
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 1346–1362

June 16-21, 2024 ©2024 Association for Computational Linguistics

AutoPRM: Automating Procedural Supervision for Multi-Step Reasoning
via Controllable Question Decomposition

Zhaorun Chen∗†1, Zhuokai Zhao†1, Zhihong Zhu†2, Ruiqi Zhang3

Xiang Li4, Bhiksha Raj4, Huaxiu Yao5

1University of Chicago, 2Peking University,3University of California, Berkeley
4Carnegie Mellon University, 5UNC-Chapel Hill

Abstract

Recent advancements in large language models
(LLMs) have shown promise in multi-step rea-
soning tasks, yet their reliance on extensive
manual labeling to provide procedural feed-
back remains a significant impediment. To
address this challenge, in this paper, we pro-
pose a novel self-supervised framework Auto-
PRM that efficiently enhances the fine-tuning
of LLMs for intricate reasoning challenges.
Specifically, AutoPRM first decomposes com-
plex problems into more manageable subques-
tions with a controllable granularity switch,
then sequentially apply reinforcement learning
to iteratively improve the subquestion solver.
Additionally, we propose context-guided decod-
ing to avoid reward tampering and guide the
subquestion solver towards the solution of the
holistic problem. Extensive experiments show
that AutoPRM significantly improves perfor-
mance on mathematical and commonsense rea-
soning tasks over SOTA. More encouragingly,
AutoPRM can be easily integrated with other
orthogonal reasoning pipelines.

1 Introduction

The landscape of natural language processing has
been profoundly reshaped by the evolution of large
language models (LLMs), which have demon-
strated remarkable capabilities in a variety of com-
plex tasks (Brown et al., 2020; Chen et al., 2021;
Yuan et al., 2023). Among these, multi-step reason-
ing has emerged as a particularly challenging area
and has drawn significant research attention (Bhat-
tacharya, 2017; Hoffmann et al., 2022; Bubeck
et al., 2023). To enhance complex reasoning ca-
pabilities for LLMs, recent prompting-based ap-
proaches, including chain-of-thought (CoT) (Ko-
jima et al.; Wei et al., 2022) and self-evaluation

∗∗Work was done during Zhaorun Chen’s remote intern-
ship at UNC-Chapel Hill.

††Lead authors. Correspondence to: Zhaorun Chen:
zhaorun@uchicago.edu, Huaxiu Yao: huaxiu@cs.unc.edu

Wrong answer
Correct answer

Josh buys a house for $80k and then puts in
$50k in repairs. This increased the value of the
house by 150%. How much profit did he make?Input Problem

(a)
Q: How much profit
did Josh make?

A: Total cost of is $80k+$50k = $130k; Thus increased
value of the house is $130k*1.5=$195k; Josh made a
profit of $195k-$130k=$65k;

Human

Beam search

AutoPRM

A: Hence, he
made… $70,000

Q: What is the
total cost?

A: The total
cost… $130,000

Q: What is the new
value of the house?

A: The new
value…$200,000

(b)

question answering

Q: How much profit
did Josh make?

question decomposition
granularity
 switch

Figure 1: The decoding pipeline of our proposed Auto-
PRM, which consists of a unified question decomposi-
tion (QD) and question answering (QA) model. First,
QD breaks down the problem into a series of subques-
tions according to a user-specified granularity. Then,
the RL-optimized QA model solves them sequentially
via context-guided decoding, which consistently guides
QA toward the solution of the primary problem.

decoding (Wang et al., 2022; Yao et al., 2023; Xie
et al., 2023), have proven to be successful. How-
ever, while being effective on large-sized models
(e.g., GPT-4 (OpenAI, 2023), PaLM-2 (Anil et al.,
2023)), they are less effective for smaller-sized non-
finetuned models (e.g., GPT-3 (Brown et al., 2020),
LLaMA-2-7B (Touvron et al., 2023)) which are poor
reasoners by nature (Stolfo et al., 2022).

On the other hand, fine-tuning methods are also
known to be effective for enhancing complex rea-
soning capabilities, especially for smaller-sized
models (Uesato et al., 2022; Luo et al., 2023; Shrid-
har et al., 2023). Therein, procedural supervision-
based fine-tuning (Wu et al., 2023; Lightman et al.,
2023) has proved to be particularly effective (Ue-
sato et al., 2022), which emulates human problem-
solving process and provides step-by-step feedback,
as opposed to outcome-based supervision which
simply optimizes for the final-answers (Shridhar
et al., 2023). Despite its advancements, the re-
liance on step-wise human annotations for these
process-supervised reward models (PRM) presents
a significant bottleneck. More specifically, such

1346

annotation is not only resource-intensive in terms
of both time and domain expertise (Lightman et al.,
2023), but also introduces human bias due to sub-
jective judgements, which could potentially under-
mine the fine-tuning performance (Casper et al.,
2023; Lightman et al., 2023).

These challenges highlight a critical need for a
more efficient and scalable approach to fine-tune
smaller-sized LLMs for complex reasoning tasks.
To address these challenges, we propose a novel
self-supervised procedural reward model termed
AutoPRM to boost the efficiency and accuracy in
fine-tuning and inference for long-chained reason-
ing problems. Concretely, AutoPRM first breaks
down the problem into a sequence of sub-questions
with a trained question-decomposition (QD) model,
then solves each subquestion with a Reinforcement
Learning (RL)-optimized question-answering (QA)
model (Silver et al., 2017).

Inspired by human cognitive process where ques-
tioning and answering reciprocally enhances each
other (Xu et al., 2023), we train one unified model
to handle both QD and QA.1 Notably, instead of
training a PRM that requires extensive manual an-
notations, AutoPRM adopts a more natural ap-
proach by directly training an intermediate out-
come verifier to optimize the subquestion solver.

The main contributions of this paper are: (1)
AutoPRM, a novel fine-tuning framework that en-
hances LLMs reasoning abilities. This frame-
work reduces the need for extensive human anno-
tations by employing automatic question decom-
position and an RL-optimized subquestion solver.
(2) Through extensive experiments conducted on
two arithmetic reasoning datasets, GSM8K (Cobbe
et al., 2021), MATH (Hendrycks et al., 2021a),
and one commonsense reasoning dataset Strate-
gyQA (Geva et al., 2021), we demonstrate Auto-
PRM’s effectiveness on improving LLMs generic
multi-step reasoning capabilities.

