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Abstract
The rapid development of Large Language
Models (LLMs) has led to great strides in
model capabilities like long-context under-
standing and reasoning. However, as LLMs
are able to process longer contexts, it becomes
more challenging to evaluate whether they have
acquired certain capabilities, since the length
of text (e.g., 200K tokens) they can process
far exceeds what humans can reliably assess
in a reasonable duration. In this paper, we
propose using complex synthetic tasks as a
proxy evaluation method, and present S3EVAL,
a Synthetic, Scalable, Systematic evaluation
suite for LLMs evaluation. The synthetic nature
of S3EVAL provides users full control over the
dataset, allowing them to systematically probe
LLM capabilities by scaling text length and
varying task difficulty across diverse scenar-
ios. The strong correlation between S3EVAL
and real-world benchmarks demonstrates the
soundness of using S3EVAL for evaluation of
LLMs. S3EVAL provides a flexible and infi-
nite long-context data generation method. We
have generated a comprehensive dataset called
S3EVAL-Standard, and experimental results
have shown that it poses significant challenges
for all existing LLMs. Our code is available at
https://github.com/lfy79001/S3Eval.

1 Introduction

Large Language Models (LLMs) have greatly
propelled significant advancements in Natural
Language Processing (NLP), such as OpenAI
GPT (Brown et al., 2020), Llama (Touvron et al.,
2023a,b), StarCoder (Li et al., 2023a), and others.
These models perform well in many NLP tasks and
claim to have made progress in advanced capabili-
ties such as reasoning, long-context understanding,
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Figure 1: Needle-in-A-HayStack cannot demonstrate the
performance of the model under real tasks, but S3EVAL
can. Compared with needle-in-a-haystack, S3EVAL is
more relevant to real benchmarks and more difficult.

and so on. However, existing benchmarks (Chang
et al., 2023) often fail when it comes to evaluating
extremely long-context LLMs or analysing the con-
trollable characteristics and limitations of LLMs.

For long-context understanding, previous work
has often evaluated LLMs using the scope of lan-
guage modeling metrics (i.e., perplexity) (Sun et al.,
2021; Peng et al., 2023) or the performance on sim-
ple artificial tasks (Li and Roth, 2002; Berant et al.,
2013; Mohtashami and Jaggi, 2023). There is a
widely used evaluation method known as Needle-
in-a-Haystack (Kamradt, 2023), as shown in Fig-
ure 1. In this method, a vital piece of information is
concealed within a lengthy document, resembling
a haystack, and the model’s objective is to locate
and retrieve this hidden key information. How-
ever, these evaluation tasks tend to lack complexity
and are narrowly focused on simple comprehen-
sion, which is misaligned with the sophistication
required for real-world downstream applications.

While recent work has made great progress on
building evaluation benchmarks at longer context
lengths with real-world use cases (e.g, question an-
swering) (Bai et al., 2023b; An et al., 2023), these
manually annotated datasets often lack the scale
and diversity to thoroughly assess performance on
extended context lengths. For example, existing
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benchmarks struggle to effectively evaluate LLMs
that claim an ability to process contexts up to 100K
tokens, due to the limited capacity of human an-
notation for very long text. Developing more scal-
able and diverse evaluation datasets, potentially
leveraging automated supervision, remains an open
challenge.

For reasoning analysis (Hendrycks et al., 2021b;
Chen et al., 2021a; Suzgun et al., 2023; Zhong
et al., 2023), conducting both qualitative and quan-
titative analysis of answers and reasoning processes
provides important insights. However, existing
benchmarks lack the ability to precisely control
the distribution of the dataset, limiting their utility
for in-depth research analysis. In other words, the
nature of these benchmarks makes it challenging
for developers to identify the specific weaknesses
of their LLMs. More configurable and granular
benchmarks are needed to enable detailed analysis
of model performance. In addition, these bench-
marks often draw their evaluation data from NLP
tasks that have been extensively studied and are
likely to be used in the training corpus of LLMs.
The potential data leakage makes the evaluation
less convincing.

In this paper, we propose a new evaluation suite
called S3EVAL, which addresses the aforemen-
tioned issues by using a complex synthetic task
- SQL execution - as a proxy for the performance
of LLMs on realistic reasoning tasks. As shown
in Figure 2, inspired by the work of TAPEX (Liu
et al., 2022), S3EVAL is based on the SQL execu-
tion task. Specially, given a randomly generated
table and a random SQL query, S3EVAL evaluates
whether LLMs can return the correct execution re-
sults. S3EVAL has three notable characteristics: (1)
It is synthetic, with no table or SQL query present
in the LLM training corpus. The tasks use com-
plex, grammatically correct SQL syntax, making
them very challenging. (2) It is scalable, allowing
users to customize the benchmark to any length
and difficulty. (3) It is systematic, containing di-
verse reasoning types and operations. This enables
comprehensive evaluation of LLM capabilities.

With these powerful features, developers can ex-
tend the context to really long lengths and generate
meaningful SQL statements using S3EVAL. We
conducted comprehensive multi-perspective experi-
ments on several popular LLMs using S3EVAL.
Experimental results demonstrated that the per-
formance of LLMs on S3EVAL aligns closely
with their performance on mainstream LLM bench-

marks. While LLMs have shown impressive capa-
bilities, our work reveals limitations in their abil-
ity to leverage long contexts, since we observe
performance degradation of almost all LLMs in
long-context settings. By carefully studying exper-
imental results, we can work to pinpoint situations
where LLMs tend to fail and summarize valuable
insights.

In the era of rapid LLM development, the most
significant contribution of S3EVAL lies in its effec-
tiveness as a method for long-context evaluation.
Capable of generating evaluation data of infinite
length, it ensures that assessments are not only rea-
sonable but also sufficiently challenging.

2 Synthetic: Suite and Benchmark

In this section, we introduce the details of the
S3EVAL evaluation suite (as shown in Figure 2)
and the new benchmark we proposed.

2.1 Suite Construction

Task Formulation Following previous
work (Liu et al., 2022), each example in
S3EVAL generally contain an SQL query and a
(semi-)structured table T as the input. Each table
T consists of M rows {ri}Mi=1, in which each row
ri contains N cell values

{
c⟨i,j⟩

}M

i=1
. Each cell

c⟨i,j⟩ corresponds to a table header hj . Each SQL
query consists of K tokens as x = x1, x2, · · · , xK .
Each token xi originates from SQL keywords,
table schema, or table cells. Each multi-step
instruction is transformed from SQL query. The
task prompts LLM to obtain the execution result A
of the SQL on the table T . Our main focus is on
analyzing the accuracy of LLM in executing SQL
queries.

Random Table Generation All tables in
S3EVAL are randomly generated and do not con-
tain any real data or overlap with existing public
tables. The tables have M rows and N columns,
with adjustable parameters M and N . The column
headers are sampled from English nouns (Bird,
2006), falling into three types: TEXT, INT, and
DATE. INT columns contain random integers from
1 to 1000, which is an adjustable range. DATE
columns have values in year-month-day format.
TEXT columns have random strings of length 5 to
12 characters, which is also adjustable. To simulate
real-world data where the same value may recur in
a column frequently, the data generator includes
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Figure 2: The illustration demonstrates the S3EVAL pipeline, where the capabilities of LLMs are assessed by
evaluating their ability to execute SQL queries over randomly generated tables.

Configuration Description

Table Control

# of Rows The number of rows in the generated tables
# of Columns The number of columns in the generated tables
Header Type Ratio The proportion of table column types that are TEXT, INT, DATE
Cell Uniqueness The proportion of duplicate cells in each column
String / Int Length The string length or numeric range of cell values

Instruction
Control

SQL Keywords SELECT, WHERE, GROUP BY, HAVING, ORDER BY
SQL Length The number of tokens after SQL split by space
Column Coverage The ratio of columns involved in SQL execution to total columns.
Row Coverage The ratio of rows involved in SQL execution to total rows
Calculate Times The number of SQL numerical calculations.
Filter Times The number of SQL filtering operations.
Aggregator COUNT, MAX, MIN, SUM, AVG
Filter Operator >, <, =, IN, LIKE

Output Control
Answer Location The location of SQL answers in the input table
# of Answer Cells The number of selected cells in the answer
Answer Length The total number of tokens in the answer

Table 1: Our S3EVAL method allows users to customize configuration settings and provides descriptions for each
parameter that can be adjusted. More configurations can be found in Appendix D.1.

a parameter to set the probability of duplicating
values within a specific column.

Random SQL Generation The SQL language
includes a variety of statements to query and man-
age data. S3EVAL use context free grammar to
generate a specific number of examples with con-
trollable attributes. As Table 1 shows, the S3EVAL

tool allows configuring several parameters of gen-
erated SQL statements, including nesting depth,
keywords used, length, coverage of SQL features,
computational complexity, and more. For exam-
ple, calculate times can be modified to control the
complexity of numerical reasoning for each dataset.
Except these configures, users can also manually
write the specified SQL template to generate fine-
grained evaluation data (Appendix C.2).

Evaluation Methods S3EVAL includes
both zero-shot and few-shot prompting meth-
ods. For each few-shot setting, all examples
share one table. N-shot is formalized as
INPUT = [T; S1; A1; ...; Sn+1]. For the input
format of table T , we designed several alternative
ways, including markdown, flatten, tapex-style,
etc.

To evaluate the performance of LLMs, we use
Exact Match (EM) as the evaluation metric. Details
are shown in Appendix C.3.

