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Abstract

This paper investigates the possibility of ap-
proximating multiple mathematical operations
in latent space for expression derivation. To this
end, we introduce different multi-operational
representation paradigms, modelling mathemat-
ical operations as explicit geometric transfor-
mations. By leveraging a symbolic engine, we
construct a large-scale dataset comprising 1.7M
derivation steps stemming from 61K premises
and 6 operators, analysing the properties of
each paradigm when instantiated with state-of-
the-art neural encoders. Specifically, we inves-
tigate how different encoding mechanisms can
approximate expression manipulation in latent
space, exploring the trade-off between learning
different operators and specialising within sin-
gle operations, as well as the ability to support
multi-step derivations and out-of-distribution
generalisation. Our empirical analysis reveals
that the multi-operational paradigm is crucial
for disentangling different operators, while dis-
criminating the conclusions for a single opera-
tion is achievable in the original expression
encoder. Moreover, we show that architec-
tural choices can heavily affect the training
dynamics, structural organisation, and general-
isation of the latent space, resulting in signifi-
cant variations across paradigms and classes of
encoders1.

1 Introduction

To what extent are neural networks capable of math-
ematical reasoning? This question has led many
researchers to propose various methods to train and
test neural models on different math-related tasks,
such as math word problems, theorem proving,
and premise selection (Lu et al., 2023; Meadows
and Freitas, 2023; Mishra et al., 2022a; Ferreira
et al., 2022; Ferreira and Freitas, 2020; Welleck

1Code & data available at: https://github.com/
neuro-symbolic-ai/latent_mathematical_
reasoning
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Figure 1: Can neural encoders learn to approximate
multiple mathematical operators in latent space? Given
a premise x, we investigate the problem of applying a
sequence of latent operations (t1, . . . , tn) to derive valid
mathematical expressions (y1, . . . , yn).

et al., 2021; Valentino et al., 2022; Mishra et al.,
2022b; Petersen et al., 2023). These methods aim
to investigate how neural architectures learn and
generalise mathematical concepts and symbolic
rules, and how they cope with characteristic chal-
lenges of mathematical inference, such as abstrac-
tion, compositionality, and systematicity (Welleck
et al., 2022; Mishra et al., 2022a).

In general, a key challenge in neural mathemat-
ical reasoning is to represent expressions and for-
mulae into a latent space to enable the application
of multiple operations in specific orders under con-
textual constraints. Existing methods, however,
typically focus on single-operational inference –
i.e., optimising a latent space to approximate a
specific mathematical operation (Lee et al., 2019;
Lample and Charton, 2019; Welleck et al., 2022).
Encoding multiple operations in the same latent
space, therefore, remains an unexplored challenge
that will likely require the development of novel
mechanisms and representational paradigms.

To investigate this problem, this paper focuses
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on equational reasoning, intended as the deriva-
tion of expressions from premises via the sequential
application of specialised mathematical operations
(i.e., addition, subtraction, multiplication, division,
integration, differentiation). As derivations repre-
sent the workhorse of applied mathematical reason-
ing (including derivations in physics and engineer-
ing), projecting expressions and operators into a
well-organised geometric space can unveil a myr-
iad of applications, unlocking the approximation of
mathematical solutions that are multiple steps apart
within the embedding space via distance metrics
and vector operations.

Specifically, this paper posits the following over-
arching research questions: RQ1:“How can dif-
ferent representational paradigms and encoding
mechanisms support expression derivation in latent
space?”; RQ2:“What is the representational trade-
off between generalising across different mathemat-
ical operations and specialising within single op-
erations?”; RQ3:“To what extent can different en-
coding mechanisms enable multi-step derivations
through the sequential application and functional
composition of latent operators?”; RQ4:“To what
extent can different encoding mechanisms support
out-of-distribution generalisation?”

To answer these questions, we investigate joint-
embedding predictive architectures (LeCun, 2022)
by introducing different multi-operational repre-
sentation paradigms (i.e., projection and trans-
lation) to model mathematical operations as ex-
plicit geometric transformations within the latent
space. Moreover, by leveraging a symbolic en-
gine (Meurer et al., 2017), we build a large-scale
dataset containing 1.7M derivation steps which
span diverse mathematical expressions and opera-
tions. To understand the impact of different encod-
ing schemes on equational reasoning, we instanti-
ate the proposed architectures with state-of-the-art
neural encoders, including Graph Neural Networks
(GNNs) (Hamilton et al., 2017; Kipf and Welling,
2016), Convolutional Neural Networks (CNNs) (Li
et al., 2021; Kim, 2014), Recurrent Neural Net-
works (RNNs) (Yu et al., 2019; Hochreiter and
Schmidhuber, 1996), and Transformers (Vaswani
et al., 2017), analysing the properties of the latent
spaces and the ability to support multi-step deriva-
tions and generalisation.