2 AutoPRM

In this section, we detail our proposed framework
AutoPRM. Our key insight is that automating step-
wise question decomposition provides a natural
perspective to reduce problem dimensions, through
which model inference and optimization can be
more precise and efficient. With decomposition,

1Note that while we refer to QD and QA separately, they
refer to the dual functions of a unified model in the remaining
of the paper.

the fine-grained feedback can be obtained with a
reliable step-wise verifier trained to predict inter-
mediate results, which lead to a more powerful and
bias-free reasoning model.
Preliminaries and Notations. Our problem formu-
lation involves a dataset D = {(pi, ai)}Ni=1, where
each problem pi is associated with a final answer ai
that can be reached through reasoning. AutoPRM
breaks the problem into multiple steps and mod-
els the reasoning process as a Markov Decision
Process (MDP) ⟨S,A,Q,R, P, γ⟩ (Ramamurthy
et al., 2022), where each MDP episode starts with
a sampled problem input pi and ends either when a
final answer is generated or the model abstains. Au-
toPRM manages each individual reasoning step as
a subquestion-solution pair {(qt, st), qt ∈ Q, st ∈
S}, where S is the state (subsolution) space and Q
is the subquestion space.2 The transition function
appends a subsolution st to the end of the cumu-
lative state (pi, s0, s1, . . . , st−1) at each step. A
reward function (verifier) R : Q× S → R can be
either outcome-based (Cobbe et al., 2021), which
provides a sparse feedback at the end of genera-
tion, or process-based (Uesato et al., 2022), which
evaluates each step individually and assigns a fine-
grained score for each intermediate step (qt, st).

2.1 Collecting Subquestion-Subsolution Pairs

In this subsection, we illustrate the procedures
to prepare the subquestion-subsolution dataset
Dsub = {{qi,t, si,t}ni

t=1}Ni=1. Dsub will be used to
train the QD and QA models, which are the core
modules of the proposed AutoPRM.

Instead of manually providing subquestions as
seen in prior works (Xie et al., 2023), AutoPRM
adopts an efficient and unified framework to collect
subquestions by training an auxiliary subquestion
collection (SQC) Model. The core idea behind
SQC is based on the assumption that each sentence
in the groundtruth solution represents a valid step
that progressively leads to the final solution (Light-
man et al., 2023). In practice, we treat each sen-
tence in the groundtruth solution as a subsolution,
and take these subsolutions as inputs to SQC to
generate the corresponding subquestions.

To train this SQC model, we initially select a
small subset of the original dataset D and prompt
GPT-3.5 (prompts are detailed in A.2) to find ap-

2Note that while state st ∈ S should strictly refer to the
cumulative subsolutions

∑t
0 si (and action ai ∈ A denotes

the ith subsolution), we represent st as the tth subsolution for
the simplification of notation.

1347

propriate subquestions that would reasonably in-
duce these subsolutions. Next, we fine-tune an
open-source Language Model (LM) (e.g. LLaMA-
2 (Touvron et al., 2023)) on this training set to
obtain the SQC model. We employ the SQC model
to break each question-solution pair in the origi-
nal dataset D into corresponding subquestions and
subsolutions, yielding a new dataset Dsub.

2.2 Reciprocal Question Answering

The core idea of our proposed AutoPRM is to fine-
tune LLMs via automatically generated intermedi-
ate solutions. This process consists of two parts,
which are question decomposition (QD) and ques-
tion answering (QA). More specifically, QD di-
vides each question into a sequence of subques-
tions, while QA answers these subquestions and
generates corresponding subsolutions.

Both QD and QA naturally connect and influ-
ence each other. Therefore, to leverage the inter-
connections between them and better refine the
overall effectiveness of AutoPRM, we propose Re-
ciprocal Question Answering (RQA). In fact, RQA
is inspired and theoretically grounded by the cogni-
tive learning theory stating that a mutual enhance-
ment does exist between learning to ask relevant
questions and solving problems, or in other words,
improved problem-solving skills lead to more pre-
cise questions, and vice versa (Xu et al., 2023).

Different from SQC which relies on the ground
truth solutions to obtain the subquestions, our QD
is designed to automatically break down any arbi-
trary question without access to the ground truths.
Precisely, the QD model takes each problem pi as
input and generates a set of decomposed subques-
tions (qt, st)

ni
t=1. However, exclusively training this

QD model may result in overfitting, potentially
diverting the model from its primary purpose of
facilitating multi-step reasoning. To tackle this
challenge, we encompass the original QD objec-
tive with the additional QA objective, which aims
to infer subsolutions based on the corresponding
subquestions and their surrounding context.

In practice, we adopt two separate prompting
mechanisms specified for QD and QA (prompt de-
tailed in A.3). For QD, during the training phase,
we concatenate each subquestion with a special
split token to form an ordered sequence of subques-
tions. And in inference, we use the same prompt
but parse the output directly into a set of subques-
tions. In terms of QA, we propose Context-Guided

Decoding (CGD) that is similar to the Fill-In-the-
Middle (FIM) Decoding (Li et al., 2023; Liang
et al., 2023), where each subquestion solver is
guided by appending the subsequent subquestion
to the beginning of the subsolutions that is being in-
ferred. The detailed formulation of CGD is showed
in Eqn (1), with ◦ denoting the concatenation.

⟨PRE⟩◦qt◦⟨SUF⟩◦qt+1◦⟨MID⟩◦[s0, . . . , st−1] (1)

Through CGD, we can train the QA model to derive
holistically rational subsolutions that respond well
to qt while making good progress towards the final
solution, instead of focusing only on the partial
context associated with qt and deviating from the
original task.

Based on these two prompting mechanisms, we
construct an auto-regressive language modeling
loss L(Dsub):

L(Dsub) =

N∑

i=1

(
−

ni∑

t=1

logP (qt|q<t, pi)

︸ ︷︷ ︸
QD Loss

−
ni∑

t=0

logP (st|s<t, qt, qt+1)

︸ ︷︷ ︸
QA Loss

) (2)

where P (qt|q<t, pi) is the probability of generating
subquestion qt conditioned on all the previous sub-
questions q<t and input problem pi, aligning with
the QD objective. And P (st|s<t, qt, qt+1) is the
probability of the model generating the subsolution
st conditioned on all the preceding subsolutions
s<t, current subquestion qt and subsequent sub-
question qt+1, aligning with the QA objective.

