succinctly represented by the
equation: A = M(T,Q, P).

4 Method

As shown in Figure1, we propose E5, a code-
augmented pipeline for question answering over
large hierarchical tables. We first let an LLM self-
explain table structures to understand hierarchies.
Then, the LLM generates code to extract relevant

1245

Primary
caregiver

Total – 65 years
and over 65 to 74 years …

women men women men …
percentage

Spouse 19 60 36 71

…
Son 19 10 17 7
Daughter 42 15 20 f
Close friend 4 4 6 f
Other family member,
friends, or acquaintance 16 10 21 8

Total 100 100 100 100 …

!3: find-filter-fillFind

Filter

Fill

Related
rows

Related
columns

Headers

"": Explain, Extract, Execute,
Exhibit and Extrapolate

LLM

I now know the answer. Final Answer: spouse

Table Structure:
Levels of headers: {row : 1, columns: 3}
related rows: [spouse, son, daughter, close friend, …]
related columns: ["65 to 74 years" for women.] …

LLM

LLM

df = pd.DataFrame(({"primary_caregiver": ["spouse",
"son","daughter, …],
"65_to_74_years_women”: [36, 17, 20 …], })

…
print(most_common_giver)

Explain

Extract

Extrapolate

Observation:['spouse']

Code interpreter
Execute

Exhibit

what's the commonly primary caregiver among women aged 65 to 74?

Figure 1: An illustration of our proposed framework of E5and F3. E5is a pipeline where an LLM explains table
hierarchies, generates code to extract relevant data, and then interprets the results post-execution, optimizing
question answering. In scenarios with token limitations (dashed line), we first apply F3to compress the large table
while maintaining as useful information as possible before feeding to E5.

table parts and apply operations, making it focus
on useful information. An external interpreter then
executes the code to avoid hallucination, with re-
sults analyzed by the LLM itself. We also propose
F3, an adaptive algorithm to compress large tables
in a practical context-limited scenario, which can
be applied before E5to compress large tables while
keeping as much useful information as possible.

4.1 E5: Explain, Extract, Execute, Exhibit
and Extrapolate

Explain Inspired by CoT (Wei et al., 2022; Ko-
jima et al., 2022) and ReAct (Yao et al., 2022), we
make the LLM first explain the structure of the hi-
erarchical table by itself. To be specific, we use the
following instructions:

Prompt for Explain

Table Structure: you should describe the
table in detail including different levels of
headers and their meanings. In the end, you
should clearly specify which columns AND
rows and their corresponding levels are re-
lated to the question.

In this way, the LLM can better understand the
table structure, particularly emphasizing the hierar-
chical header configurations and the latent semantic
associations therein. This understanding provides

helpful guidance to the subsequent stage of Ex-
tract. We independently analyze the effectiveness
of Explain in the main experiment, error analysis
(Section 7), and a case study (Section 8).

Extract, Execute and Exhibit Previous works
(Shi et al., 2023) find that LLMs are susceptible
to distractions from irrelevant information. Mean-
while, the majority of the hierarchical table analy-
sis queries only focus on specific segments of the
huge table. In response to this observation, we ex-
plicitly ask the LLM to extract relevant cells from
the original table based on its internal knowledge
and the headers delineated in the Explain phase.
The Extract procedure is integrated into code gen-
eration, utilizing Python Pandas Dataframe as
the container to archive the relevant data. There-
after, the LLM can devise a range of operations
(e.g. filter, sort, group) to manipulate the procured
Dataframe.

During the code generation process, the LLM is
explicitly asked to print final or intermediary out-
comes(e.g., sorted rows) through instructions. This
ensures the acquisition of such displayed output
(Exhibit) for subsequent scrutiny, post-execution
by an external code interpreter (Execute). The ratio-
nale behind employing an external code interpreter
lies in reducing hallucinations in the process of
generating the code output by the LLM itself.

1246

Extrapolate During the trial experiments, we ob-
served that LLMs sometimes generate intermediate
results instead of the final answer when executing
their generated code. Consequently, we introduced
an Extrapolate phase to further analyze the printed
outcomes and then generate the final prediction.
This stage makes our framework more flexible and
able to be applied to other programming languages
like SQL, which does not support plenty of logic
beyond its database functionalities. Furthermore,
the Extrapolate stage can combine the reasoning
ability of LLMs through both code and natural lan-
guage in order to perform more complex reasoning
tasks. The complete prompt design of E5can be
found in Appendix D.

4.2 F3: Find, Filter and Fill

Original E5and all previous table analysis meth-
ods (Ye et al., 2023; Jiang et al., 2023) take the
whole table as part of the input to LLMs, neces-
sitating a context length that exceeds the table’s
length. These approaches become infeasible when
handling large tables, such as a century-long sales
report of a company, or when the available mod-
els possess a limited context length. Furthermore,
the substantial token count introduced to LLMs
can escalate computational costs and augment car-
bon footprints. Consequently, we introduce F3,
designed to significantly reduce the input token
length while trying to retain maximal pertinent in-
formation through the subsequent procedures.

