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Abstract

In this paper, we introduce a benchmark for
evaluating the overall quality of emergent lan-
guages using data-driven methods. Specifically,
we interpret the notion of the “quality” of an
emergent language as its similarity to human
language within a deep learning framework.
We measure this by using the emergent lan-
guage as pretraining data for a downstream
NLP tasks in human language—the better the
downstream performance, the better the emer-
gent language. We implement this benchmark
as an easy-to-use Python package that only re-
quires a text file of utterances from the emer-
gent language to be evaluated. Finally, we em-
pirically test the benchmark’s validity using
human, synthetic, and emergent language base-
lines.

1 Introduction

Neural language models learn many things in pre-
training, but research suggests (Artetxe et al., 2020)
that a substantial part of that knowledge is not sim-
ply knowledge of a particular language or domain, but
rather knowledge of “how to language.” We currently
teach models to “language” using vast quantities of text
dredged from the dark recesses of the Web—text that is
full of bias, toxicity, and potential intellectual property
violations. Ideally, we would be able to teach models to
“language” without such compromises through the use
of synthetic data, but mainstream approaches to synthe-
sizing data produce outputs that do not have the same
structural and social properties as human language.

Emergent communication (EC), also called emergent
language (EL), is a potential solution to this problem
(Yao et al., 2022; Downey et al., 2023; Mu et al., 2023).
Emergent languages are communication systems de-
veloped de novo among multiple agents in a reinforce-
ment learning simulation. Because the conditions under
which they develop mirror, reductively, the conditions
under which languages develop among humans, there
is reason to believe that ELs will ultimately be more
like human language than other sources of synthetic
data. However, up to this point, there is no way of
quantifying—in a holistic way—how much like human

languages any particular EL really is, or to what extent
it may provide useful pretraining signals.

Research on deep learning-based emergent commu-
nication has seen the introduction of many metrics to
measure various aspects of the language. These metrics
quantify notions such as compositionality (Brighton and
Kirby, 2006; Lazaridou et al., 2018), expressivity (Guo
et al., 2023), ease-of-teaching (Li and Bowling, 2019),
and zero-shot transfer (Bullard et al., 2020), to name a
few. Despite this proliferation of metrics, emergent lan-
guage largely lacks evaluation metrics. An evaluation
metric is specifically one that measures the overall qual-
ity of an emergent language and not simply a particular
property. Thus, we introduce XferBench, a data-driven
benchmark for evaluating the overall quality of emer-
gent languages using transfer learning with deep neural
models.

Evaluation metrics are critical in gauging progress
in technical fields since they quantify otherwise vague
notions of improvement over time. Benchmarks, in
particular, pair evaluation metrics with specific data and
evaluation procedures to compare various systems on
common ground. Benchmarks and shared tasks have
been critical to the development of NLP from the Penn
Treebank (Marcus et al., 1993) to the WMT datasets
(Bojar et al., 2014) to GLUE (Wang et al., 2018).

In the field of emergent communication specifically,
Yao et al. (2022) introduced the idea of using corpus
transfer as means of practically applying emergent com-
munication to deep learning-based NLP via transfer
learning. In corpus transfer, a language model is pre-
trained on a corpus of emergent language utterances
before being tuned on real data for a human language-
based downstream task. As a corollary, they suggest that
the effectiveness of this transfer can serve as a means of
evaluating the quality of the emergent in a more general
sense. This is based on the intuition that the more simi-
lar two language are, the better transfer learning works
from one to the other (observed in Zoph et al. (2016),
for example).

This paper takes the transfer learning-as-an-
evaluation metric idea from Yao et al. (2022) and ex-
pands it into a full benchmark, XferBench, for emergent
languages (illustrated in Figure 1). An evaluation met-
ric for emergent languages in a benchmark format is
the first of its kind. Additionally, XferBench is unique
within emergent communication for being primarily
data-driven instead of relying on particular handcrafted
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Figure 1: Illustration of the architecture of XferBench.

algorithms for quantifying a given phenomenon. This
means that XferBench can be easily scaled up in the
future as the field of emergent communication advances
and requires expanded means of evaluating emergent
languages. Finally, XferBench is distributed as a user-
friendly Python package, allowing researchers from
across the field of emergent communication to apply
XferBench to their own work on emergent communica-
tion.

Contributions This paper makes the following contri-
butions: (1) Introduces XferBench, a data-driven bench-
mark for evaluating the overall quality of an emergent
language, the first of its kind in emergent communica-
tion. (2) Provides a analysis of the quality human, syn-
thetic, and emergent language according to XferBench.
(3) Provides an easy-to-use Python implementation of
XferBench.

2 Related Work
Emergent Communication This paper is situated in
the field of emergent communication (a.k.a. emergent
language) which is generally covered by the review
Lazaridou and Baroni (2020). The field centers around
the invention of language by deep neural networks typ-
ically using multi-agent reinforcement learning tech-
niques. The study of emergent communication is in-
tended to (1) shed light on the origin and nature of
the human language (LaCroix, 2019; Moulin-Frier and
Oudeyer, 2020; Galke et al., 2022) and (2) provide an al-
ternative approach to problems in NLP and multi-agent
reinforcement learning which relies on constructing lan-
guage from the ground up and not just pre-existing (hu-
man) languages alone (Li et al., 2020; Yao et al., 2022;
Mu et al., 2023; Downey et al., 2023).

Transfer Learning Transfer learning for deep neural
networks is a key component of XferBench and follows
in general tradition of Zoph et al. (2016). Specifically,
this paper draws heavily from Yao et al. (2022) (see
also Papadimitriou and Jurafsky (2020); Artetxe et al.
(2020)) which introduce the technique of corpus trans-
fer for emergent language, that is, pretraining a neural
model on an emergent language corpus before tuning
it on a downstream human language task. In particular,
this paper takes Yao et al. (2022)’s idea of using cor-
pus transfer as a metric and adapts it into a benchmark
pipeline which can easily be applied to new emergent
languages.

Benchmarks Work such as Guo et al. (2023) and
Perkins (2022) have looked at benchmarking particular
aspects of emergent languages, but XferBench is the
first of its kind in benchmarking the overall quality of
an emergent language. Yao et al. (2022) also explicitly
provide a metric for emergent language quality, but this
metric is restrictive in that it can only be applied to emer-
gent languages derived from a model that takes images
(that have captions available) as input; this conflicts with
the design goals of XferBench discussed below.