Empirically, we observe that some of the decom-
posed subquestion-subsolution pairs obtained in
§2.1 are redundant and do not significantly con-
tribute to the original final solutions. To this end,
we propose a user-defined parameter ϵ ∈ [0, 1]
to manage the granularity of the decompositions.
Switching between decomposition granularity is
tied to the specific choice of words within the prob-
lem context, which is equivalent to a linear trans-
form in the embedding space (Han et al., 2023).

When ϵ = 1, the original question-solution
pairs are fully-decomposed into the subquestion-
subsolution pairs, while decomposition with ϵ = 0
being practically the same as the one-shot CoT re-
sults. For an intermediate ϵ, we select a subset of
ñi subquestions from the fully-decomposed pairs

1348

trains a dual-objective LM for question
decomposition and answering

RL fine-tuning:
optimizes against the stepwise verifier

…

Sub-solution Labelling

RL Expert Iteration

query response

FIM transformation
few-shot
decomposition

Dataset Transformation

!𝒒𝟏

!𝒒𝟐

!𝒒𝒊

…

query

Context-Guided Decoding

SFT model

Stepwise Verifier

SFT model

SFT

Reciprocal Question-
Answering Model

Automated Procedural Supervision:
trains a stepwise result verifier

Question Deco-
mposition (QD)

Subquestion
Answering (QA)

Collect LLMs
feedback via
forward-pass

Problem
decomposition

Select high
reward

candidates

groundtruth

Step 1: Reciprocal Question Answering Step 2: Iterative Question Answering Refining

Figure 2: A diagram illustrating the three steps of AutoPRM: (1) supervised fine-tuning (SFT) on a merged dataset
of question decomposition dataset DQD and the FIM-transformed question answering dataset DQA; (2) step-wise
result verifier trained on the LLM generated solutions from DQA; (3) RL fine-tuning against the step-wise verifier.
The base model first decomposes the question into several intermediate subquestions and solve them sequentially
via CGD. Then the candidates with high rewards are selected to fine-tune the policy via expert iteration.

that significantly contribute to the final answer via
a heuristic, and assign ϵ = ñi/ni. Finally, this ϵ is
integrated into the QD prompt and optimized using
Eqn. (2). We refer more details to A.5.

2.3 Question Answering Refining

2.3.1 Automated Procedural Supervision

While the reciprocal QA model trained in Section
2.2 is sufficient to handle complex reasoning prob-
lems, they suffer from partial context and a loss
of holistic view to obatin the final answer, due to
decomposition. Thus we aim to further enhance the
QA model with automated procedural supervision
via RL. Specifically, this is achieved by first letting
the QD model decompose problem pi into inter-
mediate subquestions, and then acquiring feedback
rt for each subsolution st via a step-wise binary
verifier. As shown in Figure 2, we implement a
step-wise verifier (reward model, RM) as a lan-
guage model to predict a binary label as either a
‘correct’ or ‘incorrect’ token after each step. To
train this verifier, we first obtain a sample set of
subquestion-subsolution pairs, as shown in the mid-
dle step of Figure 2. Then the intermediate result of
each subsolution is compared with the groundtruth

and assigned values based on:

I(QA(si,t), ai,t) =

{
1 if QA(si,t) = ai,t,

0 otherwise,
(3)

where ai,t is the intermediate groundtruth answer
for the tth subquestion of problem pi. Notice that
the policy that maximizes the score of intermediate
steps also maximizes the RM-estimated probabil-
ity of eventually reaching the correct final answer.
Finally, the output label from Eqn. (3) is appended
after each subsolution and trained via the QA loss
as defined in Eqn. (2).

2.3.2 RL Fine-tuning
After obtaining the step-wise verifier, the last step
of our pipeline, as showed in Figure 2, is to ap-
ply RL via expert iteration (Silver et al., 2017) to
further fine-tune the SFT models. Different from
policy gradient methods, expert iteration alternates
between policy improvement and policy distillation.
In policy improvement, QA model produces k can-
didates for each problem pi in the dataset Dsub via
a decoding method. Then in policy distillation, we
select the candidates with the highest scores based
on the verifier and perform supervised-learning to
improve the policy.

When the training converges, we adopt Reward-
Reranking (RR) decoding which selects the can-

1349

Algorithm 1 AutoPRM Decoding Procedure

Require: Fine-tuned model M, problem p, gran-
ularity parameter ϵ, abstaining threshold τ .

1: The model M decomposes the problem p into
multiple sub-questions {q1, q2, ..., qN}.

2: for t = 1, ..., N do
3: Take each one of the k generated solution

s<t as prefix, append qt and qt+1 to the begin-
ning of st via context-guided decoding

4: Sample m candidates of st
5: if the score of all mk candidates are less

than τ then
6: Abstain.
7: else
8: Choose top k candidates of st from all

mk samples according to the score in Eqn.(4).
9: end if

10: end for

didate subsolutions via RM-weighted probabil-
ity (Uesato et al., 2022; Xie et al., 2023) as the
new score. Mathematically, we have:

st = argmax
st

PM(st|s<t, qt, qt+1) · R(st) (4)

where R(st) is the probability for predicting "cor-
rect" by reward model R. The insight here is that a
correct reasoning step should be confirmed by both
the inference model and the verifier.

In the decoding process, RR is coupled with
beam search (BS), a step-wise tree-based algorithm,
to select the most probable sequence of words or
tokens. Specifically in AutoPRM, as QA generates
m candidate steps for each decomposed subques-
tion q, the top k candidates are selected according
to their decoding scores as showed in Eqn. (4).
This process is repeated until the model outputs
the final answer or abstains from answering. The
abstaining condition triggers when the scores of all
mk candidates drop below the threshold τ at any
step (Geifman and El-Yaniv, 2017). The complete
AutoPRM decoding procedure for multi-step rea-
soning is illustrated in in Algorithm 1. Through
these strategies, we can eventually build a reliable
and efficient QA model.

3 Experiments

In this section, we assess AutoPRM, our proposed
framework, by exploring three key questions: (1)
to what extent does AutoPRM enhance the reason-
ing capabilities of LLMs? (2) how do individual

sub-modules contribute to AutoPRM’s overall per-
formance improvement? and (3) what are the limi-
tations and opportunities in enhancing multi-step
reasoning for smaller-scaled models?

3.1 Experimental Setups
Datasets. We assess AutoPRM on two arithmetic
reasoning datasets, namely GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021b), and one
additional commonsense reasoning dataset, Strate-
gyQA (Geva et al., 2021) in our experiments.

