
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 1259–1286

June 16-21, 2024 ©2024 Association for Computational Linguistics

S3Eval: A Synthetic, Scalable, Systematic Evaluation Suite for
Large Language Models

Fangyu Lei 1,2∗ , Qian Liu 4∗, Yiming Huang 1∗,
Shizhu He 1,2†, Jun Zhao 1,2, Kang Liu 1,2,3†

1The Laboratory of Cognition and Decision Intelligence for Complex Systems,
Institute of Automation, Chinese Academy of Sciences, Beijing, China

2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
3Shanghai Artificial Intelligence Laboratory, Shanghai, China 4Sea AI Lab, Singapore

leifangyu2022@ia.ac.cn liuqian@sea.com kliu@nlpr.ia.ac.cn

Abstract
The rapid development of Large Language
Models (LLMs) has led to great strides in
model capabilities like long-context under-
standing and reasoning. However, as LLMs
are able to process longer contexts, it becomes
more challenging to evaluate whether they have
acquired certain capabilities, since the length
of text (e.g., 200K tokens) they can process
far exceeds what humans can reliably assess
in a reasonable duration. In this paper, we
propose using complex synthetic tasks as a
proxy evaluation method, and present S3EVAL,
a Synthetic, Scalable, Systematic evaluation
suite for LLMs evaluation. The synthetic nature
of S3EVAL provides users full control over the
dataset, allowing them to systematically probe
LLM capabilities by scaling text length and
varying task difficulty across diverse scenar-
ios. The strong correlation between S3EVAL
and real-world benchmarks demonstrates the
soundness of using S3EVAL for evaluation of
LLMs. S3EVAL provides a flexible and infi-
nite long-context data generation method. We
have generated a comprehensive dataset called
S3EVAL-Standard, and experimental results
have shown that it poses significant challenges
for all existing LLMs. Our code is available at
https://github.com/lfy79001/S3Eval.

1 Introduction

Large Language Models (LLMs) have greatly
propelled significant advancements in Natural
Language Processing (NLP), such as OpenAI
GPT (Brown et al., 2020), Llama (Touvron et al.,
2023a,b), StarCoder (Li et al., 2023a), and others.
These models perform well in many NLP tasks and
claim to have made progress in advanced capabili-
ties such as reasoning, long-context understanding,

∗Equal Contributions.
†† Corresponding authors.

Needle-in-a-haystack

Real Task
Performance

100%
S3Eval: Relevant
with real tasks

Top of
Document

Placed Fact
Document

Depth

Top of
Document

Doc Depth
 0%

20%

40%

60%

80%

100%

Context Length
(# Token)

100%

50%

0%

accuracy

Figure 1: Needle-in-A-HayStack cannot demonstrate the
performance of the model under real tasks, but S3EVAL
can. Compared with needle-in-a-haystack, S3EVAL is
more relevant to real benchmarks and more difficult.

and so on. However, existing benchmarks (Chang
et al., 2023) often fail when it comes to evaluating
extremely long-context LLMs or analysing the con-
trollable characteristics and limitations of LLMs.

For long-context understanding, previous work
has often evaluated LLMs using the scope of lan-
guage modeling metrics (i.e., perplexity) (Sun et al.,
2021; Peng et al., 2023) or the performance on sim-
ple artificial tasks (Li and Roth, 2002; Berant et al.,
2013; Mohtashami and Jaggi, 2023). There is a
widely used evaluation method known as Needle-
in-a-Haystack (Kamradt, 2023), as shown in Fig-
ure 1. In this method, a vital piece of information is
concealed within a lengthy document, resembling
a haystack, and the model’s objective is to locate
and retrieve this hidden key information. How-
ever, these evaluation tasks tend to lack complexity
and are narrowly focused on simple comprehen-
sion, which is misaligned with the sophistication
required for real-world downstream applications.

While recent work has made great progress on
building evaluation benchmarks at longer context
lengths with real-world use cases (e.g, question an-
swering) (Bai et al., 2023b; An et al., 2023), these
manually annotated datasets often lack the scale
and diversity to thoroughly assess performance on
extended context lengths. For example, existing

1259

https://github.com/lfy79001/S3Eval

benchmarks struggle to effectively evaluate LLMs
that claim an ability to process contexts up to 100K
tokens, due to the limited capacity of human an-
notation for very long text. Developing more scal-
able and diverse evaluation datasets, potentially
leveraging automated supervision, remains an open
challenge.

For reasoning analysis (Hendrycks et al., 2021b;
Chen et al., 2021a; Suzgun et al., 2023; Zhong
et al., 2023), conducting both qualitative and quan-
titative analysis of answers and reasoning processes
provides important insights. However, existing
benchmarks lack the ability to precisely control
the distribution of the dataset, limiting their utility
for in-depth research analysis. In other words, the
nature of these benchmarks makes it challenging
for developers to identify the specific weaknesses
of their LLMs. More configurable and granular
benchmarks are needed to enable detailed analysis
of model performance. In addition, these bench-
marks often draw their evaluation data from NLP
tasks that have been extensively studied and are
likely to be used in the training corpus of LLMs.
The potential data leakage makes the evaluation
less convincing.

In this paper, we propose a new evaluation suite
called S3EVAL, which addresses the aforemen-
tioned issues by using a complex synthetic task
- SQL execution - as a proxy for the performance
of LLMs on realistic reasoning tasks. As shown
in Figure 2, inspired by the work of TAPEX (Liu
et al., 2022), S3EVAL is based on the SQL execu-
tion task. Specially, given a randomly generated
table and a random SQL query, S3EVAL evaluates
whether LLMs can return the correct execution re-
sults. S3EVAL has three notable characteristics: (1)
It is synthetic, with no table or SQL query present
in the LLM training corpus. The tasks use com-
plex, grammatically correct SQL syntax, making
them very challenging. (2) It is scalable, allowing
users to customize the benchmark to any length
and difficulty. (3) It is systematic, containing di-
verse reasoning types and operations. This enables
comprehensive evaluation of LLM capabilities.

With these powerful features, developers can ex-
tend the context to really long lengths and generate
meaningful SQL statements using S3EVAL. We
conducted comprehensive multi-perspective experi-
ments on several popular LLMs using S3EVAL.
Experimental results demonstrated that the per-
formance of LLMs on S3EVAL aligns closely
with their performance on mainstream LLM bench-

marks. While LLMs have shown impressive capa-
bilities, our work reveals limitations in their abil-
ity to leverage long contexts, since we observe
performance degradation of almost all LLMs in
long-context settings. By carefully studying exper-
imental results, we can work to pinpoint situations
where LLMs tend to fail and summarize valuable
insights.

In the era of rapid LLM development, the most
significant contribution of S3EVAL lies in its effec-
tiveness as a method for long-context evaluation.
Capable of generating evaluation data of infinite
length, it ensures that assessments are not only rea-
sonable but also sufficiently challenging.

2 Synthetic: Suite and Benchmark

In this section, we introduce the details of the
S3EVAL evaluation suite (as shown in Figure 2)
and the new benchmark we proposed.

2.1 Suite Construction

Task Formulation Following previous
work (Liu et al., 2022), each example in
S3EVAL generally contain an SQL query and a
(semi-)structured table T as the input. Each table
T consists of M rows {ri}Mi=1, in which each row
ri contains N cell values

{
c⟨i,j⟩

}M

i=1
. Each cell

c⟨i,j⟩ corresponds to a table header hj . Each SQL
query consists of K tokens as x = x1, x2, · · · , xK .
Each token xi originates from SQL keywords,
table schema, or table cells. Each multi-step
instruction is transformed from SQL query. The
task prompts LLM to obtain the execution result A
of the SQL on the table T . Our main focus is on
analyzing the accuracy of LLM in executing SQL
queries.

Random Table Generation All tables in
S3EVAL are randomly generated and do not con-
tain any real data or overlap with existing public
tables. The tables have M rows and N columns,
with adjustable parameters M and N . The column
headers are sampled from English nouns (Bird,
2006), falling into three types: TEXT, INT, and
DATE. INT columns contain random integers from
1 to 1000, which is an adjustable range. DATE
columns have values in year-month-day format.
TEXT columns have random strings of length 5 to
12 characters, which is also adjustable. To simulate
real-world data where the same value may recur in
a column frequently, the data generator includes

1260

Table Size
Header Config

Row Uniqueness
Cell Length

……

Table Control

Answer Location
Condition Location

Answer Number
Answer Distance

……

Output ControlInstruction Control

SQL Operator
Setting

>, <, =, +, -, * , /
IN, LIKE,
AND, OR

COUNT, MAX,
……

SQL Complexity
Setting

SQL Keyword
SQL Length

Coverage
Calculate Times

……

Name Gender Age Hobby Height

Katie female 15 Football 160

Joshua female 15 Tennis 156

Natalie male 21 Basketball 187

Mark male 18 Badminton 179

……

Teressa female 16 Golf 164

SQL Instruction & Answer

Evaluation Results
Analysis

SELECT Name FROM w WHERE Age < 18 AND
Height > 163 Teressa
SELECT MAX(Age) FROM w WHERE Gender = 'male’
21
SELECT Hobby FROM w GROUP BY Gender HAVING
MAX(Height) < 170 ORDER BY Age DESC LIMIT 1
Golf

……

Large Language
Models

Evaluation
u Long-Context

Understanding
u Reasoning Ability

Diagnostic
u Characteristics

of LLMs
u Flaws of LLMs

SQL Prompting
Style
SQL,

Multi-step,
CoT
……

Zero-shot

Few-shot

Figure 2: The illustration demonstrates the S3EVAL pipeline, where the capabilities of LLMs are assessed by
evaluating their ability to execute SQL queries over randomly generated tables.

Configuration Description

Table Control

of Rows The number of rows in the generated tables
of Columns The number of columns in the generated tables
Header Type Ratio The proportion of table column types that are TEXT, INT, DATE
Cell Uniqueness The proportion of duplicate cells in each column
String / Int Length The string length or numeric range of cell values

Instruction
Control

SQL Keywords SELECT, WHERE, GROUP BY, HAVING, ORDER BY
SQL Length The number of tokens after SQL split by space
Column Coverage The ratio of columns involved in SQL execution to total columns.
Row Coverage The ratio of rows involved in SQL execution to total rows
Calculate Times The number of SQL numerical calculations.
Filter Times The number of SQL filtering operations.
Aggregator COUNT, MAX, MIN, SUM, AVG
Filter Operator >, <, =, IN, LIKE

Output Control
Answer Location The location of SQL answers in the input table
of Answer Cells The number of selected cells in the answer
Answer Length The total number of tokens in the answer

Table 1: Our S3EVAL method allows users to customize configuration settings and provides descriptions for each
parameter that can be adjusted. More configurations can be found in Appendix D.1.

a parameter to set the probability of duplicating
values within a specific column.

Random SQL Generation The SQL language
includes a variety of statements to query and man-
age data. S3EVAL use context free grammar to
generate a specific number of examples with con-
trollable attributes. As Table 1 shows, the S3EVAL

tool allows configuring several parameters of gen-
erated SQL statements, including nesting depth,
keywords used, length, coverage of SQL features,
computational complexity, and more. For exam-
ple, calculate times can be modified to control the
complexity of numerical reasoning for each dataset.
Except these configures, users can also manually
write the specified SQL template to generate fine-
grained evaluation data (Appendix C.2).

Evaluation Methods S3EVAL includes
both zero-shot and few-shot prompting meth-
ods. For each few-shot setting, all examples
share one table. N-shot is formalized as
INPUT = [T; S1; A1; ...; Sn+1]. For the input
format of table T , we designed several alternative
ways, including markdown, flatten, tapex-style,
etc.

To evaluate the performance of LLMs, we use
Exact Match (EM) as the evaluation metric. Details
are shown in Appendix C.3.