Outside of emergent communication, XferBench is
more analogous to benchmarks for generative models
(e.g., Fréchet Inception Distance (Heusel et al., 2017)
for image generation) than more traditional NLP bench-
marks like GLUE (Wang et al., 2018) or SQuAD (Ra-
jpurkar et al., 2016). This is because emergent com-
munication is a generative enterprise, where one of the
main goals is to create samples (emergent languages)
which resemble a target distribution (human languages)
either generally or in some particular respect. Further-
more, metrics like FID are primarily self-supervised,
data-driven measures of similarity in the same vein as
XferBench. This is in contrast to more traditional NLP
benchmarks which combine data-driven methods with
many human judgments (i.e., through labeled exam-
ples).

3 XferBench

3.1 Design Goals
We frame the primary design goals of the benchmark as
three desiderata:
D1 Quantitatively capture a meaningful notion of the

overall quality1 of an emergent language from a
data-driven perspective.

D2 Be applicable to as wide a variety of emergent
languages as possible, not restricted to a specific
game, environment, or agent architecture.

D3 Be relevant and accessible to the broader EC/EL
community, by being: (a) easy to interpret, (b) min-
imally biased with regards to language typology,
(c) runnable with minimal coding experience, and
(d) runnable on modest hardware.

While there are other consideration in the benchmark,
these form the bulk of the motivation. In the following

1We are aiming for a meaningful notion of overall quality:
we are not claiming that this is the only meaningful notion nor
that it is the best among all possible notions of “quality”.
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paragraphs we expand upon the motivation for each
design goal.

D1: Quantifying quality D1 is the core of what a
benchmark seeks to do: to quantify a desirable property
of a given system such that it can be compared directly
to other systems (i.e., be an evaluation metric). There
are two distinct senses in which XferBench strives to-
wards this goal. First, XferBench measures how good an
emergent language is from a specifically machine learn-
ing perspective; that is, it addresses the question, “How
useful would this emergent language be for practical
machine learning tasks?” The second sense is more gen-
eral: XferBench addresses the question, “How similar
is an emergent language to human language according
to how deep neural networks process language?” That
is, it uses data-driven techniques to quantify the similar-
ity between emergent language and human language in
some general sense.

D2: Wide applicability D2 is intended to make Xfer-
Bench practically applicable to a wide range of EC
research. The field of EC has an especially diverse set
of possible approaches, environments, agents, games,
etc. Thus, it is especially salient that the benchmark be
designed with interoperability in mind, having minimal
assumptions as to the nature of the EC system being
evaluated.

The influence of this design goal is primarily seen
through the use of a textual corpus as the sole input to
the benchmark: the vast majority of EC systems gener-
ate utterances which can be represented as sequences of
discrete tokens.2 EC presents the opportunity for much
richer representations of its language: leveraging the
grounded semantics of the communication, incorporat-
ing non-verbal behavior, and even directly interacting
with the agents themselves. Yet such richer represen-
tations also limit the range of EC systems to which
XferBench could apply. Even if it is possible to define
some universal EC interface that could allow for richer
representations, the implementation cost for each and
every EC system to be tested is significant compared to
the ease of producing a corpus of utterances from the
emergent language.

D3: Easy-to-use D3 is critical to the success of Xfer-
Bench as a practical tool for diverse field of researchers—
a benchmark is expressly for the broader research com-
munity, and, as such, should be widely accessible. In
particular, D3a demands that XferBench be conceptu-
ally simple with results that can easily be reported, com-
pared, and incorporated into a research program. D3b
is relevant to both aspects of D1. First, if XferBench
is to gauge an EL’s practical use in machine learning,
it should seek to use a typologically diverse set of hu-
man languages in the downstream tasks. Second, since
XferBench is trying to capture a notion of “similarity

2In the minority case, there are EC methods which use
communication channels that are, for example, continuous
(Eloff et al., 2021) or even pictorial (Mihai and Hare, 2021).

to human language generally”, it is important to test
this against a wide range of language typologies so as
not to unnecessarily narrow the criteria for “similar to
human language”. D3c is particularly important for in-
corporating interdisciplinary researchers into the field
of EC who might not have a background in computer
programming. Finally, D3d ensures that XferBench is
accessible not only to labs and researchers with fewer
financial resources but also makes it much easier to in-
corporate into the fast-paced research and development
cycles prevalent in contemporary ML reserach.

3.2 Methods
The following procedure describes the benchmark (il-
lustrated in Figure 1):

1. Initialize a causal language model.
2. Train the model on the corpus of utterances from

the EL being evaluated.
3. Re-initialize the input and output (i.e., language

modelling head) embedding layers; this is the base
model.

4. For each downstream human language:
(a) Train the base model on the human language

data.
(b) Evaluate the cross-entropy on a held-out test

set of the human language.
5. Average the cross-entropies across the downstream

human languages; this is the corpus’s score on the
benchmark (lower is better).

The structure of the benchmark is derived from the cor-
pus transfer method presented in Yao et al. (2022).

Task For XferBench’s evaluation task, we choose
causal language modeling for a few different reasons.
In principle, language modeling is a component of a
wide variety of NLP tasks, especially generative tasks;
the prevalence of language modeling is in line with the
benchmark providing a very general notion of quality
that will be familiar to anyone acquainted with NLP.
On a practical level, language modeling is easy to ac-
quire data for—especially helpful for evaluating against
low-resource languages—and there are fewer hyperpa-
rameters and confounding variables compared to other
downstream tasks like machine translation or question-
answering. The main limitation from using language
modeling is that it itself is not a widespread downstream
task and so cannot guarantee direct correlation with met-
rics on more concrete downstream tasks (e.g., accuracy
on a QA task).

For the pretraining task we also use causal language
modeling. Due to requiring a wide applicability across
emergent languages (Design Goal 2), we select causal
language modeling for our pretraining task since it re-
quires only a corpus without any additional annotations
or stipulations.

Data The data for the transfer learning targets (viz.
human languages) comes from Wikipedia dumps (Wiki-
media Foundation) (under the GFDL and CC-BY-SA
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3.0 License) hosted by Hugging Face3. This dataset
provides a diverse set of languages each with sufficient
amounts of data. For our downstream human languages,
we use the same 10 languages presented in Yao et al.
(2022), namely: Basque, Danish, Finnish, Hebrew, In-
donesian, Japanese, Kazakh, Persian, Romanian, and
Urdu. Having a variety of languages reduces the like-
lihood that XferBench will be biased toward specific
typologies of human language (Design Goal 3b).

We use 15 and 2 million tokens for the pretraining
and fine tuning phases, respectively following Yao et al.
(2022). Datasets are always repeated or truncated to fit
the required size so that the number of training steps
stays constant.