Our empirical evaluation reveals that the multi-
operational paradigm is crucial for disentan-
gling different mathematical operators (i.e., cross-
operational inference), while the discrimination of

the conclusions for a single operation (i.e., intra-
operational inference) is achievable in the original
expression encoder. Moreover, we show that ar-
chitectural choices can heavily affect the training
dynamics and the structural organisation of the la-
tent space, resulting in significant variations across
paradigms and classes of encoders.

Overall, we conclude that the translation
paradigm can result in a more fine-grained and
smoother optimisation of the latent space, which
better supports cross-operational inference and en-
ables a more balanced integration. Regarding the
encoders, we found that sequential models achieve
more robust performance when tested on multi-
step derivations, while graph-based encoders, on
the contrary, exhibit better generalisation to out-of-
distribution examples.

2 Multi-Operational Derivations

Given a premise x – i.e., a mathematical expres-
sion including variables and constants, and a set
of operations T = {t1, t2, . . . tn} – e.g., addition,
multiplication, differentiation, etc., we investigate
the extent to which a neural encoder can approx-
imate a mathematical function f(x, ti;V ) = Yti
that takes the premise x and any operation ti ∈ T
as inputs, and produces the set of valid expres-
sions Yti = {y1, y2, . . . , ym} derivable from x via
ti given v ∈ V , where V is a predefined set of
operands such that yj = ti(x, vj). In this work, we
focus on atomic operations in which V includes
symbols representing variables.

For example, consider the following premise x:

u+ cos (log (−z + o))

If the set of operands is V = {z, u}, and the oper-
ation ti is addition, then the application of ti to x
should result in the set of expressions:

Yadd = {z + u+ cos (log (−z + o)), . . . ,

2u+ cos (log (−z + o))}
Instead, if ti is differentiation, then f(x, ti;V )

should result in a different set:

Ydiff = {sin (log (−z + o))

−z + o
, . . . , 1}

Notably, the recursive application of f to any of
the expressions in Yti can generate a new set of
conclusions derivable from x in multiple steps.
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Figure 2: Overview of the proposed joint-embedding predictive architectures for latent multi-operational derivation
(left). Schematic workflow for multi-step inference and latent propagation of mathematical operations (right).

Here, the constraint we are interested in, is that
Yadd and Ydiff should be derived via a single ex-
pression encoder that maps expressions into a vec-
tor space and, at the same time, enables a multi-step
propagation of latent operations.

2.1 Architectures

To model latent mathematical operations, we inves-
tigate the use of joint-embedding predictive archi-
tectures (LeCun, 2022). In particular, we introduce
two multi-operational paradigms based on projec-
tion and translation to learn the representation of
expressions and mathematical operators and model
an atomic derivation step as an explicit geomet-
ric transformation. Figure 2 shows a schematic
representation of the architectures.

In general, both projection and translation em-
ploy an expression encoder to map the premise x
and a plausible conclusion y into vectors, along
with an operation encoder that acts as a latent
prompt t to discriminate between operators. The
goal is then to predict the embedding of a valid
conclusion ey by applying a transformation to the
premise embedding ex conditioned on t. Therefore,
the two paradigms mainly differ in how expres-
sion and operation embeddings are combined to
approximate the target results. This setup enables
multi-step inference since the predicted embedding
e′y can be recursively interpreted as a premise rep-
resentation for the next iteration (Figure 2, right).

Projection. The most intuitive solution to model
latent mathematical operations is to employ a pro-
jection layer (Lee et al., 2019). In this case, the
premise x and the operator t are first embedded us-
ing the respective encoders, which are then fed to a
dense predictive layer π to approximate the target
conclusion ey. The overall objective function can
then be formalised as follows:

ϕ(x, t, y) = −δ(π(t∥ex), ey)2 (1)

Where δ is a distance function, and π represents
the dense projection applied to the concatenation
∥ of t and ex. While many options are available,
we implement π using a linear layer to better inves-
tigate the representation power of the underlying
expression encoder.

Translation. Inspired by research on multi-
relational graph embeddings (Bordes et al., 2013;
Balazevic et al., 2019; Valentino et al., 2023), we
frame mathematical inference as a multi-relational
representation learning problem. In particular, it is
possible to draw a direct analogy between entities
and relations in a knowledge graph and mathemat-
ical operations. Within the scope of the task, as
defined in Section 2, the application of a general
operation can be interpreted as a relational triple
< x, t, y >, in which a premise expression x corre-
sponds to the subject entity, a conclusion y corre-
sponds to the object entity, and the specific opera-
tion type t represents the semantic relation between
entities. Following this intuition, we formalise the
learning problem via a translational objective:

ϕ(x, t, y) = −δ(Tex, ey + t)2 (2)

Where δ is a distance function, ex, ey, t, are the
embeddings of premise expression, conclusion and
operation, and T is a diagonal operation matrix.

