
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 1505–1523

June 16-21, 2024 ©2024 Association for Computational Linguistics

A Symbolic Framework for Evaluating Mathematical Reasoning
and Generalisation with Transformers

Jordan Meadows1, Marco Valentino2, Damien Teney2, André Freitas1,2
1University of Manchester, United Kingdom

2Idiap Research Institute, Switzerland
jordan.meadows@postgrad.manchester.ac.uk

{marco.valentino, damien.teney, andre.freitas}@idiap.ch

Abstract

This paper proposes a methodology for gen-
erating and perturbing detailed derivations of
equations at scale, aided by a symbolic engine,
to evaluate the generalisability of Transform-
ers to out-of-distribution mathematical reason-
ing problems. Instantiating the framework in
the context of sequence classification tasks, we
compare the capabilities of GPT-4, GPT-3.5,
and a canon of fine-tuned BERT models, ex-
ploring the relationship between specific oper-
ators and generalisation failure via the pertur-
bation of reasoning aspects such as symmetry
and variable surface forms. Surprisingly, our
empirical evaluation reveals that the average in-
distribution performance of fine-tuned models
surpasses GPT-3.5, and rivals GPT-4. However,
perturbations to input reasoning can reduce
their performance by up to 80 F1 points. Over-
all, the results suggest that the in-distribution
performance of smaller open-source models
may potentially rival GPT by incorporating ap-
propriately structured derivation dependencies
during training, and highlight a shared weak-
ness between BERT and GPT involving a rel-
ative inability to decode indirect references to
mathematical entities. We release the full code-
base, constructed datasets, and fine-tuned mod-
els to encourage future progress in the field1.

Out-of-distribution generalisation in Transform-
ers (Vaswani et al., 2017) is a fundamental and
desirable property (Schlegel et al., 2023; Belinkov,
2022; Teney et al., 2020), especially in domains
that require rigorous and controlled reasoning such
as mathematics, physics, biomedicine, and soft-
ware verification (Frieder et al., 2023; Lee et al.,
2022; Valentino et al., 2022b; Lewkowycz et al.,
2022; Drori et al., 2022; Welleck et al., 2021; Ku-
mar et al., 2020). Various strategies have been pro-
posed to evaluate model generalisability, including
direct input manipulation (Rozanova et al., 2023b;

1https://github.com/jmeadows17/
transformers-for-calculus

Figure 1: We present a framework for generating and
perturbing high-quality mathematical derivations at
scale to systematically evaluate mathematical reasoning
and generalisation in Transformers.

Stolfo et al., 2022; Nie et al., 2020; Kaushik et al.,
2019; Welleck et al., 2022) and probing on the
internal representation (Rozanova et al., 2023a;
Ravichander et al., 2021; Elazar et al., 2021; Veitch
et al., 2020). However, the adoption of such meth-
ods for evaluating generalisation on complex, multi-
step reasoning problems is still limited. Current
interventional approaches are challenged by the
difficulty of isolating confounding factors, and for-
malising the expected causal mechanisms that un-
derpin models’ predictions (Rozanova et al., 2023b;
Stolfo et al., 2022; Ribeiro et al., 2020; Kaushik
et al., 2019). Particularly in the mathematical do-
main, these hurdles impact the scope and reliability
of causality and robustness studies (Pearl, 2009;
Shreya et al., 2022).

We leverage the rich environment of symbolic
engines to design a data generation and evaluation

1505

https://github.com/jmeadows17/transformers-for-calculus
https://github.com/jmeadows17/transformers-for-calculus


framework that can produce high-quality mathe-
matical reasoning steps possessing diverse sym-
bolic properties at scale. In particular, strict sym-
bolic rules offer a systematic approach to perturb-
ing mathematical reasoning, and hence evaluat-
ing the generalisation of neural models to out-of-
distribution textual aspects such as symmetry and
variable surface forms. This allows the exploration
of deep relationships between semantic and syn-
tactic elements of math reasoning and model gen-
eralisability across diverse subdomains, extending
beyond the limited interventional scope of previous
works (Stolfo et al., 2022; Welleck et al., 2022; Pa-
tel et al., 2021; Ribeiro et al., 2020; Kaushik et al.,
2019; Yao et al., 2021). Additionally, we dialogue
with an impending data scarcity problem, where
high-quality data is forecast to be outpaced by the
training needs of models within the decade (Villalo-
bos et al., 2022). Symbolic engines (Meurer et al.,
2017; Wolfram, 1999) facilitate the generation of
annotated mathematical reasoning, which allows
the construction of high-quality datasets for vari-
ous tasks. We combine 18 symbolic operators with
rules that guide the exploration of equational state
spaces and generate derivations, then perturb and
adapt them for exemplar entailment tasks. In this
case, these are sequence classification tasks that
focus on operator usage in reasoning chains.