Find and Filter In most cases, cells other than
headers occupy a significant portion of the table’s
space and do not contain much semantic informa-
tion except presenting values. Namely, altering
these cells does not necessitate a change in the way
to address a specific query in most cases. Con-
sequently, we input only the table headers to the
LLM and instruct it to identify the pertinent rows
and columns (Find). After that, we use a rule-based
function to filter the original table and only keep
the identified cells.

Fill However, as all our prompt designs are in a
zero-shot manner, even GPT-4, the most powerful
LLM, can fail to accurately identify the relevant
headers, potentially omitting crucial cell values re-
lated to the specified query. As a result, we propose
an adaptive algorithm to integrate cells from the
original table into the filtered version without using
LLMs. Our proposed Fill algorithm tries to pre-

serve as many cell values as possible, adhering to
the context length constraints of the LLM.

To be specific, we iterate all the cells identified
in the stage of Find and first add all cells from the
original table in the same row and column under
the assumption that cells in the same row or column
may have more similarity. For example, the cells
in this column of women in Figure 1 table are all
statistics about females. After that, we design three
different strategies (as shown in Figure 2) to further
add potentially useful cells. The row-wise (Figure
2a) and column-wise (Figure 2b) expansion strat-
egy iteratively add neighboring rows and columns
respectively. The spiral expansion strategy (Figure
2c) uses a spiral pattern to expand the extracted
cells in all directions. Each strategy greedily ex-
pands until the maximum token limit is reached or
complete filling all the cell values.

Although the Fill procedure may bring in un-
related cells that may distract LLMs, this can be
mitigated by the Extract stage in E5to a certain de-
gree. Besides, we empirically find that the effect
of distraction is considerably less than the loss of
useful information (described in Figure 3). The
complete F3is illustrated in Algorithm 1.

(a) Row-wise (b) Column-wise (c) Spiral

Figure 2: Three different strategies to reintegrate po-
tentially relevant cells into the filtered table. The dark
red cell is the one identified in the stage of Find. The
light red cells are the potentially useful cells that will be
added back to the filtered table in the stage of Fill. The
green arrows indicate the direction of expansion.

5 Experiment Settings

Dataset As we focus on large hierarchical table
analysis, we use HiTab (Cheng et al., 2022a) as
the primary dataset. HiTab is the only public hi-
erarchical table QA dataset containing complex
hierarchical indexing. In contrast to other table
QA datasets (Pasupat and Liang, 2015; Chen et al.,
2020a,b, 2021b), which predominantly source ta-
bles from Wikipedia, HiTab collects tables from
Statistics Canada and the National Science Founda-
tion’s statistical reports. Not only do these sources
offer larger tables, but they also align more closely

1247

Algorithm 1: F3: Find, Filter and Fill
Input : T : Original hierarchical table, Q:

User query, LLM: Language
model, N: Token limit, P: Prompt
for Find

Output : Tfinal: Filtered and filled table
with |Tfinal| < N

Theader ← ExtractHeaders(T);
R ← LLM(Theader,Q, P) Find
Tfiltered ← FilterTable(T,R) Filter
Tfinal ← Tfiltered
i← 1;
while Tfinal , T and |Tfinal| < N do

Tfinal ← FillTable(T,R[i],Tfinal) Fill
i← i + 1;

return Tfinal;

with authentic data analysis scenarios in the indus-
try. We use the test set of HiTab, which has 1584
(table, query) pairs. For table input format, we
employ HTML due to its prevalent usage online
and its capability to effectively display hierarchical
table architectures. To demonstrate the efficacy and
adaptability of our proposed approach, we subse-
quently evaluate E5on an additional two prevalent
table QA datasets, WikiTableQuestions (Pasupat
and Liang, 2015) and TabFact (Chen et al., 2020a),
as detailed in Appendix A.1.

Baselines For comparative analysis, we select the
following methods as our baselines1:

• Zero-shot prompting (Brown et al., 2020):
simply prompts LLMs with the given table
and query along with instructions.

• Zero-shot Chain-of-Thought (CoT) (Kojima
et al., 2022): adds Let’s think step by step in
the end of Zero-shot prompting.

• ReAct (Yao et al., 2022): employs specific
instructions to guide LLMs in producing
(Thought, Act,Obs) tuples, facilitating the
combination of logical reasoning with actions.
Although the original ReAct requires multiple
few-shot exemplars, we use the modified zero-
shot version from LangChain (Chase, 2023).

• E4 (Ours): adopts the procedure of Extract,
Execute, Exhibit and Extrapolate described in
Section 4.1.

1All the prompt design can be found in Appendix D

• E5 (Ours): adds the step of Explain prior to
E4, instructing LLMs to first describe the hier-
archical structure and identify relevant head-
ers.

All prompting baselines are built upon GPT-4-
32k (OpenAI, 2023b) accessed via the Azure API
with the API base of 2023-05-15 for main exper-
iments. We also compare with other LLMs with
a smaller context length in Appendix A.2. In ad-
dition to LLM-based prompting methods, we also
present the results of previous SOTA finetuning-
based methods including table pre-trained TaPas
(Herzig et al., 2020) and Neural Symbolic Machine
(NSM) with MAPO (Liang et al., 2018). Imple-
mentation details can be found in Appendix C.