2.2 S3EVAL-Standard Benchmark

We generate a highly diverse dataset called
S3EVAL-Standard covering lengths ranging from
2K to 40K, with various difficulty levels of rea-
soning types, which comprises all templates and

1261

Model Context Length Short-Context Long-Context Total

GPT-4-32K 32768 68.4% 43.0% 54.8%
GPT-3.5-Turbo 16384 39.9% 16.2% 27.0%
Code Llama (70B) 16384 33.9% 8.9% 20.3%
LLaMA-2 (70B) 4096 30.0% 8.8% 18.4%
LLaMA-2 (13B) 4096 21.7% 4.6% 12.4%
LLaMA-2 (7B) 4096 20.8% 4.4% 11.9%
Gemma (7B) 8192 28.9% 8.6% 17.9%
Qwen 1.5 (14B) 32768 33.7% 14.4% 23.2%
Qwen 1.5 (7B) 32768 26.5% 8.0% 16.5%
Qwen 1.5 (4B) 32768 22.8% 5.5% 13.4%
Mixtral-8x7B (46.7B) 32768 31.5% 11.1% 20.4%
Mistral-Instruct-v0.2 (7B) 32768 28.7% 10.6% 18.9%

Table 2: Experimental results on S3Eval-Standard. “Total” denotes the overall score, “Short-Context” refers to the
model’s performance on contexts shorter than 4K in length, and “Long-Context” indicates the model’s performance
on contexts ranging from 4K to 40K in length.

operations included in S3EVAL, making it the most
complex and diverse dataset available. We utilize
this version of the dataset as the official bench-
marking data for S3EVAL benchmark. It can ef-
fectively evaluate LLMs in completing tasks un-
der both short-context and long-context scenarios.
We evaluate popular commercial LLMs and open-
source LLMs on S3EVAL-Standard, and the exper-
imental results are shown in Table 2. In theory,
we can measure the performance of LLMs with
unlimited context length here.

3 Correlation with Realistic Benchmark

In this section, we describe the details of synthesiz-
ing the evaluation data (Section 2.1) and verify the
correlation between our synthetic suite S3EVAL

and real-world benchmark results.

3.1 Experimentual Settings

S3EVAL can flexibly generate different evaluation
data. To validate the rationality of S3EVAL, we
conducted correlation experiments and generated
two sets of data with different difficulty levels
for experimentation. Easy is the simplest data
that S3EVAL can generate and is used to evaluate
LLM’s ability to understand the most basic instruc-
tions. It contains only one template, “SELECT
<col1> WHERE <col2> <op> <value>”. General
is a more difficult setting, containing extensive SQL
syntax, and its generating setting is described in
Appendix D.2. All experiments were run for 3
times, using 1000 randomly generated queries per
trial, with tables of 15 rows and 8 columns and an
average of 1200 tokens per input. Details on the
LLMs are provided in Appendix D.3.

Considering SQL execution is a difficult task,

some models may have a poor understanding of
symbolic language, which makes it difficult to exe-
cute SQL, so we propose an alternative task SQL
multi-step task to remove this potential bias. Specif-
ically, it converts an SQL query into a multi-step ta-
ble operation instruction as shown in Appendix C.6.
SQL has a fixed execution flow for the query state-
ment: FROM → ON → JOIN → WHERE →
GROUP BY → HAVING → SELECT → ORDER
BY → LIMIT. This is not consistent with the order
in which it is written. With this processing, it can
also generate chain-of-thought prompting data.

3.2 Scaling Law

Previous work (Kaplan et al., 2020; Hoffmann et al.,
2022) shows a positive correlation between the
cross-entropy loss of LLMs and the amount of com-
puting resources used for training, as described by
the empirical scaling law. To verify whether the
scaling law holds for our S3EVAL, we employ a
set of checkpoints of Pythia-12B (Biderman et al.,
2023) that are open-sourced at different training
steps, corresponding to different amounts of com-
pute. We observe a consistent pattern as illustrated
in Figure 3: the scores show a smooth progression
of improvement that aligns with the scaling law
with increasing the training steps. The steady, in-
cremental performance gains over time, lacking any
spikes, demonstrate S3EVAL’s reliability as a eval-
uation suite. Overall, these experimental results
confirm the scaling law’s accuracy in forecasting
model gains during training across diverse evalua-
tion settings.

1262

1 2 4 6 9 14
Training Step (log scale)

5

10

15

20

25

30

35

40
Ex

ac
t M

at
ch

×104

Performance of Pythia on S3Eval

General
Easy

Figure 3: The performance of Pythia-12B on
S3EVAL was evaluated across different training
steps.

Figure 4: The performance of different LLMs on
S3EVAL and WikiTableQuestions.

3.3 Benchmark Performance

In the above, we validated that the LLMs also
exhibits the scaling law observed in NL on the
S3EVAL suite. A natural question that arises
is whether its performance on S3EVAL is cor-
related with the performance on real-world, NL
benchmarks. To examine the hypothesis, we first
compare the performance of different LLMs on
S3EVAL and on WikiTableQuestions (Pasupat and
Liang, 2015), a table question answering dataset
consisting of questions and answers. It is worth
noting that to align the difficulty, we use the SQL
queries from WikiTableQuestions (Shi et al., 2020)
as our S3EVAL evaluation set.

To systematically compare the performance, fol-
lowing previous work (Liu et al., 2023a), we con-
sider two correlation measures: the Pearson corre-
lation coefficient (r), which evaluates the linear re-
lationship between model scores on the two bench-
marks, and the Kendall rank correlation coefficient
(τ), which assesses whether the relative ranking of
models is consistent across the benchmarks. The
strong correlation between LLMs’ performance on
the SQL execution task and the table question an-
swering task, as evidenced by the high r (e.g., 99.1)
and high τ (e.g., 93.6) in Figure 4.

Although S3EVAL has shown significant corre-
lation with WikiTableQuestions, the fact that they
are both tasks on tables may cause one to ques-
tion whether S3EVAL can serve as a proxy task to
evaluate LLMs’ capabilities on generic reasoning
tasks. Therefore, we also compare the performance
on S3EVAL with the results of generic popular

benchmarks like BBH (Suzgun et al., 2023) and
HumanEval (Chen et al., 2021a). The results de-
picted in Figure 5a demonstrate a strong correlation
between LLM performance on S3EVAL and the
BBH benchmark, with BBH performance obtained
from the OpenCompass platform using few-shot
chain-of-thought prompting (OpenCompass, 2023).
Similarly, Figure 5b illustrates the correlation be-
tween S3EVAL performance and pass@1 scores on
HumanEval (Chen et al., 2021b) for code LLMs.
The results demonstrate that S3EVAL serves as a
robust proxy task for assessing the reasoning capa-
bilities of LLMs on realistic benchmarks. Concrete
experimental results are provided in Table 4.

4 Scalable: Unlimited Evaluation
Resources

S3EVAL provides a unique capability to generate
infinite number of examples (Section 4.1) with infi-
nite length (Section 4.2).

4.1 Scalable Number of Evaluation Examples

The strength of S3EVAL is its ability to generate
unlimited number of examples for evaluation. This
stems from two key design choices in S3EVAL: (1)
the synthetic table size can be scaled to different
number of rows and columns, and (2) the table cells
are synthesized from randomly generated strings.
Combined with the provided large library of SQL
query templates, these features enable the creation
of a near-infinite set of unique evaluation exam-
ples. This kind of capacity enables the continuous
creation of novel examples unseen during training,

1263

20

30

40

50

60

70

10 20 30 40 50

B
B
H

S3Eval

S3Eval vs. BBH

𝑟 = 95.3
𝜏 = 90.0

ChatGPT

Claude-1

Llama2-70B

Mistral-7B

Internlm-20B

Llama2-13B

Qwen-14B

Llama2-7B

Qwen-7B

Internlm-7B

Pythia-12B

Phi-1_5

XGen-7B

Pythia-1B
Stablelm-7B

(a) Performance of large language models

10

20

30

40

10 20 30 40

H
um
an
Ev
al

S3Eval

S3Eval vs. HumanEval

𝑟 = 96.7
𝜏 = 91.1

Codellama-34B

Codellama-13B

Codellama-7B

Starcoder-15B

Starcoder-7B

Starcoder-3B

Starcoder-1B

Codegen-16B

Codegen-6B

Codegen-2B

(b) Performance of code large language models

Figure 5: Each point in the scatterplot represents the LLM performance on the benchmarks corresponding to the
horizontal and vertical coordinates. The black straight line is the trend line. The larger the values of r and τ , the
higher the correlation between the two benchmarks. We consider τ > 0.8 to be high concurrence.

0K 0.5K 1K 1.5K 2K
Training Step

20

40

60

80

Ex
ac

t M
at

ch

StarCoder Fine-tuning Performance

Seen Table (30×5)
Unseen Table (30×5)

Unseen Table (50×8)
Unseen Table (15×5)

Unseen Table (50×3)
Unseen Template

Figure 6: SQL execution training experiments on
S3EVAL.

2K 4K 8K 16K
Context Length (# Tokens)

20

40

60

80

100

Ex
ac

t M
at

ch

Long-Context Analysis

ChatGPT-16K
Claude-1.3-100K
Yarn-LLaMA2-13B-128K

XGen-7B-8K
LongChat-13B-16K

LongLLama-7B-256K
RWKV-Raven-14B-128K

Figure 7: Experiment results of different LLMs on differ-
ent context lengths.

which helps safeguard test data integrity by prevent-
ing leakage of the evaluation set into the training
corpus.

However, the absence of data leakage does not
necessarily mean that S3EVAL’s performance al-
ways represents the model’s out-of-distribution gen-
eralization ability. It is because the model may
perform well on S3EVAL via domain-specific train-
ing on the SQL execution task, rather than acquir-
ing more general abilities. To investigate whether
LLMs can “hack” S3EVAL via domain-specific
training, we fine-tuned StarCoder-1B (Li et al.,
2023a), which is not able to solve SQL execution
tasks, on a randomly generated dataset of one mil-
lion examples. The performance of the fine-tuned

StarCoder-1B is illustrated in Figure 6, where it
is evaluated on three types of test datasets: Seen
Table (same tables as training), Unseen Table
(new tables in same format as training tables), and
Unseen Templates (new SQL query templates).
For the unseen table setting, we explore different ta-
ble shapes, where (x× y) means the table consists
of x rows and y columns.

The experimental results demonstrate that for
Unseen Tables with different shapes, regardless of
their size, the performance of the fine-tuned Star-
Coder experiences a substantial decline compared
to Seen Tables. Likewise, when faced with Unseen
Templates, the performance of the fine-tuned Star-
Coder exhibits a significant drop. The results indi-

1264

cate that even if LLMs have been heavily trained
on SQL execution tasks, their out-of-distribution
performance can still be accurately evaluated by
using novel SQL templates. These new SQL tem-
plates can be easily generated thanks to the vast
grammar of SQL queries. Additionally, evaluating
LLMs on larger tables that they were not trained
on can also reveal part of their out-of-distribution
capabilities.

4.2 Scalable Length of Evaluation Examples

One advantage of S3EVAL is its scalability and ad-
justable context length per example. The flexibility
allows S3EVAL to rigorously evaluate LLMs that
claim capability with long contexts. To clearly ex-
pose limitations of current LLMs, we intentionally
chose the Easy setting in S3EVAL to evaluate their
performance. Specifically, we establish table con-
figurations with approximately 2K, 4K, 8K, and
16K tokens, by using different numbers of rows
and fixing the number of columns. We generate a
dataset consisting of 500 samples for each evalua-
tion setting. The experimental results on up to 16K
context length are plotted in Figure 7. As observed,
the performance of almost all LLMs, significantly
decreases as the context length increases. Of all
the models, Claude-1.3-100K is the only one that
maintains a relatively strong performance trend.
Detailed results can be found in Appendix A.5.

As illustrated in Table 2, S3EVAL poses signifi-
cant challenges for models even when the context
window is extended to 32K levels. This difficulty
arises from S3EVAL being rooted in real-world
tasks, enabling it to generate evaluation data of
infinite length and ensure the tasks are both reason-
able and demanding. Looking ahead, as models
progress to the 200K level, S3EVAL will likewise
be poised to furnish effective evaluation data.