2.2 S3EVAL-Standard Benchmark

We generate a highly diverse dataset called
S3EVAL-Standard covering lengths ranging from
2K to 40K, with various difficulty levels of rea-
soning types, which comprises all templates and
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Model Context Length Short-Context Long-Context Total

GPT-4-32K 32768 68.4% 43.0% 54.8%
GPT-3.5-Turbo 16384 39.9% 16.2% 27.0%
Code Llama (70B) 16384 33.9% 8.9% 20.3%
LLaMA-2 (70B) 4096 30.0% 8.8% 18.4%
LLaMA-2 (13B) 4096 21.7% 4.6% 12.4%
LLaMA-2 (7B) 4096 20.8% 4.4% 11.9%
Gemma (7B) 8192 28.9% 8.6% 17.9%
Qwen 1.5 (14B) 32768 33.7% 14.4% 23.2%
Qwen 1.5 (7B) 32768 26.5% 8.0% 16.5%
Qwen 1.5 (4B) 32768 22.8% 5.5% 13.4%
Mixtral-8x7B (46.7B) 32768 31.5% 11.1% 20.4%
Mistral-Instruct-v0.2 (7B) 32768 28.7% 10.6% 18.9%

Table 2: Experimental results on S3Eval-Standard. “Total” denotes the overall score, “Short-Context” refers to the
model’s performance on contexts shorter than 4K in length, and “Long-Context” indicates the model’s performance
on contexts ranging from 4K to 40K in length.

operations included in S3EVAL, making it the most
complex and diverse dataset available. We utilize
this version of the dataset as the official bench-
marking data for S3EVAL benchmark. It can ef-
fectively evaluate LLMs in completing tasks un-
der both short-context and long-context scenarios.
We evaluate popular commercial LLMs and open-
source LLMs on S3EVAL-Standard, and the exper-
imental results are shown in Table 2. In theory,
we can measure the performance of LLMs with
unlimited context length here.

3 Correlation with Realistic Benchmark

In this section, we describe the details of synthesiz-
ing the evaluation data (Section 2.1) and verify the
correlation between our synthetic suite S3EVAL

and real-world benchmark results.

3.1 Experimentual Settings

S3EVAL can flexibly generate different evaluation
data. To validate the rationality of S3EVAL, we
conducted correlation experiments and generated
two sets of data with different difficulty levels
for experimentation. Easy is the simplest data
that S3EVAL can generate and is used to evaluate
LLM’s ability to understand the most basic instruc-
tions. It contains only one template, “SELECT
<col1> WHERE <col2> <op> <value>”. General
is a more difficult setting, containing extensive SQL
syntax, and its generating setting is described in
Appendix D.2. All experiments were run for 3
times, using 1000 randomly generated queries per
trial, with tables of 15 rows and 8 columns and an
average of 1200 tokens per input. Details on the
LLMs are provided in Appendix D.3.

Considering SQL execution is a difficult task,

some models may have a poor understanding of
symbolic language, which makes it difficult to exe-
cute SQL, so we propose an alternative task SQL
multi-step task to remove this potential bias. Specif-
ically, it converts an SQL query into a multi-step ta-
ble operation instruction as shown in Appendix C.6.
SQL has a fixed execution flow for the query state-
ment: FROM → ON → JOIN → WHERE →
GROUP BY → HAVING → SELECT → ORDER
BY → LIMIT. This is not consistent with the order
in which it is written. With this processing, it can
also generate chain-of-thought prompting data.

3.2 Scaling Law

Previous work (Kaplan et al., 2020; Hoffmann et al.,
2022) shows a positive correlation between the
cross-entropy loss of LLMs and the amount of com-
puting resources used for training, as described by
the empirical scaling law. To verify whether the
scaling law holds for our S3EVAL, we employ a
set of checkpoints of Pythia-12B (Biderman et al.,
2023) that are open-sourced at different training
steps, corresponding to different amounts of com-
pute. We observe a consistent pattern as illustrated
in Figure 3: the scores show a smooth progression
of improvement that aligns with the scaling law
with increasing the training steps. The steady, in-
cremental performance gains over time, lacking any
spikes, demonstrate S3EVAL’s reliability as a eval-
uation suite. Overall, these experimental results
confirm the scaling law’s accuracy in forecasting
model gains during training across diverse evalua-
tion settings.
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Figure 3: The performance of Pythia-12B on
S3EVAL was evaluated across different training
steps.

Figure 4: The performance of different LLMs on
S3EVAL and WikiTableQuestions.

3.3 Benchmark Performance

In the above, we validated that the LLMs also
exhibits the scaling law observed in NL on the
S3EVAL suite. A natural question that arises
is whether its performance on S3EVAL is cor-
related with the performance on real-world, NL
benchmarks. To examine the hypothesis, we first
compare the performance of different LLMs on
S3EVAL and on WikiTableQuestions (Pasupat and
Liang, 2015), a table question answering dataset
consisting of questions and answers. It is worth
noting that to align the difficulty, we use the SQL
queries from WikiTableQuestions (Shi et al., 2020)
as our S3EVAL evaluation set.

To systematically compare the performance, fol-
lowing previous work (Liu et al., 2023a), we con-
sider two correlation measures: the Pearson corre-
lation coefficient (r), which evaluates the linear re-
lationship between model scores on the two bench-
marks, and the Kendall rank correlation coefficient
(τ ), which assesses whether the relative ranking of
models is consistent across the benchmarks. The
strong correlation between LLMs’ performance on
the SQL execution task and the table question an-
swering task, as evidenced by the high r (e.g., 99.1)
and high τ (e.g., 93.6) in Figure 4.

Although S3EVAL has shown significant corre-
lation with WikiTableQuestions, the fact that they
are both tasks on tables may cause one to ques-
tion whether S3EVAL can serve as a proxy task to
evaluate LLMs’ capabilities on generic reasoning
tasks. Therefore, we also compare the performance
on S3EVAL with the results of generic popular

benchmarks like BBH (Suzgun et al., 2023) and
HumanEval (Chen et al., 2021a). The results de-
picted in Figure 5a demonstrate a strong correlation
between LLM performance on S3EVAL and the
BBH benchmark, with BBH performance obtained
from the OpenCompass platform using few-shot
chain-of-thought prompting (OpenCompass, 2023).
Similarly, Figure 5b illustrates the correlation be-
tween S3EVAL performance and pass@1 scores on
HumanEval (Chen et al., 2021b) for code LLMs.
The results demonstrate that S3EVAL serves as a
robust proxy task for assessing the reasoning capa-
bilities of LLMs on realistic benchmarks. Concrete
experimental results are provided in Table 4.

4 Scalable: Unlimited Evaluation
Resources

S3EVAL provides a unique capability to generate
infinite number of examples (Section 4.1) with infi-
nite length (Section 4.2).

4.1 Scalable Number of Evaluation Examples

The strength of S3EVAL is its ability to generate
unlimited number of examples for evaluation. This
stems from two key design choices in S3EVAL: (1)
the synthetic table size can be scaled to different
number of rows and columns, and (2) the table cells
are synthesized from randomly generated strings.
Combined with the provided large library of SQL
query templates, these features enable the creation
of a near-infinite set of unique evaluation exam-
ples. This kind of capacity enables the continuous
creation of novel examples unseen during training,
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which helps safeguard test data integrity by prevent-
ing leakage of the evaluation set into the training
corpus.

However, the absence of data leakage does not
necessarily mean that S3EVAL’s performance al-
ways represents the model’s out-of-distribution gen-
eralization ability. It is because the model may
perform well on S3EVAL via domain-specific train-
ing on the SQL execution task, rather than acquir-
ing more general abilities. To investigate whether
LLMs can “hack” S3EVAL via domain-specific
training, we fine-tuned StarCoder-1B (Li et al.,
2023a), which is not able to solve SQL execution
tasks, on a randomly generated dataset of one mil-
lion examples. The performance of the fine-tuned

StarCoder-1B is illustrated in Figure 6, where it
is evaluated on three types of test datasets: Seen
Table (same tables as training), Unseen Table
(new tables in same format as training tables), and
Unseen Templates (new SQL query templates).
For the unseen table setting, we explore different ta-
ble shapes, where (x× y) means the table consists
of x rows and y columns.

The experimental results demonstrate that for
Unseen Tables with different shapes, regardless of
their size, the performance of the fine-tuned Star-
Coder experiences a substantial decline compared
to Seen Tables. Likewise, when faced with Unseen
Templates, the performance of the fine-tuned Star-
Coder exhibits a significant drop. The results indi-
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cate that even if LLMs have been heavily trained
on SQL execution tasks, their out-of-distribution
performance can still be accurately evaluated by
using novel SQL templates. These new SQL tem-
plates can be easily generated thanks to the vast
grammar of SQL queries. Additionally, evaluating
LLMs on larger tables that they were not trained
on can also reveal part of their out-of-distribution
capabilities.

4.2 Scalable Length of Evaluation Examples

One advantage of S3EVAL is its scalability and ad-
justable context length per example. The flexibility
allows S3EVAL to rigorously evaluate LLMs that
claim capability with long contexts. To clearly ex-
pose limitations of current LLMs, we intentionally
chose the Easy setting in S3EVAL to evaluate their
performance. Specifically, we establish table con-
figurations with approximately 2K, 4K, 8K, and
16K tokens, by using different numbers of rows
and fixing the number of columns. We generate a
dataset consisting of 500 samples for each evalua-
tion setting. The experimental results on up to 16K
context length are plotted in Figure 7. As observed,
the performance of almost all LLMs, significantly
decreases as the context length increases. Of all
the models, Claude-1.3-100K is the only one that
maintains a relatively strong performance trend.
Detailed results can be found in Appendix A.5.

As illustrated in Table 2, S3EVAL poses signifi-
cant challenges for models even when the context
window is extended to 32K levels. This difficulty
arises from S3EVAL being rooted in real-world
tasks, enabling it to generate evaluation data of
infinite length and ensure the tasks are both reason-
able and demanding. Looking ahead, as models
progress to the 200K level, S3EVAL will likewise
be poised to furnish effective evaluation data.

5 Systematic Suite: Controllable Analysis

S3EVAL provides a comprehensive framework that
empowers developers to synthesize diverse evalua-
tion examples for systematically assessing LLMs
from multiple perspectives. In this section, inspired
by the work of lost in the middle (Liu et al., 2023b),
we first analyze the impact of answer position
on performance (Section 5.1). Then we evaluate
LLMs from different viewpoints, and we have con-
ducted some initial explorations on the reasoning
types analysis (Section 5.3). Last, we provide some
insights by analyzing LLMs on three selected SQL
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Figure 8: The relationship between LLMs performance
and the position of the answer token.

templates (Section B.2). These experiments re-
veal counter-intuitive performance trends and new
discoveries that may inspire further research and
extension of the work.

5.1 Answer Position Analysis

We investigate the influence of the answer’s posi-
tion on the performance of LLMs, which is gener-
ally considered important. Unlike standard NLP
benchmarks where it is difficult to control the posi-
tion of the answer, S3EVAL allows for fine-grained
control of answer position at the token level. To
mitigate the influence of long contexts, we only
analyzed answers that fell within a limited context
window (i.e., less than 4K tokens).