Metrics We use the following two metrics to eval-
uate hierarchical table QA systems:

• Exact Match (EM): Following previous
works (Chen, 2023), we use EM score as the
main metric for evaluations. EM is a com-
mon metric used in various fields such as in-
formation retrieval, machine reading compre-
hension, and question answering to measure
how often the output from a system exactly
matches the expected or ground truth value
(ranging from 0 to 1). However, EM can
not correctly identify semantic equivalence
on the prediction and gold label (e.g., “Bhim-
rao Ramji Ambedkar” and “B. R. Ambedkar.”)
(Kamalloo et al., 2023).

• GPT-4-eval: Inspired by the finding that
LLMs have the potential to evaluate NLP mod-
els (Chiang and Lee, 2023; Kamalloo et al.,
2023), we use GPT-4 as the evaluator to jus-
tify the correctness of predictions. We use the
following prompt to input GPT-4:

GPT-4-Eval

Please justify whether the model
correctly predicted the output based
on the given question and label.
Question: Question
Label (Correct Answer): Label
Model Prediction: Prediction

As the finetuning-based methods generate logic
forms, we use execution accuracy (EA) to measure
the accuracy.

1248

Token-limited Scenario In order to simulate con-
ditions where the token capacity of the LLM is
relatively constrained, we deliberately set a limit
on the maximum token length, ranging from 2,000
to 6,000. This range is compatible with numerous
LLMs, including LLaMA (Touvron et al., 2023a),
Pythia (Biderman et al., 2023) and so on. This
maximum token length serves as a parameter in our
proposed adaptive algorithm. In this token-limited
setting, we first apply F3to get filtered-and-filled
tables and subsequently feed them into E5.

6 Experiment Results

Table 1 presents the primary experimental find-
ings on HiTab. The observations are as follows:
(1). Compared with earlier SOTA finetuning-based
methods, GPT-4 with instructional prompts can
substantially increase the accuracy on HiTab even
in a zero-shot manner. This suggests that prompt-
ing LLMs has potential superior efficacy in hierar-
chical table question-answering tasks. (2). Zero-
shot CoT brings about a subtle increase in EM
score and a noticeable improvement on GPT-4
Eval. (3). Among all the GPT-4-based methods,
those augmented with tools consistently surpass
naive prompting methods, indicating that incor-
porating external code interpreter can effectively
help LLMs for table analysis by reducing halluci-
nations. (4). Our proposed E5achieves the best per-
formances on both metrics. Between our proposals,
E5outperforms E4 on both metrics by a noticeable
margin. This combined with the case study in Fig-
ure 8 denotes that the stage of Explain is useful to
the system by helping the LLM better understand
the tables’ hierarchical structures and implicit se-
mantic relationships.

(a) EM Score (b) GPT-4-eval

Figure 3: Performance variation of E5and ReAct in
relation to maximum iteration limit. E5has more stable
performances than ReAct on both metrics.

Comparison with ReAct From Table 1, it is
evident that E5surpasses ReAct on both met-
rics. Furthermore, during the experimentation

Method EM Score GPT-4 Eval

Finetuning-based methods
TaPas 38.90 -
NSM w/MAPO 40.70 -
Prompting using GPT-4
Zero-shot 78.56 87.84
Zero-shot CoT 78.74 91.36
ReAct 81.87 91.50
E4(Ours) 83.19 92.89
E5(Ours) 85.08 93.11

Table 1: The experiment results on HiTab. The mean
p-values for the paired t-test between E5and other top-
performing baselines is 0.038, indicating significant
differences. We report the results averaged over three
runs.

(a) EM Score (b) GPT-4-eval

Figure 4: Performances of three Fill strategies’ with
changing token limits. All three strategies achieve de-
cent performances when the input token length is con-
strained. Among the three strategies, the row-wise dif-
fusion strategy outperforms the others.

phase, we empirically find that ReAct requires
a significantly higher number of iterations for
the (Thought, Act,Obs) cycle, which consequently
leads to an increased time and resource expenditure.
To provide a more holistic comparison, we analyze
the performance variation of both ReAct and E5in
relation to the maximum iteration limit. As illus-
trated in Figure 3, when the maximum number of
iterations is reduced, E5exhibits a more marginal
performance decline compared to ReAct. The dis-
parity in performance between the two methods
becomes more pronounced as the maximum num-
ber of iterations is reduced. Specifically, when
the maximum number of iterations is limited to 2,
this discrepancy is most evident. Under this condi-
tion, E5demonstrates decent performances on both
evaluation metrics, achieving scores of 74.81 on
EM and 82.95 on GPT-4-eval. Notably, the vari-
ance for E5(9.92) is substantially lower than that of
ReAct (29.99), which indicates superior stability

1249

(a) EM Score (b) GPT-4-eval

Figure 5: Comparative analysis of E5and E4 performance across error categories. We report the averaged results
over ten runs. E5outperforms E4 in all error categories by considerable margins, indicating the effectiveness of
self-explaining tables’ hierarchical structures.

of E5concerning the maximum iteration number.
Additionally, in the course of our experiments, we
observe that in the absence of instructions to extract
pertinent cells using Pandas, ReAct frequently at-
tempts to load the complete table via multiple tools,
leading to recurrent syntax errors.