5 Systematic Suite: Controllable Analysis

S3EVAL provides a comprehensive framework that
empowers developers to synthesize diverse evalua-
tion examples for systematically assessing LLMs
from multiple perspectives. In this section, inspired
by the work of lost in the middle (Liu et al., 2023b),
we first analyze the impact of answer position
on performance (Section 5.1). Then we evaluate
LLMs from different viewpoints, and we have con-
ducted some initial explorations on the reasoning
types analysis (Section 5.3). Last, we provide some
insights by analyzing LLMs on three selected SQL

0 500 1000 1500 2000 2500 3000
Position of Answer Token

0.4

0.5

0.6

0.7

0.8

0.9

Ex
ac

t M
at

ch

(a) ChatGPT

0 500 1000 1500 2000 2500
Position of Tokens with the Answer

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ex
ac

t M
at

ch

(b) CodeLlama

Figure 8: The relationship between LLMs performance
and the position of the answer token.

templates (Section B.2). These experiments re-
veal counter-intuitive performance trends and new
discoveries that may inspire further research and
extension of the work.

5.1 Answer Position Analysis

We investigate the influence of the answer’s posi-
tion on the performance of LLMs, which is gener-
ally considered important. Unlike standard NLP
benchmarks where it is difficult to control the posi-
tion of the answer, S3EVAL allows for fine-grained
control of answer position at the token level. To
mitigate the influence of long contexts, we only
analyzed answers that fell within a limited context
window (i.e., less than 4K tokens).

Echoing the findings of Liu et al. (2023b), “lost
in the middle”, our results in Figure 8 demonstrate
that both ChatGPT and CodeLlama achieve higher
performance when the answer is located at the be-
ginning or end of the context, compared to when it
appears in the middle. In addition, we found a pe-
riodic fluctuation trend in the performance of both
models as the position of the answer shifts within
the context. For example, the performance of Chat-
GPT increases from 0 to around 200, then starts to

1265

Name Age Country
Jean 32 France
John 28 USA
Liu 24 China

Chen 31 China
Lei 34 China

Wang 19 China
Yuki 28 Japan
Kim 33 Korea
Raj 32 India

Noah 18 Canada
Luca 20 Italy

SELECT Name FROM table WHERE Country = 'China'

Dense

Name Age Country
Liu 24 China
Jean 32 France
John 28 USA
Chen 31 China
Yuki 28 Japan
Kim 33 Korea
Raj 32 India
Lei 34 China

Noah 18 Canada
Luca 20 Italy
Wang 19 China

Sparse

Figure 9: Experiment results of ChatGPT and Yarn-Llama 2 on Dense and Sparse Settings. Dense means that the
answer cells (i.e., Liu, Chen, Lei, Wang) lie in adjacent rows, and Sparse means that the answer cells are separated.
The model performs better on local queries which only involves adjacent cells.

decrease from around 200 to 500. This wave-like
pattern in performance appears to correlate with
the position embedding approach used by LLMs.

In contrast to previous studies that used long-
context question answering tasks (Liu et al., 2023b;
Bai et al., 2023b) for analysis and are thus limited
to controlling answer positions at the paragraph
level, S3EVAL provides a more precise approach
by focusing on token level. This key difference
enables S3EVAL to offer fine-grained control and
promote the exploration of relevant phenomena.

5.2 Answer Distribution Analysis

Given the limitation of existing LLMs on long-
context tasks, we are curious about the bottleneck
of them. By using S3EVAL, we can systematically
investigate the long-context modeling capabilities
of LLMs by controlling the distribution of answers
in the evaluation suite. Specifically, we use the
Easy setting and fix the number of answers to four
cells (i.e., the result of the SQL execution is always
spanning four cells). As illustrated in Figure 9,
we introduce two distribution patterns, Dense and
Sparse 1 to probe the limitations of current LLMs.
The dense mode only requires the model to under-
stand the local context, whereas the sparse mode
requires the model to have a broader, global under-
standing of the context across multiple blocks. The
sparse mode intuitively poses more challenges and
demands more complex reasoning across a broader
scope of the provided context. We conduct exper-
iments on ChatGPT and Yarn-llama2-13B (Peng
et al., 2023). The experimental results indicate that

1Examples of these two patterns can be found in Ap-
pendix C.1.

both models perform significantly better in dense
mode compared to sparse mode, as shown in Fig-
ure 9. This indicates that LLMs struggle to retrieve
information over long sequences, even though their
pre-training included lengthy contexts. This may
be caused by the fact that the training data does
not contain sufficient examples of long-distance de-
pendencies for the model to learn effectively. Fur-
thermore, the steep drop in performance from 4K
to 8K tokens for both ChatGPT and Yarn-Llama2
in dense mode indicates that current length exten-
sion techniques may not be as effective as hoped.
In summary, we believe that S3EVAL provides a
valuable framework for evaluating long-context
language models, as it allows testing models on
dialogues of arbitrary length. This establishes a
solid foundation for advancing research on large
language models that can leverage long-term con-
text.

5.3 Reasoning Type Analysis

S3EVAL enables the creation of multiple tem-
plates to generate different SQL statements, with
each statement representing a distinct reasoning
type. We selected six common reasoning types
to investigate the reasoning capabilities of LLMs
and examined four different LLMs: ChatGPT,
Claude, Mistral-7B, and CodeLlama-34B. Follow-
ing Liu et al. (2022), the six reasoning types 2 we
considered are Filter, Aggregate, Arithmetic,
Superlative, Comparative, and Group. The ex-
ample SQL and the experimental results of differ-
ent LLMs are presented in Table 3. The expressive

2Detailed templates for each type can be found in Ap-
pendix C.2.

1266

Operator Example SQL ChatGPT Claude Mistral CodeLlama

Filter SELECT lyonnais FROM table WHERE
farmer = ’mijl’ AND lashing >288

79.6 79.2 64.8 72.8

Arithmetic SELECT synset + refuge FROM table
WHERE blender = ’owxdbzjg’

67.2 59.4 5.4 10.6

Comparative SELECT upsetter < jollity FROM table
WHERE kelp = 150

45.2 46.4 44.8 46.6

Aggregate SELECT MIN(skeptic) FROM table 38.4 39.4 28.4 33.8

Group SELECT lats FROM table GROUP BY shas-
tan HAVING sum (logbook) = 56

38.1 28.2 31.0 37.8

Superlative SELECT severity FROM table ORDER BY
bierce DESC Limit 1

24.8 41.4 19.2 28.3

Table 3: Reasoning types experiments examples of different LLMs.

power of SQL queries enables S3EVAL to be used
for evaluating diverse scenarios such as numeri-
cal reasoning, multi-hop reasoning, complex code
understanding, and multi-turn interaction with in-
termediate execution results.

6 Related Work

Evaluating large language models (LLMs) has
garnered significant interest in the NLP commu-
nity (Chang et al., 2023). This allows us to gain
a deeper understanding of the specific capabilities
and limitations of LLMs while guiding further re-
search. Researchers proposed MMLU (Hendrycks
et al., 2021a) to measure the knowledge acquired
by a language model during pre-training. In re-
cent years, with the development of LLMs, a series
of general evaluation benchmarks have emerged.
For instance, BBH (Suzgun et al., 2023) and
AGIEval (Zhong et al., 2023) assess the reasoning
ablitities. GSM8K (Cobbe et al., 2021) evalutes the
math reasoning, HumanEval (Chen et al., 2021a)
and MBPP (Austin et al., 2021) measure code ca-
palities. Our work aims to provide an evaluation
suite for measuring reasoning ability.

Many previous works on long-text modeling
rely on the perplexity (Sun et al., 2021; Peng
et al., 2023) or performance on simple artificial
tasks (Li and Roth, 2002; Berant et al., 2013; Mo-
htashami and Jaggi, 2023). Concurrently, Zero-
SCROLLS (Shaham et al., 2023), L-Eval (An et al.,
2023) and LongBench (Bai et al., 2023b) are pro-
posed as evaluation benchmarks for long-text mod-
eling. However, these benchmarks are built from
existing public datasets and have fixed evaluation
types. In contrast, S3EVAL can effectively assess
comprehension of infinitely long-context. Further-
more, S3EVAL allows customization of settings to
generate evaluation data that meets specific needs,
enabling effective evaluation of model deficiencies

and discovery of new insights into LLMs.

7 Conclusion

In this paper, we have introduced S3EVAL, a novel
synthetic evaluation suite for LLMs using SQL
execution. S3EVAL represents a scalable and sys-
tematic approach to evaluate LLMs on a dynamic
task. Our experiments demonstrate strong corre-
lation between S3EVAL and traditional evaluation
benchmarks. The key innovations of S3EVAL are
its flexibility, allowing unlimited context length and
unlimited evaluation examples, and its fine-grained,
systematic nature which enables detailed analysis
of model capabilities and flaws.

Most importantly, for long-context evaluation,
S3EVAL can generate evaluation data of infinite
length. This type of task is not only challenging
but also rooted in real-world tasks. Considering the
rapid development of LLMs, even as LLM lengths
extend significantly, S3EVAL can serve as a valu-
able benchmark for LLM development and con-
tribute to the community.

Limitations

Besides the features described in this paper, it cur-
rently supports complex multi-turn SQL execu-
tion task and multi-turn instruction task. More-
over, it also supports multilingual testing, espe-
cially for reasoning data generation of low-resource
languages, which has not been widely studied by
the academic community. However, this paper has
not yet conducted a systematic analysis of these
complex new features.

In addition, due to the complex and diverse syn-
tax of SQL, the syntax that S3EVAL can generate
is still relatively limited, which is also what we
need to do in our future work. Moreover, there is
currently no toolkit that can randomly generate a

1267

large number of complex SQLs, which is also a
significance of our work.

Due to space limitations, many valuable experi-
mental results are shown in Appendix B. We ana-
lyzed in detail the impact of various types of influ-
encing factors on the results and have drawn other
valuable conclusions.

Exploring the treasure contained in synthetic
data is our goal for the future, and we believe that
this work can bring inspiration to this field.

Acknowledgements

This work was supported by the National Key
R&D Program of China (No.2022ZD0160503) and
the National Natural Science Foundation of China
(No.62376270), Youth Innovation Promotion Asso-
ciation CAS, and OPPO Research Fund.

References
Chenxin An, Shansan Gong, Ming Zhong, Mukai Li,

Jun Zhang, Lingpeng Kong, and Xipeng Qiu. 2023.
L-eval: Instituting standardized evaluation for long
context language models. CoRR, abs/2307.11088.

Alex Andonian, Quentin Anthony, Stella Biderman, Sid
Black, Preetham Gali, Leo Gao, Eric Hallahan, Josh
Levy-Kramer, Connor Leahy, Lucas Nestler, Kip
Parker, Michael Pieler, Shivanshu Purohit, Tri Songz,
Wang Phil, and Samuel Weinbach. 2021. GPT-NeoX:
Large Scale Autoregressive Language Modeling in
PyTorch.

Jacob Austin, Augustus Odena, Maxwell I. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren
Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023a.
Qwen technical report. CoRR, abs/2309.16609.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2023b. Longbench: A bilingual,
multitask benchmark for long context understanding.
CoRR, abs/2308.14508.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2013, 18-21 October
2013, Grand Hyatt Seattle, Seattle, Washington, USA,
A meeting of SIGDAT, a Special Interest Group of the
ACL, pages 1533–1544. ACL.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar van der Wal. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. In International Con-
ference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
2397–2430. PMLR.

Steven Bird. 2006. NLTK: the natural language toolkit.
In ACL 2006, 21st International Conference on Com-
putational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics, Pro-
ceedings of the Conference, Sydney, Australia, 17-21
July 2006. The Association for Computer Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Kaijie Zhu, Hao Chen, Linyi Yang, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang,
Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie.
2023. A survey on evaluation of large language mod-
els. CoRR, abs/2307.03109.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.