Tokenization For tokenization we use byte pair en-
coding (BPE) (Gage, 1994) with a vocabulary size of
30 000 for all human languages. Using BPE across all
human languages is done primarily to simplify the im-
plementation and keep tokenization methods consistent
across all of the selected human languages. Emergent
languages are generally considered to be pre-tokenized
since most communication channels consist of one-hot
vectors; thus, no additional tokenization or preprocess-
ing is applied.4

Model For our model, we use a small configuration of
GPT-2 (Radford et al., 2019), similar to that used in Yao
et al. (2022): 6 attention heads, 6 layers, context length
of 256, and hidden size of 768 with the remainder of
the model parameters being the same as the defaults in
the Hugging Face Transformers implementation.5 This
yields 65 million parameters in total. We kept the model
on the smaller size to better suit it for the generally small
amounts of data emergent languages corpora provide as
well as to be more accessible (Design Goal 3d). Further
details are listed in Appendix A.1.

Metric Given the use of language modeling for our
evaluation task, we use token-level cross-entropy as the
evaluation metric on the downstream task. This is a very
common metric, making the outputs easy to interpret
(Design Goal 3a). Although perplexity is more common
as an evaluation of language models, the exponential na-
ture of perplexity leads to more circuitous analyses and
interpretation in our case, whereas cross-entropy is com-
paratively linear and additive (loosely speaking).6 For
the final score of the benchmark, we take the arithmetic
mean of the cross-entropy across the 10 downstream

3
https://huggingface.co/datasets/wikimedia/wikipe

dia/tree/97323c5edeffcf4bd6786b4ed0788c84abd24b03
4Whether the tokens of an EL should be treated as words or

subword units is an open question, although tokens as words
is more common (but see Ueda et al. (2023) for tokens as sub-
word units). Practically speaking, many emergent languages
are small enough that applying a 30 000-item BPE model
would severely reduce the corpus size.

5
https://huggingface.co/docs/transformers/v4.36.1

/en/model_doc/gpt2#transformers.GPT2Config
6For example, it would make more sense to use logarithmic

scales and geometric means to average and compare perplexi-
ties, but this would just be reverting back to cross-entropy!

human languages. That is, we define the benchmark’s
score for a given source language s as as hs:

hs = mean
t∈T

(hs,t) (1)

where hs,t is the test cross-entropy of a model trained
on source language s and finetuned and tested on target
language t; T is the set of target languages. Since the
score is based on cross-entropy, a lower score means
better performance.

3.3 Implementation
XferBench is implemented as a small Python code-
base which relies primarily on Hugging Face Trans-
formers (Wolf et al., 2019) (Apache-2.0 license)
and PyTorch (Paszke et al., 2019) (BSD-3-Clause
license) libraries. To run the benchmark, all that
is required is to install the environment with ei-
ther pip or conda, and run python -m xferbench

path/to/corpus.jsonl (Design Goal 3c). The in-
put corpus is simply formatted as a newline-separated
list of integer arrays, specifically in the JSON Lines for-
mat (see Appendix B for an example); a Hugging Face
dataset (backed by Apache Arrow) can also be used
for larger input corpora. The script executes all of the
steps of the benchmark and yields a single floating point
number which is that corpus’s score on XferBench (the
benchmark also saves the individual score across target
languages for further analysis). Finer-grained function-
alities are available and documented in the codebase.
The benchmark takes about 5.5 hours to run on a single
NVIDIA GeForce RTX 2080 Ti: 90 minutes to train the
base model and 30 minutes for tuning and testing on
each of the target languages (Design Goal 3d). Since the
model is tuned independently on each target language,
it is easy to parallelize this step and drastically shorten
the wall-clock time of XferBench.

The implementation is available at https://gi
thub.com/brendon-boldt/xferbench under
the MIT license.

4 Experiments
4.1 Procedures
XferBench The causal language modeling experiment
is simply running XferBench as described in Section 3.2
on the reference and emergent languages discussed in
Sections 4.2 and 4.3.

Machine translation The machine translation experi-
ment is structured similarly to XferBench except with
the downstream task being English-to-French transla-
tion (using the WMT 2014 dataset (Bojar et al., 2014)).
The primary purpose of this experiment is to determine
how well XferBench correlates with a more concrete
downstream task (especially one that incorporates lan-
guage modeling). We choose this language pair in part
to gauge the relative differences between the task lan-
guages and the baseline human languages (in contrast
to XferBench which we want to be largely agnostic
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to human languages). Looking at our reference hu-
man languages, we have: French, the target language
itself; Spanish, closely related to French; Russian and
Hindi, distantly related to French; and Chinese, Korean
and Arabic, not related to French. Instead of using a
GPT-2–based model, we use a BART-based model since
MT is a conditional generation task (see Appendix A.2
for details). The pretraining dataset size is increased
to 100 million due to the increased difficulty of this
task compared to language modeling. We evaluate the
translation performance with chrF (Popović, 2015) and
BLEU (Papineni et al., 2002) using the default Hugging
Face Evaluate metrics (derived from sacreBLEU (Post,
2018)). Evaluation is performed with beam sizes of 1,
3, and 5, and the resulting values are averaged.

We present three settings for this experiment. The
first is Full which tunes on 50 million source tokens at
a higher learning rate (1 · 10−4 for training and 2 · 10−4

for the AdamW optimizer (Kingma and Ba, 2015)),
which we found empirically to lead to the best perfor-
mance. The second is Frozen, in which we use the same
configuration as Full but freeze all but the embedding
layers before tuning the model for translation (as in Pa-
padimitriou and Jurafsky (2020); Artetxe et al. (2020)).
Finally, we also present Reduced which uses a smaller
tuning dataset of 10 million tokens and lower learning
learning (2 · 10−5); the lower rate helped the random
baselines converge better as well as showed better dis-
tinction between languages.

4.2 Reference languages
The following reference languages serve as a way to
contextualize the results of XferBench as well as to
validate that it is capturing some notion of the quality
of the emergent languages (cf. Section 4.4).

Human languages For our baseline line human lan-
guages, we selected French, Spanish, Russian, Chi-
nese, Korean, Arabic, and Hindi.7 Like the evaluation
languages, the data is derived from Wikipedia articles
(same source as the target languages).

Synthetic languages For synthetic languages, we fol-
low Yao et al. (2022) and use “Zipfian parentheses”
from Papadimitriou and Jurafsky (2020). This synthetic
dataset—referred to as Paren, real—is hierarchically
balanced “parentheses” where each parenthesis is the
token ID sampled from the unigram distribution of a hu-
man language (hence “Zipfian”). This datasets mimics
both the unigram distribution of a human language as
well as the basic recursive hierarchical structure. This
yields a reasonably strong yet simple baseline for syn-
thetic data.

We also test a fully synthetic dataset (Paren, synth)
which uses the same hierarchical parenthesis genera-
tion script from Papadimitriou and Jurafsky (2020), re-

7The main reason for choosing the high-resource language
is due to the higher data requirements of machine translation
experiment discussed below.