To demonstrate our approach, we fine-tune a
canon of BERT-based models used in mathemati-
cal language processing (Li et al., 2023; McNichols
et al., 2023; Meadows and Freitas, 2023; Zhong
et al., 2022), and test in-context learning methods
with GPT-3.5 and GPT-4, to determine their capac-
ity for recognising coherent math reasoning (within
this scope), and to abstract fundamental properties
impacting their ability to generalise. To summarise,
the paper offers the following contributions:
(1.) A general approach to generating annotated
derivations of controllable complexity levels, in-
volving premise equation generation (Alg. 2) and
the sequential application of operators to prior equa-
tions to derive new results (Alg. 3).
(2.) A systematic and scalable methodology to per-
turb various aspects of mathematical data including
syntax and semantics, implementing several pertur-
bations for evaluation.
(3.) An experimental framework for evaluating
the out-of-distribution generalisation of models on
mathematical reasoning tasks (Fig. 1).
(4.) Example instantiation of the framework involv-
ing sequence classification tasks. The generated

datasets include static and perturbed derivations
totalling over 200K examples.
(5.) An extensive evaluation of various BERT-
based and GPT models culminating in a discussion
relating the limited generalisability of models with
respect to key operators and mathematical content.

In short, the proposed mathematical data genera-
tion and perturbation approach may be integrated
into evaluation frameworks for the purpose of test-
ing model generalisability to specific distribution
shifts, such as specific surface forms of equations
or operator usage. We apply the framework to
demonstrate the brittleness of fine-tuned encoder
models, and reveal underlying weaknesses shared
by both BERT and GPT.

1 Related Work

Computer algebra. SymPy (Meurer et al., 2017)
is a computer algebra system incorporated within
numerous approaches. For example, Chen et al.
(2022) solve numerical reasoning tasks including
simple math elements such as numbers, by prompt-
ing language models to generate SymPy solvable
code. Mandlecha et al. (2022) use SymPy to gener-
ate data for answering questions ranging from arith-
metic to calculus without exploring generalisability
aspects. Hu and Yu (2022) solve a similar array of
problems from a large-scale dataset (Saxton et al.,
2019), and test for generalisability to an extrapola-
tion set of problems. Drori et al. (2022) fine-tune
the decoder model, Codex (Chen et al., 2021), on
a dataset of questions from MIT’s university-level
mathematics courses, generating SymPy solution
code. Lample and Charton (2019) train a model to
integrate and solve differential equations, but do
not explore generalisation (Davis, 2019). Welleck
et al. (2022) conduct similar experiments using a
single model and a single operator (integration)
on a single task. We consider 18 operations, 7
models, multiple tasks, and emphasize multi-step
equational reasoning.

Reasoning with mathematical language.
Transformers (Saxton et al., 2019; Clark et al.,
2020; Rabe et al., 2020) defined the state-of-the-art
in multiple subdomains and tasks in mathematical
language processing (Azerbayev et al., 2023; Mead-
ows and Freitas, 2023; Lewkowycz et al., 2022;
Drori et al., 2022). Transformer encoder models
obtain leading performance in related tasks (Fer-
reira et al., 2022; Lai et al., 2022; Zhong et al.,
2022; Peng et al., 2021; Valentino et al., 2022a;

1506



Tran et al., 2022; Reusch et al., 2022; Novotnỳ and
Štefánik, 2022). The evaluation of the mathemat-
ical capabilities of GPT models, and the compari-
son between GPT and smaller fine-tuned models
when deriving equations, has been considered else-
where (Meadows et al., 2023; Frieder et al., 2023;
Azerbayev et al., 2023).

Data augmentation, synthetic benchmarks,
and evaluation frameworks. Numerous ap-
proaches exist related to evaluating the mathemat-
ical and symbolic capabilities and robustness of
models (Li et al., 2020). Stolfo et al. (2022) per-
turb elements of math word problems (Liang et al.,
2022) such as numerical operands of implicit arith-
metic operations, and natural language, inspired by
related work in causal analysis (Pearl, 2022; Chris-
tiansen et al., 2021; Patel et al., 2021; Ribeiro et al.,
2020). Mirroring other notable work (Welleck
et al., 2022), their approach focuses on one or
two task-dependent perturbations. Our approach
to generating and perturbing data is largely task-
independent, and allows for the complex augmenta-
tion of operators, variables, expressions, and equa-
tions in multi-hop reasoning chains. INT (Wu et al.,
2020) is a similar generation metric more closely
aligned with formal theorem proving (Polu and
Sutskever, 2020; Moura et al., 2015). Our work
is aligned with computer algebra systems (Meurer
et al., 2017) and more applied mathematical do-
mains (e.g., physics, engineering), and includes
calculus.