1268

https://doi.org/10.48550/arXiv.2307.11088
https://doi.org/10.48550/arXiv.2307.11088
https://doi.org/10.5281/zenodo.5879544
https://doi.org/10.5281/zenodo.5879544
https://doi.org/10.5281/zenodo.5879544
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://doi.org/10.48550/arXiv.2309.16609
https://doi.org/10.48550/arXiv.2308.14508
https://doi.org/10.48550/arXiv.2308.14508
https://aclanthology.org/D13-1160/
https://aclanthology.org/D13-1160/
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://doi.org/10.3115/1225403.1225421
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2307.03109
https://doi.org/10.48550/arXiv.2307.03109

Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021b. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021a. Measuring massive multitask language
understanding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the MATH dataset. In Pro-
ceedings of the Neural Information Processing Sys-
tems Track on Datasets and Benchmarks 1, NeurIPS
Datasets and Benchmarks 2021, December 2021, vir-
tual.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022. Training compute-optimal
large language models. CoRR, abs/2203.15556.

Greg Kamradt. 2023. Needle in a haystack - pressure
testing llms. https://github.com/gkamradt/
LLMTest_NeedleInAHaystack.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. CoRR,
abs/2001.08361.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi,
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov,
Zhiruo Wang, Rudra Murthy V, Jason Stillerman,
Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa-
Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam
Singh, Sasha Luccioni, Paulo Villegas, Maxim Ku-
nakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hai-
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer-
nite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2023a. Starcoder: may the source be with
you! CoRR, abs/2305.06161.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In 19th International Conference on Computa-
tional Linguistics, COLING 2002, Howard Interna-
tional House and Academia Sinica, Taipei, Taiwan,
August 24 - September 1, 2002.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del
Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023b.
Textbooks are all you need II: phi-1.5 technical report.
CoRR, abs/2309.05463.

Nelson F. Liu, Tony Lee, Robin Jia, and Percy Liang.
2023a. Do question answering modeling improve-
ments hold across benchmarks? In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
13186–13218. Association for Computational Lin-
guistics.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023b. Lost in the middle: How language
models use long contexts. CoRR, abs/2307.03172.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022.
TAPEX: table pre-training via learning a neural SQL
executor. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net.

Amirkeivan Mohtashami and Martin Jaggi. 2023. Land-
mark attention: Random-access infinite context
length for transformers. CoRR, abs/2305.16300.

1269

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.48550/arXiv.2203.15556
https://doi.org/10.48550/arXiv.2203.15556
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
http://arxiv.org/abs/2001.08361
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2305.06161
https://aclanthology.org/C02-1150/
https://aclanthology.org/C02-1150/
https://doi.org/10.48550/arXiv.2309.05463
https://doi.org/10.18653/v1/2023.acl-long.736
https://doi.org/10.18653/v1/2023.acl-long.736
https://doi.org/10.48550/arXiv.2307.03172
https://doi.org/10.48550/arXiv.2307.03172
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
https://doi.org/10.48550/arXiv.2305.16300
https://doi.org/10.48550/arXiv.2305.16300
https://doi.org/10.48550/arXiv.2305.16300

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. A conversational paradigm for program
synthesis. CoRR, abs/2203.13474.

Erik Nijkamp, Tian Xie, Hiroaki Hayashi, Bo Pang,
Congying Xia, Chen Xing, Jesse Vig, Semih
Yavuz, Philippe Laban, Ben Krause, Senthil Purush-
walkam, Tong Niu, Wojciech Kryscinski, Lidiya Mu-
rakhovs’ka, Prafulla Kumar Choubey, Alexander R.
Fabbri, Ye Liu, Rui Meng, Lifu Tu, Meghana Bhat,
Chien-Sheng Wu, Silvio Savarese, Yingbo Zhou,
Shafiq Joty, and Caiming Xiong. 2023. Xgen-7b
technical report. CoRR, abs/2309.03450.

OpenCompass. 2023. Opencompass: A universal
evaluation platform for foundation models. https:
//github.com/open-compass/opencompass.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural
Language Processing, ACL 2015, July 26-31, 2015,
Beijing, China, Volume 1: Long Papers, pages 1470–
1480. The Association for Computer Linguistics.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The refinedweb dataset
for falcon LLM: outperforming curated corpora with
web data, and web data only. CoRR, abs/2306.01116.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En-
rico Shippole. 2023. Yarn: Efficient context win-
dow extension of large language models. CoRR,
abs/2309.00071.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant,
and Omer Levy. 2023. Zeroscrolls: A zero-shot
benchmark for long text understanding. CoRR,
abs/2305.14196.

Tianze Shi, Chen Zhao, Jordan L. Boyd-Graber,
Hal Daumé III, and Lillian Lee. 2020. On the poten-
tial of lexico-logical alignments for semantic parsing
to SQL queries. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1849–1864. Association
for Computational Linguistics.

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-
Micke, and Mohit Iyyer. 2021. Do long-range lan-
guage models actually use long-range context? In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican Repub-
lic, 7-11 November, 2021, pages 807–822. Associa-
tion for Computational Linguistics.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed Chi, Denny
Zhou, and Jason Wei. 2023. Challenging big-bench
tasks and whether chain-of-thought can solve them.
In Findings of the Association for Computational
Linguistics: ACL 2023, Toronto, Canada, July 9-14,
2023, pages 13003–13051. Association for Computa-
tional Linguistics.

InternLM Team. 2023. Internlm: A multilingual lan-
guage model with progressively enhanced capabili-
ties. https://github.com/InternLM/InternLM.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. 2023. Agieval: A human-centric
benchmark for evaluating foundation models. CoRR,
abs/2304.06364.

1270

https://doi.org/10.48550/arXiv.2203.13474
https://doi.org/10.48550/arXiv.2203.13474
https://doi.org/10.48550/arXiv.2309.03450
https://doi.org/10.48550/arXiv.2309.03450
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://doi.org/10.3115/v1/p15-1142
https://doi.org/10.3115/v1/p15-1142
https://doi.org/10.48550/arXiv.2306.01116
https://doi.org/10.48550/arXiv.2306.01116
https://doi.org/10.48550/arXiv.2306.01116
https://doi.org/10.48550/arXiv.2309.00071
https://doi.org/10.48550/arXiv.2309.00071
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2305.14196
https://doi.org/10.48550/arXiv.2305.14196
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2021.emnlp-main.62
https://doi.org/10.18653/v1/2021.emnlp-main.62
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://github.com/InternLM/InternLM
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2304.06364
https://doi.org/10.48550/arXiv.2304.06364

A Evaluation Experiments Results

A.1 Other Synthetic Task

S3EVAL is a synthetic task that possesses a certain
level of difficulty and robustness, which allows for
a good assessment of an LLM’s overall capability
compared to previous works. We choose key-value
retrieval task (Liu et al., 2023b), given a key, the
goal is to return the associated value. We test sev-
eral LLMs on this task, and the experiments results
are shown in Figure 10. It demonstrates that key-
value retrieval task is a simple task which has low
correlation with real LLMs reasoning benchmark.
S3EVAL, as a complex and robust benchmark, can
provide reference for future synthetic data.

Figure 10: Performance analysis of key-value retrieval
task and BBH.

A.2 Overall Performance

The detail performance are shown in Table 4.

A.3 Reliability Experiments

Symbolic Tasks vs. Natural Language Tasks.
Another point to prove is that symbolic tasks are
consistent with their natural language counterparts.
SQL execution is a suitable task because SQL can
be intertranslated with an natural question. As can
be seen from the “WTQ” column of the Table 4
and Figure 11a, LLM’s ability to execute SQL is
consistent with its table question answering ability.

Synthetic data vs. Real data. We want to verify
if the synthesized SQL is simpler. The tables “SQL-
general” and “WTQ-SQL” show the difference in
performance between the model on synthetic and
real data. We keep the average length of the tables
similar, and the experimental results show that the
synthetic SQL is more complex than the real SQL.

And Figure 11c shows that, the performance of
LLMs on real tables and synthetic tables is very
relevant.

Different S3EVAL Settings. As shown in Fig-
ure 11b, even if the data settings are very differ-
ent, LLMs are guaranteed a consistent performance
ranking on S3EVAL.

A.4 Other SQL Prompting Styles
SQL execution task with Chain-of-Thought
prompting. SQL is a complex multi-step rea-
soning task. To verify whether it is a reliable
reasoning task, S3EVAL generates multi-step ex-
ecution instructions for SQL. ChatGPT’s perfor-
mance (markdown) improves from 38.0 to 48.5
when using chain-of-thougnt prompts. The chain-
of-thought examples are shown in below. The ex-
amples of chain-of-thought prompting are shown
in Appendix C.7.

SQL multi-step instruction experiments. SQL
multi-step instruction is an auxiliary task. We gen-
erate two new datasets using different settings than
Easy and General, named Data1 and Data2. Ex-
periments results are shown in Table 6.

A.5 Long-Context Experiments
Context windows limit the long-context capabili-
ties of LLMs. Previous researchers have proposed
many ways to extend the length of context win-
dows, often to 64K, 128K and so on. Existing
benchmarks (Bai et al., 2023b; An et al., 2023) col-
lect data from existing NLP communities (which
causes data leakage), and more importantly be-
cause collecting large amounts of data is difficult.
S3EVAL, on the other hand, is easy to collect data
with variety and complexity. Existing benchmarks
also can’t effectively evaluate very long texts, but
S3EVAL can evaluate arbitrary lengths.

YaRN (Peng et al., 2023) extend LLaMA2 con-
text windows to 128K, however, they only evalu-
ated the model’s perplexity, which we believe is
not a true reflection of its long-context understand-
ing capability. So we use S3EVAL to generate
table data of different lengths and keep all param-
eters same to evaluate the performance of yarn-
LLaMA2, and the experimental results are shown
in Table 5. It shows that, yarn-llama2 has a no-
ticeable dip in performance on 20K-80K, which
is good for a small number of tasks as well. But
compared to ChatGPT (which we can only test 16K
length tables), there’s a noticeable gap.

1271

Synthetic Task Realistic Benchmark

S3EVAL-Easy S3EVAL-General WTQ Reasoning Task

LLM

GPT-4 99.4 63.1 70.8 86.7
ChatGPT 97.0 47.2 62.0 70.1
Claude-1 98.2 44.3 63.4 67.3
Llama-2-70B 94.2 41.3 55.9 64.9
Mistral-7B 87.4 34.3 55.7 53.7
Llama2-13B 75.0 30.9 49.2 45.6
InternLM-20B 78.0 32.3 49.4 52.5
Qwen-14B 71.8 25.8 46.7 53.7
Llama-2-7B 54.2 23.8 40.6 38.2
Qwen-7B 56.4 19.4 41.2 45.2
Xgen-7B 55.2 24.6 36.3 34.5
Internlm-7B 41.6 18.5 27.5 37.0
Phi-1_5 27.6 16.1 22.1 30.0
Stablelm-7B 6.0 4.2 14.7 24.3
Stablelm-3B 4.2 2.9 11.2 21.0
Pythia-12B 31.4 17.3 24.5 29.3
Pythia-6.9B 25.2 16.0 22.6 28.6
Pythia-2.8B 26.4 14.6 21.7 28.8
Pythia-1B 8.4 7.1 16.2 25.6

Code LLM

CodeLlama-34B 91.4 41.0 53.9 36.4
CodeLlama-13B 90.0 35.7 49.9 30.6
CodeLlama-7B 75.2 34.2 44.9 26.3
StarCoder-15B 87.2 34.4 39.2 30.4
StarCoder-7B 88.4 32.4 33.3 28.3
StarCoder-3B 79.0 28.0 27.5 21.5
StarCoder-1B 37.4 15.4 21.1 15.2
CodeGen-15B 36.8 18.2 25.0 18.3
CodeGen-6B 25.0 16.9 17.8 18.2
CodeGen-2B 31.4 16.6 20.8 14.5

Table 4: SQL Execution Task Performance on different LLMs.