Setting Observ. |V | |M | |C|
Disc, small one-hot 6 11 700
Disc, large one-hot 100 31 100M
Recon, large one-hot 100 31 31M
Mu+, CUB embed 20 10 1.3M
Mu+, SW embed 14 7 1.2M
Yao+ embed 4028 15 43M

Table 1: Summary of key hyperparameters in the tested
emergent languages. Observations are either one-hot
vectors or embeddings. |V |, |M |, and |C| refer to the
vocabulary, message, and corpus size respectively.

placing the data-derived unigram distribution with Zipf–
Mandelbrot distribution:

f(wi) =
1

(i+ β)
α (2)

where f(wi) is non-normalized probability weight of
word w with 1-based index (rank) i, α = 1, β = 2.7
(Mandelbrot et al., 1953; Piantadosi, 2014).

Random baselines We use two random baselines.
The first is simply a uniform unigram distribution across
the whole vocabulary with no additional structure (re-
ferred to as Random). This baseline sheds light on
whether the optimization itself, no matter training data,
primes the network in some way for transfer learning.
The second “random” baseline is no pretraining at all
(No pretrain); that is, a network which has been freshly
initialized at the tuning stage. This baseline helps estab-
lish whether or not pretraining on other languages has
any impact beyond tuning alone.

4.3 Emergent languages
We present a summary of the key hyperparameters of
emergent languages in Table 1. The emergent language
corpora below come from reproductions from existing
codebases with the exception of Yao et al. (2022), whose
emergent language corpus is available for download.
Emergent languages which have a corpus size smaller
than the required size are simply repeated and shuffled
as many times as necessary so that the model receives
the same number of optimization steps.

Generic signalling game The first set of emergent
languages we test are generic versions of the of the sig-
nalling game (reference game) as implemented in EGG
(Kharitonov et al., 2019) (MIT license). These games
use one-hot vectors to represent attribute–value observa-
tions, that is, observations are elements of the set V |A|

where V is the set of values and |A| is the number of at-
tributes. The signalling game is one of the simplest and
most used games in emergent communication research.

The first two language are Disc, small and Disc, large
which are two configurations of the discrimination ver-
sion of the signalling game. Here, the sender makes an
observation and sends a message; then, the receiver must
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select the corresponding observation from a small set of
potential observations (like a multiple-choice question).
The small configuration consists of 4 attributes and 4
values with a small vocabulary size and medium mes-
sage length; this setting is intended to represent a toy
environment that one might find in an emergent com-
munication paper. The large configuration consists of
12 attributes and 8 values with a larger vocabulary and
longer message length. Both environments show 5 dis-
tractor observations to the receiver (i.e., 6-way multiple
choice). Both settings converge to a success rate >95%
compared to a random baseline of 17%.

The Recon, large environment is based on the recon-
struction version of the signalling game. In this version,
the receiver does not make any observations and in-
stead must recreate the sender’s observation based on
the message alone (similar to an autoencoder). The ob-
servation space has 8 attributes and 8 values with other
settings identical to that of Disc, large. Since the recon-
struction game considerably harder, the game does not
converge but does reach an overall accuracy of 0.014%
and per-attribute accuracy of 24% compared to a ran-
dom baseline of 0.000006% and 13% random baseline,
respectively. For details, see Appendix A.3.

Mu and Goodman (2021) present the second pair
of emergent languages which we test XferBench on
(code under MIT license). The emergent communica-
tion game is also a discriminative signalling game but
with (1) richer observations and (2) more abstract in-
formation needing to be communicated. In one setting,
the observations are images from ShapeWorld (Kuhnle
and Copestake, 2017) (Mu+, SW), a synthetic data of
various geometric shapes, and the other setting is CUB
(Wah et al., 2011) (Mu+, CUB) which contains labeled
images of birds; both settings encode features with a
CNN which is the passed to the sender and receiver. In
the basic discriminative game, the observation made by
the sender is the exact same one seen by the receiver.
Mu and Goodman (2021) instead uses a “concept game”
where the sender must communicate some abstract con-
cept shared by a set of input images which the receiver
will then have to a pick out from a different set of im-
ages, some sharing the same concept (e.g., isolating the
concept of “triangle” or “bird size”). The ShapeWorld
and CUB games had test accuracies of 71% and 66%
respectively compared to a random baseline of 50%,
comparable to the reported values in the paper. All
messages were taken from observations seen in training.

Yao et al. (2022) present a standard discrimination
game which uses natural images (Conceptual Captions
(Sharma et al., 2018) (images only)) as inputs to the
sender and receiver (code unlicensed but distributed on
GitHub with paper). The accuracy for the particular
emergent language corpus is not reported in the paper,
but comparable experiments from the paper would sug-
gest that it converged to an accuracy of >90% compared
to a baseline of 0.4% (i.e., 255 distractors).

4.4 Hypotheses
The following hypotheses are directly relate to deter-
mining whether or not XferBench is quantifying some
meaningful notion of the quality of a language (i.e.,
Design Goal 1).

(H1) Human languages will perform best, followed
by the synthetic and emergent languages, followed by
the random baselines.

(H2) Human languages will have similar performance
on XferBench (also key for Design Goal 3b); the intu-
ition here is that human languages share deep structural
similarities. This hypothesis is supported, in part, by
Artetxe et al. (2020). For the MT experiment, we ex-
pect to see the following order of performance based on
language relatedness: {French}, {Spanish}, {Russian,
Hindi}, {Chinese, Korean, Arabic}.

(H3) Languages with a larger vocabulary, longer mes-
sage length, and larger corpora will perform better. In
particular, we expect Disc, large will perform better than
Disc, small since the former is a more “complex” ver-
sion of the latter. This hypothesis (for vocabulary size
and message length) is supported by some experiments
in Yao et al. (2022, app. B.4).

(H4) XferBench will correlate well with scores on
the machine translation task (i.e., cross-entropy will
correlate negatively with chrF).

5 Results

5.1 XferBench

In Figure 2 we show the results of the benchmark (i.e.,
causal language modeling) on the various baselines.
Each mean is displayed with error bars showing the
95% confidence interval of mean as calculated with
bootstrapping (details in Appendix E). For reference,
the cross-entropies range from about 5.2 to 5.5 corre-
sponding to perplexities of 180 to 240.

The human languages show the best score (lowest
cross-entropy) on the benchmark with Chinese, Ko-
rean, and Arabic performing the best in one cluster
and French, Spanish, Russian, and Hindi performing
slightly worse in their own cluster (based on confidence
intervals). The synthetic and emergent languages all
show similar performance with only small variations
with the exception of the Disc, large language which is
better than the rest of the emergent languages but still
worse than the human languages. Finally, the random
baselines perform worse than the rest of the tested lan-
guages. No pretrain’s performance is worse than the
cluster of synthetic and emergent languages but better
than the fully random language (Random).