GSM8K (Cobbe et al., 2021) features 8.5k grade-
school-level math problems, which is ideal for
assessing AutoPRM’s basic arithmetic reasoning
skills. And MATH (Hendrycks et al., 2021b), on
the other hand, contains 12.5k more complex prob-
lems that covers a wider range of mathematical
topics, further challenging LLMs’ ability to con-
duct complex mathematical reasoning.

On the other hand, StrategyQA (Geva et al.,
2021) serves to assess AutoPRM’s capability for
commonsense reasoning, which involves under-
standing implicit assumptions and making infer-
ences based on contexual information and internal
model knowledge to answer questions that are not
strictly mathematical but rely heavily on logical
thinking. We follow existing work (Shridhar et al.,
2023) for data split and pre-processing.

Baselines. We compare AutoPRM with a wide
range of SOTA models. WizardMath (Luo et al.,
2023) and MetaMath (Yu et al., 2023) are two
SOTA models that enhance mathematical reason-
ing with external data augmentation. Distilling-
LM (Shridhar et al., 2023) is a decomposition-
based reasoning framework that adopts two sep-
arate models for QD and QA, and then distills the
reasoning capabilities from GPT-3.5 (by SFT).

As for reward-based (verifier-based) models, we
consider ORM-RL (Cobbe et al., 2021) and PRM-
RL (Lightman et al., 2023) as our baselines, and
follow the exact training procedures outlined in
their papers. Except for LLaMA-2-70B model that
adopts a few-shot decoding without fine-tuning, all
other approaches have been fine-tuned based on
LLaMA-2-7B (Touvron et al., 2023)3.

Experimental Settings. To fairly compare with
PRM baselines, we follow Uesato et al. (2022) and
annotate a comparative amount of procedural feed-
back data equivalent to the subquestion-subsolution

3Since Distilling-LM did not publish its results on LLaMA-
2 nor its training data, we report the result using our dataset.

1350

Model GSM8K MATH
LLaMA-2 (70B) 56.8 13.5
LLaMA-2 (7B) 41.6 4.7
WizardMath* 54.9 10.7
MetaMath* 66.4 19.4
Distilling-LM 51.8 10.2
ORM-RL 52.9 6.9
PRM-RL 56.1 10.5
AutoPRM 59.3 (+3.2) 13.2 (+2.7)
AutoPRM* 70.8 (+4.4) 23.6 (+4.2)

Table 1: Comparison on GSM8K and MATH dataset.
All models are fine-tuned based on LLaMA-2 7B by
default. * indicates SFT on external data.

pairs used to train our step-wise verifier in Auto-
PRM. Please refer to Appendix A.4 for detailed
annotation procedures.

During decoding, WizardMath (Luo et al., 2023)
and MetaMath (Yu et al., 2023) adopt one-shot
greedy decoding, while other models adopt a beam
search of size eight. We consistently set granularity
ϵ = 0.8 across all tests. In addition, the iterative
process of RL through expert iteration was con-
ducted over five epochs, with the best model being
selected based on its performance in final-answer
error on the validation set. All model training was
conducted using Huggingface (Wolf et al., 2020).
The detailed hyperparameters are reported in A.1.

3.2 Results on Arithmetic Reasoning

For arithmetic reasoning tasks, we have trained two
sets of models: one is based on the groundtruth
training dataset provided in GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021b), and
the other one is augmented using MetaMath (Yu
et al., 2023). The results are reported in Table 1.

Results indicate that AutoPRM achieves the best
performance compared with other models. Specif-
ically, AutoPRM reaches 59.3% on GSM8K and
13.2% on MATH with beam search, which outper-
forms PRM-RL by 3.2% and 2.7% respectively.
Additionally, when applying our proposed pipeline
to the MetaMath dataset for data augmentation and
fine-tuning the model 4, AutoPRM’s effectiveness
is further improved, reaching 70.8% (+4.4%) on
GSM8K and 23.6% (+4.2%) on MATH. These re-
sults highlight AutoPRM’s substantial performance
improvements and its versatility when combining
with other methods.

4https://huggingface.co/meta-math/
MetaMath-7B-V1.0

Approach Final-Answer Trace Result
SFT 56.8 61.0
SFT+ORM-RL 58.2 60.5
SFT+PRM-RL 65.1 66.0
SFT-AutoPRM-RL 66.3 (+1.2) 67.4 (+1.4)

Table 2: The accuracy of final-answer and stepwise
(trace) result on StrategyQA dataset. The result indi-
cates that while AutoPRM still improve upon ORM and
PRM-based methods, its improvement is not as signif-
icant as in arithmetic reasoning tasks, probably due to
model scale.

3.3 Results on Commonsense Reasoning

For the commonsense reasoning task tested with
StrategyQA (Geva et al., 2021), we consider the
fine-tuned model on LLaMA-2-7B as our baseline.
For ORM-RL, we directly train an outcome veri-
fier based on the final binary prediction. And for
PRM-RL, we follow Uesato et al. (2022) and anno-
tate step-by-step to train a procedural supervised
reward. The results are reported in Table 2.

The final-answer accuracy is verified with the
groundtruth binary label. And to supervise step-
wise (trace) result, we transform all open-ended
subquestions to be close-ended, which can be an-
swered with either "yes" or "no". Results confirm
that procedural-supervised methods outperform
outcome-based methods, and AutoPRM further
achieves an accuracy gain of 1.2% on final-answer
and 1.4% on intermediate trace result, provided
with the precise and unbiased feedback. While the
result indicates the effectiveness of our proposed
method, the performance gain is less significant
comparing to the large gains we observe in the
arithmetic reasoning tasks.

We suspect that such result could be due to the
model knowledge gap (Petroni et al., 2019), as
StrategyQA highly depends on factual truthfulness,
which cannot be further enhanced by simply im-
proving the reasoning framework. Therefore, we
believe increasing the model scale or combining
with the retrieval from external database (Lewis
et al., 2020) is the key factor to further improve
accuracy on such knowledge-intensive reasoning
tasks (Anil et al., 2023).