2.2 Data Generation
We generate synthetic data to support the explo-
ration of the above architectures, inspired by a re-
cent approach that relies on a symbolic engine to
generate equational reasoning examples (Meadows
et al., 2023b). In particular, we use SymPy (Meurer
et al., 2017) to construct a dataset containing ex-
pressions in both LaTeX and SymPy surface forms.
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Here, premises and variables are input to 6 oper-
ations to generate further expressions, presently
focusing on differentiation, integration, addition,
subtraction, multiplication, and division. Concrete
examples of entries in the dataset are reported in
the Appendix.

Premises. To generate a premise expression, a set
of symbols is first sampled from a vocabulary. Sub-
sequently, an initial operator is applied to symbols
to generate an expression via the SymPy engine. To
generate more complex expressions, this process
is repeated iteratively for a fixed number of steps.
This process is formalised in Algorithm 1 (see Ap-
pendix). The final dataset includes 61K premises
each containing between 2 to 5 variables.

Applying Operations to Premises. For a given
premise, a set of operand variables (denoted by
V in Section 2) are sampled from the vocabu-
lary and added to the set of symbols that com-
prise the premise. All valid combinations of
premise and operands are then input to each opera-
tor (via SymPy) to generate conclusions derivable
via atomic derivation steps. The resulting dataset
contains a total of 1.7M of such atomic steps. This
data is used to train and evaluate models on single-
step inference before testing generalisation capabil-
ities to multiple steps.

Multi-Step Derivations. To test the models’ abil-
ity to derive expressions obtained after the sequen-
tial application of operations, we randomly sample
5K premises from the single-step dataset described
above and iteratively apply up to 6 operations to
each premise using a randomly sampled variable
operand from the vocabulary for each step. We
adopt this methodology to generate a total of 2.7K
multi-step examples.

2.3 Expression Encoders
Thanks to their generality, the multi-operational ar-
chitectures can be instantiated with different classes
of expression encoders. In particular, we experi-
ment with both graph-based and sequential models,
exploring embeddings with different dimensions
(i.e., 300, 512, and 768). The graph-based encoders
are trained on operation trees extracted from the
SymPy representation, while the sequential models
are trained on LaTeX expressions. We adopted the
following expression encoders in our experiments:

Graph Neural Networks (GNNs). GNNs have
been adopted for mathematical inference thanks

to their ability to capture explicit structural infor-
mation (Lee et al., 2019). Here, we consider dif-
ferent classes of GNNs to experiment with mod-
els that can derive representations from operation
trees. Specifically, we employ a 6-layer Graph-
Sage2(Hamilton et al., 2017) and Graph Convolu-
tional Network (GCN)3 (Kipf and Welling, 2016)
to investigate transductive and non-transductive
methods. To build the operation trees, we directly
parse the SymPy representation described in Ap-
pendix A.

Convolutional Neural Networks (CNNs).
CNNs represent an effective class of models
for mathematical representation learning thanks
to their translation invariance property that can
help localise recurring symbolic patterns within
expressions (Petersen et al., 2023). Here, we
employ a 1D CNN architecture typically used for
text classification tasks (Kim, 2014), with three
filter sizes 3, 4, and 5, each with 100 filters.

Recurrent Neural Networks (RNNs). Due to
the sequential nature of mathematical expressions,
we experiment with RNNs that have been success-
ful in modelling long-range dependencies for sen-
tence representation (Yu et al., 2019; Hochreiter
and Schmidhuber, 1996). In particular, we employ
a Long-Short Term Memory (LSTM) network with
2 layers.

Transformers. Finally, we experiment with a
Transformer encoder with 6 and 8 attention heads
and 6 layers, using a configuration similar to the
one proposed by Vaswani et al. (2017)4. Differently
from other models, Transformers use the attention
mechanism to capture implicit relations between
tokens, allowing, at the same time, experiments
with a larger number of trainable parameters.

2.4 Operation Encoders

The operation encoders are implemented using a
lookup table similar to word embeddings (Mikolov
et al., 2013), where each entry corresponds to the
vector of a mathematical operator. We experiment

2https://pytorch-geometric.readthedocs.
io/en/latest/generated/torch_geometric.
nn.models.GraphSAGE.html

3https://pytorch-geometric.readthedocs.
io/en/latest/generated/torch_geometric.
nn.models.GCN.html

4https://pytorch.org/docs/stable/
generated/torch.nn.TransformerEncoder.
html
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MAP Hit@1 Hit@3 MAP Hit@1 Hit@3 Avg. MAP

Projection (One-hot) Cross-op. Intra-op.