Echoing the findings of Liu et al. (2023b), “lost
in the middle”, our results in Figure 8 demonstrate
that both ChatGPT and CodeLlama achieve higher
performance when the answer is located at the be-
ginning or end of the context, compared to when it
appears in the middle. In addition, we found a pe-
riodic fluctuation trend in the performance of both
models as the position of the answer shifts within
the context. For example, the performance of Chat-
GPT increases from 0 to around 200, then starts to
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Name Age Country
Jean 32 France
John 28 USA
Liu 24 China

Chen 31 China
Lei 34 China

Wang 19 China
Yuki 28 Japan
Kim 33 Korea
Raj 32 India

Noah 18 Canada
Luca 20 Italy

SELECT Name FROM  table WHERE Country = 'China'

Dense

Name Age Country
Liu 24 China
Jean 32 France
John 28 USA
Chen 31 China
Yuki 28 Japan
Kim 33 Korea
Raj 32 India
Lei 34 China

Noah 18 Canada
Luca 20 Italy
Wang 19 China

Sparse

Figure 9: Experiment results of ChatGPT and Yarn-Llama 2 on Dense and Sparse Settings. Dense means that the
answer cells (i.e., Liu, Chen, Lei, Wang) lie in adjacent rows, and Sparse means that the answer cells are separated.
The model performs better on local queries which only involves adjacent cells.

decrease from around 200 to 500. This wave-like
pattern in performance appears to correlate with
the position embedding approach used by LLMs.

In contrast to previous studies that used long-
context question answering tasks (Liu et al., 2023b;
Bai et al., 2023b) for analysis and are thus limited
to controlling answer positions at the paragraph
level, S3EVAL provides a more precise approach
by focusing on token level. This key difference
enables S3EVAL to offer fine-grained control and
promote the exploration of relevant phenomena.

5.2 Answer Distribution Analysis

Given the limitation of existing LLMs on long-
context tasks, we are curious about the bottleneck
of them. By using S3EVAL, we can systematically
investigate the long-context modeling capabilities
of LLMs by controlling the distribution of answers
in the evaluation suite. Specifically, we use the
Easy setting and fix the number of answers to four
cells (i.e., the result of the SQL execution is always
spanning four cells). As illustrated in Figure 9,
we introduce two distribution patterns, Dense and
Sparse 1 to probe the limitations of current LLMs.
The dense mode only requires the model to under-
stand the local context, whereas the sparse mode
requires the model to have a broader, global under-
standing of the context across multiple blocks. The
sparse mode intuitively poses more challenges and
demands more complex reasoning across a broader
scope of the provided context. We conduct exper-
iments on ChatGPT and Yarn-llama2-13B (Peng
et al., 2023). The experimental results indicate that

1Examples of these two patterns can be found in Ap-
pendix C.1.

both models perform significantly better in dense
mode compared to sparse mode, as shown in Fig-
ure 9. This indicates that LLMs struggle to retrieve
information over long sequences, even though their
pre-training included lengthy contexts. This may
be caused by the fact that the training data does
not contain sufficient examples of long-distance de-
pendencies for the model to learn effectively. Fur-
thermore, the steep drop in performance from 4K
to 8K tokens for both ChatGPT and Yarn-Llama2
in dense mode indicates that current length exten-
sion techniques may not be as effective as hoped.
In summary, we believe that S3EVAL provides a
valuable framework for evaluating long-context
language models, as it allows testing models on
dialogues of arbitrary length. This establishes a
solid foundation for advancing research on large
language models that can leverage long-term con-
text.

5.3 Reasoning Type Analysis

S3EVAL enables the creation of multiple tem-
plates to generate different SQL statements, with
each statement representing a distinct reasoning
type. We selected six common reasoning types
to investigate the reasoning capabilities of LLMs
and examined four different LLMs: ChatGPT,
Claude, Mistral-7B, and CodeLlama-34B. Follow-
ing Liu et al. (2022), the six reasoning types 2 we
considered are Filter, Aggregate, Arithmetic,
Superlative, Comparative, and Group. The ex-
ample SQL and the experimental results of differ-
ent LLMs are presented in Table 3. The expressive

2Detailed templates for each type can be found in Ap-
pendix C.2.
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Operator Example SQL ChatGPT Claude Mistral CodeLlama

Filter SELECT lyonnais FROM table WHERE
farmer = ’mijl’ AND lashing >288

79.6 79.2 64.8 72.8

Arithmetic SELECT synset + refuge FROM table
WHERE blender = ’owxdbzjg’

67.2 59.4 5.4 10.6

Comparative SELECT upsetter < jollity FROM table
WHERE kelp = 150

45.2 46.4 44.8 46.6

Aggregate SELECT MIN(skeptic) FROM table 38.4 39.4 28.4 33.8

Group SELECT lats FROM table GROUP BY shas-
tan HAVING sum ( logbook ) = 56

38.1 28.2 31.0 37.8

Superlative SELECT severity FROM table ORDER BY
bierce DESC Limit 1

24.8 41.4 19.2 28.3

Table 3: Reasoning types experiments examples of different LLMs.

power of SQL queries enables S3EVAL to be used
for evaluating diverse scenarios such as numeri-
cal reasoning, multi-hop reasoning, complex code
understanding, and multi-turn interaction with in-
termediate execution results.

6 Related Work

Evaluating large language models (LLMs) has
garnered significant interest in the NLP commu-
nity (Chang et al., 2023). This allows us to gain
a deeper understanding of the specific capabilities
and limitations of LLMs while guiding further re-
search. Researchers proposed MMLU (Hendrycks
et al., 2021a) to measure the knowledge acquired
by a language model during pre-training. In re-
cent years, with the development of LLMs, a series
of general evaluation benchmarks have emerged.
For instance, BBH (Suzgun et al., 2023) and
AGIEval (Zhong et al., 2023) assess the reasoning
ablitities. GSM8K (Cobbe et al., 2021) evalutes the
math reasoning, HumanEval (Chen et al., 2021a)
and MBPP (Austin et al., 2021) measure code ca-
palities. Our work aims to provide an evaluation
suite for measuring reasoning ability.

Many previous works on long-text modeling
rely on the perplexity (Sun et al., 2021; Peng
et al., 2023) or performance on simple artificial
tasks (Li and Roth, 2002; Berant et al., 2013; Mo-
htashami and Jaggi, 2023). Concurrently, Zero-
SCROLLS (Shaham et al., 2023), L-Eval (An et al.,
2023) and LongBench (Bai et al., 2023b) are pro-
posed as evaluation benchmarks for long-text mod-
eling. However, these benchmarks are built from
existing public datasets and have fixed evaluation
types. In contrast, S3EVAL can effectively assess
comprehension of infinitely long-context. Further-
more, S3EVAL allows customization of settings to
generate evaluation data that meets specific needs,
enabling effective evaluation of model deficiencies

and discovery of new insights into LLMs.

7 Conclusion

In this paper, we have introduced S3EVAL, a novel
synthetic evaluation suite for LLMs using SQL
execution. S3EVAL represents a scalable and sys-
tematic approach to evaluate LLMs on a dynamic
task. Our experiments demonstrate strong corre-
lation between S3EVAL and traditional evaluation
benchmarks. The key innovations of S3EVAL are
its flexibility, allowing unlimited context length and
unlimited evaluation examples, and its fine-grained,
systematic nature which enables detailed analysis
of model capabilities and flaws.

Most importantly, for long-context evaluation,
S3EVAL can generate evaluation data of infinite
length. This type of task is not only challenging
but also rooted in real-world tasks. Considering the
rapid development of LLMs, even as LLM lengths
extend significantly, S3EVAL can serve as a valu-
able benchmark for LLM development and con-
tribute to the community.

Limitations

Besides the features described in this paper, it cur-
rently supports complex multi-turn SQL execu-
tion task and multi-turn instruction task. More-
over, it also supports multilingual testing, espe-
cially for reasoning data generation of low-resource
languages, which has not been widely studied by
the academic community. However, this paper has
not yet conducted a systematic analysis of these
complex new features.

In addition, due to the complex and diverse syn-
tax of SQL, the syntax that S3EVAL can generate
is still relatively limited, which is also what we
need to do in our future work. Moreover, there is
currently no toolkit that can randomly generate a
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large number of complex SQLs, which is also a
significance of our work.

Due to space limitations, many valuable experi-
mental results are shown in Appendix B. We ana-
lyzed in detail the impact of various types of influ-
encing factors on the results and have drawn other
valuable conclusions.

Exploring the treasure contained in synthetic
data is our goal for the future, and we believe that
this work can bring inspiration to this field.
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A Evaluation Experiments Results

A.1 Other Synthetic Task

S3EVAL is a synthetic task that possesses a certain
level of difficulty and robustness, which allows for
a good assessment of an LLM’s overall capability
compared to previous works. We choose key-value
retrieval task (Liu et al., 2023b), given a key, the
goal is to return the associated value. We test sev-
eral LLMs on this task, and the experiments results
are shown in Figure 10. It demonstrates that key-
value retrieval task is a simple task which has low
correlation with real LLMs reasoning benchmark.
S3EVAL, as a complex and robust benchmark, can
provide reference for future synthetic data.

Figure 10: Performance analysis of key-value retrieval
task and BBH.

A.2 Overall Performance

The detail performance are shown in Table 4.

A.3 Reliability Experiments

Symbolic Tasks vs. Natural Language Tasks.
Another point to prove is that symbolic tasks are
consistent with their natural language counterparts.
SQL execution is a suitable task because SQL can
be intertranslated with an natural question. As can
be seen from the “WTQ” column of the Table 4
and Figure 11a, LLM’s ability to execute SQL is
consistent with its table question answering ability.

Synthetic data vs. Real data. We want to verify
if the synthesized SQL is simpler. The tables “SQL-
general” and “WTQ-SQL” show the difference in
performance between the model on synthetic and
real data. We keep the average length of the tables
similar, and the experimental results show that the
synthetic SQL is more complex than the real SQL.

And Figure 11c shows that, the performance of
LLMs on real tables and synthetic tables is very
relevant.