B Controllable Analysis Results

B.1 Answer Position Analysis

In addition to the figures in the main text, we also
conduct experiments with row level. We use two
methods to visualize the results. (1) Sliding win-
dows (Figure 12a,12b). We choose windows=5 and
smooth the data to make a dot plot and a trend line.
(2) Grouping calculations (Figure 12c,12d). Group
neighboring rows together with the granularity of 5,
10, and 20. For example, if granularity is 20, then
we group the rows with answers located in 1-20,
20-40, 40-60, 60-80, and 80-100, for a total of five
groups, and calculate the average scores.

B.2 Template Controlled Analysis

Each data template in S3EVAL includes corre-
sponding reasoning types, and thus it provides
fine-grained control over the evaluation examples.
To stimulate new insights and uncover counter-
intuitive performance phenomena of LLMs, we
present several controlled analysis examples using
simple templates as a starting point.

Template1: SELECT [text_col1] FROM table

WHERE ([text_col2] = [text2])
We first explore the relationship between the

model performance and the locations of [text_col1]
and [text_col2]. To begin with, we generated a
set of 10× 15 tables, each comprising 15 distinct
columns. We created 400 unique combinations by
pairing each value in text_col1 with each value in
text_col2. For each of the 400 pairs, we gener-
ated 40 evaluation examples, resulting in a total
of 16,000 evaluation examples. After SQL execu-
tion experiments, we calculated the scores of each
pair and constructed a heatmap, which is illustrated
in Figure 17. The heatmap indicates that the per-
formance is overall better when [text_col1] is the
previous column. And the model performance is
also better when the [text_col1] column is before
[text_col2] column. It indicates that the model
tends to focus on the beginning of a specific para-
graph. Moreover, in multi-hop reasoning, LLMs
excel at hopping to the context preceding a interme-
diate hop, but struggles when it comes to searching
backward.

Template2: SELECT [text_col1] FROM table
WHERE ([text_col2] = [text2]) × N

1272

(a) Correlation between QA task and
SQL execution Task on WikiTableQues-
tions.

10

20

30

40

50

20 40 60 80 100

G
en
er
al

Easy

General vs. Easy

𝑟 = 97.4
𝜏 = 94.8

(b) Correlation between General and Easy
Settings.

10

20

30

40

50

60

70

10 20 30 40 50

W
TQ
-S
Q
L

General

WTQ-SQL vs. General

𝑟 = 97.2
𝜏 = 92.8

(c) Correlation between Synthetic and Real
Table SQL execution task

Figure 11: Experimental results of the correlation experiments.

Model Max-Ctx
SQL Execution

2K 4K 8K 16K 20K 40K 60K 80K

ChatGPT 16k 96.8 95.2 80.3 68.7 - - - -
Claude-1.3-100K 128k 97.2 96.8 91.8 85.2 - - - -
Yarn-LLaMA2-13B 128k 76.3 57.0 40.6 25.1 20.6 17.6 17.0 12.0
XGen-7B 8k 51.6 41.8 25.4 - - - - -
LongChat-13B 16k 48.6 39.0 26.3 19.5 - - - -
LongLlaMA-7B 256k 82.4 62.8 24.4 - - - - -
RWKV-Raven-14B 128k 10.5 7.4 6.2 - - - - -

Table 5: Long-Context experiments on S3EVAL.

We then investigate the impact of the number
of WHERE conditions on LLM performance. In-
tuitively, more conditions should make it harder
for LLM to execute SQL since the instruction be-
comes more complex. However, the experimental
results contradict this intuition, as shown in blue in
Figure 15. We speculate that this counter-intuitive
result stems from how LLMs actually reason: by
looking up string co-occurrences rather than logi-
cally considering all conditions.

Template3: SELECT COUNT([text_col])
FROM table WHERE [text_col] = [text] .

We analyze the counting ability of LLMs, which
is an important numerical reasoning capability. To
avoid potential symbolic effects of SQLs, we also
use the instruction style (Section 2.1) to prompt the
model (e.g. Please count the number of “[text_col]
is [text]”). As shown in Figure 16, whether it is
zero-shot or few-shot, SQL style or instruction
style, the performance of LLMs is best when the
COUNT value is the smallest or the largest. When
the COUNT value is in the middle, the performance
of the model is almost zero.

In the future, developers can employ the

S3EVAL suite to analyze the performance of LLMs
with various complex SQL queries and discover
new insights. They can also investigate more on
the multi-step instruction prompting (Section C.6)
and chain-of-thought prompting (Section C.7) to
better understand LLMs.

B.3 Input Format Analysis

In this section, we focus on comparing two formats
of inputting tables, namely markdown and flatten,
to explore their impact on LLMs performance. Fig-
ure 13 clearly demonstrates a significant improve-
ment in the model’s performance when the flatten
format is used instead of the markdown input for-
mat at any experiments settings.

The reason behind this improvement lies in the
structure of the SQL template, specifically “select
<col1> where <col2> <op> <int2>”. In order to
execute this template, the model needs to locate
the column corresponding to col2 and then iden-
tify the row where “int2” is found. This process
involves 2-hop reasoning. In markdown mode, the
challenge lies not only in the LLM’s understanding
of the table structure but also in how to navigate

1273

Model
SQL Execution SQL Multi-Step Instruction

Zero-Shot Few-Shot Zero-Shot Few-Shot
Data1 Data2 Data1 Data2 Data1 Data2 Data1 Data2

ChatGPT 96.4 47.0 97.0 49.0 97.9 30.0 98.8 34.8
Codellama-13B 71.2 34.3 90.0 39.8 63.9 12.1 88.0 22.8
StarCoder-15B 52.3 24.7 85.8 37.6 44.4 14.4 84.2 19.2
InternLM-20B 60.4 22.7 78.0 35.0 58.8 14.9 76.6 28.1
InternLM-20B-Chat 71.2 31.3 78.0 34.2 67.6 21.9 74.4 25.4
LLaMA2-13B 68.1 23.2 75.0 32.3 50.5 5.4 74.6 18.2
LLaMA2-13B-Chat 51.6 16.4 71.5 28.3 9.4 1.0 64.2 21.1
Vicuna-13B 57.6 26.8 81.6 35.4 48.9 11.5 78.8 24.2

Table 6: SQL Multi-Step Task performance on different LLMs.

to another column in the same row. However, in
flatten mode, redundant columns are added to each
row as “Column is value.” This additional infor-
mation simplifies the LLM’s understanding of the
table structure and facilitates reasoning. As a result,
the flatten method proves to be more beneficial for
LLM performance due to its enhanced structure
comprehension and reasoning capabilities.

B.4 SQL Keywords Analysis
SQL statements follow a specific syntax and are a
well-established language in the database domain.
We first control SQL statements to contain only
specific types of keywords from the perspective of
SQL keywords and test the performance of differ-
ent models on S3EVAL. The experimental results
are shown in Figure 14. The change in the per-
formance of LLMs on SQL statements reflects the
trend in the difficulty of reasoning.

B.5 SQL Attribute Analysis
S3EVAL has the ability to flexibly modify the prop-
erties of generated SQL statements, including the
length of the statement, the number of computa-
tions, and the quantity of filtering numbers. These
features can intuitively impact the complexity of
SQL. In our experiments, we set the table size to
15× 10 and adjusted the SQL settings for examin-
ing the effect of different SQL attributes on model
performance. For example, in the analysis of "Cal-
culation Times," we employed 500 samples with 0,
1, 2, and 3 calculation times respectively. The ex-
perimental outcomes of all SQL attributes are illus-
trated in Figure 18. While it might be expected that
model performance would decline as these factor
values increase, the performance actually fluctuates.
Upon combining Column number, Row number,
Calculation times, and Filter times in the statisti-
cal analysis, we identified a significant downward
trend in the model, as demonstrated in Figure 18f.

1274

0 20 40 60 80 100
Position of Rows with the Answer

0.4

0.5

0.6

0.7

0.8

0.9

Ex
ac

t M
at

ch

ChatGPT (sliding window=5)

(a)

0 10 20 30 40 50 60
Position of Rows with the Answer

0.4

0.5

0.6

0.7

Ex
ac

t M
at

ch

CodeLlama (sliding window=5)

(b)

20 40 60 80 100
The group of answer location

0.4

0.5

0.6

0.7

0.8

0.9

Ex
ac

t m
at

ch

Group (ChatGPT)

Group into 5 group
Group into 10 group
Group into 20 group

(c)

20 40 60 80 100
The group of answer location

0.3

0.4

0.5

0.6

0.7

0.8

Ex
ac

t m
at

ch

Group (CodeLlama)
Group into 5 group
Group into 10 group
Group into 20 group

(d)

Figure 12: Effect of answer position on model performance. We use two methods to visualize the results. (1) Sliding
windows (Figure 12a,12b). We select a window size of 5 and smooth the data to make a dot plot and a trend line.
(2) Grouping calculations (Figure 12c,12d). We group neighboring rows with granularities of 5, 10, and 20. For
instance, with a granularity of 20, we group rows with answers located in the ranges 1-20, 21-40, 41-60, 61-80, and
81-100, resulting in five groups, and compute the average scores.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

80

Sc
or

es

Experiment of Different Input Format
Flatten
Markdown

Figure 13: Different input format.

Where Order by Where
Order by

Group by
Having

Group By
Order by

Overall
0

10

20

30

40

50

60

70

Ex
ac

t M
at

ch

Experiment of Different Keyword Setting
ChatGPT
CodeLLaMA-13B
Starcoder-15B
LLaMA2-13B

Figure 14: Different keywords setting.

1275

1 2 3
Number of conditions

0

10

20

30

40

50

60

70

80

Ex
ac

t M
at

ch

70.9

77.0
79.4

Template1
Figure 15: Trend of ChatGPT perfor-
mance with where condition number
using Template2.

1 3 5 7 9 11 13 15 17 19 21
The COUNT value

0

20

40

60

80

100

Ex
ac

t M
at

ch

SQL (0-shot)
Instruction (0-shot)
SQL (2-shot)
Instruction (2-shot)

Figure 16: Trend of ChatGPT per-
formance with the COUNT value in
Template3. Only when the COUNT
value is the largest or smallest, the
model have good performance.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Select Column [text_col1]

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
W

he
re

 C
on

di
tio

n
Co

lu
m

n
[te

xt
_c

ol
2]

0.00 0.90 0.87 0.65 0.20 0.36 0.23 0.67 0.74 0.53 0.19 0.03 0.07 0.21 0.30

1.00 0.00 0.93 0.77 0.67 0.38 0.36 0.52 0.64 0.61 0.45 0.39 0.29 0.33 0.22

0.97 0.97 0.00 0.87 0.57 0.27 0.23 0.37 0.57 0.40 0.23 0.20 0.13 0.20 0.13

0.69 0.71 0.97 0.00 0.39 0.28 0.21 0.26 0.28 0.33 0.21 0.08 0.11 0.12 0.11

0.67 0.57 0.70 0.86 0.00 0.10 0.20 0.23 0.23 0.20 0.30 0.23 0.13 0.23 0.13

0.71 0.76 0.65 0.89 0.75 0.00 0.35 0.26 0.26 0.33 0.31 0.25 0.22 0.03 0.14

0.73 0.74 0.87 0.75 0.83 0.86 0.00 0.57 0.38 0.35 0.39 0.39 0.31 0.33 0.22

0.78 0.87 0.90 0.89 0.80 0.70 0.83 0.00 0.40 0.39 0.37 0.43 0.44 0.33 0.27

0.74 0.79 0.78 0.70 0.46 0.46 0.59 0.70 0.00 0.57 0.26 0.06 0.17 0.22 0.15

0.31 0.17 0.41 0.52 0.25 0.18 0.21 0.17 0.38 0.00 0.11 0.06 0.08 0.05 0.12

0.35 0.22 0.42 0.48 0.16 0.15 0.19 0.28 0.34 0.21 0.00 0.00 0.03 0.11 0.11

0.32 0.51 0.44 0.51 0.43 0.35 0.29 0.38 0.41 0.38 0.34 0.00 0.19 0.20 0.24

0.33 0.34 0.32 0.20 0.22 0.36 0.38 0.50 0.29 0.18 0.15 0.20 0.00 0.17 0.18

0.29 0.21 0.29 0.56 0.30 0.15 0.29 0.27 0.42 0.45 0.27 0.03 0.07 0.00 0.16

0.46 0.34 0.29 0.62 0.53 0.20 0.27 0.38 0.26 0.37 0.34 0.12 0.09 0.23 0.00
0.0

0.2

0.4

0.6

0.8

1.0

Figure 17: ChatGPT performance
with different locations of [text_col1]
and [text_col2]. The performance
improves when the example has
the location of [text_col1] before
[text_col2].