5.2 Machine Translation

The chrF scores of the machine translation experiment
are given in Table 2 (BLEU scores in Appendix D.1).
Additionally, we give Pearson correlation coefficients
between each setting and the scores generated by Xfer-
Bench (scatter plots shown in Appendix D.4). In all
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Figure 2: Average cross-entropy on target language datasets for each source language. Lower is better. Error bars
represent 95% confidence intervals.

Source Full Frozen Reduced

French 47.8 31.4 35.8
Spanish 48.0 27.9 34.8
Russian 47.6 29.0 37.2
Chinese 47.5 22.2 35.2
Korean 47.7 23.3 35.6
Arabic 47.8 27.6 36.6
Hindi 47.5 26.0 31.7
Paren, real 47.5 10.5 35.0
Paren, synth 48.2 12.0 34.3
Disc, large 47.7 24.7 30.7
Disc, small 14.3 16.2 17.3
Rec, large 22.5 18.4 25.4
Yao+ 4.0 20.1 25.6
Mu+, SW 3.3 18.4 23.3
Mu+, CUB 47.6 21.6 24.6
Random 1.8 3.0 19.7
No pretrain 11.4 4.3 28.1

Correl. with
XferBench

−0.75 −0.84 −0.79

Table 2: chrF scores across three English-to-French
machine translation settings. Correlation measured with
the Pearson correlation coefficient. Colors normalized
by column.

settings, we see that XferBench is strongly correlated
with the results of the machine translation experiment.

For the Full setting, the results are somewhat incon-
clusive. Human languages perform the best and simi-
larly to each other. Paren, real, Paren, syn, Disc, large,
and Mu+, CUB all match the performance of human
languages as well. The rest of the language perform
significantly worse than the aforementioned languages,
especially Yao+ and Mu+, SW (see Appendix F for sam-
ple outputs). In the case of Random, the training loss
did not decrease during training likely due to the high
learning rate.

In Frozen, we see the best correlation with the hy-
pothesis regarding human languages (as well as with

XferBench itself). Disc, large performs comparably to
the worst human languages and better than the rest of the
languages. The remainder of the synthetic and emergent
languages perform worse than the human languages but
better than the random baselines.

Finally, Reduced (i.e., lower learning rate and tuning
data) displays better separation than Full, but not as sig-
nificant as Frozen. Human languages still perform the
best, although they are matched by the Paren languages.
Disc, large underperforms the human languages but still
outperforms all other emergent languages. All emergent
languages, apart from Disc., large underperform the
No pretrain baseline. The better half of languages per-
formed better (compared to themselves) with a higher
learning rate while the lower half performed better with
a reduced learning rate.

6 Discussion
6.1 Experiments
The basic ordering of the language by XferBench fol-
lows basic a priori assumptions: random baselines per-
form the worst, human languages perform the best, and
emergent and synthetic languages are bounded above
and below by these (supporting Hypothesis 1). Human
languages cluster together in XferBench although there
is still variation with non-overlapping confidence inter-
vals (partially supporting Hypothesis 2).

Intra-EL differences Generally speaking, there is
very little variation shown by XferBench on the emer-
gent languages; nevertheless, we can still draw a hand-
ful of conclusions. First, Disc, large outperforms Disc,
small while sharing the same codebase, task, etc. and
differing only in message length, vocabulary size, obser-
vation space, and corpus size (supporting Hypothesis 3).
This result matches the trend seen in Yao et al. (2022)
that larger vocabularies and message lengths in an emer-
gent language lead to better performance on downstream
data. On the other hand, Disc, small performs similarly
to other languages with larger vocabularies and longer
message lengths (contradicting Hypothesis 3).
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Second, it seems that the underlying complexity of
the emergent communication game does not directly
correlate with XferBench score: the abstract visual rea-
soning of Mu+, SW and Mu+, CUB does not lead to it
outperform Disc, small. Additionally, the richer observa-
tions (i.e., image embeddings) of Mu+, CUB and Yao+
also do not, by their mere presence, confer an advantage
to the emergent language with respect to XferBench.

Finally, Disc, large and Recon, large both share hy-
perparameters in terms of the vocabulary size, message
length, and corpus size, yet Disc, large shows signifi-
cantly better performance on XferBench. This indicates
that XferBench is not solely concerned with surface-
level features as we see that the nature of the game (e.g.,
discrimination versus reconstruction, success rate) is
relevant as well.

Correlation with MT The results from the machine
translation experiment show strong, though not perfect,
(negative) correlation with XferBench (supporting Hy-
pothesis 4). For example, in all cases, Disc, large out-
performs all other emergent languages. This strongly
supports the notion that XferBench performance is pre-
dictive of downstream performance on more concrete
NLP tasks.

The results from the Full setting of the MT experi-
ment do show some correlation with XferBench but fail
to show expected trends in other ways. For example,
there is no clear ordering among the human languages
(e.g., French does not outperform Arabic). Addition-
ally Yao+ and Mu+, SW drastically underperform the
other emergent languages and the No pretrain baseline.
We suspect that these aberrations from expected results
come in part due to the high learning rate which cause
unstable training or generation. On the other hand, the
Frozen setting gives us the clearest ordering of human
languages that matches with a priori expectations; this
setting also has the strongest correlation with XferBench
scores. The Reduced setting shows better correlation
than Full but is not as clear as Frozen.

Random baselines In all of our experiments, the pre-
training on random tokens (Random) performed notably
worse than not pretraining at all (No pretrain), suggest-
ing that ill-conditioning the neural network can be a
significant hindrance to performing well on XferBench.
This is important to note in light of the fact that a per-
fectly one-to-one compositional language describing
uniformly sampled attribute–value vectors would yield
a corpus with a uniformly random unigram distribution.
This is to say, a fully compositional language, which is
often seen as desirable in emergent communication re-
search, could make for a very poor source of pretraining
data as shown by Random’s performance on XferBench.

This fact along with the observations about sensitiv-
ity to learning rate indicates that performance on Xfer-
Bench is not simply a function of the particular features
of the emergent language in relation to the downstream
human languages but also a function of the dynamics
of optimization (i.e., priming the model to adapt well).

Although this increases the difficulty of developing and
interpreting a tool like XferBench, it is almost an un-
avoidable part of deep learning methods.

6.2 Future work

We identify three main directions for future work with
XferBench. The first direction is determining what Xfer-
Bench is measuring and how its scores correlate with
the different factors of emergent languages. Yao et al.
(2022, app. B.4) pursued this on a small scale with fac-
tors like vocabulary size and message length, but there
exist a host of other factors worth exploring: speaker
model size, game design, language entropy, observation
modality, etc.