GCN 74.07 78.35 88.88 93.34 97.81 99.01 83.70
GraphSAGE 83.89 88.43 96.70 93.00 97.45 98.71 88.44

CNN 69.61 76.98 95.20 92.43 97.18 98.63 81.02
LSTM 71.40 73.50 90.08 93.21 98.01 99.35 82.30
Transformer 49.35 46.30 63.00 91.66 96.65 98.38 70.50

Projection (Dense)

GCN 78.25 82.50 92.81 93.43 97.91 99.08 85.84
GraphSAGE 81.05 83.91 94.38 93.18 97.81 98.93 87.11

CNN 82.57 91.40 98.50 92.62 97.15 99.18 87.59
LSTM 77.17 81.96 93.73 93.68 98.48 99.36 85.42
Transformer 71.51 77.08 89.43 92.23 97.30 98.53 81.87

Translation

GCN 85.89 94.73 98.85 90.10 92.45 95.61 87.99
GraphSAGE 88.15 96.31 99.25 90.68 94.51 96.88 89.41

CNN 84.72 94.66 98.70 90.17 93.98 97.96 87.44
LSTM 89.85 96.70 99.35 89.74 94.60 97.91 89.79
Transformer 86.64 95.78 98.83 90.93 96.05 99.73 88.78

Table 1: Overall performance of different neural encoders and methods for encoding multiple mathematical
operations (i.e., integration, differentiation, addition, difference, multiplication, division) in the latent space.

with dense5 embeddings for the translation model
and instantiate the projection architecture with both
dense and one-hot6 embeddings. The translation
model requires the operation embeddings to be the
same size as the expression embeddings, admitting,
therefore, only dense representations.

3 Training Details

As the models are trained to predict a target em-
bedding, the main goal during optimisation is to
avoid a representational collapse in the expression
encoder. To this end, we opted for a Multiple Neg-
atives Ranking (MNR) loss with in-batch negative
examples (Henderson et al., 2017). This technique
allows us to sidestep the explicit selection of the
negative sample, enabling a smoother optimisation
of the latent space. We trained the models on a to-
tal of 12.800 premise expressions with 24 positive
examples each derived from the application of 6
operations (see Section 2.2). This produces over
307.200 training instances composed of premise x,
operation t, and conclusion y. The models are then
trained for 32 epochs with a batch size of 64 (with
in-batch random negatives). We found that the best
results are obtained with a learning rate of 1e-5.

5https://pytorch.org/docs/stable/
generated/torch.nn.Embedding.html

6https://pytorch.org/docs/stable/
generated/torch.nn.functional.one_hot.
html

4 Empirical Evaluation

4.1 Empirical Setup
We evaluate the performance of different repre-
sentational paradigms and expression encoders by
building held-out dev and test sets. In particular, to
assess the structural organisation of the latent space,
we frame the task of multi-operational inference as
an expression retrieval problem. Given a premise
x, an operation t, a sample of positive conclusions
P = {p1, . . . , pn}, and a sample of negative con-
clusions N = {n1, . . . , nm}, we adopt the models
to predict an embedding e′y (Section 2.1) and em-
ploy a distance function δ to rank all the conclu-
sions in P ∪N according to their similarity with e′y.
We implement δ using cosine similarity, and con-
struct two evaluation sets to assess complementary
inferential properties, namely:

Cross-operational Inference. A model able to
perform multi-operational inference should dis-
criminate between the results of different opera-
tions applied to the same premise. Therefore, given
a premise x and an operation t (e.g., addition), we
construct the negative set N by selecting the posi-
tive conclusions resulting from the application of
different operations (e.g., differentiation, subtrac-
tion) to the same premise x. This set includes a
total of 4 positive and 20 negative examples (ex-
tracted from the remaining 5 operations) for each
premise-operation pair (for a total of 3k dev and 6k
test instances).

Intra-operational Inference. While we want the
models to discriminate between different operators,
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Figure 3: Typical training dynamics of different multi-operational paradigms (MAP on the dev set).

a well-optimised latent space should still preserve
the ability to predict the results of a single opera-
tion applied to different premises. Therefore, given
a premise x and an operation t, we construct the
negative set N by selecting the positive conclu-
sions resulting from the application of the same
operation t to a different sample of premises. This
set includes a total of 4 positive and 20 negative
examples (extracted from 5 random premises) for
each premise-operation pair (for a total of 3k dev
and 6k test instances).

Metrics. The models are evaluated using Mean
Average Precision (MAP) and Hit@k. Hit@k mea-
sures the percentage of test instances in which at
least one positive conclusion is ranked within the
top k positions. MAP, on the other hand, measures
the overall ranking. We use the average MAP be-
tween cross-operational and intra-operational sets
(dev) as a criterion for model selection.

4.2 Results
Table 1 shows the performance of different en-
coders and paradigms on the test sets (i.e., eval-
uating the best models from the dev set, see Table
3). We can derive the following conclusions:

The translation mechanism improves cross-
operational inference. The models that use the
translation method consistently outperform the
models that use the projection method on the cross-
operational inference task. This indicates that the
translation paradigm can better capture the seman-
tic relations between different operations and pre-
serve them in the latent space. This is attested by
the significant improvement achieved by different
encoders, involving both graph-based and sequen-
tial architectures (e.g., +15.13% and +7.64% for
Transformers and GCN respectively).