Different S3EVAL Settings. As shown in Fig-
ure 11b, even if the data settings are very differ-
ent, LLMs are guaranteed a consistent performance
ranking on S3EVAL.

A.4 Other SQL Prompting Styles
SQL execution task with Chain-of-Thought
prompting. SQL is a complex multi-step rea-
soning task. To verify whether it is a reliable
reasoning task, S3EVAL generates multi-step ex-
ecution instructions for SQL. ChatGPT’s perfor-
mance (markdown) improves from 38.0 to 48.5
when using chain-of-thougnt prompts. The chain-
of-thought examples are shown in below. The ex-
amples of chain-of-thought prompting are shown
in Appendix C.7.

SQL multi-step instruction experiments. SQL
multi-step instruction is an auxiliary task. We gen-
erate two new datasets using different settings than
Easy and General, named Data1 and Data2. Ex-
periments results are shown in Table 6.

A.5 Long-Context Experiments
Context windows limit the long-context capabili-
ties of LLMs. Previous researchers have proposed
many ways to extend the length of context win-
dows, often to 64K, 128K and so on. Existing
benchmarks (Bai et al., 2023b; An et al., 2023) col-
lect data from existing NLP communities (which
causes data leakage), and more importantly be-
cause collecting large amounts of data is difficult.
S3EVAL, on the other hand, is easy to collect data
with variety and complexity. Existing benchmarks
also can’t effectively evaluate very long texts, but
S3EVAL can evaluate arbitrary lengths.

YaRN (Peng et al., 2023) extend LLaMA2 con-
text windows to 128K, however, they only evalu-
ated the model’s perplexity, which we believe is
not a true reflection of its long-context understand-
ing capability. So we use S3EVAL to generate
table data of different lengths and keep all param-
eters same to evaluate the performance of yarn-
LLaMA2, and the experimental results are shown
in Table 5. It shows that, yarn-llama2 has a no-
ticeable dip in performance on 20K-80K, which
is good for a small number of tasks as well. But
compared to ChatGPT (which we can only test 16K
length tables), there’s a noticeable gap.
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Synthetic Task Realistic Benchmark

S3EVAL-Easy S3EVAL-General WTQ Reasoning Task

LLM

GPT-4 99.4 63.1 70.8 86.7
ChatGPT 97.0 47.2 62.0 70.1
Claude-1 98.2 44.3 63.4 67.3
Llama-2-70B 94.2 41.3 55.9 64.9
Mistral-7B 87.4 34.3 55.7 53.7
Llama2-13B 75.0 30.9 49.2 45.6
InternLM-20B 78.0 32.3 49.4 52.5
Qwen-14B 71.8 25.8 46.7 53.7
Llama-2-7B 54.2 23.8 40.6 38.2
Qwen-7B 56.4 19.4 41.2 45.2
Xgen-7B 55.2 24.6 36.3 34.5
Internlm-7B 41.6 18.5 27.5 37.0
Phi-1_5 27.6 16.1 22.1 30.0
Stablelm-7B 6.0 4.2 14.7 24.3
Stablelm-3B 4.2 2.9 11.2 21.0
Pythia-12B 31.4 17.3 24.5 29.3
Pythia-6.9B 25.2 16.0 22.6 28.6
Pythia-2.8B 26.4 14.6 21.7 28.8
Pythia-1B 8.4 7.1 16.2 25.6

Code LLM

CodeLlama-34B 91.4 41.0 53.9 36.4
CodeLlama-13B 90.0 35.7 49.9 30.6
CodeLlama-7B 75.2 34.2 44.9 26.3
StarCoder-15B 87.2 34.4 39.2 30.4
StarCoder-7B 88.4 32.4 33.3 28.3
StarCoder-3B 79.0 28.0 27.5 21.5
StarCoder-1B 37.4 15.4 21.1 15.2
CodeGen-15B 36.8 18.2 25.0 18.3
CodeGen-6B 25.0 16.9 17.8 18.2
CodeGen-2B 31.4 16.6 20.8 14.5

Table 4: SQL Execution Task Performance on different LLMs.

B Controllable Analysis Results

B.1 Answer Position Analysis

In addition to the figures in the main text, we also
conduct experiments with row level. We use two
methods to visualize the results. (1) Sliding win-
dows (Figure 12a,12b). We choose windows=5 and
smooth the data to make a dot plot and a trend line.
(2) Grouping calculations (Figure 12c,12d). Group
neighboring rows together with the granularity of 5,
10, and 20. For example, if granularity is 20, then
we group the rows with answers located in 1-20,
20-40, 40-60, 60-80, and 80-100, for a total of five
groups, and calculate the average scores.

B.2 Template Controlled Analysis

Each data template in S3EVAL includes corre-
sponding reasoning types, and thus it provides
fine-grained control over the evaluation examples.
To stimulate new insights and uncover counter-
intuitive performance phenomena of LLMs, we
present several controlled analysis examples using
simple templates as a starting point.

Template1: SELECT [text_col1] FROM table

WHERE ([text_col2] = [text2])
We first explore the relationship between the

model performance and the locations of [text_col1]
and [text_col2]. To begin with, we generated a
set of 10× 15 tables, each comprising 15 distinct
columns. We created 400 unique combinations by
pairing each value in text_col1 with each value in
text_col2. For each of the 400 pairs, we gener-
ated 40 evaluation examples, resulting in a total
of 16,000 evaluation examples. After SQL execu-
tion experiments, we calculated the scores of each
pair and constructed a heatmap, which is illustrated
in Figure 17. The heatmap indicates that the per-
formance is overall better when [text_col1] is the
previous column. And the model performance is
also better when the [text_col1] column is before
[text_col2] column. It indicates that the model
tends to focus on the beginning of a specific para-
graph. Moreover, in multi-hop reasoning, LLMs
excel at hopping to the context preceding a interme-
diate hop, but struggles when it comes to searching
backward.

Template2: SELECT [text_col1] FROM table
WHERE ([text_col2] = [text2]) × N
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(a) Correlation between QA task and
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Figure 11: Experimental results of the correlation experiments.

Model Max-Ctx
SQL Execution

2K 4K 8K 16K 20K 40K 60K 80K

ChatGPT 16k 96.8 95.2 80.3 68.7 - - - -
Claude-1.3-100K 128k 97.2 96.8 91.8 85.2 - - - -
Yarn-LLaMA2-13B 128k 76.3 57.0 40.6 25.1 20.6 17.6 17.0 12.0
XGen-7B 8k 51.6 41.8 25.4 - - - - -
LongChat-13B 16k 48.6 39.0 26.3 19.5 - - - -
LongLlaMA-7B 256k 82.4 62.8 24.4 - - - - -
RWKV-Raven-14B 128k 10.5 7.4 6.2 - - - - -

Table 5: Long-Context experiments on S3EVAL.

We then investigate the impact of the number
of WHERE conditions on LLM performance. In-
tuitively, more conditions should make it harder
for LLM to execute SQL since the instruction be-
comes more complex. However, the experimental
results contradict this intuition, as shown in blue in
Figure 15. We speculate that this counter-intuitive
result stems from how LLMs actually reason: by
looking up string co-occurrences rather than logi-
cally considering all conditions.

Template3: SELECT COUNT([text_col])
FROM table WHERE [text_col] = [text] .

We analyze the counting ability of LLMs, which
is an important numerical reasoning capability. To
avoid potential symbolic effects of SQLs, we also
use the instruction style (Section 2.1) to prompt the
model (e.g. Please count the number of “[text_col]
is [text]”). As shown in Figure 16, whether it is
zero-shot or few-shot, SQL style or instruction
style, the performance of LLMs is best when the
COUNT value is the smallest or the largest. When
the COUNT value is in the middle, the performance
of the model is almost zero.

In the future, developers can employ the

S3EVAL suite to analyze the performance of LLMs
with various complex SQL queries and discover
new insights. They can also investigate more on
the multi-step instruction prompting (Section C.6)
and chain-of-thought prompting (Section C.7) to
better understand LLMs.

B.3 Input Format Analysis

In this section, we focus on comparing two formats
of inputting tables, namely markdown and flatten,
to explore their impact on LLMs performance. Fig-
ure 13 clearly demonstrates a significant improve-
ment in the model’s performance when the flatten
format is used instead of the markdown input for-
mat at any experiments settings.

The reason behind this improvement lies in the
structure of the SQL template, specifically “select
<col1> where <col2> <op> <int2>”. In order to
execute this template, the model needs to locate
the column corresponding to col2 and then iden-
tify the row where “int2” is found. This process
involves 2-hop reasoning. In markdown mode, the
challenge lies not only in the LLM’s understanding
of the table structure but also in how to navigate
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Model
SQL Execution SQL Multi-Step Instruction

Zero-Shot Few-Shot Zero-Shot Few-Shot
Data1 Data2 Data1 Data2 Data1 Data2 Data1 Data2

ChatGPT 96.4 47.0 97.0 49.0 97.9 30.0 98.8 34.8
Codellama-13B 71.2 34.3 90.0 39.8 63.9 12.1 88.0 22.8
StarCoder-15B 52.3 24.7 85.8 37.6 44.4 14.4 84.2 19.2
InternLM-20B 60.4 22.7 78.0 35.0 58.8 14.9 76.6 28.1
InternLM-20B-Chat 71.2 31.3 78.0 34.2 67.6 21.9 74.4 25.4
LLaMA2-13B 68.1 23.2 75.0 32.3 50.5 5.4 74.6 18.2
LLaMA2-13B-Chat 51.6 16.4 71.5 28.3 9.4 1.0 64.2 21.1
Vicuna-13B 57.6 26.8 81.6 35.4 48.9 11.5 78.8 24.2

Table 6: SQL Multi-Step Task performance on different LLMs.

to another column in the same row. However, in
flatten mode, redundant columns are added to each
row as “Column is value.” This additional infor-
mation simplifies the LLM’s understanding of the
table structure and facilitates reasoning. As a result,
the flatten method proves to be more beneficial for
LLM performance due to its enhanced structure
comprehension and reasoning capabilities.

B.4 SQL Keywords Analysis
SQL statements follow a specific syntax and are a
well-established language in the database domain.
We first control SQL statements to contain only
specific types of keywords from the perspective of
SQL keywords and test the performance of differ-
ent models on S3EVAL. The experimental results
are shown in Figure 14. The change in the per-
formance of LLMs on SQL statements reflects the
trend in the difficulty of reasoning.