7 9 11 13 15 17 19 21 23 25 27
SQL Length

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ex
ac

t M
at

ch

GPT3.5-Turbo
LLaMA2-13B
CodeLLaMA-13B
StarCoder

(a) SQL length

1 2 3 4 5 6
Column Number

0.3

0.4

0.5

0.6

0.7

Ex
ac

t M
at

ch

GPT3.5-Turbo
LLaMA2-13B
CodeLLaMA-13B
StarCoder

(b) Column number.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Row Number

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ex
ac

t M
at

ch

GPT3.5-Turbo
LLaMA2-13B
CodeLLaMA-13B
StarCoder

(c) Selected row number

0 1 2 3
Calculate times

0.25

0.30

0.35

0.40

0.45

Ex
ac

t M
at

ch

GPT3.5-Turbo
LLaMA2-13B
CodeLLaMA-13B
StarCoder

(d) Calculation times

0 1 2 3 4
Filter times

0.3

0.4

0.5

0.6

Ex
ac

t M
at

ch

GPT3.5-Turbo
LLaMA2-13B
CodeLLaMA-13B
StarCoder

(e) Filter times.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Reasoning Step

0.2

0.4

0.6

0.8

Ex
ac

t M
at

ch

GPT3.5-Turbo
LLaMA2-13B
CodeLLaMA-13B
StarCoder

(f) Total analysis.

Figure 18: Effect of SQL Attribute Settings on model performance.

1276

C Data Demostration

C.1 Dense and Sparse Examples

SQL: select boarfish from w where sixties = ’jcrbb’
Answer: [’qxgd’, ’lorfaljob’, ’qytocp’, ’vkfzhqwj’, ’xwijyubr’]
We can find that Dense Setting is better than Sparse Setting in all cases.

Sparse Example:

	boarfish	tool	sixties	phoxinus	angling
0	mjdsv	cwzqkdte	tbwqa	yuogpbo	mkxqnrhq
1	nrbmyc	eqciiims	wvfesrtzt	yvvgzj	mkxqnrhq
2	iqdr	ezhuj	bndktpe	yuogpbo	yjblg
3	qxgd	dtfjqfc	jcrbb	haxyaz	yjblg
4	xzrrs	ezhuj	bndktpe	dpimlb	skbpzyhak
5	lorfaljob	eqciiims	jcrbb	jsvbugac	bwxihx
6	pvugxgdju	dtfjqfc	bndktpe	jsvbugac	mkxqnrhq
7	xpkuautv	ezhuj	vyoo	yvvgzj	bwxihx
8	afzrom	jzdra	bndktpe	jsvbugac	mkxqnrhq
9	ivxpmv	eqciiims	bndktpe	jsvbugac	bwxihx
10	ehfvur	ezhuj	tbwqa	yuogpbo	bwxihx
11	bdzsy	ezhuj	bndktpe	yvvgzj	yjblg
12	qruh	ezhuj	bndktpe	dpimlb	skbpzyhak
13	qytocp	jzdra	jcrbb	dpimlb	bwxihx
14	eqaja	ezhuj	bndktpe	haxyaz	yjblg
15	kwvzixe	jzdra	vyoo	jsvbugac	skbpzyhak
16	edmkxm	eqciiims	vyoo	haxyaz	mkxqnrhq
17	fdsdlcpxj	eqciiims	vyoo	dpimlb	blqoislm
18	ipprxzzlv	cwzqkdte	bndktpe	yuogpbo	yjblg
19	gqyxjtbz	eqciiims	tbwqa	dpimlb	yjblg
20	noqfw	ezhuj	vyoo	haxyaz	blqoislm
21	vkfzhqwj	dtfjqfc	jcrbb	yuogpbo	mkxqnrhq
22	konftq	eqciiims	vyoo	dpimlb	bwxihx
23	ymcwhu	jzdra	wvfesrtzt	dpimlb	blqoislm
24	kpygsu	eqciiims	wvfesrtzt	yuogpbo	yjblg
25	tiwfvqgmt	ezhuj	bndktpe	dpimlb	mkxqnrhq
26	ovomhf	dtfjqfc	bndktpe	yuogpbo	blqoislm
27	lokwxn	cwzqkdte	tbwqa	yuogpbo	mkxqnrhq
28	xwijyubr	jzdra	jcrbb	yuogpbo	mkxqnrhq
29	ttonww	dtfjqfc	wvfesrtzt	haxyaz	blqoislm

Dense Example:

	boarfish	tool	sixties	phoxinus	angling
0	mjdsv	cwzqkdte	tbwqa	yuogpbo	mkxqnrhq
1	nrbmyc	eqciiims	wvfesrtzt	yvvgzj	mkxqnrhq
2	iqdr	ezhuj	bndktpe	yuogpbo	yjblg
3	xzrrs	ezhuj	bndktpe	dpimlb	skbpzyhak
4	pvugxgdju	dtfjqfc	bndktpe	jsvbugac	mkxqnrhq
5	xpkuautv	ezhuj	vyoo	yvvgzj	bwxihx
6	afzrom	jzdra	bndktpe	jsvbugac	mkxqnrhq
7	ivxpmv	eqciiims	bndktpe	jsvbugac	bwxihx
8	ehfvur	ezhuj	tbwqa	yuogpbo	bwxihx
9	bdzsy	ezhuj	bndktpe	yvvgzj	yjblg
10	qruh	ezhuj	bndktpe	dpimlb	skbpzyhak
11	eqaja	ezhuj	bndktpe	haxyaz	yjblg
12	kwvzixe	jzdra	vyoo	jsvbugac	skbpzyhak
13	qxgd	dtfjqfc	jcrbb	haxyaz	yjblg
14	lorfaljob	eqciiims	jcrbb	jsvbugac	bwxihx
15	qytocp	jzdra	jcrbb	dpimlb	bwxihx
16	vkfzhqwj	dtfjqfc	jcrbb	yuogpbo	mkxqnrhq
17	xwijyubr	jzdra	jcrbb	yuogpbo	mkxqnrhq
18	edmkxm	eqciiims	vyoo	haxyaz	mkxqnrhq
19	fdsdlcpxj	eqciiims	vyoo	dpimlb	blqoislm
20	ipprxzzlv	cwzqkdte	bndktpe	yuogpbo	yjblg
21	gqyxjtbz	eqciiims	tbwqa	dpimlb	yjblg
22	noqfw	ezhuj	vyoo	haxyaz	blqoislm

1277

23	konftq	eqciiims	vyoo	dpimlb	bwxihx
24	ymcwhu	jzdra	wvfesrtzt	dpimlb	blqoislm
25	kpygsu	eqciiims	wvfesrtzt	yuogpbo	yjblg
26	tiwfvqgmt	ezhuj	bndktpe	dpimlb	mkxqnrhq
27	ovomhf	dtfjqfc	bndktpe	yuogpbo	blqoislm
28	lokwxn	cwzqkdte	tbwqa	yuogpbo	mkxqnrhq
29	ttonww	dtfjqfc	wvfesrtzt	haxyaz	blqoislm

C.2 SQL Template
General:
select <select_condition> from my_table

select <select_condition> from my_table <where_condition>

select <select_condition> from my_table <order_condition>,

select <select_condition> from my_table <where_condition> <order_condition>,

select <select_condition> from my_table <group_condition> <having_condition>,

select <select_condition> from my_table <where_condition> <group_condition> <having_condition>,

select <select_condition> from my_table <where_condition>
<group_condition> <having_condition> <order_condition>,

select <select_condition> from my_table <group_condition> <having_condition> <order_condition>

Where Condition:
select <text_col1> from my_table where <text_col2> = <text_2>

Count:
Select Count(<text_col1>) from table where <text_col1> = <text_1>

Easy:
select <text_col1> from my_table where <int_col1> = <int_1>
select <int_col1> from my_table where <text_col1> = <text_1>
select <int_col1> from my_table where <int_col2> = <int_2>
select <text_col1> from my_table where <text_col2> = <text_2>

Filter:
select <text_col1> from my_table where <text_col2> = <text_2>
select <text_col1> from my_table where <int_col2> <op2> <int_2>
select <text_col1> from my_table where <text_col2> = <text_2> and <int_col1> <op1> <int_1>
select <text_col1> from my_table where <text_col2> = <text_2> and <text_col3> = <text_3>
select <text_col1> from my_table where <int_col1> <op1> <int_1> and <int_col2> <op2> <int_2>
select <int_col1> from my_table where <text_col1> = <text_1>
select <int_col1> from my_table where <int_col2> <op2> <int_2>
select <int_col1> from my_table where <text_col2> = <text_2> and <int_col2> <op2> <int_2>
select <int_col1> from my_table where <text_col2> = <text_2> and <text_col3> = <text_3>
select <int_col1> from my_table where <int_col2> <op2> <int_2> and <int_col3> <op3> <int_3>

Aggregate:
select count (<text_col1>) from my_table where <text_col2> = <text_2>
select count (<text_col1>) from my_table where <int_col2> <op2> <int_2>
select sum (<int_col1>) from my_table
select sum (<int_col1>) from my_table where <text_col2> = <text_2>
select max (<int_col1>) from my_table
select max (<int_col1>) from my_table where <text_col2> = <text_2>
select min (<int_col1>) from my_table
select min (<int_col1>) from my_table where <text_col2> = <text_2>

Arithmetic:
select <int_col1> + <int_col2> from my_table where <text_col1> = <text_1>
select <int_col1> + <int_col2> from my_table where <text_col1> = <text_1> and <text_col2> = <text_2>
select <int_col1> - <int_col2> from my_table where <text_col1> = <text_1>
select <int_col1> - <int_col2> from my_table where <text_col1> = <text_1> and <text_col2> = <text_2>

1278

Superlative:
select <int_col1> from my_table order by <int_col1> asc limit 1
select <int_col1> from my_table order by <int_col1> desc limit 1
select <text_col1> from my_table order by <int_col1> asc limit 1
select <text_col1> from my_table order by <int_col1> desc limit 1
select <int_col1> from my_table order by <int_col2> asc limit 1
select <int_col1> from my_table order by <int_col2> desc limit 1

Comparative:
select (select <int_col1> from my_table where <text_col1> = <text_1>)
> (select <int_col1> from my_table where <text_col2> = <text_2>)
select (select <int_col1> from my_table where <int_col2> <op2> <int_2>)
> (select <int_col1> from my_table where <int_col3> <op3> <int_3>)
select (select <int_col1> from my_table where <text_col1> = <text_1>)
< (select <int_col1> from my_table where <text_col2> = <text_2>)
select (select <int_col1> from my_table where <int_col2> <op2> <int_2>)
< (select <int_col1> from my_table where <int_col3> <op3> <int_3>)
select <int_col1> > <int_col2> from my_table where <text_col1> = <text_1>
select <int_col1> < <int_col2> from my_table where <text_col1> = <text_1>
select <int_col1> > <int_col2> from my_table where <int_col3> <op3> <int_3>
select <int_col1> < <int_col2> from my_table where <int_col3> <op3> <int_3>