Trade-off between cross-operational and intra-
operational inference. The models that excel at
cross-operational inference tend to achieve lower
performance on the intra-operational set. This
suggests that there is a tension between gener-
alising across different operations and specialis-
ing within each operation. Moreover, the results
suggest that intra-operational inference represents
an easier problem for neural encoders that can
be achieved already with sparse multi-operational
methods (i.e., models using one-hot projection can
achieve a MAP score above 90%).

LSTMs and GraphSAGE achieve the best per-
formance. LSTMs achieve the highest average
MAP score, followed by GraphSAGE. These re-
sults demonstrate that LSTMs and GraphSAGE
can balance between generalisation and special-
isation, and leverage both sequential and graph-
based information to encode mathematical opera-
tions. Moreover, we observe that graph-based mod-
els and CNNs tend to exhibit more stable perfor-
mance across different representational paradigms
(e.g., GraphSage achieve an average improvement
of 2.3%), while LSTMs and Transformers achieve
balanced results only with the translation mecha-
nism (i.e., with an average improvement of 4.37%
and 6.91% respectively).

Model size alone does not explain inference per-
formances. The Transformer model, which has
the largest number of parameters, exhibits a lower
average MAP score (with the projection mecha-
nism in particular). This implies that simply in-
creasing the model complexity or capacity does not
guarantee better results (see Table 3 for additional
details) and may compromise operational control in
the latent space. This suggests that model architec-
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Figure 4: 2D projection of the latent space before and after an operation-specific transformation. The visualization
supports the crucial role of the multi-operational paradigm for cross-operational inference, showing, at the same
time, that intra-operational inference concerns larger regions and can be achieved in the original expression encoder.

Cross Intra

Proj. (1-hot) δ(ex, ey) δ(e′y, ey) δ(ex, ey) δ(e′y, ey)

GCN 00.00 20.87 84.46 84.82
GraphSAGE 00.00 25.71 84.00 85.77

CNN 00.00 19.64 85.81 85.86
LSTM 00.00 24.11 86.12 84.87
Transformer 00.00 16.52 88.20 86.80

Proj. (Dense) δ(ex, ey) δ(e′y, ey) δ(ex, ey) δ(e′y, ey)

GCN 00.00 22.88 84.38 85.25
GraphSAGE 00.00 25.47 84.96 86.01

CNN 00.00 23.13 83.38 82.84
LSTM 00.00 25.66 84.80 83.44
Transformer 00.00 21.54 86.22 83.80

Translation δ(ex, ey) δ(e′y, ey + t) δ(ex, ey) δ(e′y, ey + t)

GCN 00.00 11.85 -07.13 39.76
GraphSAGE 00.00 11.37 -01.45 40.98

CNN 00.00 05.23 12.32 33.68
LSTM 00.00 40.20 -00.46 51.46
Transformer 00.00 43.38 03.07 69.14

Table 2: Latent separation of positive and negative ex-
amples before (i.e., δ(ex, ey)) and after (i.e., δ(e′y, ey))
applying an operation-specific transformation.

ture and the encoding method are more important
factors for learning effective representations sup-
porting multiple mathematical operations.

4.3 Training Dynamics

We conduct an additional analysis to investigate the
training dynamics of different architectures. The
graphs in Figure 3 show the typical trend for the
MAP achieved at different epochs on different eval-
uation sets. Interestingly, we found that the projec-
tion and translation mechanisms optimise the
latent space in a different way. The projection
paradigm, in fact, prioritises performance on intra-
operational inference, with a constant gap between
the two sets. Conversely, the translation paradigm
supports a rapid optimisation of cross-operational
inference, followed by a more gradual improve-
ment on the intra-operational set.

This behaviour can help explain the difference
in performances between the models. Specifically,

since cross-operational inference is about disentan-
gling operations applied to the same premise, we
hypothesise it to require a more fine-grained optimi-
sation in localised regions of the latent space. This
optimisation can be compromised when priority is
given to the discrimination of different premises,
which, as in the case of intra-operational infer-
ence, involves a more coarse-grained optimisation
in larger regions of the space.

4.4 Latent Space Analysis

We further investigate this behaviour by measur-
ing and visualising the latent space in the original
expression encoder (i.e., computing δ(ex, ey)) and
after applying a transformation via the operation
encoder (i.e., computing δ(e′y, ey)). In particular,
Table 2 reports the average difference between the
cosine similarity of the premises with positive and
negative examples, a measure to estimate the latent
space separation, and therefore, assess how dense
the resulting vector space is.