B.5 SQL Attribute Analysis
S3EVAL has the ability to flexibly modify the prop-
erties of generated SQL statements, including the
length of the statement, the number of computa-
tions, and the quantity of filtering numbers. These
features can intuitively impact the complexity of
SQL. In our experiments, we set the table size to
15× 10 and adjusted the SQL settings for examin-
ing the effect of different SQL attributes on model
performance. For example, in the analysis of "Cal-
culation Times," we employed 500 samples with 0,
1, 2, and 3 calculation times respectively. The ex-
perimental outcomes of all SQL attributes are illus-
trated in Figure 18. While it might be expected that
model performance would decline as these factor
values increase, the performance actually fluctuates.
Upon combining Column number, Row number,
Calculation times, and Filter times in the statisti-
cal analysis, we identified a significant downward
trend in the model, as demonstrated in Figure 18f.
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Figure 12: Effect of answer position on model performance. We use two methods to visualize the results. (1) Sliding
windows (Figure 12a,12b). We select a window size of 5 and smooth the data to make a dot plot and a trend line.
(2) Grouping calculations (Figure 12c,12d). We group neighboring rows with granularities of 5, 10, and 20. For
instance, with a granularity of 20, we group rows with answers located in the ranges 1-20, 21-40, 41-60, 61-80, and
81-100, resulting in five groups, and compute the average scores.
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Figure 17: ChatGPT performance
with different locations of [text_col1]
and [text_col2]. The performance
improves when the example has
the location of [text_col1] before
[text_col2].
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Figure 18: Effect of SQL Attribute Settings on model performance.
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C Data Demostration

C.1 Dense and Sparse Examples

SQL: select boarfish from w where sixties = ’jcrbb’
Answer: [’qxgd’, ’lorfaljob’, ’qytocp’, ’vkfzhqwj’, ’xwijyubr’]
We can find that Dense Setting is better than Sparse Setting in all cases.

Sparse Example:

| | boarfish | tool | sixties | phoxinus | angling |
|---:|:-----------|:---------|:----------|:-----------|:----------|
| 0 | mjdsv | cwzqkdte | tbwqa | yuogpbo | mkxqnrhq |
| 1 | nrbmyc | eqciiims | wvfesrtzt | yvvgzj | mkxqnrhq |
| 2 | iqdr | ezhuj | bndktpe | yuogpbo | yjblg |
| 3 | qxgd | dtfjqfc | jcrbb | haxyaz | yjblg |
| 4 | xzrrs | ezhuj | bndktpe | dpimlb | skbpzyhak |
| 5 | lorfaljob | eqciiims | jcrbb | jsvbugac | bwxihx |
| 6 | pvugxgdju | dtfjqfc | bndktpe | jsvbugac | mkxqnrhq |
| 7 | xpkuautv | ezhuj | vyoo | yvvgzj | bwxihx |
| 8 | afzrom | jzdra | bndktpe | jsvbugac | mkxqnrhq |
| 9 | ivxpmv | eqciiims | bndktpe | jsvbugac | bwxihx |
| 10 | ehfvur | ezhuj | tbwqa | yuogpbo | bwxihx |
| 11 | bdzsy | ezhuj | bndktpe | yvvgzj | yjblg |
| 12 | qruh | ezhuj | bndktpe | dpimlb | skbpzyhak |
| 13 | qytocp | jzdra | jcrbb | dpimlb | bwxihx |
| 14 | eqaja | ezhuj | bndktpe | haxyaz | yjblg |
| 15 | kwvzixe | jzdra | vyoo | jsvbugac | skbpzyhak |
| 16 | edmkxm | eqciiims | vyoo | haxyaz | mkxqnrhq |
| 17 | fdsdlcpxj | eqciiims | vyoo | dpimlb | blqoislm |
| 18 | ipprxzzlv | cwzqkdte | bndktpe | yuogpbo | yjblg |
| 19 | gqyxjtbz | eqciiims | tbwqa | dpimlb | yjblg |
| 20 | noqfw | ezhuj | vyoo | haxyaz | blqoislm |
| 21 | vkfzhqwj | dtfjqfc | jcrbb | yuogpbo | mkxqnrhq |
| 22 | konftq | eqciiims | vyoo | dpimlb | bwxihx |
| 23 | ymcwhu | jzdra | wvfesrtzt | dpimlb | blqoislm |
| 24 | kpygsu | eqciiims | wvfesrtzt | yuogpbo | yjblg |
| 25 | tiwfvqgmt | ezhuj | bndktpe | dpimlb | mkxqnrhq |
| 26 | ovomhf | dtfjqfc | bndktpe | yuogpbo | blqoislm |
| 27 | lokwxn | cwzqkdte | tbwqa | yuogpbo | mkxqnrhq |
| 28 | xwijyubr | jzdra | jcrbb | yuogpbo | mkxqnrhq |
| 29 | ttonww | dtfjqfc | wvfesrtzt | haxyaz | blqoislm |

Dense Example:

| | boarfish | tool | sixties | phoxinus | angling |
|---:|:-----------|:---------|:----------|:-----------|:----------|
| 0 | mjdsv | cwzqkdte | tbwqa | yuogpbo | mkxqnrhq |
| 1 | nrbmyc | eqciiims | wvfesrtzt | yvvgzj | mkxqnrhq |
| 2 | iqdr | ezhuj | bndktpe | yuogpbo | yjblg |
| 3 | xzrrs | ezhuj | bndktpe | dpimlb | skbpzyhak |
| 4 | pvugxgdju | dtfjqfc | bndktpe | jsvbugac | mkxqnrhq |
| 5 | xpkuautv | ezhuj | vyoo | yvvgzj | bwxihx |
| 6 | afzrom | jzdra | bndktpe | jsvbugac | mkxqnrhq |
| 7 | ivxpmv | eqciiims | bndktpe | jsvbugac | bwxihx |
| 8 | ehfvur | ezhuj | tbwqa | yuogpbo | bwxihx |
| 9 | bdzsy | ezhuj | bndktpe | yvvgzj | yjblg |
| 10 | qruh | ezhuj | bndktpe | dpimlb | skbpzyhak |
| 11 | eqaja | ezhuj | bndktpe | haxyaz | yjblg |
| 12 | kwvzixe | jzdra | vyoo | jsvbugac | skbpzyhak |
| 13 | qxgd | dtfjqfc | jcrbb | haxyaz | yjblg |
| 14 | lorfaljob | eqciiims | jcrbb | jsvbugac | bwxihx |
| 15 | qytocp | jzdra | jcrbb | dpimlb | bwxihx |
| 16 | vkfzhqwj | dtfjqfc | jcrbb | yuogpbo | mkxqnrhq |
| 17 | xwijyubr | jzdra | jcrbb | yuogpbo | mkxqnrhq |
| 18 | edmkxm | eqciiims | vyoo | haxyaz | mkxqnrhq |
| 19 | fdsdlcpxj | eqciiims | vyoo | dpimlb | blqoislm |
| 20 | ipprxzzlv | cwzqkdte | bndktpe | yuogpbo | yjblg |
| 21 | gqyxjtbz | eqciiims | tbwqa | dpimlb | yjblg |
| 22 | noqfw | ezhuj | vyoo | haxyaz | blqoislm |
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| 23 | konftq | eqciiims | vyoo | dpimlb | bwxihx |
| 24 | ymcwhu | jzdra | wvfesrtzt | dpimlb | blqoislm |
| 25 | kpygsu | eqciiims | wvfesrtzt | yuogpbo | yjblg |
| 26 | tiwfvqgmt | ezhuj | bndktpe | dpimlb | mkxqnrhq |
| 27 | ovomhf | dtfjqfc | bndktpe | yuogpbo | blqoislm |
| 28 | lokwxn | cwzqkdte | tbwqa | yuogpbo | mkxqnrhq |
| 29 | ttonww | dtfjqfc | wvfesrtzt | haxyaz | blqoislm |

C.2 SQL Template
General:
select <select_condition> from my_table

select <select_condition> from my_table <where_condition>

select <select_condition> from my_table <order_condition>,

select <select_condition> from my_table <where_condition> <order_condition>,

select <select_condition> from my_table <group_condition> <having_condition>,

select <select_condition> from my_table <where_condition> <group_condition> <having_condition>,

select <select_condition> from my_table <where_condition>
<group_condition> <having_condition> <order_condition>,

select <select_condition> from my_table <group_condition> <having_condition> <order_condition>

Where Condition:
select <text_col1> from my_table where <text_col2> = <text_2>

Count:
Select Count(<text_col1>) from table where <text_col1> = <text_1>

Easy:
select <text_col1> from my_table where <int_col1> = <int_1>
select <int_col1> from my_table where <text_col1> = <text_1>
select <int_col1> from my_table where <int_col2> = <int_2>
select <text_col1> from my_table where <text_col2> = <text_2>

Filter:
select <text_col1> from my_table where <text_col2> = <text_2>
select <text_col1> from my_table where <int_col2> <op2> <int_2>
select <text_col1> from my_table where <text_col2> = <text_2> and <int_col1> <op1> <int_1>
select <text_col1> from my_table where <text_col2> = <text_2> and <text_col3> = <text_3>
select <text_col1> from my_table where <int_col1> <op1> <int_1> and <int_col2> <op2> <int_2>
select <int_col1> from my_table where <text_col1> = <text_1>
select <int_col1> from my_table where <int_col2> <op2> <int_2>
select <int_col1> from my_table where <text_col2> = <text_2> and <int_col2> <op2> <int_2>
select <int_col1> from my_table where <text_col2> = <text_2> and <text_col3> = <text_3>
select <int_col1> from my_table where <int_col2> <op2> <int_2> and <int_col3> <op3> <int_3>

Aggregate:
select count ( <text_col1> ) from my_table where <text_col2> = <text_2>
select count ( <text_col1> ) from my_table where <int_col2> <op2> <int_2>
select sum ( <int_col1> ) from my_table
select sum ( <int_col1> ) from my_table where <text_col2> = <text_2>
select max ( <int_col1> ) from my_table
select max ( <int_col1> ) from my_table where <text_col2> = <text_2>
select min ( <int_col1> ) from my_table
select min ( <int_col1> ) from my_table where <text_col2> = <text_2>