3.4 Analysis

In this section, we investigate the contributions of
each sub-module to the improvement of AutoPRM,
including decoding methods and controllable ques-
tion decomposition. Additionally, we analyze the

1351

https://huggingface.co/meta-math/MetaMath-7B-V1.0
https://huggingface.co/meta-math/MetaMath-7B-V1.0

Approach GSM8K MATH
SFT 41.6 4.7
ORM-RL+Greedy 45.4 5.1
ORM-RL+SC 51.9 6.9
PRM-RL+Greedy 51.3 7.4
PRM-RL+BS 56.1 10.5
AutoPRM+Greedy 52.8 10.4
AutoPRM+BS 58.2 (+2.1) 11.9 (+1.4)
AutoPRM+RR 58.9 (+2.8) 12.7 (+2.2)
AutoPRM+CGD 59.3 (+3.2) 13.2 (+2.7)

Table 3: Comparison of testing accuracy on arithmetic
datasets w.r.t. reward models and decoding strategies.
All approaches is fine-tuned on LLaMA-2-7B model
and use naive greedy decoding. RR refers to Reward
Ranking. (+Number) indicates the improvement perfor-
mance compared to the best baseline PRM-RL+BS.

trace error and examine the correlation between
AutoPRM’s performance and problem length.
Decoding Methods. We compare AutoPRM’s per-
formance against various reward models such as
ORM and PRM, and with different decoding strate-
gies. The results are reported in Table 3.

Since ORM-RL is an outcome-supervised
method, we apply self-consistency and use the ma-
jority answer as the final-answer. All other meth-
ods apply a beam search process to yield the final-
answer. The beam search baseline selects candi-
dates by maximizing the RM score at each step,
while the Reward-Reranking (RR) decoding, as
outlined in Xie et al. (2023), maximizes the RM-
reweighted score as showed in Eqn. (4).

Notice that RR achieves a better performance
than beam search since they can select a more ra-
tional candidate by incorporating signals from both
the LM and verifier. Similar to the RR decoding,
our CGD decoding, which guides the individual
subsolutions towards solving the original problem,
can further mitigate the intrinsic issues brought by
decomposition (e.g., diminished context, task obliv-
ion) and effectively enchance final performance.
Decomposition Granularity. We evaluate Auto-
PRM performance across varying decomposition
granularity on GSM8K. As shown in Figure 3,
while we can see that more precise and fine-grained
decomposition generally leads to better accuracy
and more certain factual inference (Chuang et al.,
2023), interestingly, an intermediate level of gran-
ularity (ϵ = 0.8) achieves the highest accuracy in
final answers. Additionally, the increased similar-
ity to the groundtruth solutions indicate that our
model can effectively break down questions in a

0.2 0.4 0.6 0.8 1.0
Granularity

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

 /
BE

RT
 S

im
ila

rit
y

Accuracy
BERT Similarity

1.1

1.2

1.3

1.4

1.5

1.6

PP
L

Sc
or

e

PPL

Figure 3: Assessment on GSM8K dataset w.r.t decom-
position granularity ϵ. We evaluate the final-answer ac-
curacy, perplexity and BERT similarity (to groundtruth
solutions). Accuracy demonstrates that an intermediate
granularity level (ϵ=0.8) yields best performance. Per-
plexity denotes that fine-grained guidance enhances the
model’s certainty in problem-solving. The increased
similarity to the groundtruth solutions imply that Auto-
PRM effectively decompose questions that align with
the human labeller.

Approach GSM8K MATH
SFT+ORM-RL 53.4 6.5
SFT+PRM-RL 70.5 13.1
AutoPRM-SFT 71.2 14.5
AutoPRM-SFT+RL 72.0 14.7

Table 4: Comparison of different fine-tuning methods in
solving the decomposed dataset of subquestion-solution
pairs. The results indicate that models with process-
supervision can also solve the individual subquestions
effectively. Conversely, the poor performance of ORM
methods in solving the subquestions confirms that di-
rect fine-tuning against ORM can lead to correct final-
answer with the incorrect reasoning trace.

manner that aligns with human cognitive process
to solve multi-step reasoning problems.
Step-wise (Trace) Error Analysis. To evaluate
the internal reasoning reliability, we assess the
performance on each decomposed subquestion-
subsolution pair and present the results in Table 4.
Results show that while process-supervised models
adeptly solves subquestions, AutoPRM gains more
from precise, unbiased, and fine-grained feedback.
Additionally, the fact that ORM-based methods
only show slight improvements in original question
solving (Table 3), suggests that they struggle to link
correct final answers with their reasoning traces,
which is also discussed in (Lightman et al., 2023).
Varying Problem Length. We further assess its
reasoning performance w.r.t. the number of sub-
questions per question, which is a natural reflection

1352

< 4 4-7 > 7

40

60
A

cc
ur

ac
y

(%
)

GSM8K

AutoPRM
CoT+SC

< 4 4-7 > 7
Number of Subquestions

0

10

20

A
cc

ur
ac

y
(%

)

MATH

AutoPRM
CoT+SC

Figure 4: Comparing AutoPRM and CoT+SC decod-
ing on problems of varing complexity and with differ-
ent number of subquestions. AutoPRM outperforms
CoT+SC by a large margin, especially for problems
with longer reasoning chains.

of the question complexity and an approximation
of the amount of reasoning needed to derive the fi-
nal answers. The results are showed in Figure 4. In
general, we notice that the performance gain (abso-
lute accuracy gain over self-consistency) increases
as the reasoning chain becomes longer, which veri-
fies the effectiveness of our method in guiding the
reasoning trace to attain the correct final-answer,
especially for longer-chained problems.

4 Related Work

LLMs struggle with complex reasoning tasks (Lu
et al., 2022). To mitigate this limitation, prompt-
based methods including Chain-of-Thought
(CoT) (Wei et al., 2022) and its variants such as
automatic CoT (Zhang et al., 2022), Complex
CoT (Fu et al., 2022), Tree-of-Thought (Yao
et al., 2023; Zhang et al., 2024), Graph-of-
Thought (Besta et al., 2023) and Exchange-of-
Thought (Yin et al., 2023) are developed. Although
effective for larger LLMs, the performance of
these methods is limited in smaller models (Ope-
nAI, 2023; Anil et al., 2023; Lewkowycz et al.,
2022), which leads to the exploration of problem
decomposition into subquestions and sequential
handling (Wei et al., 2022; Gao et al., 2023;
Chen et al., 2022, 2024b), coupled with step-wise
feedback using self-verification (Miao et al., 2023;
Chen et al., 2024a), external LLMs (Miao et al.,
2023; Xie et al., 2023), heuristics (Yao et al.,
2023), and human-annotated rewards (Uesato
et al., 2022; Lightman et al., 2023). However,
these methods often either depend on external
large models, or require intensive human effort or
specific designs (Lightman et al., 2023), which

severely limit their applicability.
Besides these prompt-based methods, fine-

tuning has been another main line of research show-
ing promise in enhancing LLMs reasoning capabili-
ties for both large and smaller models (Uesato et al.,
2022; Luo et al., 2023; Shridhar et al., 2023; Tian
et al., 2023), especially when pairing with data aug-
mentation techniques such as multi-view question
bootstrapping (Luo et al., 2023) and instruction
evaluation (Yu et al., 2023). Among numerous
fine-tuning approaches, existing studies suggest
procedural supervision yields better accuracy than
outcome-only methods (Wu et al., 2023; Lightman
et al., 2023; Shridhar et al., 2023). However, pro-
cedural supervision approaches often require ex-
tensive, unbiased manual labeling, which greatly
limits their generalizability (Uesato et al., 2022).