From the results, we can derive the following
main observations: (1) The separation tends to be
significantly lower in the cross-operational set,
confirming that the latent space requires a more
fine-grained optimisation in localised regions (Fig.
4); (2) Cross-operational inference is not achiev-
able without operation-specific transformations,
as confirmed by the impossibility to discriminate
between positive and negative examples in the orig-
inal expression encoders (i.e., δ(ex, ey), Table 2);
(3) The projection mechanism achieves intra-
operational separation in the original expres-
sion encoders. This is not true for the translation
mechanism in which the transformation induced by
the operation encoder is fundamental for the sep-
aration to appear; (4) The latent space resulting
from the translation model is more dense, with
values for the separation that are generally lower
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(b) Translation

Figure 5: Multi-step derivations in latent space with different multi-operational paradigms and neural encoders.
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(b) Intra-operational

Figure 6: Length generalisation experiments by training different encoders (i.e., with translation) on premises with
2 variables, and testing on longer premises (MAP score).

when compared to the projection mechanism.
These results, combined with the performance

in Table 1, confirm that the translation paradigm
can result in a more fine-grained and smoother op-
timisation which supports performance on cross-
operational inference and a more balanced integra-
tion between expression and operation encoders.

4.5 Multi-Step Inference

We investigate the behaviour of different encoders
and representational paradigms when propagating
latent operations for multiple steps. To experi-
ment, we employ the architectures recursively by
interpreting the predicted target embedding e′y as
a premise representation for the next step (see Fig.
2). In this case, we evaluate the performance using
Hit@1, selecting 1 positive example and 4 negative
examples for each premise and derivation step (2
for cross-operational and 2 for intra-operational).

Figure 5 shows the obtained results. We found
that the majority of the models exhibit a latent
organisation that allows for a non-random prop-
agation of latent mathematical operations. Most

of the encoders, in fact, achieve performances that
are significantly above random performance after 6
latent derivation steps (with a peak of 30% improve-
ment for LSTM + translation). Moreover, while all
the models tend to decrease in performance with
an increasing number of inference steps, we ob-
serve significant differences between paradigms
and classes of encoders. Most notably, we found
that the performance of graph-based encoders
tends to decrease faster, while the sequential
models can obtain more stable results, in par-
ticular with the translation paradigm. The best
translation model (i.e., LSTM) achieves a Hit@1
score at 6 steps of up to 50%, that is ≈15% above
the best projection architecture (i.e., CNN).

4.6 Length Generalisation

Finally, we perform experiments to test the abil-
ity of expression encoders to generalise to out-of-
distribution examples. In particular, we focus on
length generalisation which constitutes a notori-
ously hard problem for neural networks (Shen et al.,
2021; Hupkes et al., 2020; Geirhos et al., 2020). To
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this end, we train the models on the subset of the
training set containing premises with 2 variables
and assess performance on longer premises (i.e.,
grouping the test set according to the number of
variables). Figure 6 shows the results for different
encoders using the translation mechanism.

Overall, the results show a decrease in per-
formance as expected, demonstrating, at the
same time, a notable difference between en-
coders on cross-operational inference. In par-
ticular, the results suggest that graph-based mod-
els can generalise significantly better on longer
premises, probably due to their ability to capture
explicit hierarchical dependencies within the ex-
pressions. Among the sequential models, CNNs
achieve better generalisation performance. We
attribute these results to the convolution operation
in CNNs which may help capture structural invari-
ances within the expressions and allow a generali-
sation that is similar to GCNs.

4.7 Discussion

From the empirical evaluation, we can derive a set
of takeaways for both the joint-embedding archi-
tectures and the specific expression encoders.

Regarding the architectures, our analysis sug-
gests that the translational paradigm can result in
a more fine-grained and smoother optimisation of
the latent space (Figure 3 and Table 2). This has
the effect of improving multi-operational inference
enabling a more balanced integration of different
expression encoders, with an overall better trade-
off between cross-operational and intra-operational
inference (Table 1). Moreover, we found that the
translational paradigm can support better generali-
sation on multi-step inference when instantiated
with sequential encoders such as Transformers,
CNNs, and LSTMs (Figure 5), even when the en-
coders are only trained on single-step derivations.

Regarding the specific encoders, we conclude
that different models have different characteristics
that should inform practitioners and future research
in the field. Sequential models (i.e., Transform-
ers, CNNs, and LSTMs), possess a better abil-
ity to organise the latent space for enabling la-
tent multi-step derivations (Figure 5). Conversely,
graph-based models are more efficient (i.e., they
achieve better performance using smaller operation
encoders, see one-hot in Table 1) and tend to gen-
eralise better to longer expressions when trained to
simpler ones (see Figure 6).