Token-limited Scenario Figure 4 illustrates the
performance of three Fill strategies in relation to
the input token length limit. We find that GPT-
4 can still achieve decent results even with token
limit constraints for hierarchical table analysis, in-
dicating the effectiveness of our proposed F3. As
the token limit increases from 2000 to 6000, all
three strategies have considerable performance im-
provements. notably, the row-wise diffusion strat-
egy outperforms the others across both evaluation
metrics.

7 Error Analysis

Besides the main experiment, we also conduct
a comprehensive error analysis of our proposals.
Specifically, we run E4 ten times, selecting in-
stances with at least one recorded error. These
errors were then classified into the following four
categories and visualized in Figure 6:

• Semantic Relationship Errors: The LLM
struggles to discern implicit semantic relation-
ships between hierarchical headers, as illus-
trated in Figure 7.

• Extraction Errors: The LLM is occasionally
unsuccessful in extracting relevant segments
of the table to address the query.

• Calculation Relationship Errors: In in-
stances where computation is required, the
LLM fails to accurately determine the compu-
tational relationships between entities.

• Grounding Errors: The LLM exhibits chal-
lenges in aligning the intent of the query with
the corresponding operations on tables.

To further investigate how well E5can address these
error cases through Explain phase, we separately
evaluate E4 and E5on them, repeating the experi-
ment ten times. We visualize the average EM score
and GPT-4-eval over ten runs in Figure 5. From
this figure, it is evident that E5exhibits considerable
improvement across all four error categories, with
a particularly notable enhancement in the semantic
relationship category (an increase of over 50%).
These findings suggest that LLM can significantly
benefit from self-explaining the hierarchical table
structure in our tasks.

Semantic Relationship

36.8%
28.7%

24.1%10.3%

Extraction

Calculation Relationship

Grounding

Figure 6: Proportional distribution of four categories of
error cases generated by E4

1250

(1) ReAct
Question: what’s the commonly reported primary caregiver among senior
women aged 65 to 74.
Thought: I need to find the highest percentage for primary
caregiver for women in the 65 to 74 years age group.
Action: python_repl
Action Input:
data = {"total": (100, 100), "spouse": (19, 60), "son": (19,
10), "daughter": (42, 15), "close friend": (4, 4), "other
family member, friend, or acquaintance": (16, 10)}
max_caregiver = max(data, key=lambda x: data[x][0])
max_caregiver
Observation:
I now know the most commonly reported primary caregiver.
Final Answer: daughter

(2) !!
Question: what's the commonly reported primary caregiver among senior
women aged 65 to 74.
Thought: To find the most commonly reported primary caregiver
among senior women aged 65 to 74, I need to look at the
values in the "65 to 74 years" column for women and find
the highest value. Then, I will return the corresponding
primary caregiver category.
Action: python_repl
Action Input:
import pandas as pd
df = pd.DataFrame({ "primary_caregiver": ["total", "spouse",
"son", "daughter", "close_friend",
"other_family_member_friend_or_acquaintance"],
"65_to_74_years_women": [100, 36, 17, 20, 6, 21] })
max_value = df["65_to_74_years_women"].max()
result = df[df["65_to_74_years_women"] ==
max_value]["primary_caregiver"].values[0]
print(result)
Observation: total
I now know the final answer.
Final Answer: total

(3) !"

Question: what's the commonly reported primary caregiver among senior
women aged 65 to 74.
Thought: I need to find the most commonly reported primary
caregiver for senior women aged 65 to 74 years.
Table Structure: The table has 3 levels of headers. The first
level has the primary caregiver as the row label and age
groups for seniors with sub-columns for women and men. The
second level has columns for total - 65 years and over, 65
to 74 years, 75 to 84 years, and 85 years and over, each
with sub-columns for women and men. The third level has
percentage as the column label for all age groups and sex
columns. The related rows are the primary caregiver
categories (spouse, son, daughter, close friend, other
family member, friend, or acquaintance) and the related
column is "65 to 74 years" for women.
Action: python_repl
Action Input:
import pandas as pd
df = pd.DataFrame({ "primary_caregiver": ["spouse", "son",
"daughter", "close friend", "other family member, friend,
or acquaintance"], "65_to_74_years_women": [36, 17, 20, 6,
21], })

max_percentage = df["65_to_74_years_women"].max()
most_common_caregiver = df[df["65_to_74_years_women"] ==
max_percentage]["primary_caregiver"].tolist()
print(most_common_caregiver)

Observation: ['spouse']
I now know the final answer.
Final Answer: spouse

Figure 7: The complete reasoning path and generated code of ReAct, E4 and E5for the (Table, Query) pair in Figure
1. The highlighted segments are related to how different methods’ reasoning over the semantic relationship between
the ’total’ row and the remaining rows. Compared with ReAct and E4, E5exhibits an enhanced ability to understand
the implicit relationship between headers through self-explaining. In this particular instance, E5can recognize that
Total is not a category of caregiver and generate the correct answer.