The second direction is more extensively investi-
gating the correlation of XferBench with downstream
tasks. We would expect that tasks that rely heav-
ily on a language model—such as automatic speech
recognition, abstractive summarization, and generative
question-answering—to correlate well with XferBench.
On the other hand, tasks that are more focused on
classification—such as named entity recognition, senti-
ment analysis, and multiple choice question-answering—
might not correlate as well.

Finally, XferBench would benefit greatly from im-
proved compute efficiency. For example, if the results
of XferBench could be replicated with a fraction of the
training steps, it could (1) allow for a larger number of
downstream languages to be tested which would reduce
the size of the confidence intervals, allowing more more
precise scoring. And (2), it would open the door to us-
ing larger models which would better capture the deeper
structures of language and likely correlate better with
realistic downstream tasks.

7 Conclusion

In this paper we have introduced XferBench, a first-
of-its-kind benchmark for evaluating the quality of an
emergent language corpus based on its transfer learn-
ing performance on human languages. This approach
to evaluating emergent language scales with data and
compute as opposed to requiring increasingly complex
handcrafted rules to measure the desirable qualities of
emergent language. We provide empirical results of
XferBench across human, synthetic, and emergent lan-
guages and demonstrate that these results correlate with
downstream performance on a machine translation task.
XferBench is implemented as an easy-to-use Python
package that will permit researchers in the field to easily
apply XferBench to new emergent languages.

8 Limitations

The first limitation of XferBench is that it relies on a
restricted interface with the emergent communication
system. With emergent communication we have ac-
cess not only to the grounding of all of the utterances
of the emergent language but also full access to the
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agents themselves. Language is fundamentally a con-
textual phenomenon, so only a small part of it can be
understood from looking at corpora in isolation. Thus,
although XferBench is much more broadly applicable
because of this restricted interface, it is also quite lim-
ited in what it can detect from a theoretical point of
view.

The other set of limitations we will discuss have to do
with the model and data size. First, the model and data
size (60M parameters and 15M tokens) are quite small
by contemporary standards, limiting the direct applica-
bility of results from XferBench to relevant downstream
tasks involving large language models, for example. On
the other hand, scaling up the models, data, and methods
of XferBench comes with its own difficulties. First, it
would start to bias the benchmark towards high-resource
languages, as only those could provide the necessary
data to accommodate larger models. Second, it would
make XferBench, which is already relatively slow as a
metric (6 GPU-hours) even slower. This would decrease
the speed of the iterative design process of emergent
communication systems and, thus, the utility of the met-
ric as a whole.
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Korhonen. 2020. Emergent communication pretrain-
ing for few-shot machine translation. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 4716–4731, Barcelona,

1483

https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
https://api.semanticscholar.org/CorpusID:1391836
https://api.semanticscholar.org/CorpusID:1391836
https://api.semanticscholar.org/CorpusID:1391836
https://api.semanticscholar.org/CorpusID:226222037
https://api.semanticscholar.org/CorpusID:226222037
https://api.semanticscholar.org/CorpusID:226222037
https://aclanthology.org/2023.mrl-1.17
https://aclanthology.org/2023.mrl-1.17
https://api.semanticscholar.org/CorpusID:242757488
https://api.semanticscholar.org/CorpusID:242757488
https://api.semanticscholar.org/CorpusID:242757488
https://api.semanticscholar.org/CorpusID:59804030
https://api.semanticscholar.org/CorpusID:59804030
https://openreview.net/forum?id=gx20B4ItIw
https://openreview.net/forum?id=gx20B4ItIw
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://doi.org/10.18653/v1/D19-3010
https://doi.org/10.18653/v1/D19-3010
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://api.semanticscholar.org/CorpusID:16515835
https://api.semanticscholar.org/CorpusID:16515835
https://api.semanticscholar.org/CorpusID:16515835
http://arxiv.org/abs/1911.11668
http://arxiv.org/abs/1911.11668
http://arxiv.org/abs/1911.11668
https://api.semanticscholar.org/CorpusID:219260403
https://api.semanticscholar.org/CorpusID:219260403
https://api.semanticscholar.org/CorpusID:4737664
https://api.semanticscholar.org/CorpusID:4737664
https://api.semanticscholar.org/CorpusID:4737664
https://doi.org/10.18653/v1/2020.coling-main.416
https://doi.org/10.18653/v1/2020.coling-main.416


Spain (Online). International Committee on Compu-
tational Linguistics.

Benoit Mandelbrot et al. 1953. An informational theory
of the statistical structure of language. Communica-
tion theory, 84:486–502.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. Comput. Lin-
guistics, 19:313–330.

Daniela Mihai and Jonathon S. Hare. 2021. Learning to
draw: Emergent communication through sketching.
In Neural Information Processing Systems.

Clément Moulin-Frier and Pierre-Yves Oudeyer. 2020.
Multi-agent reinforcement learning as a computa-
tional tool for language evolution research: His-
torical context and future challenges. ArXiv,
abs/2002.08878.

Jesse Mu and Noah Goodman. 2021. Emergent commu-
nication of generalizations. In Advances in Neural
Information Processing Systems, volume 34, pages
17994–18007. Curran Associates, Inc.

Yao Mu, Shunyu Yao, Mingyu Ding, Ping Luo, and
Chuang Gan. 2023. Ec2: Emergent communication
for embodied control. In 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 6704–6714.

Isabel Papadimitriou and Dan Jurafsky. 2020. Learning
music helps you read: Using transfer to study linguis-
tic structure in language models. In Conference on
Empirical Methods in Natural Language Processing.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Hugh Perkins. 2022. Icy: A benchmark for measuring
compositional inductive bias of emergent communi-
cation models.

Steven T Piantadosi. 2014. Zipf’s word frequency law
in natural language: a critical review and future direc-
tions. Psychon. Bull. Rev., 21(5):1112–1130.
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A Hyperparameters
A.1 Causal language modeling
For values not listed, see Hugging Face Transformers’
defaults at https://huggingface.co/docs/
transformers/v4.36.1/en//model_doc/g
pt2#transformers.GPT2Config.

• Model: GPT-2
• Tokenizer: Byte pair encoding
• Hidden size: 768 (default)
• Vocabulary size: 30 000
• Context length: 256
• Number of layers: 6
• Number of attention heads: 6
• Learning rate: 1 · 10−4

• Optimizer: AdamW
• Weight decay: 0.01
• Learning rate schedule: linear (to 0)
• Batch size: 32
• Train dataset size: 15 · 106 tokens
• Train epochs: 5
• Tune dataset size: 2 · 106 tokens
• Train epochs: 10

A.2 Machine translation
For values not listed, see Hugging Face Transformers’
defaults at https://huggingface.co/docs/
transformers/v4.36.1/en/model_doc/ba
rt#transformers.BartConfig. The following
is for the Full setting.