5 Related Work

The quest to understand whether neural architec-
tures can perform mathematical reasoning has led
researchers to investigate several tasks and evalua-
tion methods (Lu et al., 2023; Meadows and Freitas,
2023; Mishra et al., 2022a; Ferreira et al., 2022;
Ferreira and Freitas, 2020; Welleck et al., 2021;
Valentino et al., 2022; Mishra et al., 2022b; Pe-
tersen et al., 2023). In this work, we focused on
equational reasoning, a particular instance of math-
ematical reasoning involving the manipulation of
expressions through the systematic application of
specialised operations (Welleck et al., 2022; Lam-
ple and Charton, 2019; Saxton et al., 2018). In par-
ticular, our work is inspired by previous attempts to
approximate mathematical reasoning entirely in la-
tent space (Lee et al., 2019). Differently from Lee
et al. (2019), we investigate the joint approximation
of multiple mathematical operations for expression
derivation (Lee et al. (2019) explore exclusively the
rewriting operation for theorem proving). More-
over, while Lee et al. (2019) focus on the evaluation
of Graph Neural Networks (Paliwal et al., 2020)),
we analyse the behaviour of a diverse set of rep-
resentational paradigms and neural encoders. Our
data generation methodology is inspired by recent
work leveraging symbolic engines and algorithms
to build systematic benchmarks for neural mod-
els (Meadows et al., 2023b,a; Chen et al., 2022;
Saparov et al., 2023). However, to the best of our
knowledge, we are the first to construct and release
a synthetic dataset to investigate multi-step and
multi-operational derivations in latent space.

6 Conclusion

This paper focused on equational reasoning for ex-
pression derivation to investigate the possibility
of approximating and composing multiple mathe-
matical operations in a single latent space. Specif-
ically, we investigated different representational
paradigms and encoding mechanisms, analysing
the trade-off between encoding different mathe-
matical operators and specialising within single
operations, as well as the ability to support multi-
step derivations and out-of-distribution generali-
sation. Moreover, we constructed and released
a large-scale dataset comprising 1.7M derivation
steps stemming from 61K premises and 6 opera-
tors, which we hope will encourage researchers to
explore future work in the field.
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7 Limitations

The systematic application of mathematical opera-
tors requires reasoning at an intentional level, that
is, the execution and composition of mathematical
functions defined on a potentially infinite set of el-
ements. Neural networks, on the contrary, operate
at an extensional level and, by their current nature,
can only approximate such functions by learning
from a finite set of examples.

Due to this characteristic, this work explored
architectures that are trained on expressions com-
posed of a predefined number and set of variables
(i.e., between 2 and 5) and operators (i.e., addition,
subtraction, multiplication, division, integration,
differentiation), and, therefore, capable of perform-
ing approximation over a finite vocabulary of sym-
bols. Extending the architectures with a new set of
operations and out-of-vocabulary symbols, there-
fore, would require re-training the models from
scratch. Future work could investigate this limita-
tion by exploring, for instance, transfer learning
techniques and more flexible neural architectures.

For the same reason, we restricted our investi-
gation to the encoding of atomic operations, that
is, operations in which the second operand is rep-
resented by a variable. While this limitation is
circumvented by the sequential application of op-
erators in a multi-step fashion, this work did not
explore the encoding of single-step operations in-
volving more complex operands (e.g., multiplica-
tion between two expressions composed of multiple
variables each). In principle, however, the evalua-
tion presented in this work can be extended with
the new synthetic data to accommodate and study
different cases and setups in the future.
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Algorithm 1 Premise Generation
1: F ← premise.free_symbols
2: p← 1

pr
− 1

3: for s in F do
4: m← random.choice([0] ∗ p+ [1])
5: if m = 0 then
6: s′ ← s
7: else
8: pc ← 1

pe
− 1

9: m← random.choice([0] ∗ pc + [1])
10: c← random.choice({2, ..., 9})
11: if m = 0 then
12: if random.choice({0,1}) = 0 then
13: s′ ← s× c
14: else
15: s′ ← s

c
16: end if
17: else
18: c← random.choice({2, ..., 9})
19: s′ ← sc

20: end if
21: end if
22: premise← premise.subs(s, s′)
23: end for
24: return premise

Lstm cells and network architectures. Neural compu-
tation, 31(7):1235–1270.

A Data Generation

Algorithm 1 formalises the general data generation
methodology adopted for generating premises with
the SymPy7 engine.

The following is an example of an entry in the
dataset with both LaTex and Sympy surface form
for representing expressions, considering integra-
tion and a single variable operand r. The same
overall structure is adopted for the remaining oper-
ations and a larger vocabulary of variables:

• Premise:

– Latex:

u+ cos(log(−x+ o))

– SymPy:

Add(Symbol(′u′),

cos(log(Add(Mul(Integer(−1),
7https://www.sympy.org/en/index.html

Symbol(′x′)),

Symbol(′o′)))))

• Derivation (integration, r):

– Latex:

ur + rcos(log(−x+ o))

– SymPy:

Add(Mul(Symbol(′u′), Symbol(′r′)),

Mul(Symbol(′r′), cos(log(

Add(Mul(Integer(−1),
Symbol(′x′)), Symbol(′o′))))))

B Dev Results

Table 3 reports the complete results on the dev set
for different models and architectures with different
embedding sizes.
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MAP Hit@1 Hit@3 MAP Hit@1 Hit@3 Avg MAP Embeddings Dim. Model Size (MB)

Projection (One-hot) Cross-op. Intra-op.