Arithmetic:
select <int_col1> + <int_col2> from my_table where <text_col1> = <text_1>
select <int_col1> + <int_col2> from my_table where <text_col1> = <text_1> and <text_col2> = <text_2>
select <int_col1> - <int_col2> from my_table where <text_col1> = <text_1>
select <int_col1> - <int_col2> from my_table where <text_col1> = <text_1> and <text_col2> = <text_2>
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Superlative:
select <int_col1> from my_table order by <int_col1> asc limit 1
select <int_col1> from my_table order by <int_col1> desc limit 1
select <text_col1> from my_table order by <int_col1> asc limit 1
select <text_col1> from my_table order by <int_col1> desc limit 1
select <int_col1> from my_table order by <int_col2> asc limit 1
select <int_col1> from my_table order by <int_col2> desc limit 1

Comparative:
select ( select <int_col1> from my_table where <text_col1> = <text_1> )
> ( select <int_col1> from my_table where <text_col2> = <text_2> )
select ( select <int_col1> from my_table where <int_col2> <op2> <int_2> )
> ( select <int_col1> from my_table where <int_col3> <op3> <int_3> )
select ( select <int_col1> from my_table where <text_col1> = <text_1> )
< ( select <int_col1> from my_table where <text_col2> = <text_2> )
select ( select <int_col1> from my_table where <int_col2> <op2> <int_2> )
< ( select <int_col1> from my_table where <int_col3> <op3> <int_3> )
select <int_col1> > <int_col2> from my_table where <text_col1> = <text_1>
select <int_col1> < <int_col2> from my_table where <text_col1> = <text_1>
select <int_col1> > <int_col2> from my_table where <int_col3> <op3> <int_3>
select <int_col1> < <int_col2> from my_table where <int_col3> <op3> <int_3>

C.3 Table Input Format
Markdown Table:
| | ercilla | shucks | liter | taenia | dorado |
|---:|----------:|---------:|:---------|:----------|:----------|
| 0 | 68 | 12 | gcrdvo | qoath | katfuw |
| 1 | 129 | 151 | zmvltkk | jpcglcjzk | vwqqey |
| 2 | 248 | 188 | zmdlfbhb | cvhqotsys | wzunmaa |
| 3 | 267 | 104 | gcrdvo | ytywunvf | pjlbo |
| 4 | 135 | 262 | gcrdvo | dtnvfp | ajzpsaoy |
| 5 | 309 | 119 | zmdlfbhb | klcenmugk | hriunhf |
| 6 | 25 | 152 | zmvltkk | cjgcergv | shrbvrd |
| 7 | 298 | 18 | zmvltkk | scvuuc | ahunvcx |
| 8 | 321 | 217 | gcrdvo | ezlp | hasjaznm |
| 9 | 139 | 310 | gcrdvo | ghhjea | atqvtgoa |
| 10 | 99 | 34 | zmvltkk | ecdmpruq | cfitvz |
| 11 | 142 | 167 | gcrdvo | acii | oenmuezip |
| 12 | 273 | 156 | gcrdvo | nnvnteh | tulh |
| 13 | 197 | 44 | gcrdvo | pqdbhevkh | dfxuwxz |
| 14 | 144 | 123 | gcrdvo | bxrgo | ccbj |

Flatten Table:
Flatten Table Examples:
The table have 5 columns: ercilla | shucks | liter | taenia | dorado
row 1 : ercilla is 68. shucks is 12. liter is gcrdvo. taenia is qoath. dorado is katfuw.
row 2 : ercilla is 129. shucks is 151. liter is zmvltkk. taenia is jpcglcjzk. dorado is vwqqey.
row 3 : ercilla is 248. shucks is 188. liter is zmdlfbhb. taenia is cvhqotsys. dorado is wzunmaa.
row 4 : ercilla is 267. shucks is 104. liter is gcrdvo. taenia is ytywunvf. dorado is pjlbo.
row 5 : ercilla is 135. shucks is 262. liter is gcrdvo. taenia is dtnvfp. dorado is ajzpsaoy.
row 6 : ercilla is 309. shucks is 119. liter is zmdlfbhb. taenia is klcenmugk. dorado is hriunhf.
row 7 : ercilla is 25. shucks is 152. liter is zmvltkk. taenia is cjgcergv. dorado is shrbvrd.
row 8 : ercilla is 298. shucks is 18. liter is zmvltkk. taenia is scvuuc. dorado is ahunvcx.
row 9 : ercilla is 321. shucks is 217. liter is gcrdvo. taenia is ezlp. dorado is hasjaznm.
row 10 : ercilla is 139. shucks is 310. liter is gcrdvo. taenia is ghhjea. dorado is atqvtgoa.
row 11 : ercilla is 99. shucks is 34. liter is zmvltkk. taenia is ecdmpruq. dorado is cfitvz.
row 12 : ercilla is 142. shucks is 167. liter is gcrdvo. taenia is acii. dorado is oenmuezip.
row 13 : ercilla is 273. shucks is 156. liter is gcrdvo. taenia is nnvnteh. dorado is tulh.
row 14 : ercilla is 197. shucks is 44. liter is gcrdvo. taenia is pqdbhevkh. dorado is dfxuwxz.
row 15 : ercilla is 144. shucks is 123. liter is gcrdvo. taenia is bxrgo. dorado is ccbj.

C.4 SQL Execution Examples (Few-shot)

You are an SQL executor, you need to execute SQL based on the give table and SQL statement
to obtain the execution results.
Only give me the execution results and do not output any other words.
Table:

1279



| | puccoon | tiepolo | scope | mutinus | intrados | huggins | barye | wear |
|---:|----------:|----------:|--------:|:-----------|-----------:|:----------|--------:|-------:|
| 0 | 171 | 225 | 145 | 2007-04-27 | 322 | yefihroyn | 79 | 207 |
| 1 | 213 | 116 | 319 | 2016-01-15 | 288 | ytyayrvj | 246 | 272 |
| 2 | 191 | 229 | 95 | 2022-11-08 | 218 | gpmvax | 167 | 73 |
| 3 | 97 | 155 | 189 | 2013-10-30 | 79 | gpmvax | 24 | 233 |
| 4 | 56 | 11 | 295 | 2018-12-10 | 81 | yefihroyn | 187 | 198 |
| 5 | 285 | 304 | 168 | 2017-03-24 | 75 | gpmvax | 111 | 77 |
| 6 | 233 | 325 | 31 | 2014-01-22 | 114 | ytyayrvj | 20 | 219 |
| 7 | 19 | 146 | 164 | 2021-12-07 | 311 | ytyayrvj | 188 | 3 |
| 8 | 112 | 255 | 30 | 2015-12-07 | 214 | gpmvax | 16 | 271 |
| 9 | 175 | 62 | 181 | 2012-04-21 | 182 | gpmvax | 105 | 76 |
| 10 | 200 | 90 | 101 | 2008-04-28 | 168 | gpmvax | 70 | 119 |
| 11 | 31 | 180 | 95 | 2004-06-23 | 62 | yefihroyn | 314 | 97 |
| 12 | 297 | 251 | 249 | 2022-02-02 | 185 | yefihroyn | 278 | 313 |
| 13 | 36 | 17 | 67 | 2016-04-14 | 243 | ytyayrvj | 213 | 4 |
| 14 | 45 | 215 | 182 | 2012-06-15 | 251 | yefihroyn | 221 | 83 |
Now you need to execute SQL based on the given table and SQL statement to obtain the execution result.
Only give me the result and do not output any other words or SQL statement.
The following are some examples.

SQL:select avg ( intrados ) from my_table where tiepolo > 146 group by huggins
having count ( huggins ) > 1 order by count ( tiepolo ) asc limit 1
Answer:146.5
SQL:select wear from my_table where huggins = 'gpmvax' group by huggins
having wear < 83 order by count ( distinct barye ) asc limit 1
Answer:73
SQL:select mutinus from my_table where tiepolo > 116 group by huggins
having max ( wear ) > 119 order by count ( huggins ) asc limit 1
Answer:2014-01-22
SQL:select tiepolo from my_table where puccoon < 191 and intrados < 79 group by huggins
having intrados < 81 and tiepolo < 255 order by count ( barye ) asc limit 1
Answer:180
SQL:select tiepolo from my_table where scope > 31 group by huggins
having min ( tiepolo ) = 62 order by count ( distinct mutinus ) asc limit 1
Answer:62
SQL:select wear from my_table where huggins = 'ytyayrvj' group by huggins
having count ( huggins ) < 5 order by count ( distinct mutinus ) desc limit 1
Answer:

C.5 SQL Execution Examples (Multi-Answer)

You are an SQL executor, you need to execute SQL based on the give table
and SQL statement to obtain the execution results.
| suiting | chisel | highboy | broccoli | newburgh | acetum | brewpub |
|:----------|:----------|----------:|-----------:|:-----------|:----------|----------:|
| zbwamhiui | nnkfvevxw | 50 | 88 | zhwohj | opufj | 214 |
| zroosgm | yvftt | 309 | 168 | zhwohj | xqsu | 136 |
| zroosgm | lnri | 152 | 78 | zhwohj | ikvsd | 219 |
| kjsdl | trei | 234 | 287 | egkgkvbec | mhxcxyg | 23 |
| zroosgm | mctnpwbd | 71 | 242 | egkgkvbec | yszfokeom | 180 |
| zbwamhiui | ptqtj | 19 | 81 | egkgkvbec | hyfmk | 116 |
| zroosgm | lpjvwn | 258 | 313 | uftnwbd | oevmj | 65 |
| kjsdl | ididumrhw | 64 | 101 | uftnwbd | xjakwpayx | 327 |
| zbwamhiui | wdtncbyn | 165 | 209 | uftnwbd | xrbqvxb | 192 |
| zbwamhiui | wyjjc | 219 | 6 | uftnwbd | pzqr | 188 |
| zroosgm | qumxgwvls | 314 | 246 | uftnwbd | ehevtf | 60 |
| zbwamhiui | adiyf | 207 | 298 | egkgkvbec | wbrgejgf | 80 |
| zbwamhiui | qpgpbj | 307 | 306 | egkgkvbec | mcjuonhc | 192 |
| zbwamhiui | ehsk | 47 | 244 | zhwohj | tcdlnc | 280 |
| kjsdl | orlosbok | 21 | 93 | egkgkvbec | dzvwohjo | 103 |
| zbwamhiui | webyyylw | 84 | 195 | egkgkvbec | xbmv | 289 |
| kjsdl | mrcecp | 48 | 264 | egkgkvbec | xhprcocik | 265 |
| kjsdl | ngajupd | 247 | 52 | zhwohj | pcokyw | 247 |
| zroosgm | xeeuixkze | 120 | 288 | zhwohj | yishnriw | 138 |
| kjsdl | kbczy | 119 | 13 | egkgkvbec | ltpmyfdt | 73 |
| zbwamhiui | uvvdzo | 150 | 57 | uftnwbd | tajlsm | 295 |
| zbwamhiui | enbffevhp | 290 | 92 | zhwohj | gjjznp | 18 |
| zroosgm | imubtcc | 79 | 19 | uftnwbd | eqymwj | 112 |
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SQL:select suiting from my_table group by suiting having count ( newburgh ) > 6
Answer:
| suiting |
|:----------|
| zbwamhiui |
| zroosgm |