Inspired by the step-wise approaches as seen in
the prompt-based methods, as well as procedural
supervision used in fine-tuning approaches, in this
paper, we introduce a novel self-supervised fine-
tuning approach that significantly enhances LLMs
reasoning capabilities while not requiring either
external large models, or additional human efforts.

5 Conclusions and Future Work

In this paper, we introduce AutoPRM, a novel
framework that automates procedural supervision
for multi-step reasoning in LLMs. The core of Au-
toPRM consists of two reciprocal components: a
QD model that systematically breaks down com-
plex problems into manageable subquestions, and
a QA model that accurately answers these sub-
questions. AutoPRM employs a robust training
methodology, incorporating supervised fine-tuning,
feedback-based step-wise verifier, and a final RL
fine-tuning for the best performance. Through ex-
tensive experiments, we demonstrate that Auto-
PRM significantly outperforms SOTA methods in
terms of efficiency and accuracy on three arith-
metic and commonsense reasoning tasks. Results
show that our automated QD process, coupled with
a RL-optimized QA model, leads to a substantial
improvement in handling complex reasoning tasks.

Future developments of AutoPRM could focus
on expanding its application to a wider range of
complex problem domains to test its versatility and
identify domain-specific challenges. Additionally,
extending its capabilities for long-term reasoning
and exploring interdisciplinary applications could
also be another promising direction.

1353

Limitations

While AutoPRM significantly improves reasoning
accuracy on arithmetic tasks, we observe marginal
improvement on StrategyQA (Geva et al., 2021),
regardless of fine-tuning or decoding methods, as
showed in Table 2. However, instead of an in-
dicator for poor reasoning capability, we suspect
such result could be due to the model knowledge
gap, as discussed in (Petroni et al., 2019), since
StrategyQA highly depends on factual truthfulness.
In this case, continuing to enhance reasoning re-
liability might provide very limited performance
gain. And we believe increasing the scale of model
parameters and training data or combining with
retrieval knowledge from external database (Lewis
et al., 2020) is the key factor to further improve
accuracy on such knowledge-intensive reasoning
tasks (Anil et al., 2023).

Acknowledgements

We thank Google Cloud Research Credits program
for supporting our computing needs. We also thank
all anonymous reviewers for their constructive com-
ments.

References
Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-

son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michal Podstawski, Hubert Niewiadomski,
Piotr Nyczyk, et al. 2023. Graph of thoughts: Solv-
ing elaborate problems with large language models.
arXiv preprint arXiv:2308.09687.

Arindam Bhattacharya. 2017. A survey of question
answering for math and science problem. arXiv
preprint arXiv:1705.04530.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Stephen Casper, Xander Davies, Claudia Shi,
Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David
Lindner, Pedro Freire, et al. 2023. Open problems
and fundamental limitations of reinforcement
learning from human feedback. arXiv preprint
arXiv:2307.15217.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Zhaorun Chen, Zhuokai Zhao, Hongyin Luo, Huaxiu
Yao, Bo Li, and Jiawei Zhou. 2024a. HALC: Object
hallucination reduction via adaptive focal-contrast
decoding. arXiv preprint arXiv:2403.00425.

Zhaorun Chen, Zhuokai Zhao, Wenjie Qu, Zichen Wen,
Zhiguang Han, Zhihong Zhu, Jiaheng Zhang, and
Huaxiu Yao. 2024b. PANDORA: Detailed LLM
jailbreaking via collaborated phishing agents with
decomposed reasoning. In ICLR 2024 Workshop on
Secure and Trustworthy Large Language Models.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon
Kim, James Glass, and Pengcheng He. 2023. Dola:
Decoding by contrasting layers improves factu-
ality in large language models. arXiv preprint
arXiv:2309.03883.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark,
and Tushar Khot. 2022. Complexity-based prompt-
ing for multi-step reasoning. arXiv preprint
arXiv:2210.00720.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Yonatan Geifman and Ran El-Yaniv. 2017. Selective
classification for deep neural networks. Advances in
neural information processing systems, 30.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. Transactions of the
Association for Computational Linguistics, 9:346–
361.

1354

Chi Han, Jialiang Xu, Manling Li, Yi Fung, Chenkai
Sun, Nan Jiang, Tarek Abdelzaher, and Heng Ji.
2023. Lm-switch: Lightweight language model con-
ditioning in word embedding space. arXiv preprint
arXiv:2305.12798.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021a. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathemati-
cal problem solving with the math dataset. arXiv
preprint arXiv:2103.03874.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners. Advances in neural
information processing systems, 35:22199–22213.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843–
3857.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. 2023. Code as policies: Language model
programs for embodied control. In 2023 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 9493–9500. IEEE.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. 2023.
Let’s verify step by step.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and
Kai-Wei Chang. 2022. A survey of deep learn-
ing for mathematical reasoning. arXiv preprint
arXiv:2212.10535.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Ning Miao, Yee Whye Teh, and Tom Rainforth.
2023. Selfcheck: Using llms to zero-shot check
their own step-by-step reasoning. arXiv preprint
arXiv:2308.00436.

OpenAI. 2023. Gpt-4 technical report.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, An-
ton Bakhtin, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2019. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu,
Kianté Brantley, Jack Hessel, Rafet Sifa, Christian
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi.
2022. Is reinforcement learning (not) for natural
language processing?: Benchmarks, baselines, and
building blocks for natural language policy optimiza-
tion. arXiv preprint arXiv:2210.01241.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya
Sachan. 2023. Distilling reasoning capabilities into
smaller language models. In Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pages
7059–7073.

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. 2017. Mastering the game of go without
human knowledge. nature, 550(7676):354–359.

Alessandro Stolfo, Zhijing Jin, Kumar Shridhar, Bern-
hard Schölkopf, and Mrinmaya Sachan. 2022. A
causal framework to quantify the robustness of math-
ematical reasoning with language models. arXiv
preprint arXiv:2210.12023.