• Model: BART
• Training objective: text infilling only (see note

below)
• Tokenizer: Byte pair encoding
• Hidden size: 512
• Vocabulary size: 30 000
• Context length: 512
• Number of encoder layers: 6
• Number of decoder layers: 6
• Number of encoder attention heads: 8
• Number of decoder attention heads: 8
• Encoder feedforward dimension: 2048
• Decoder feedforward dimension: 2048
• Train learning rate: 1 · 10−4

• Tune learning rate: 2 · 10−4

• Optimizer: AdamW
• Weight decay: 0.01
• Learning rate schedule: linear (to 0)
• Batch size: 32
• Train dataset size: 100 · 106 tokens
• Train epochs: 5
• Tune dataset size: 50 · 106 tokens
• Train epochs: 3
• Test beam size: 1, 3, 5 (final metric averaged across

each size)
• Test context size: 128

The objective used to pretrain BART was text infilling
only; we cannot use the sentence permutation objective
because we do not know a priori what constitutes a
sentence in an emergent language, hence we do not use
it for any settings. For the Frozen setting, all is as above,
but all non-embedding layers are frozen for the duration
of tuning. For the Reduced setting, all is as above except
for the following:

• Tune learning rate: 1 · 10−5

• Tune dataset size: 10 · 106

A.3 Generic signalling game
We use the following hyperparameters for the Disc,
small emergent language.

• Game (from EGG):
egg.zoo.basic_games.play

• Message optimization: Gumbel-softmax (as op-
posed to REINFORCE)

• Game type: discrimination
• Number of attributes: 4
• Number of values: 4
• Number of distractors: 5
• Vocabulary size: 6
• Max message length: 10
• Number of examples: 32 768
• Batch size; 1024
• Number of epochs: 10
• Sender hidden size: 256
• Receiver hidden size: 512
• Sender embedding size: 32
• Receiver embedding size: 32
• Sender network type: GRU
• Receiver network type: GRU
• Learning rate: 0.001

The Disc, large setting uses the same hyperparameters
as above with the exception of the following.

• Number of attributes: 12
• Number of values: 8
• Number of distractors: 5
• Number of examples: 3.5 · 106
• Max message length: 30
• Vocabulary size: 100
• Number of epochs: 100

The Recon, large setting is as in Disc, large with the
following changes.

• Game type: reconstruction
• Number of attributes: 8
• Number of distractors: N/A
• Number of examples: 1 · 106
• Number of epochs: 10

B Example of benchmark input format
The input format for the benchmark is simple: integer
arrays in a JSON format separated by newlines (i.e.,
JSON Lines, JSONL, *.jsonl). The following is an
example of file contents in this format:

[3, 1, 4, 1, 5, 9, 2]
[6, 5, 3, 5, 8, 9, 7, 9, 3]
[2, 3, 8, 4]
[6, 2, 6, 4, 3, 3]
[8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4]

C Computing resources used
See Table 3 for rough estimates of the compute used
in writing this paper. Most experiments were run on a
shared cluster comprising approximately 150 NVIDIA
A6000 (or comparable) GPUs.
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Item Base GH n items Total

XferBench 6 45 270
MT 8 50 400
Other experiments 2 50 100

Total 770

Table 3: Estimate of compute used for this paper in
GPU-hours (specifically NVIDIA RTX 2080 Ti–hours).

Source Full Frozen Reduced

French 12.93 5.33 6.61
Spanish 13.32 4.52 6.35
Russian 12.93 4.37 7.02
Chinese 12.71 3.04 6.03
Korean 12.83 2.95 6.36
Arabic 13.12 4.16 6.74
Hindi 12.72 3.20 5.24
Paren, real 12.60 0.65 6.26
Paren, synth 13.19 0.82 6.15
Disc, large 12.93 2.08 4.44
Disc, small 0.17 0.19 0.38
Rec, large 1.92 0.86 2.50
Yao+ 0.01 1.04 2.57
Mu+, SW 0.00 1.05 1.86
Mu+, CUB 12.71 1.45 2.35
Random 0.00 0.00 1.02
No pretrain 0.10 0.06 3.43

Table 4: BLEU scores for machine translation experi-
ment. Colors normalized by column.

D Additional results

D.1 BLEU scores for machine translation
See Table 4.

D.2 Raw cross-entropies on XferBench
See Table 5.

D.3 Writing system matrix for normalized
XferBench scores

See Tables 7 and 8. Scores for reach writing system
are aggregated by taking the mean. Table 6 gives the
writing system classification for the languages used in
the experiments. Although the class imbalance makes it
impossible to draw any definitive claims, the preliminary
results do not suggest any correlation in XferBench
between the writing systems of the source and target
languages.

D.4 Scatter plots for XferBench and MT
See Figure 3.

E Cross-entropy confidence interval
computation

Let s ∈ S and t ∈ T represent source and target
languages, respectively. hs,t represents the test cross-
entropy of a model pretrained on s and evaluated on t.
As sated in Equation (1), the score on XferBench is the
mean cross-entropy across all target languages:

hs = mean
t′∈T

(hs,t′) . (3)

We would like to calculate a confidence interval (i.e., h−
s

and h+
s ) for a source language’s mean cross-entropy us-

ing the different cross-entropies on the target languages
(i.e., hs,t for t ∈ T ), yet these samples are not i.i.d.,
since the mean of cross-entropy each target language
can vary. Thus, if we would like to use bootstrapping to
calculate confidence intervals, we must first normalize
the cross-entropies. Let ĥs,t be the normalized score:

ĥs,t =
hs,t − means′∈S (hs′,t)

stdevs′∈S (hs′,t)
. (4)

Given the normalized scores, we can now bootstrap in
order to compute confidence intervals for ĥs (i.e., in the
normalized space).8 Let ĥ+

s and ĥ−
s be the upper and

lower bounds of the confidence interval computed using
bootstrapping in the normalized space. We can now
translate these back into the raw cross-entropy space
using the means and standard deviations from before:

h+
s = ĥ+

s · stdev
s′∈S

(hs′,t) + mean
s′∈S

(hs′,t) (5)

h−
s = ĥ−

s · stdev
s′∈S

(hs′,t) + mean
s′∈S

(hs′,t) . (6)

8This is not intended to be statistically rigorous. Our cross-
entropies are unlikely to be normally distributed, but this still
be helpful for generally gauging uncertainty.
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Source Danish Basque Persian Finnish Hebrew Indonesian Japanese Kazakh Romanian Urdu Mean