8 Case Study

In order to qualitatively investigate how the stage
of self-Explaining helps the E5system, we con-
duct a case study to compare three different tool-
augmented approaches, ReAct, E4, and E5. Based
on the table and query depicted in Figure 1, the
reasoning trajectories of ReAct, E4, and E5are illus-
trated in Figure 7. From this example, we observe
that both ReAct and E4 simply retrieve all row head-
ers in the given table and neglect the underlying
semantic correlations among them, leading to an in-
correct answer. Although it is intuitive for humans
that the row labeled Total represents the cumulative
sum of preceding rows, both ReAct and E4, em-
ploying GPT-4, fail to recognize this, mistakenly
interpreting Total as a separate caregiver category.
On the contrary, as highlighted in the paragraph
of Table Structure, E5accurately identifies the ap-
propriate caregiver categories, excluding the row
labeled Total in the generated code. This suggests
that integrating a phase for self-explaining table
structures can enhance the capacity of LLMs to dis-
cern implicit relationships within hierarchical head-

ers. Besides, in this case, ReAct does not explicitly
print its output, resulting in an absence of observa-
tion. Consequently, the LLM produces an inaccu-
rate answer, a phenomenon referred to as "hallu-
cination." Such outcomes suggest that merely in-
structing LLMs to use tools may not be sufficiently
effective for tool-augmented agents. Alternatively,
prompting LLMs to appropriately use tools in a
structured manner proves to be of paramount im-
portance and the design of such prompts should be
meticulously tailored to each distinct task.

9 Conclusion and Future work

We introduce E5, a code-augmented pipeline for
zero-shot question answering over large hierarchi-
cal tables. Through comprehensive experiments,
we empirically demonstrate that built upon GPT-
4, E5can significantly outperform previous SOTA
finetuning-based methods by a substantial mar-
gin (44.38 on Exact Match) and other prompting
strategies with superior stability and adaptability.
We separately analyze the phase of self-explaining
through extensive error analysis and case study,

1251

proving its effectiveness in helping LLMs get a
deeper insight into hierarchical table structures. We
also investigate the practical token-limited scenario
and propose an adaptive algorithm, F3, making it
possible to analyze large tables using models even
with models constrained by a limited context length.
We believe that our contributions hold substantial
promise for practical applications in real-world ta-
ble analysis, such as financial statements, in the
industry.

Limitations

We identify two limitations in our work that need
further investigation and improvement. (1) As our
research focuses on leveraging LLMs’ hierarchical
table analysis ability, we only try three strategies
(illustrated in Figure 2) in the Fill stage of F3. Other
similarity-based approaches such as clustering or
embedding-based search might also be applicable
in this context. We leave the exploration of more
Fill strategies as future works. (2) In this work,
as HiTab is the only public hierarchical table QA
dataset comprising exclusively single-table anal-
ysis data, we do not consider hierarchical table
analysis spanning multiple tables.

References
Stella Biderman, Hailey Schoelkopf, Quentin Gregory

Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Sidney Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang,
Michael Pieler, Usvsn Sai Prashanth, Shivanshu Puro-
hit, Laria Reynolds, Jonathan Tow, Ben Wang, and
Samuel Weinbach. 2022. GPT-NeoX-20B: An open-
source autoregressive language model. In Proceed-
ings of BigScience Episode #5 – Workshop on Chal-
lenges & Perspectives in Creating Large Language
Models, pages 95–136, virtual+Dublin. Association
for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Harrison Chase. 2023. Langchain. Accessed: 2023-07-
17.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021a. Evaluating large lan-
guage models trained on code. arXiv preprint
arXiv:2107.03374.

Wenhu Chen. 2023. Large language models are few(1)-
shot table reasoners. In Findings of the Associa-
tion for Computational Linguistics: EACL 2023,
pages 1120–1130, Dubrovnik, Croatia. Association
for Computational Linguistics.

Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William
Wang, and William W. Cohen. 2021b. Open question
answering over tables and text.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020a. Tabfact: A large-scale
dataset for table-based fact verification.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Yang Wang. 2020b. Hy-
bridQA: A dataset of multi-hop question answering
over tabular and textual data. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 1026–1036, Online. Association for Computa-
tional Linguistics.

Zhe Chen and Michael Cafarella. 2014. Integrating
spreadsheet data via accurate and low-effort extrac-
tion. In Proceedings of the 20th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining, KDD ’14, page 1126–1135, New York,
NY, USA. Association for Computing Machinery.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia,
Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang Lou, and
Dongmei Zhang. 2022a. HiTab: A hierarchical table
dataset for question answering and natural language
generation. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1094–1110, Dublin,
Ireland. Association for Computational Linguistics.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
et al. 2022b. Binding language models in symbolic
languages. In The Eleventh International Conference
on Learning Representations.

I Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan, Kehua
Feng, Chunting Zhou, Junxian He, Graham Neubig,
Pengfei Liu, et al. 2023. Factool: Factuality detec-
tion in generative ai–a tool augmented framework
for multi-task and multi-domain scenarios. arXiv
preprint arXiv:2307.13528.