Katherine Tian, Eric Mitchell, Huaxiu Yao, Christo-
pher D Manning, and Chelsea Finn. 2023. Fine-
tuning language models for factuality. arXiv preprint
arXiv:2311.08401.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain

1355

http://arxiv.org/abs/2305.20050
http://arxiv.org/abs/2303.08774

of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri,
Alane Suhr, Prithviraj Ammanabrolu, Noah A
Smith, Mari Ostendorf, and Hannaneh Hajishirzi.
2023. Fine-grained human feedback gives better
rewards for language model training. arXiv preprint
arXiv:2306.01693.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-
Yen Kan, Junxian He, and Qizhe Xie. 2023. De-
composition enhances reasoning via self-evaluation
guided decoding. arXiv preprint arXiv:2305.00633.

Enwei Xu, Wei Wang, and Qingxia Wang. 2023. The
effectiveness of collaborative problem solving in pro-
moting students’ critical thinking: A meta-analysis
based on empirical literature. Humanities and Social
Sciences Communications, 10(1):1–11.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Zhangyue Yin, Qiushi Sun, Cheng Chang, Qipeng
Guo, Junqi Dai, Xuanjing Huang, and Xipeng Qiu.
2023. Exchange-of-thought: Enhancing large lan-
guage model capabilities through cross-model com-
munication. arXiv preprint arXiv:2312.01823.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Chuanqi Tan, and Chang Zhou. 2023. Scal-
ing relationship on learning mathematical reason-
ing with large language models. arXiv preprint
arXiv:2308.01825.

Zhen-Yu Zhang, Siwei Han, Huaxiu Yao, Gang Niu,
and Masashi Sugiyama. 2024. Generating chain-of-
thoughts with a direct pairwise-comparison approach
to searching for the most promising intermediate
thought. arXiv preprint arXiv:2402.06918.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought prompt-
ing in large language models. arXiv preprint
arXiv:2210.03493.

1356

A Appendix

A.1 Detailed Training Procedures
The complete procedures and hyperparameters (Table 5) for fine-tuning AutoPRM are detailed in this
section. All models including SFT and RL-fine-tuned models are fully fine-tuned based on LLaMA-2-
7B (Touvron et al., 2023). Specifically, the RL via expert iteration process is iterated for five epochs, with
the best model being selected based on its performance w.r.t. final-answer accuracy on the validation set.
All model training was conducted using Huggingface Library (Wolf et al., 2020).

Parameters Value
learning rate (SFT) 1e-4
learning rate (RL) 5e-5
learning rate scheduler cosine
batch size 32
weight decay 0.05
warmup steps 100

Table 5: AutoPRM hyperparameter settings.

1357

A.2 Data Retrieval Prompts
A.2.1 Subquestion Collection (SQC) Prompts

Here is is a subsolution to a grade school math question. You should first (1) rephrase information (e.g.
numbers, conditions) from the context necessary to reconstruct the subsolution, (2) delete redundant
information not used in the subsolution, (3) ask a subquestion based on this subsolution. Please make
sure you include all the necessary information in the subsolution.

Example 1:

Context: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes
muffins for her friends every day with four. She sells the remainder at the farmers’ market daily for $2
per fresh duck egg.

Subsolution: Janet sells 16 - 3 - 4 = «16-3-4=9»9 duck eggs a day.
Subquestion: Janet’s ducks lay 16 eggs per day. She eats three herself and bakes muffins with four. She
sells the remainder to the market. How many duck eggs does Janet sell a day?

Example 2:

Context: Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing
seeds, mealworms and vegetables to help keep them healthy. She gives the chickens their feed in three
separate meals. In the morning, she gives her flock of chickens 15 cups of feed. In the afternoon, she
gives her chickens another 25 cups of feed.

Subsolution: If each chicken eats 3 cups of feed per day, then for 20 chickens they would need
3*20=«3*20=60»60 cups of feed per day.
Subquestion: Each day Wendi feeds each of her chickens three cups of mixed chicken feed. How many
cups of feed do 20 chickens need per day?
Now let’s find the subquestion for some subsolutions!
Context:
Subsolution:
Subquestion:

Table 6: The prompt input to GPT-3.5 for subq-question collection on GSM8K dataset

1358

Here is a solution of multiple steps to a grade school math question. Please break the question down
into several intermediate questions that ask the result of each intermediate step of the solution. You
should provide the context of the original question first, then provide the intermediate questions and
corresponding interemediate solutions. For example:

Original Question: Lana is brewing cups of tea for her friends. She has 27 cups, and she divides these
into 3 rows. In each row, she creates equal amounts of chamomile and mint tea cups. She then uses the
remaining cups to brew a total of 15 cups of cinnamon tea. How many cups of mint tea are in each row?

Original Solution: If there are 15 cups of cinnamon tea, then there are a total of 27 - 15 = «27-15=12»
12 cups of chamomile or mint tea.
As there are equal amounts of chamomile tea and mint tea, there is a total of 12 cups / 2 = «12/2=6»6
cups of mint tea.
Dividing these into rows shows that each row holds 6 / 3 = «6/3=2»2 cups of mint tea.
2
The answer is: 2

Break Down:
Context: Lana is brewing cups of tea for her friends. She has 27 cups, and she divides these into 3 rows.
In each row, she creates equal amounts of chamomile and mint tea cups. She then uses the remaining
cups to brew a total of 15 cups of cinnamon tea.

Intermediate Question 1: How many cups of chamomile or mint tea are there?
Intermediate Solution 1: If there are 15 cups of cinnamon tea, then there are a total of 27 - 15 =
«27-15=12»12 cups of chamomile or mint tea.
12
The answer is: 12

Intermediate Question 2: How many cups of mint tea are there?
Intermediate Solution 2: If there are 15 cups of cinnamon tea, then there are a total of 27 - 15 =
«27-15=12»12 cups of chamomile or mint tea.
As there are equal amounts of chamomile tea and mint tea, there is a total of 12 cups / 2 = «12/2=6»6
cups of mint tea.
6
The answer is: 6

Intermediate Question 3: How many cups of mint tea are in each row?
Intermediate Solution 3:If there are 15 cups of cinnamon tea, then there are a total of 27 - 15 =
«27-15=12»12 cups of chamomile or mint tea.
As there are equal amounts of chamomile tea and mint tea, there is a total of 12 cups / 2 = «12/2=6»6
cups of mint tea.
Dividing these into rows shows that each row holds 6 / 3 = «6/3=2»2 cups of mint tea.
2
The answer is: 2

Please strictly follow the format I give you.