C.3 Table Input Format
Markdown Table:
	ercilla	shucks	liter	taenia	dorado
0	68	12	gcrdvo	qoath	katfuw
1	129	151	zmvltkk	jpcglcjzk	vwqqey
2	248	188	zmdlfbhb	cvhqotsys	wzunmaa
3	267	104	gcrdvo	ytywunvf	pjlbo
4	135	262	gcrdvo	dtnvfp	ajzpsaoy
5	309	119	zmdlfbhb	klcenmugk	hriunhf
6	25	152	zmvltkk	cjgcergv	shrbvrd
7	298	18	zmvltkk	scvuuc	ahunvcx
8	321	217	gcrdvo	ezlp	hasjaznm
9	139	310	gcrdvo	ghhjea	atqvtgoa
10	99	34	zmvltkk	ecdmpruq	cfitvz
11	142	167	gcrdvo	acii	oenmuezip
12	273	156	gcrdvo	nnvnteh	tulh
13	197	44	gcrdvo	pqdbhevkh	dfxuwxz
14	144	123	gcrdvo	bxrgo	ccbj

Flatten Table:
Flatten Table Examples:
The table have 5 columns: ercilla | shucks | liter | taenia | dorado
row 1 : ercilla is 68. shucks is 12. liter is gcrdvo. taenia is qoath. dorado is katfuw.
row 2 : ercilla is 129. shucks is 151. liter is zmvltkk. taenia is jpcglcjzk. dorado is vwqqey.
row 3 : ercilla is 248. shucks is 188. liter is zmdlfbhb. taenia is cvhqotsys. dorado is wzunmaa.
row 4 : ercilla is 267. shucks is 104. liter is gcrdvo. taenia is ytywunvf. dorado is pjlbo.
row 5 : ercilla is 135. shucks is 262. liter is gcrdvo. taenia is dtnvfp. dorado is ajzpsaoy.
row 6 : ercilla is 309. shucks is 119. liter is zmdlfbhb. taenia is klcenmugk. dorado is hriunhf.
row 7 : ercilla is 25. shucks is 152. liter is zmvltkk. taenia is cjgcergv. dorado is shrbvrd.
row 8 : ercilla is 298. shucks is 18. liter is zmvltkk. taenia is scvuuc. dorado is ahunvcx.
row 9 : ercilla is 321. shucks is 217. liter is gcrdvo. taenia is ezlp. dorado is hasjaznm.
row 10 : ercilla is 139. shucks is 310. liter is gcrdvo. taenia is ghhjea. dorado is atqvtgoa.
row 11 : ercilla is 99. shucks is 34. liter is zmvltkk. taenia is ecdmpruq. dorado is cfitvz.
row 12 : ercilla is 142. shucks is 167. liter is gcrdvo. taenia is acii. dorado is oenmuezip.
row 13 : ercilla is 273. shucks is 156. liter is gcrdvo. taenia is nnvnteh. dorado is tulh.
row 14 : ercilla is 197. shucks is 44. liter is gcrdvo. taenia is pqdbhevkh. dorado is dfxuwxz.
row 15 : ercilla is 144. shucks is 123. liter is gcrdvo. taenia is bxrgo. dorado is ccbj.

C.4 SQL Execution Examples (Few-shot)

You are an SQL executor, you need to execute SQL based on the give table and SQL statement
to obtain the execution results.
Only give me the execution results and do not output any other words.
Table:

1279

	puccoon	tiepolo	scope	mutinus	intrados	huggins	barye	wear
0	171	225	145	2007-04-27	322	yefihroyn	79	207
1	213	116	319	2016-01-15	288	ytyayrvj	246	272
2	191	229	95	2022-11-08	218	gpmvax	167	73
3	97	155	189	2013-10-30	79	gpmvax	24	233
4	56	11	295	2018-12-10	81	yefihroyn	187	198
5	285	304	168	2017-03-24	75	gpmvax	111	77
6	233	325	31	2014-01-22	114	ytyayrvj	20	219
7	19	146	164	2021-12-07	311	ytyayrvj	188	3
8	112	255	30	2015-12-07	214	gpmvax	16	271
9	175	62	181	2012-04-21	182	gpmvax	105	76
10	200	90	101	2008-04-28	168	gpmvax	70	119
11	31	180	95	2004-06-23	62	yefihroyn	314	97
12	297	251	249	2022-02-02	185	yefihroyn	278	313
13	36	17	67	2016-04-14	243	ytyayrvj	213	4
14	45	215	182	2012-06-15	251	yefihroyn	221	83
Now you need to execute SQL based on the given table and SQL statement to obtain the execution result.
Only give me the result and do not output any other words or SQL statement.
The following are some examples.

SQL:select avg (intrados) from my_table where tiepolo > 146 group by huggins
having count (huggins) > 1 order by count (tiepolo) asc limit 1
Answer:146.5
SQL:select wear from my_table where huggins = 'gpmvax' group by huggins
having wear < 83 order by count (distinct barye) asc limit 1
Answer:73
SQL:select mutinus from my_table where tiepolo > 116 group by huggins
having max (wear) > 119 order by count (huggins) asc limit 1
Answer:2014-01-22
SQL:select tiepolo from my_table where puccoon < 191 and intrados < 79 group by huggins
having intrados < 81 and tiepolo < 255 order by count (barye) asc limit 1
Answer:180
SQL:select tiepolo from my_table where scope > 31 group by huggins
having min (tiepolo) = 62 order by count (distinct mutinus) asc limit 1
Answer:62
SQL:select wear from my_table where huggins = 'ytyayrvj' group by huggins
having count (huggins) < 5 order by count (distinct mutinus) desc limit 1
Answer:

C.5 SQL Execution Examples (Multi-Answer)

You are an SQL executor, you need to execute SQL based on the give table
and SQL statement to obtain the execution results.
suiting	chisel	highboy	broccoli	newburgh	acetum	brewpub
zbwamhiui	nnkfvevxw	50	88	zhwohj	opufj	214
zroosgm	yvftt	309	168	zhwohj	xqsu	136
zroosgm	lnri	152	78	zhwohj	ikvsd	219
kjsdl	trei	234	287	egkgkvbec	mhxcxyg	23
zroosgm	mctnpwbd	71	242	egkgkvbec	yszfokeom	180
zbwamhiui	ptqtj	19	81	egkgkvbec	hyfmk	116
zroosgm	lpjvwn	258	313	uftnwbd	oevmj	65
kjsdl	ididumrhw	64	101	uftnwbd	xjakwpayx	327
zbwamhiui	wdtncbyn	165	209	uftnwbd	xrbqvxb	192
zbwamhiui	wyjjc	219	6	uftnwbd	pzqr	188
zroosgm	qumxgwvls	314	246	uftnwbd	ehevtf	60
zbwamhiui	adiyf	207	298	egkgkvbec	wbrgejgf	80
zbwamhiui	qpgpbj	307	306	egkgkvbec	mcjuonhc	192
zbwamhiui	ehsk	47	244	zhwohj	tcdlnc	280
kjsdl	orlosbok	21	93	egkgkvbec	dzvwohjo	103
zbwamhiui	webyyylw	84	195	egkgkvbec	xbmv	289
kjsdl	mrcecp	48	264	egkgkvbec	xhprcocik	265
kjsdl	ngajupd	247	52	zhwohj	pcokyw	247
zroosgm	xeeuixkze	120	288	zhwohj	yishnriw	138
kjsdl	kbczy	119	13	egkgkvbec	ltpmyfdt	73
zbwamhiui	uvvdzo	150	57	uftnwbd	tajlsm	295
zbwamhiui	enbffevhp	290	92	zhwohj	gjjznp	18
zroosgm	imubtcc	79	19	uftnwbd	eqymwj	112

1280

SQL:select suiting from my_table group by suiting having count (newburgh) > 6
Answer:
suiting
zbwamhiui
zroosgm

SQL:select acetum,newburgh,suiting from my_table where highboy > 234
Answer:
acetum	newburgh	suiting
xqsu	zhwohj	zroosgm
oevmj	uftnwbd	zroosgm
ehevtf	uftnwbd	zroosgm
mcjuonhc	egkgkvbec	zbwamhiui
pcokyw	zhwohj	kjsdl
gjjznp	zhwohj	zbwamhiui

SQL:select count (chisel) from my_table where highboy < brewpub
group by newburgh having min (highboy) < 47
Answer:
count (chisel)
5

SQL:select newburgh from my_table where brewpub > 138 order by broccoli desc limit 1
Answer:
newburgh
egkgkvbec

SQL:select suiting from my_table where highboy > broccoli
group by suiting having min (highboy) < 314

Answer:

C.6 Multi-step Instruction (Few-shot)

You need to obtain the final answer based on the table and instructions.
Only give me the result and do not output any other words.
Table:
	puccoon	tiepolo	scope	mutinus	intrados	huggins	barye	wear
0	171	225	145	2007-04-27	322	yefihroyn	79	207
1	213	116	319	2016-01-15	288	ytyayrvj	246	272
2	191	229	95	2022-11-08	218	gpmvax	167	73
3	97	155	189	2013-10-30	79	gpmvax	24	233
4	56	11	295	2018-12-10	81	yefihroyn	187	198
5	285	304	168	2017-03-24	75	gpmvax	111	77
6	233	325	31	2014-01-22	114	ytyayrvj	20	219
7	19	146	164	2021-12-07	311	ytyayrvj	188	3
8	112	255	30	2015-12-07	214	gpmvax	16	271
9	175	62	181	2012-04-21	182	gpmvax	105	76
10	200	90	101	2008-04-28	168	gpmvax	70	119
11	31	180	95	2004-06-23	62	yefihroyn	314	97
12	297	251	249	2022-02-02	185	yefihroyn	278	313
13	36	17	67	2016-04-14	243	ytyayrvj	213	4
14	45	215	182	2012-06-15	251	yefihroyn	221	83
Now you need to get the answer based on the instruction,
only give me the result and do not output any other words.
The following are some examples.

Instruction:Please filter the rows by the column conditions, which need to be met:
The value of column tiepolo needs to be greater than 146.
The rows are then grouped according to the value of the huggins in the remaining rows.
Then filter some groups by the following condition:the number of column huggins is greater than 1.

1281

Select the average of values of intrados column in filtered rows.
Sort the obtained values in ascending order of the number of tiepolo
and select the smallest value to get the answer.
Answer:146.5

Instruction:Please filter the rows by the column conditions, which need to be met:
The value of column huggins is 'gpmvax'.
The rows are then grouped according to the value of the huggins in the remaining rows.
Then filter some groups by the following condition:the column wear is less than 83.
Select values of wear column in filtered rows.
Sort the obtained values in ascending order of the number of non-repeating barye
and select the smallest value to get the answer.
Answer:73

Instruction:Please filter the rows by the column conditions, which need to be met:
The value of column huggins is 'ytyayrvj'.
The rows are then grouped according to the value of the huggins in the remaining rows.
Then filter some groups by the following condition:the number of column huggins is less than 5.
Select values of wear column in filtered rows.
Sort the obtained values in descending order of the number of non-repeating mutinus
and select the largest value to get the answer.
Answer:

C.7 Chain-of-Thought SQL Execution Prompting Examples
You are an SQL executor, you need to output the execution process and final answer based on table and SQL.
Table:
	masthead	laertes	boo	bothrops	height	scraper	trouser	lozenge
0	case	araeswrid	41	lyucg	urbsmxiv	vgxrh	esauw	281
1	case	araeswrid	138	lyucg	tbvg	oerigocb	stevw	177
2	case	zncmrrvg	303	loclzoglg	tbvg	vgxrh	stevw	234
3	thyngfwts	araeswrid	288	loclzoglg	tbvg	vgxrh	esauw	224
4	thyngfwts	mrehctv	177	loclzoglg	urbsmxiv	vgxrh	esauw	228
5	case	araeswrid	163	loclzoglg	urbsmxiv	oerigocb	stevw	60
6	thyngfwts	mrehctv	45	loclzoglg	cidufm	oerigocb	esauw	289
7	thyngfwts	zncmrrvg	42	loclzoglg	tbvg	ffljyxb	stevw	296
8	case	araeswrid	275	lyucg	cidufm	vgxrh	stevw	172
9	case	mrehctv	20	loclzoglg	tbvg	vgxrh	esauw	147
10	thyngfwts	araeswrid	302	lyucg	urbsmxiv	vgxrh	stevw	297
11	thyngfwts	zncmrrvg	137	loclzoglg	tbvg	vgxrh	esauw	63
12	case	araeswrid	186	loclzoglg	cidufm	ffljyxb	esauw	268
13	case	araeswrid	194	loclzoglg	cidufm	vgxrh	esauw	98
14	case	araeswrid	234	lyucg	urbsmxiv	vgxrh	stevw	276
Now you need to get the answer based on the instruction,								
only give me the intermedium results and the final answer.								
SQL:								
select masthead from my_table where height = 'tbvg' group by masthead order by count (laertes) desc limit 1								
Execution process:								
You need to execute 3 steps.								
Step 0:								
Please filter the rows by the column conditions, which need to be met: The value of column butcher is 'jxys'.								
Intermediate results 0:								
	encyclia	butcher	bowdler	nuthatch	cachexia	claret	cortina	strombus
---:	:-----------	:----------	:----------	:-----------	-----------:	:---------	----------:	-----------:
0	adnh	jxys	cxjvfz	clmb	2	oqmdmbfg	251	184
1	xvoxfjbm	jxys	cxjvfz	clmb	275	oqmdmbfg	140	303
2	adnh	jxys	eohdpivo	clmb	298	oqmdmbfg	142	28
3	adnh	jxys	eohdpivo	rcyixdl	153	oqmdmbfg	50	306
4	xvoxfjbm	jxys	eohdpivo	rcyixdl	315	rxbttbm	201	86
Step 1: Select values of strombus column in filtered rows.
Intermediate results 1:
184,303,28,306,86
Step 2: Sort the obtained values in ascending order of claret and select the smallest value to get the answer.
Answer: 184

C.8 Real Table SQL Execution (Few-shot)
You are an SQL executor, you need to execute SQL based on the give table
and SQL statement to obtain the execution results.
Only give me the execution results and do not output any other words.