1252

https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://github.com/hwchase17/langchain
https://aclanthology.org/2023.findings-eacl.83
https://aclanthology.org/2023.findings-eacl.83
http://arxiv.org/abs/2010.10439
http://arxiv.org/abs/2010.10439
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/1909.02164
http://arxiv.org/abs/1909.02164
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.1145/2623330.2623617
https://doi.org/10.1145/2623330.2623617
https://doi.org/10.1145/2623330.2623617
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78

Cheng-Han Chiang and Hung-yi Lee. 2023. Can large
language models be an alternative to human evalua-
tions? In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15607–15631, Toronto,
Canada. Association for Computational Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, JeffDean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong
Yu. 2022. Turl: Table understanding through repre-
sentation learning. ACM SIGMOD Record, 51(1):33–
40.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,

pages 4320–4333, Online. Association for Computa-
tional Linguistics.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Struct-
gpt: A general framework for large language model
to reason over structured data. arXiv preprint
arXiv:2305.09645.

Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and
Davood Rafiei. 2023. Evaluating open-domain ques-
tion answering in the era of large language models.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5591–5606, Toronto, Canada.
Association for Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Chen Liang, Mohammad Norouzi, Jonathan Berant,
Quoc V Le, and Ni Lao. 2018. Memory augmented
policy optimization for program synthesis and se-
mantic parsing. Advances in Neural Information
Processing Systems, 31.

Seung-Jin Lim and Yiu-Kai Ng. 1999. An automated
approach for retrieving hierarchical data from html
tables. In Proceedings of the Eighth International
Conference on Information and Knowledge Manage-
ment, CIKM ’99, page 466–474, New York, NY,
USA. Association for Computing Machinery.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2021.
Tapex: Table pre-training via learning a neural sql
executor. In International Conference on Learning
Representations.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2024. Chameleon: Plug-and-play com-
positional reasoning with large language models. Ad-
vances in Neural Information Processing Systems,
36.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, Edouard Grave, Yann LeCun, and
Thomas Scialom. 2023. Augmented language mod-
els: a survey.

1253

https://aclanthology.org/2023.acl-long.870
https://aclanthology.org/2023.acl-long.870
https://aclanthology.org/2023.acl-long.870
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2211.10435
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://aclanthology.org/2023.acl-long.307
https://aclanthology.org/2023.acl-long.307
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.1145/319950.320052
https://doi.org/10.1145/319950.320052
https://doi.org/10.1145/319950.320052
http://arxiv.org/abs/2302.07842
http://arxiv.org/abs/2302.07842

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, JeffWu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

OpenAI. 2023a. Chatgpt.

OpenAI. 2023b. Gpt-4 technical report.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,
Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. 2023. Art: Automatic multi-
step reasoning and tool-use for large language mod-
els. arXiv preprint arXiv:2303.09014.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480, Beijing, China. Association for Computational
Linguistics.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is
ChatGPT a general-purpose natural language process-
ing task solver? In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1339–1384, Singapore. Associa-
tion for Computational Linguistics.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
huggingface. arXiv preprint arXiv:2303.17580.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H. Chi, Nathanael Schärli,
and Denny Zhou. 2023. Large language models can
be easily distracted by irrelevant context. In Proceed-
ings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine
Learning Research, pages 31210–31227. PMLR.

Kurt Shuster, Mojtaba Komeili, Leonard Adolphs,
Stephen Roller, Arthur Szlam, and Jason We-
ston. 2022. Language models that seek for
knowledge: Modular search & generation for di-
alogue and prompt completion. arXiv preprint
arXiv:2203.13224.

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li,
Ke Wang, Ye Tian, and Sujian Li. 2023. Rest-
gpt: Connecting large language models with real-
world applications via restful apis. arXiv preprint
arXiv:2306.06624.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener-
alized tool learning for language models with 3000
simulated cases. arXiv preprint arXiv:2306.05301.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu,
Shi Han, and Dongmei Zhang. 2021. Tuta: Tree-
based transformers for generally structured table pre-
training. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining,
KDD ’21, page 1780–1790, New York, NY, USA.
Association for Computing Machinery.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decomposing evi-
dence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’23, page 174–184, New
York, NY, USA. Association for Computing Machin-
ery.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8413–8426, On-
line. Association for Computational Linguistics.

1254

https://openai.com/blog/chatgpt/
http://arxiv.org/abs/2303.08774
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.18653/v1/2023.emnlp-main.85
https://doi.org/10.18653/v1/2023.emnlp-main.85
https://doi.org/10.18653/v1/2023.emnlp-main.85
https://proceedings.mlr.press/v202/shi23a.html
https://proceedings.mlr.press/v202/shi23a.html
https://doi.org/10.1145/3447548.3467434
https://doi.org/10.1145/3447548.3467434
https://doi.org/10.1145/3447548.3467434
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745

Zhehao Zhang, Xitao Li, Yan Gao, and Jian-Guang Lou.
2023. CRT-QA: A dataset of complex reasoning
question answering over tabular data. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 2131–2153,
Singapore. Association for Computational Linguis-
tics.