Table 7: The prompt input to GPT-3.5 for question decomposition on GSM8K dataset

1359

Let’s generate the subquestions(or sub-instructions) and subsolutions to obtain the final answer for this
math problem. Use exactly one operation per step. Mathematical expression should be in latex format

(e.g.
(
5
2

)
53). Put your final answer in a box (e.g.

625

648
).

Example 1:

Original Question: Find the value of n that satisfies 2(n + 1)! + 6n! = 3(n + 1)!, where n! =
n · (n− 1) · (n− 2) · · · 2 · 1.
Groundtruth answer: 5
Subquestion 1: Move all terms to the right side.
Subsolution 1: Moving all terms to the right side:

0 = 3(n+ 1)!− 2(n+ 1)!− 6n!

0 = (n+ 1)!− 6n!

Subquestion 2: Take out a factor of n!.
Subsolution 2:

0 = n!(n+ 1− 6)

0 = n!(n− 5)

Subquestion 3: Divide out n!.
Subsolution 3: We know that n! ̸= 0, so we can divide out n! and solve for n:

0 = n− 5

n = 5

Example 2:

Original Question: Steve has one quarter, two nickels and three pennies. Assuming no items are free,
for how many different-priced items could Steve individually pay for with exact change?
Groundtruth answer: 23
Subquestion 1: How many possibilities does the quaters contribute?
Subsolution 1: Steve can use no quarters or one quarter, for 2 possibilities.
Subquestion 2: How many possibilities do the nickels provide?
Subsolution 2: Steve can use 0, 1, or 2 nickels, for 3 possibilities.

Subquestion 3: How many possibilities will the pennies provide?
Subsolution 3: Steve can use 0, 1, 2, or 3 pennies, for 4 possibilities.
Subquestion 4: How many possibilies in total?
Subsolution 4: That gives 2 · 3 · 4 = 24 possible combinations. But we must remove the combination
where Steve does not use any coins, leaving us with 24− 1 = 23 .

Original Question:
Groundtruth answer:

Table 8: The prompt input to GPT-3.5 for question decomposition on MATH dataset

1360

Here are several facts that will help answer a question. Please organize an inference with the given
facts to answer the question, with an explicit answer of either True or False at the end. Then break the
question down into several intermediate questions that ask the stage of each intermediate step of your
inference. For example:

Original Question: Do the anchors on Rede Globo speak Chinese?

Facts:
1. Rede Globo is a Brazilian television network.
2. The official language of Brazil is Portuguese.

Inference Solution: No. Rede Globo is a Brazilian television network, and Brazil’s official language is
Portuguese. Thus anchors on Rede Globo do not speak Chinese. The answer is: False.

Break Down:
Intermediate Question 1: What country broadcasts Rede Globo?
Intermediate Solution 1: Rede Globo is a Brazilian television network.
The answer is: Brazil.

Intermediate Question 2: What is the official language of Brazil?
Intermediate Solution 2: The official language of Brazil is Portuguese.
The answer is: Portuguese.

Intermediate Question 3: Is Portuguese Chinese?
Intermediate Solution 3: The Portuguese is not Chinese.
The answer is: False.

Please strictly follow the format I give you. Generate the Inference Solution first, and then break down
the question into several Intermediate Question and Intermediate Solution.

Table 9: The prompt input to GPT-3.5 for question decomposition on StrategyQA dataset

1361

A.3 AutoPRM Model Prompt
A.3.1 Question Decomposition (QD) Model Prompt

Let’s break down this question into a chain of subquestions.
Context: John is buying a new pair of shoes that costs $95. He has been saving up his money each
month for the past three months. He gets a $5 allowance a month. He also mows lawns and shovels
driveways. He charges $15 to mow a lawn and $7 to shovel. After buying the shoes, he has $15 in
change.
Question: If he mows 4 lawns, how many driveways did he shovel?

Chain of subquestions: How much money did John save up in total? -> How much money did John
save from his allowance? -> How much money did John earn from mowing lawns? -> How much
money did John earn from shoveling driveways? -> How many driveways did he shovel?

Table 10: The prompt input to AutoPRM for question decomposition (QD)

A.3.2 Question Answering (QA) Model Prompt

Below is a math question. Write a solution that answers to the question. The solution may not use all
the conditions provided in the question.
Question:
Solution

Table 11: The prompt input to AutoPRM for question answering (QA)

A.4 Process-supervised Data Annotations
In this section, we detail the data annotation procedure to train Process-supervised Reward Model (PRM)
baselines (Lightman et al., 2023; Uesato et al., 2022) to compare with our proposed model. As outlined
in Section 3.1, the PRM is trained using step-wise labels to assess the correctness of each step. We
gather this data by having human annotators review the original question and standard solution from the
arithmetical and commonsense reasoning dataset (GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al.,
2021b), and StrategyQA (Geva et al., 2021)), as well as the solution generated by the model. Specifically,
annotators are asked to identify the first step in the model solution that contains a significant error, if any.
A significant error, as defined in existing works (Uesato et al., 2022), is a step where the reasoning is
either incorrect or makes it impossible to reach the correct solution anymore without revising that step.
Based on these assessments, each step receives a binary label: steps preceding the first significant error
are marked as ’correct’, while subsequent steps are labeled ’incorrect’.

A.5 Data Preparation for Interpreting Decomposition Granularity
To prepare data to train AutoPRM to interprete with the decomposition granularity parameter, we
follow (Han et al., 2023) and assign ϵ = 1 to all the fully-decomposed subquestion-subsolution pairs and
ϵ = 0 to the one-shot CoT prompt of each problem pi. Specifically, for an intermediate ϵ, we select a
subset of ñi subquestions from the fully-decomposed pairs that significantly contribute to the final answer
via a heuristic, and assign ϵ = ñi/ni.

The heuristic determines if a subsolution in a reasoning process is important by checking if it introduces
a new condition or calculation into the reference context. Specifically, we adopt a simple token-matching
method via regex to sequentially check for new conditions. For example, for GSM8K we extract two
types of tokens: entities and numbers. Sequentially, we check if each subsolution in the decomposed
subquestion-solution pairs set introduces a new entity (implying new condition) or new number (implying
calculation). If yes, we consider this subsolution as contributive to the final-answer. Finally, this ϵ is
integrated into the QD prompt and optimized using Eqn. (2).

1362