1282

Table:
	id	agg	rank	nation	gold	silver	bronze	total
0	1	0	1	soviet union	50	27	22	99
1	2	0	2	united states	33	31	30	94
2	3	0	3	east germany (gdr)	20	23	23	66
3	4	0	4	west germany (frg)	13	11	16	40
4	5	0	5	japan	13	8	8	29
5	6	0	6	australia	8	7	2	17
6	7	0	7	poland	7	5	9	21
7	8	0	8	hungary	6	13	16	35
8	9	0	9	bulgaria	6	10	5	21
9	10	0	10	italy	5	3	10	18
Now you need to execute SQL based on the given table and SQL statement to obtain the execution result.
Only give me the result and do not output any other words or SQL statement.
The following are some examples.

SQL:select nation from table where rank = 1
Answer:Soviet Union
SQL:select nation from table where nation != 'bulgaria'
and total = (select total from table where nation = 'bulgaria')
Answer:Poland
SQL:select nation from table order by bronze limit 1
Answer:Australia
SQL:select nation from table order by bronze limit 1
Answer:Australia
SQL:select silver from table order by gold desc limit 1
Answer:

C.9 Real Table Question Answering (Few-shot)
You need to obtain the final answer based on the table and questions.
Only give me the answer and do not output any other words.
Table:
	id	agg	rank	nation	gold	silver	bronze	total
0	1	0	1	soviet union	50	27	22	99
1	2	0	2	united states	33	31	30	94
2	3	0	3	east germany (gdr)	20	23	23	66
3	4	0	4	west germany (frg)	13	11	16	40
4	5	0	5	japan	13	8	8	29
5	6	0	6	australia	8	7	2	17
6	7	0	7	poland	7	5	9	21
7	8	0	8	hungary	6	13	16	35
8	9	0	9	bulgaria	6	10	5	21
9	10	0	10	italy	5	3	10	18
Now you need to get the answer based on the question,
only give me the answer and do not output any other words.
The following are some examples.

Question:which country was first in rank at the 1972 olympics ?
Answer:Soviet Union
Question:which country won the same amount of medals as bulgaria in these olympics ?
Answer:Poland
Question:which nation won the least number of bronze medals ?
Answer:Australia
Question:which nation received the least bronze medals
Answer:Australia
Question:what number of silver medals was won by the nation with the most gold medals ?
Answer:

D Experiments Settings Details

D.1 Setting Description
Table Config
"col_min": 5, // the min number of cols
"col_max": 8, // the max number of cols
"row_min": 15, // the min number of rows
"row_max": 40, // the max number of rows

1283

"text_int_date": [0.55, 0.35, 0.1], // text,int,date header ratio
"text_int_date_fix": ["TEXT", "TEXT", "INT", "INT", "INT"], // Specify the type of each header
// Probability of duplicate values in each column
"value_repeat_ratio": [0, 0.2, 0.3, 0, 0, 0, 0, 0, 0.2, 0.5],
"value_repeat_ratio_fix": ["random", "random"], // Specify the duplicate values of each column

SQL Config
"nest": [1], // Number of SQL nestings. options: [1], [2], [1,2],[1,2, 3]
"keywords_setting": { // if a Keyword is False, then no SQL containing this Keyword is generated.
"select": true,
"where": true,
"group by": true,
"having": true,
"order by": true
},
"length_setting": { // control the length of sql
"is_available": false, // To enable this setting, you need to adjust "is_available" to true first.
// 'value' can be set to specific values, such as [13,14,15],
// if value is null, then the range is used [min, max]
"value": [],
"min": 6,
"max": 16
},
"column_ratio": { // Controlling the ratio of columns involved in SQL
"is_available": false, // To enable this setting, you need to adjust "is_available" to true first.
// 'value' can be set to specific values, such as [1,2], Control the number of columns involved in SQL
"value": [],
// if value is null, then the range is used [min, max], it's the used ratio = (used columns) / (all columns)
"min": 0.1,
"max": 0.3
},
"select_row_ratio":{ // Controlling the ratio of rows involved in select keyword
"is_available": false, // To enable this setting, you need to adjust "is_available" to true first.
// 'value' can be set to specific values, such as [1,2,3,4], Control the number of rows involved in SQL
"value": [],
// if value is null, then the range is used [min, max], it's the used ratio = (select rows) / (all rows)
"min": 0.1,
"max": 0.2
},
// Controlling the calculate times of the sql ['+','-','*','/','sum','count','min','max','avg']
"calculate_times": {
"is_available": false, // To enable this setting, you need to adjust "is_available" to true first.
"value": [1,2,3,4] // 'value' can be set to specific values, means the calculate times
},
// Controlling the filter times of the sql ['=','>','<','in','like']
"filter_times": {
"is_available": false, // To enable this setting, you need to adjust "is_available" to true first.
"value": [1,2,3,4,5] // 'value' can be set to specific values, means the calculate times
},
// Controlling the location of answer in the table, usually used in long-context understanding
"answer_location": {
"is_available": false, // To enable this setting, you need to adjust "is_available" to true first.
"value": null,
"min": 0.1, // if value is null, then the range is used [min, max],
means that 0.1 < (Row where answer is located) / (Row number) < 0.9
"max": 0.9
},
// usually remains 1 in this repo, we often just test the sql whose answer is from one cell.
"answer_cells_number": 1,
"include": [],
"exclude": [],
"n_shot": 5

D.2 General Setting
Table Config
"col_min": 5,
"col_max": 5,
"row_min": 30,
"row_max": 30,

1284

"text_int_date": [0.5, 0.45, 0.05],
"value_repeat_ratio": [0, 0.2, 0.3, 0, 0, 0, 0, 0, 0, 0.5]

SQL Config
"nest": [1,2,3],
"select_grammar": [],
"keywords_setting": { "select": true,
"where": true,

"group by": true,
"having": true,
"order by": true

},
"length_setting": {

"is_available": false,
"value": [],
"min": 6,
"max": 16

},
"column_ratio": {

"is_available": false,
"value": [],
"min": 0.1,
"max": 0.3

},
"select_row_ratio":{

"is_available": false,
"value": [],
"min": 0,
"max": 0.2

},
"calculate_times": {

"is_available": false,
"value": [0]

},
"filter_times": {

"is_available": false,
"value": [0]

},
"answer_location": {

"is_available": false,
"row_value": [],
"column_value":[0],
"min": 0,
"max": 1

},
"answer_cells_number": 1,
"multi_test": false,
"include": [],
"exclude": [],
"n_shot": 5

D.3 LLMs Used In This Paper
LLMs. LLaMA2 (Touvron et al., 2023a), Qwen (Bai et al., 2023a), InternLM (Team, 2023), Mistral,
XGen (Nijkamp et al., 2023), Falcon (Penedo et al., 2023), phi-1_5 (Li et al., 2023b), StableLM (Andonian
et al., 2021), Pythia (Biderman et al., 2023), CodeLlama (Rozière et al., 2023), StarCoder (Li et al.,
2023a), CodeGen (Nijkamp et al., 2022).

We all use the official model weight from the Huggingface Models3. Above we used the model’s
abbreviation, we list the model’s huggingface official label in Table 7.

D.4 Markdown vs. Flatten Setting Experiments
"0": Size: 100 * 5, Template: Easy, Model: GPT-3.5
"1": Size: 50 * 5, Template: Easy, Model: GPT-3.5
"2": Size: 20 * 6, Template: Count, Model: GPT-3.5
"3": Size: 40 * 10, Template: Where Condition Text, Model: GPT-3.5
"4": Size: 10 * 20, Template: Where Condition Text, Model: GPT-3.5

3https://huggingface.co/models

1285

https://huggingface.co/models

Model Name

Mistral-7B mistralai/Mistral-7B-v0.1
Llama-2-13B meta-llama/Llama-2-13b-hf
InternLM-20B internlm/internlm-20b

Qwen-14B Qwen/Qwen-14B
Llama-2-7B meta-llama/Llama-2-7b-hf
Qwen-7B Qwen/Qwen-7B
XGen-7B Salesforce/xgen-7b-8k-base

Internlm-7B internlm/internlm-7b
Phi-1_5 microsoft/phi-1_5

Stablelm-7B stabilityai/stablelm-base-alpha-7b
Stablelm-3B stabilityai/stablelm-base-alpha-3b
Pythia-12B EleutherAI/pythia-12b
Pythia-6.9B EleutherAI/pythia-6.9b
Pythia-2.8B EleutherAI/pythia-2.8b
Pythia-1B EleutherAI/pythia-1b

Llama-2-70B meta-llama/Llama-2-70b-hf
CodeLlama-34B codellama/CodeLlama-34b-hf
CodeLlama-13B codellama/CodeLlama-13b-hf
CodeLlama-7B codellama/CodeLlama-7b-hf
StarCoder-15B bigcode/starcoderbase
StarCoder-7B bigcode/starcoderbase-7b
StarCoder-3B bigcode/starcoderbase-3b
StarCoder-1B bigcode/starcoderbase-1b
CodeGen-15B Salesforce/codegen-16B-multi
CodeGen-6B Salesforce/codegen-6B-multi
CodeGen-2B Salesforce/codegen-2B-multi

Yarn-LLaMA2-13B NousResearch/Yarn-Llama-2-7b-64k
LongChat-13B lmsys/longchat-7b-16k

RWKV-Raven-14B lmsys/longchat-7b-16k

Table 7: LLMs used in our experiments and their corresponding names in Huggingface Hub.

"5": Size: 10 * 15, Template: Where Condition Text, Model: GPT-3.5
"6": Size: 50 * 5, Template: Easy, Model: Llama-2-13B
"7": Size: 100 * 5, Template: Easy, Model: Yarn-Llama-2-13B
"8": Size: 50 * 5, Template: Easy, Model: Yarn-Llama-2-13B
"9": Size: 25 * 7, Template: General, Model: Llama-2-13B
"10": Size: (15~40) * (6~9), Template: General, Model: Llama-2-13B
"11": Size: (15~40) * (6~9), Template: General, Model: Llama-2-13B
"12": Size: (15~40) * (6~9), Template: Easy, Model: Llama-2-13B
"13": Size: (15~40) * (6~9), Template: Easy, Model: Llama-2-13B
"14": Size: (15~40) * (6~9), Template: Easy, Model: Llama-2-13B

1286