Caleb Ziems, William Held, Omar Shaikh, Jiaao Chen,
Zhehao Zhang, and Diyi Yang. 2024. Can Large
Language Models Transform Computational Social
Science? Computational Linguistics, pages 1–55.

A Ablation Studies

A.1 Experiments on Other Datasets

Although we focus on the analysis of hierarchical
tables, to further demonstrate the effectiveness and
flexibility of our proposal, we directly apply E5on
another two commonly-used flat table QA datasets,
WikiTableQuestions (Pasupat and Liang, 2015) and
TabFact (Chen et al., 2020a) using the exact same
prompt design in the main experiments. We fol-
low the exact same experiment setups with Chen
(2023) for these two datasets. WikiTableQuestions
is characterized by complex questions derived from
Wikipedia tables. We evaluate the standard test
set, encompassing approximately 4,000 questions.
Within this dataset, the evaluation metric employed
is the EM score. TabFact, on the other hand, has
both simple and complex claims. These claims are
annotated by crowd workers using Wikipedia tables
as references. The simple subset predominantly
lacks higher-order operations like max/min/count
and the like. Conversely, the complex subset is
saturated with claims that incorporate these higher-
order operations. This dataset requires the QA
system to determine if the provided claim is true or
false based on the table. Our evaluation spans the
original test set, which comprises 12,779 examples,
and we present the binary classification accuracy
for this dataset.

Method EM Score

SOTA table pre-trained model with finetuning
TAPAS (Herzig et al., 2020) 48.80
TAPEX (Liu et al., 2021) 57.50
Prompting using GPT-4
ReAct (Yao et al., 2022) 57.32
E5(Ours) 65.54

Table 2: Experiment results on WikiTableQuestions

Method Accuracy

SOTA table pre-trained model with finetuning
TAPAS (Herzig et al., 2020) 81.00
TAPEX (Liu et al., 2021) 84.20
Prompting using GPT-4
ReAct (Yao et al., 2022) 83.66
E5(Ours) 88.77

Table 3: Experiment results on TabFact

Tables 2 and 3 present the performance metrics
of various baselines on WikiTableQuestions and
TabFact, respectively. It is evident that our pro-
posed E5consistently surpasses prior SOTA table
pre-trained models and ReAct, yielding notable
enhancements on both datasets. These results indi-
cate the efficacy of our approach and its superior
generalization capability across different datasets.

A.2 Experiments with Models with Smaller
Context Length

As we use F3to compress large hierarchical tables
within the input token limit, it is possible to ana-
lyze these tables using models with limited context
length limit. As a result, we experiment with an-
other three models: text-davinci-002 (Brown et al.,
2020), text-davinci-003, and GPT-3.5-turbo (Ope-
nAI, 2023a). These three models’ context length
limits are all 4,096. Following the practice in the
main experiment, we first apply F3to get filtered-
and-filled tables and subsequently feed them into
E5.

Model EM Score GPT-4 Eval

text-davinci-002 26.81 32.13
text-davinci-003 35.23 43.11
GPT-3.5-turbo 36.78 41.39

Table 4: Experiment results of three models with rela-
tively small context length

Table 4 shows the experiment results of these
three models on HiTab. Combined with the results
in Table 1, we have the following observations: (1)
Compared with GPT-4, these three models can not
reach comparative performances on both metrics,
indicating a huge gap in ability between GPT-4
and the other LLMs. (2) Despite their constrained
context length, these models still manifest perfor-
mance metrics in close proximity to the preceding

1255

https://doi.org/10.18653/v1/2023.emnlp-main.132
https://doi.org/10.18653/v1/2023.emnlp-main.132
https://doi.org/10.1162/coli_a_00502
https://doi.org/10.1162/coli_a_00502
https://doi.org/10.1162/coli_a_00502

state-of-the-art (SOTA) table pre-trained models.
This suggests that F3, facilitating extensive table
analysis even with models of limited context length,
possesses significant promise for this task.

B Token Length Distribution

To count the tables’ number of tokens in HiTab, we
tokenize them using the same tokenizer as OpenAI
LLMs with tiktoken library. We then visualize
the token length distribution of HiTab datasets’ ta-
bles in Figure 8. From this figure, we find that there
are a proportion of tables in HiTab that contain
more than 3,000 tokens. Besides, we also need to
reserve enough token length for prompt instructions
and model generation. As a result, it is impossible
to input these large tables entirely to some LLMs
with a smaller context length. To solve such is-
sues, the stage of Filter in F3can compress 93.28%
of tables with more than 3,000 tokens to within
3,000. From Table 8, we can also conclude that
as many hierarchical tables already exceed 3000
tokens, adding these tables with additional prompts
is very likely to surpass the capacity of most LLMs,
including widely used models like vanilla GPT-3.5
and GPT-4, as well as open-source models such
as LLaMA, which have a limited context length
of several thousand tokens. While our F3 algo-
rithm can compress table contexts effectively, the
addition of instructional exemplars, which encom-
pass instructions and codes, is impractical for many
scenarios due to these context limitations. This
also makes our zero-shot setting more practical and
well-motivated.

Figure 8: Token length distribution of the HiTab
datasets.