French 4.93 6.03 5.04 5.62 5.48 4.87 5.23 5.46 5.15 4.43 5.22
Spanish 4.92 6.06 5.03 5.61 5.47 4.82 5.25 5.46 5.12 4.42 5.22
Russian 4.94 6.04 5.04 5.65 5.48 4.88 5.27 5.48 5.14 4.45 5.24
Chinese 4.89 6.02 5.01 5.58 5.43 4.76 5.18 5.44 5.12 4.39 5.18
Korean 4.89 6.01 5.02 5.57 5.44 4.78 5.20 5.45 5.12 4.38 5.19
Arabic 4.90 6.02 5.02 5.59 5.45 4.81 5.22 5.44 5.13 4.40 5.20
Hindi 4.94 6.06 5.08 5.65 5.47 4.83 5.29 5.52 5.20 4.46 5.25
Paren, real 5.07 6.11 5.11 5.75 5.59 5.06 5.38 5.57 5.22 4.56 5.34
Paren, synth 5.08 6.13 5.14 5.74 5.58 5.09 5.43 5.58 5.26 4.57 5.36
Disc, large 5.00 6.06 5.11 5.71 5.52 4.92 5.34 5.56 5.25 4.49 5.30
Disc, small 5.09 6.06 5.17 5.80 5.59 5.05 5.41 5.65 5.31 4.56 5.37
Rec, large 5.09 6.06 5.16 5.79 5.57 5.04 5.41 5.64 5.30 4.55 5.36
Yao+ 5.07 6.03 5.17 5.79 5.56 5.03 5.41 5.65 5.31 4.56 5.36
Mu+, SW 5.09 6.10 5.18 5.80 5.58 5.05 5.42 5.65 5.33 4.58 5.38
Mu+, CUB 5.08 6.06 5.18 5.79 5.58 5.05 5.42 5.65 5.32 4.56 5.37
Random 5.23 6.17 5.31 5.92 5.71 5.22 5.55 5.76 5.45 4.72 5.50
No pretrain 5.17 6.10 5.23 5.85 5.66 5.14 5.47 5.68 5.38 4.65 5.43
Mean 5.02 6.07 5.12 5.72 5.54 4.96 5.35 5.57 5.24 4.51 5.31

Table 5: Cross-entropies across all source and target languages. Colors normalized by column.
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Figure 3: Scatter plots showing XferBench score versus machine translation score.
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Type Writing System Language

Abjad Arabic
ar
fa
ur

Hebrew he

Abugida Devanagari hi

Alphabet

Cyrillic kk
ru

Hangul ko

Latin

da
es
eu
fi
fr
id
ro

Logographic Chinese zh

Mixed Japanese ja

Table 6: Coarse and fine classifications of writing sys-
tems of human languages (source and target) used in the
experiments.

F Error analysis
In the Full setting of the machine translation task, the
Yao+ and Mu+, SW settings perform worse than ex-
pected (a priori and compared to the other results in
the setting). Validation loss converged while chrF and
BLEU scores remained near zero. We provide a couple
examples (taken from the predefined test set of WMT
2014) of model output to provide some insight into the
reason for this. No post processing used, generation
is capped at 50 tokens, and “\u0000” represent single
non-printable characters.

Example 1 Input: “And while Congress can’t agree
on whether to proceed, several states are not waiting.”

Reference: “Et tandis que les membres du Congrès
n’arrivent pas à se mettre d’accord pour savoir s’il faut
continuer, plusieurs États n’ont pas attendu.”

[Model pretrained on] French: “#Et alors que le Con-
grès ne peut pas convenir de poursuivre, plusieurs États
ne sont pas en attente. » (traduction libre) Le Parlement
européen. Le Parlement européen est d’avis que le Par-
lement européen doit être en mesure de faire preuve#”

Disc, large: “#Et bien que le Congrès ne puisse
pas convenir de la marche à suivre, plusieurs États ne
sont pas en attente.\u2028\u2028[Traduit par la Rédac-
tion]\u2028(Traduit par la Rédaction)\u2028(Tra#”

Yao+: “#Annexe II, par.\xa02.2.2.2.2.2.2.2.2.2.2.2.2.
2.2.2.2.2.2.2.2.#”

Mu+, SW: “#Annexe II.\xa0\xa0: Appendice I.\xa0I.
\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.
\xa0I.\xa0I.\xa0I#”

Example 2 Input: “This really is a must for our na-
tion.”

Reference: “Cela est vraiment indispensable pour
notre nation.”

French: “#C’est vraiment une nécessité pour notre
nation. Nous devons y parvenir. Nous devons y par-
venir. Nous devons y parvenir. Nous devons y parvenir.
Nous devons y parvenir. Nous devons y parvenir. Nous
devons y parvenir. Nous devons y#”

Disc, large: “#C’est vraiment un devoir pour
notre nation. C’est un devoir.\u2028\u2028(...)\u2028
\u2028(...)\u2028(...)\u2028(...)\u2028(...)\u2028(...)
\u2028(...)\u2028(#”

Yao+: “#Annexe II, par.\xa02.2.2.2.2.2.2.2.2.2.2.2.2.
2.2.2.2.2.2.2.2.#”

Mu+, SW: “#Annexe II.\xa0\xa0: Appendice I.\xa0I.
\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.
\xa0I.\xa0I.\xa0I#”

Discussion Although all of the models have trouble
terminating properly, the French and Disc, large models
(which have high chrF scores) clearly condition their
generation on the text, whereas Yao+ and Mu+, SW give
the same output regardless of the input. Although this
is unexpected, we can see in the Full setting in Figure 3
that there is sharp drop off between high-performing
and low-performing languages. We suspect that the
higher learning rate during tuning caused this bimodal
distribution of results and is at least in part responsible
for the poor performance Yao+ and Mu+, SW models
on the MT experiment’s Full setting.
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Source Arabic Cyrillic Hebrew Japanese Latin

Arabic −0.65 −0.81 −0.42 −0.35 −0.56
Chinese −1.05 −0.93 −1.60 −1.46 −1.00
Cyrillic 0.63 0.68 1.07 0.90 0.78
Devanagari 1.62 1.93 0.39 1.47 1.23
Hangul −0.98 −0.41 −0.89 −0.80 −1.04
Latin 0.22 −0.22 0.72 0.12 0.29

Table 7: Normalized XferBench scores by writing system (lower is better). Color is normalized across all values.

Source Abjad Alphabet Mixed

Abjad −0.57 −0.60 −0.35
Abugida 1.21 1.35 1.47
Alphabet 0.15 0.06 0.09
Logographic −1.23 −0.99 −1.46

Table 8: Normalized XferBench scores by writing system type (lower is better). Color is normalized across all
values.
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