GCN 71.37 74.86 86.46 92.80 97.83 99.03 82.20 300 3.0
73.44 78.73 89.50 92.72 97.70 99.86 83.08 512 7.9
74.12 78.40 89.66 92.68 97.46 99.13 83.40 768 18.0

GraphSAGE 79.54 82.60 92.83 91.98 96.43 98.63 85.76 300 5.0
81.57 84.90 95.00 92.81 97.50 99.20 87.19 512 14.0
83.70 88.56 96.73 93.00 97.70 99.30 88.35 768 31.0

CNN 69.84 77.53 95.00 91.79 96.10 98.30 80.81 300 2.5
66.94 74.46 93.40 92.06 96.80 98.40 79.50 512 4.6
67.25 74.70 93.63 91.48 95.46 97.73 79.37 768 7.6

LSTM 69.31 72.06 89.00 92.93 97.96 99.46 81.12 300 6.6
69.33 71.66 88.16 92.92 97.90 99.46 81.13 512 19.0
70.84 72.60 90.10 92.89 97.76 99.30 81.86 768 42.0

Transformer 48.61 48.20 63.70 91.79 96.60 99.43 70.20 300 38.0
46.29 43.70 61.30 91.72 96.46 99.16 69.01 512 75.0
46.17 43.56 62.43 91.98 96.90 99.20 69.08 768 130.0

Projection (Dense) Cross-op. Intra-op.

GCN 77.37 82.16 93.63 91.28 96.43 98.93 84.33 300 3.3
77.89 83.46 92.70 92.45 97.33 98.90 85.17 512 8.9
79.93 85.63 94.10 92.09 96.93 99.00 86.01 768 20.0

GraphSAGE 81.39 84.83 95.76 91.08 95.80 98.60 86.24 300 5.4
80.73 84.06 94.20 92.36 97.10 98.86 86.54 512 15.0
81.09 83.93 94.36 92.40 97.40 99.10 86.75 768 33.0

CNN 81.91 90.46 97.80 91.67 95.76 98.23 86.79 300 2.8
82.70 92.10 98.73 91.89 95.93 98.33 87.30 512 5.6
81.70 90.73 97.80 92.36 97.20 98.90 87.03 768 9.9

LSTM 71.96 74.93 89.03 92.26 96.93 99.26 82.11 300 7.0
76.13 80.50 93.53 92.77 97.70 99.30 84.45 512 20.0
76.40 80.03 93.23 93.13 98.06 99.60 84.76 768 44.0

Transformer 70.06 75.50 88.70 91.96 97.40 99.53 81.01 300 38.0
69.59 73.63 87.20 92.20 97.70 99.53 80.89 512 76.0
52.43 51.16 68.30 90.78 96.16 99.33 71.60 768 133.0

Translation Cross-op. Intra-op.

GCN 80.16 89.50 96.63 83.90 86.83 94.16 82.03 300 3.0
86.56 95.03 99.03 86.20 89.16 96.16 86.38 512 7.9
86.72 95.53 99.30 87.85 91.40 96.50 87.29 768 18.0

GraphSAGE 84.94 92.93 98.10 84.13 86.00 93.40 84.53 300 5.0
87.44 95.26 99.00 88.70 92.76 96.63 88.07 512 14.0
88.39 96.13 99.16 90.35 94.20 97.86 89.37 768 31.0

CNN 84.42 95.30 98.93 89.22 93.66 97.66 86.81 300 2.5
84.62 95.33 99.20 90.36 96.03 98.63 87.49 512 4.6
86.99 96.76 99.60 87.18 93.46 96.90 87.08 768 7.7

LSTM 84.20 92.23 99.10 87.24 90.76 96.93 85.72 300 6.6
86.98 94.36 99.06 88.81 93.70 98.00 87.89 512 19.0
89.50 97.13 99.36 89.89 95.70 98.53 89.70 768 42.0

Transformer 84.17 94.90 98.83 90.35 96.23 99.40 87.26 300 38.0
85.99 95.70 98.70 91.86 97.83 99.60 88.93 512 75.0
86.04 95.33 98.53 91.27 97.03 99.20 88.65 768 130.0

Table 3: Overall performance of different neural encoders and methods (dev set) for jointly encoding multiple
mathematical operations (i.e., integration, differentiation, addition, difference, multiplication, division).
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