SQL:select acetum,newburgh,suiting from my_table where highboy > 234
Answer:
| acetum | newburgh | suiting |
|:---------|:-----------|:----------|
| xqsu | zhwohj | zroosgm |
| oevmj | uftnwbd | zroosgm |
| ehevtf | uftnwbd | zroosgm |
| mcjuonhc | egkgkvbec | zbwamhiui |
| pcokyw | zhwohj | kjsdl |
| gjjznp | zhwohj | zbwamhiui |

SQL:select count ( chisel ) from my_table where highboy < brewpub
group by newburgh having min ( highboy ) < 47
Answer:
| count ( chisel ) |
|-------------------:|
| 5 |

SQL:select newburgh from my_table where brewpub > 138 order by broccoli desc limit 1
Answer:
| newburgh |
|:-----------|
| egkgkvbec |

SQL:select suiting from my_table where highboy > broccoli
group by suiting having min ( highboy ) < 314

Answer:

C.6 Multi-step Instruction (Few-shot)

You need to obtain the final answer based on the table and instructions.
Only give me the result and do not output any other words.
Table:
| | puccoon | tiepolo | scope | mutinus | intrados | huggins | barye | wear |
|---:|----------:|----------:|--------:|:-----------|-----------:|:----------|--------:|-------:|
| 0 | 171 | 225 | 145 | 2007-04-27 | 322 | yefihroyn | 79 | 207 |
| 1 | 213 | 116 | 319 | 2016-01-15 | 288 | ytyayrvj | 246 | 272 |
| 2 | 191 | 229 | 95 | 2022-11-08 | 218 | gpmvax | 167 | 73 |
| 3 | 97 | 155 | 189 | 2013-10-30 | 79 | gpmvax | 24 | 233 |
| 4 | 56 | 11 | 295 | 2018-12-10 | 81 | yefihroyn | 187 | 198 |
| 5 | 285 | 304 | 168 | 2017-03-24 | 75 | gpmvax | 111 | 77 |
| 6 | 233 | 325 | 31 | 2014-01-22 | 114 | ytyayrvj | 20 | 219 |
| 7 | 19 | 146 | 164 | 2021-12-07 | 311 | ytyayrvj | 188 | 3 |
| 8 | 112 | 255 | 30 | 2015-12-07 | 214 | gpmvax | 16 | 271 |
| 9 | 175 | 62 | 181 | 2012-04-21 | 182 | gpmvax | 105 | 76 |
| 10 | 200 | 90 | 101 | 2008-04-28 | 168 | gpmvax | 70 | 119 |
| 11 | 31 | 180 | 95 | 2004-06-23 | 62 | yefihroyn | 314 | 97 |
| 12 | 297 | 251 | 249 | 2022-02-02 | 185 | yefihroyn | 278 | 313 |
| 13 | 36 | 17 | 67 | 2016-04-14 | 243 | ytyayrvj | 213 | 4 |
| 14 | 45 | 215 | 182 | 2012-06-15 | 251 | yefihroyn | 221 | 83 |
Now you need to get the answer based on the instruction,
only give me the result and do not output any other words.
The following are some examples.

Instruction:Please filter the rows by the column conditions, which need to be met:
The value of column tiepolo needs to be greater than 146.
The rows are then grouped according to the value of the huggins in the remaining rows.
Then filter some groups by the following condition:the number of column huggins is greater than 1.
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Select the average of values of intrados column in filtered rows.
Sort the obtained values in ascending order of the number of tiepolo
and select the smallest value to get the answer.
Answer:146.5

Instruction:Please filter the rows by the column conditions, which need to be met:
The value of column huggins is 'gpmvax'.
The rows are then grouped according to the value of the huggins in the remaining rows.
Then filter some groups by the following condition:the column wear is less than 83.
Select values of wear column in filtered rows.
Sort the obtained values in ascending order of the number of non-repeating barye
and select the smallest value to get the answer.
Answer:73

Instruction:Please filter the rows by the column conditions, which need to be met:
The value of column huggins is 'ytyayrvj'.
The rows are then grouped according to the value of the huggins in the remaining rows.
Then filter some groups by the following condition:the number of column huggins is less than 5.
Select values of wear column in filtered rows.
Sort the obtained values in descending order of the number of non-repeating mutinus
and select the largest value to get the answer.
Answer:

C.7 Chain-of-Thought SQL Execution Prompting Examples
You are an SQL executor, you need to output the execution process and final answer based on table and SQL.
Table:
| | masthead | laertes | boo | bothrops | height | scraper | trouser | lozenge |
|---:|:-----------|:----------|------:|:-----------|:---------|:----------|:----------|----------:|
| 0 | case | araeswrid | 41 | lyucg | urbsmxiv | vgxrh | esauw | 281 |
| 1 | case | araeswrid | 138 | lyucg | tbvg | oerigocb | stevw | 177 |
| 2 | case | zncmrrvg | 303 | loclzoglg | tbvg | vgxrh | stevw | 234 |
| 3 | thyngfwts | araeswrid | 288 | loclzoglg | tbvg | vgxrh | esauw | 224 |
| 4 | thyngfwts | mrehctv | 177 | loclzoglg | urbsmxiv | vgxrh | esauw | 228 |
| 5 | case | araeswrid | 163 | loclzoglg | urbsmxiv | oerigocb | stevw | 60 |
| 6 | thyngfwts | mrehctv | 45 | loclzoglg | cidufm | oerigocb | esauw | 289 |
| 7 | thyngfwts | zncmrrvg | 42 | loclzoglg | tbvg | ffljyxb | stevw | 296 |
| 8 | case | araeswrid | 275 | lyucg | cidufm | vgxrh | stevw | 172 |
| 9 | case | mrehctv | 20 | loclzoglg | tbvg | vgxrh | esauw | 147 |
| 10 | thyngfwts | araeswrid | 302 | lyucg | urbsmxiv | vgxrh | stevw | 297 |
| 11 | thyngfwts | zncmrrvg | 137 | loclzoglg | tbvg | vgxrh | esauw | 63 |
| 12 | case | araeswrid | 186 | loclzoglg | cidufm | ffljyxb | esauw | 268 |
| 13 | case | araeswrid | 194 | loclzoglg | cidufm | vgxrh | esauw | 98 |
| 14 | case | araeswrid | 234 | lyucg | urbsmxiv | vgxrh | stevw | 276 |
Now you need to get the answer based on the instruction,
only give me the intermedium results and the final answer.
SQL:
select masthead from my_table where height = 'tbvg' group by masthead order by count ( laertes ) desc limit 1
Execution process:
You need to execute 3 steps.
Step 0:
Please filter the rows by the column conditions, which need to be met: The value of column butcher is 'jxys'.
Intermediate results 0:
| | encyclia | butcher | bowdler | nuthatch | cachexia | claret | cortina | strombus |
|---:|:-----------|:----------|:----------|:-----------|-----------:|:---------|----------:|-----------:|
| 0 | adnh | jxys | cxjvfz | clmb | 2 | oqmdmbfg | 251 | 184 |
| 1 | xvoxfjbm | jxys | cxjvfz | clmb | 275 | oqmdmbfg | 140 | 303 |
| 2 | adnh | jxys | eohdpivo | clmb | 298 | oqmdmbfg | 142 | 28 |
| 3 | adnh | jxys | eohdpivo | rcyixdl | 153 | oqmdmbfg | 50 | 306 |
| 4 | xvoxfjbm | jxys | eohdpivo | rcyixdl | 315 | rxbttbm | 201 | 86 |
Step 1: Select values of strombus column in filtered rows.
Intermediate results 1:
184,303,28,306,86
Step 2: Sort the obtained values in ascending order of claret and select the smallest value to get the answer.
Answer: 184

C.8 Real Table SQL Execution (Few-shot)
You are an SQL executor, you need to execute SQL based on the give table
and SQL statement to obtain the execution results.
Only give me the execution results and do not output any other words.
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Table:
| | id | agg | rank | nation | gold | silver | bronze | total |
|---:|-----:|------:|-------:|:-------------------|-------:|---------:|---------:|--------:|
| 0 | 1 | 0 | 1 | soviet union | 50 | 27 | 22 | 99 |
| 1 | 2 | 0 | 2 | united states | 33 | 31 | 30 | 94 |
| 2 | 3 | 0 | 3 | east germany (gdr) | 20 | 23 | 23 | 66 |
| 3 | 4 | 0 | 4 | west germany (frg) | 13 | 11 | 16 | 40 |
| 4 | 5 | 0 | 5 | japan | 13 | 8 | 8 | 29 |
| 5 | 6 | 0 | 6 | australia | 8 | 7 | 2 | 17 |
| 6 | 7 | 0 | 7 | poland | 7 | 5 | 9 | 21 |
| 7 | 8 | 0 | 8 | hungary | 6 | 13 | 16 | 35 |
| 8 | 9 | 0 | 9 | bulgaria | 6 | 10 | 5 | 21 |
| 9 | 10 | 0 | 10 | italy | 5 | 3 | 10 | 18 |
Now you need to execute SQL based on the given table and SQL statement to obtain the execution result.
Only give me the result and do not output any other words or SQL statement.
The following are some examples.