C Implementation Details

To balance the randomness and creativity of LLMs’
generations, we set the temperature of the LLMs to
a small value of 0.3 for experiments. We repeat ev-
ery experiment three times and report the average
performances in the tables. As we find some of the
answers in Hitab are incorrectly annotated during
the process of error analysis, we filter them out
(172 in total) manually before all experiments. We
randomly sampled 100 instances for human evalua-
tion, and a difference of less than 1% indicates that
GPT-4-eval is effective in our task.

D Propmt Design

The complete prompt designs for all prompting
baselines are presented in Table 7. Table 5 and
Table 6 shows the prompt design of Find in F3and
GPT-4-eval respectively.

E Ablation Analysis

Besides the separate analysis of the Explain stage
in E5in the main experiment and the study of the
effectiveness of Execute in previous works (Gao
et al., 2023), we also qualitatively analyze the re-
maining stages in E5. Empirically, we find that
Extract is crucial for focusing the LLM on the rel-
evant parts of large tables, avoiding the handling
of the entire table in the code, which is prone to
syntax errors. For example, the LLM is more likely
to generate code to load the entire table’s content
for the extremely long Pandas Dataframe initial-
ization process which greatly increases the change
of syntax error in the code. The introduction of Ex-
tract contrasts with ReAct, which can struggle with
larger tables, leading to performance improvement
and stability as depicted in Figure 3. The Exhibit
stage also effectively aids in obtaining observations
from the actions performed, as illustrated in Figure
7. In cases where ReAct fails to obtain observa-
tions from the code, it can lead to incorrect answers
due to hallucination, highlighting the effectiveness
of our Exhibit stage. For the stage of Extrapolate,
we empirically observe that as the code frequently
outputs some intermediate results (e.g., sorted ta-
ble, filtered table) that can not be used as the final
answer, the final stage can effectively accomplish
the final step of reasoning to output the answer in a
desirable format.

1256

Prompt Design for the stage of Find

Zero-shot
Instruction: Given the HTML table’s headers and a question, please specify which columns and rows are useful for answering

the question. Keep in mind that column indexes or row indexes are the order after the header, starting from
1. For example, if there is a three-column left header and the related column is right next to the header, the
index is 1 (do not include the span of the header).
Begin!

Title: Table_title
Table: Html_table
of header rows: top_header_row_num (This is just for reference so you do not count this in the answer’s index)
of header cols: left_header_columns_num (This is just for reference so you do not count this in the answer’s index)
Question: Question

Table 5: Prompt design of the stage of Find in F3

Prompt Design for GPT-4-eval

Zero-shot
Instruction: Please justify whether the model correctly predicted the output based on the given question and label.
Question: Question
Label (Correct Answer): Label
Model Prediction: Prediction

If the model makes a correct prediction (Only output Yes or No with nothing else):

Table 6: Prompt design of GPT-4-eval

1257

Prompt Design for Baselines

Zero-shot
Table Answer the question based on the following html of a hierarchical table
Title: Table_title
Table: Html_table
Question: Question
Answer:

Zero-shot-CoT
Table Answer the question based on the following html of a hierarchical table
Title: Table_title
Table: Html_table
Question: Question
Explanation: Let’s think step-by-step and output the final answer in the end.

ReAct
Instruction Answer the following questions based on the html table. You have access to the following tools:

python_repl
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [python_repl]
Action Input: the input to the action (python code)
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: I now know the final answer
Begin!

Title: Table_title
Table: Html_table
Question: Question

E4

Instruction Answer the following questions based on the html table. You have access to the following tools:
python_repl
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [python_repl]
Action Input: the input to the action (python code), you should first use pandas to first create a dataframe
with relevant data and write code to accomplish the goal. To accomplish that, you should not load the raw HTML
data. Instead, you should use df = pd.DataFrame(dict) as the following:
df = pd.DataFrame(column1 : [], column2 : []) # dict’s keys are related column names and values are cell
values. Note that you should not load the entire table (such as pd.read_html) and only load the related part.
...
print(...) # Finally, you MUST explicitly print the final result. For example: print(df)
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: I now know the final answer
Begin!

Title: Table_title
Table: Html_table
Question: Question

E5

Instruction Answer the following questions based on the html table. You have access to the following tools:
python_repl
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Table Structure: you should describe the table in detail including different levels of headers and their meanings.
In the end, you should clearly specify which columns AND rows and their corresponding levels are related to the
question.
Action: the action to take, should be one of [python_repl]
Action Input: the input to the action (python code), you should first use pandas to first create a dataframe
with relevant data and write code to accomplish the goal. To accomplish that, you should not load the raw HTML
data. Instead, you should use df = pd.DataFrame(dict) as the following:
df = pd.DataFrame(column1 : [], column2 : []) # dict’s keys are related column names and values are cell
values. Note that you should not load the entire table (such as pd.read_html) and only load the related part.
...
print(...) # Finally, you MUST explicitly print the final result. For example: print(df)
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: I now know the final answer
Begin!

Title: Table_title
Table: Html_table
Question: Question

Table 7: Prompt designs of all prompting baselines in the experiment

1258