SQL:select nation from table where rank = 1
Answer:Soviet Union
SQL:select nation from table where nation != 'bulgaria'
and total = ( select total from table where nation = 'bulgaria' )
Answer:Poland
SQL:select nation from table order by bronze limit 1
Answer:Australia
SQL:select nation from table order by bronze limit 1
Answer:Australia
SQL:select silver from table order by gold desc limit 1
Answer:

C.9 Real Table Question Answering (Few-shot)
You need to obtain the final answer based on the table and questions.
Only give me the answer and do not output any other words.
Table:
| | id | agg | rank | nation | gold | silver | bronze | total |
|---:|-----:|------:|-------:|:-------------------|-------:|---------:|---------:|--------:|
| 0 | 1 | 0 | 1 | soviet union | 50 | 27 | 22 | 99 |
| 1 | 2 | 0 | 2 | united states | 33 | 31 | 30 | 94 |
| 2 | 3 | 0 | 3 | east germany (gdr) | 20 | 23 | 23 | 66 |
| 3 | 4 | 0 | 4 | west germany (frg) | 13 | 11 | 16 | 40 |
| 4 | 5 | 0 | 5 | japan | 13 | 8 | 8 | 29 |
| 5 | 6 | 0 | 6 | australia | 8 | 7 | 2 | 17 |
| 6 | 7 | 0 | 7 | poland | 7 | 5 | 9 | 21 |
| 7 | 8 | 0 | 8 | hungary | 6 | 13 | 16 | 35 |
| 8 | 9 | 0 | 9 | bulgaria | 6 | 10 | 5 | 21 |
| 9 | 10 | 0 | 10 | italy | 5 | 3 | 10 | 18 |
Now you need to get the answer based on the question,
only give me the answer and do not output any other words.
The following are some examples.

Question:which country was first in rank at the 1972 olympics ?
Answer:Soviet Union
Question:which country won the same amount of medals as bulgaria in these olympics ?
Answer:Poland
Question:which nation won the least number of bronze medals ?
Answer:Australia
Question:which nation received the least bronze medals
Answer:Australia
Question:what number of silver medals was won by the nation with the most gold medals ?
Answer:

D Experiments Settings Details

D.1 Setting Description
Table Config
"col_min": 5, // the min number of cols
"col_max": 8, // the max number of cols
"row_min": 15, // the min number of rows
"row_max": 40, // the max number of rows
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"text_int_date": [0.55, 0.35, 0.1], // text,int,date header ratio
"text_int_date_fix": ["TEXT", "TEXT", "INT", "INT", "INT"], // Specify the type of each header
// Probability of duplicate values in each column
"value_repeat_ratio": [0, 0.2, 0.3, 0, 0, 0, 0, 0, 0.2, 0.5],
"value_repeat_ratio_fix": ["random", "random"], // Specify the duplicate values of each column

SQL Config
"nest": [1], // Number of SQL nestings. options: [1], [2], [1,2],[1,2, 3]
"keywords_setting": { // if a Keyword is False, then no SQL containing this Keyword is generated.
"select": true,
"where": true,
"group by": true,
"having": true,
"order by": true
},
"length_setting": { // control the length of sql
"is_available": false, // To enable this setting, you need to adjust "is_available" to true first.
// 'value' can be set to specific values, such as [13,14,15],
// if value is null, then the range is used [min, max]
"value": [],
"min": 6,
"max": 16
},
"column_ratio": { // Controlling the ratio of columns involved in SQL
"is_available": false, // To enable this setting, you need to adjust "is_available" to true first.
// 'value' can be set to specific values, such as [1,2], Control the number of columns involved in SQL
"value": [],
// if value is null, then the range is used [min, max], it's the used ratio = (used columns) / (all columns)
"min": 0.1,
"max": 0.3
},
"select_row_ratio":{ // Controlling the ratio of rows involved in select keyword
"is_available": false, // To enable this setting, you need to adjust "is_available" to true first.
// 'value' can be set to specific values, such as [1,2,3,4], Control the number of rows involved in SQL
"value": [],
// if value is null, then the range is used [min, max], it's the used ratio = (select rows) / (all rows)
"min": 0.1,
"max": 0.2
},
// Controlling the calculate times of the sql ['+','-','*','/','sum','count','min','max','avg']
"calculate_times": {
"is_available": false, // To enable this setting, you need to adjust "is_available" to true first.
"value": [1,2,3,4] // 'value' can be set to specific values, means the calculate times
},
// Controlling the filter times of the sql ['=','>','<','in','like']
"filter_times": {
"is_available": false, // To enable this setting, you need to adjust "is_available" to true first.
"value": [1,2,3,4,5] // 'value' can be set to specific values, means the calculate times
},
// Controlling the location of answer in the table, usually used in long-context understanding
"answer_location": {
"is_available": false, // To enable this setting, you need to adjust "is_available" to true first.
"value": null,
"min": 0.1, // if value is null, then the range is used [min, max],
means that 0.1 < (Row where answer is located ) / (Row number) < 0.9
"max": 0.9
},
// usually remains 1 in this repo, we often just test the sql whose answer is from one cell.
"answer_cells_number": 1,
"include": [],
"exclude": [],
"n_shot": 5

D.2 General Setting
Table Config
"col_min": 5,
"col_max": 5,
"row_min": 30,
"row_max": 30,
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"text_int_date": [0.5, 0.45, 0.05],
"value_repeat_ratio": [0, 0.2, 0.3, 0, 0, 0, 0, 0, 0, 0.5]

SQL Config
"nest": [1,2,3],
"select_grammar": [],
"keywords_setting": { "select": true,
"where": true,

"group by": true,
"having": true,
"order by": true

},
"length_setting": {

"is_available": false,
"value": [],
"min": 6,
"max": 16

},
"column_ratio": {

"is_available": false,
"value": [],
"min": 0.1,
"max": 0.3

},
"select_row_ratio":{

"is_available": false,
"value": [],
"min": 0,
"max": 0.2

},
"calculate_times": {

"is_available": false,
"value": [0]

},
"filter_times": {

"is_available": false,
"value": [0]

},
"answer_location": {

"is_available": false,
"row_value": [],
"column_value":[0],
"min": 0,
"max": 1

},
"answer_cells_number": 1,
"multi_test": false,
"include": [],
"exclude": [],
"n_shot": 5

D.3 LLMs Used In This Paper
LLMs. LLaMA2 (Touvron et al., 2023a), Qwen (Bai et al., 2023a), InternLM (Team, 2023), Mistral,
XGen (Nijkamp et al., 2023), Falcon (Penedo et al., 2023), phi-1_5 (Li et al., 2023b), StableLM (Andonian
et al., 2021), Pythia (Biderman et al., 2023), CodeLlama (Rozière et al., 2023), StarCoder (Li et al.,
2023a), CodeGen (Nijkamp et al., 2022).

We all use the official model weight from the Huggingface Models3. Above we used the model’s
abbreviation, we list the model’s huggingface official label in Table 7.

D.4 Markdown vs. Flatten Setting Experiments
"0": Size: 100 * 5, Template: Easy, Model: GPT-3.5
"1": Size: 50 * 5, Template: Easy, Model: GPT-3.5
"2": Size: 20 * 6, Template: Count, Model: GPT-3.5
"3": Size: 40 * 10, Template: Where Condition Text, Model: GPT-3.5
"4": Size: 10 * 20, Template: Where Condition Text, Model: GPT-3.5

3https://huggingface.co/models
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Model Name

Mistral-7B mistralai/Mistral-7B-v0.1
Llama-2-13B meta-llama/Llama-2-13b-hf
InternLM-20B internlm/internlm-20b

Qwen-14B Qwen/Qwen-14B
Llama-2-7B meta-llama/Llama-2-7b-hf
Qwen-7B Qwen/Qwen-7B
XGen-7B Salesforce/xgen-7b-8k-base

Internlm-7B internlm/internlm-7b
Phi-1_5 microsoft/phi-1_5

Stablelm-7B stabilityai/stablelm-base-alpha-7b
Stablelm-3B stabilityai/stablelm-base-alpha-3b
Pythia-12B EleutherAI/pythia-12b
Pythia-6.9B EleutherAI/pythia-6.9b
Pythia-2.8B EleutherAI/pythia-2.8b
Pythia-1B EleutherAI/pythia-1b

Llama-2-70B meta-llama/Llama-2-70b-hf
CodeLlama-34B codellama/CodeLlama-34b-hf
CodeLlama-13B codellama/CodeLlama-13b-hf
CodeLlama-7B codellama/CodeLlama-7b-hf
StarCoder-15B bigcode/starcoderbase
StarCoder-7B bigcode/starcoderbase-7b
StarCoder-3B bigcode/starcoderbase-3b
StarCoder-1B bigcode/starcoderbase-1b
CodeGen-15B Salesforce/codegen-16B-multi
CodeGen-6B Salesforce/codegen-6B-multi
CodeGen-2B Salesforce/codegen-2B-multi

Yarn-LLaMA2-13B NousResearch/Yarn-Llama-2-7b-64k
LongChat-13B lmsys/longchat-7b-16k

RWKV-Raven-14B lmsys/longchat-7b-16k

Table 7: LLMs used in our experiments and their corresponding names in Huggingface Hub.

"5": Size: 10 * 15, Template: Where Condition Text, Model: GPT-3.5
"6": Size: 50 * 5, Template: Easy, Model: Llama-2-13B
"7": Size: 100 * 5, Template: Easy, Model: Yarn-Llama-2-13B
"8": Size: 50 * 5, Template: Easy, Model: Yarn-Llama-2-13B
"9": Size: 25 * 7, Template: General, Model: Llama-2-13B
"10": Size: (15~40) * (6~9), Template: General, Model: Llama-2-13B
"11": Size: (15~40) * (6~9), Template: General, Model: Llama-2-13B
"12": Size: (15~40) * (6~9), Template: Easy, Model: Llama-2-13B
"13": Size: (15~40) * (6~9), Template: Easy, Model: Llama-2-13B
"14": Size: (15~40) * (6~9), Template: Easy, Model: Llama-2-13B
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