2 Generating and Perturbing Derivations
with Symbolic Engines

The data generation approach outputs and perturbs
multi-step reasoning involving step annotations and
equations. A model learns mathematical reasoning
in the context of a given task, is evaluated on an
in-distribution test set, then each element of that
set is symbolically perturbed and the difference in
model inference due to the perturbation contributes
to a generalisability measure for the model (Fig. 1).

To outline this process, given a vocabulary of
symbols V and set of computer algebra operations
R, each set is sampled from to ultimately gen-
erate an ordered list of steps si ∈ D, where D
represents the output derivation. An initial rea-
soning step s1 = (premise, annotation) is gener-
ated such that D = [s1]. An operation r ∈ R
is sampled, which in its most general form ac-
cepts two operands (arity 2). The first operand

is an equation sj,1 from tuple sj ∈ D. A suit-
able secondary variable (∈ V), expression, or
equation operand m is extracted from D, and the
next equation is generated by applying operation
r through si+1,1 = r(sj,1,m). The annotation
si+1,2 is also a list containing (most generally) the
name of the operation, the equation index, and
secondary operand, such that si+1,2 = [r, j,m′]
(where m′ is a variable/expression string or equa-
tion index representing operand m). Therefore,
step si+1 = (r(sj,1,m), [r, j,m′]). If D = [s1],
then i = j = 1, and the derivation updates such
that D = [s1, s2]. This process repeats until the
derivation reaches a target length.

Given a specific task (e.g., sequence classifica-
tion), a derivationD is adapted to form model input
D′, such that a static test set is sampled from the
same distribution as the training set or in-context
examples. This static set X contains task examples
D′

i and labels. For all D′
i ∈ X , a perturbation P

is applied to corresponding initial derivation Di to
form a perturbed derivation P(Di), which is sim-
ilarly adapted to form an out-of-distribution per-
turbed task example P(Di)

′ ∈ P , where P is the
out-of-distribution test set corresponding to static
set X , such that P : X → P .

Now that we have static (in-distribution) and
perturbed (out-of-distribution) reasoning pairs
(Xi, Pi), for a given model M we can evalu-
ate its generalisability by comparing its static
and perturbed predictions, respectively M(Xi)
and M(Pi). Together with the respective labels,
these outputs allow comparisons between aggre-
gate scores (Tab. 1 and 2), but also a pair-wise anal-
ysis involving more sophisticated logic involving
M(Xi) andM(Pi), which may include perturba-
tions other than P (Tab. 3).

This provides a highly controllable symbolic
framework for evaluating mathematical generalisa-
tion capabilities of models. The approach produces
mathematical reasoning at scale, and can both im-
prove the depth of mathematical corpora through
the generation of underrepresented reasoning, and
serve as the backbone for testing model generalis-
ability in numerous settings.

2.1 Premise Generation
To generate premise equations we use a vocabu-
lary (uppercase and lowercase English characters,
excluding {i, e, d, O}) and a set of 18 operators
defined within the symbolic engine, separated by
arity. For instance, arity “0” represents the intro-

1507



duction of a premise. Arity 1 includes operations
that only accept a single variable, expression, or
equation (e.g., simplification). Arity 2 includes
those such as addition and integration.

Alg. 2 (Appendix D) describes how operators are
recursively applied to vocabulary elements and ex-
pressions to produce premises such as: z(n, f) =
f + n, J(p, w) = ep

w
, and Q(x) = log(x).

To give a brief description, a symbol is first sam-
pled from the vocabulary. Then an operator with
a specific arity is selected, which is applied to the
symbol (potentially after selecting another symbol
depending on the arity) to form the RHS of an equa-
tion. If C = 1, this current RHS will feature as the
final RHS of the premise. Otherwise, operators will
be re-selected and re-applied to the current RHS
up to C − 1 times. Once the premise has reached a
sufficient complexity, a unique symbol is sampled
for the equation LHS, which represents a function
of the RHS variables, and the LHS and RHS are
conjoined as a SymPy equation.

2.2 Derivation Generation

Algorithm 1 Generate Derivation Step

1: procedure STEP(D)
2: Initialise operator sets R0, R1, and R2,

and set sampling probabilities
3: Sample arity a ∈ {0, 1, 2}
4: if a = 0 then
5: Sample operator R ∈ R0

6: Generate equation using R, annotation
7: else if a = 1 then
8: Sample unary operator R ∈ R1

9: Sample equation e from D
10: Generate equation R(e) and annotation
11: else if a = 2 then
12: Sample binary operator R ∈ R2

13: Sample equation e from D
14: Sample variable, expression, or equa-

tion, m, from D
15: Generate equation R(e,m) and anno-

tation
16: end if
17: return (equation, annotation) if equation

is valid else None
18: end procedure

To generate a derivation, a premise equation gener-
ated by Alg. 2 and an annotation are initially stored
as a tuple (equation, annotation) within a list D.
This list is input to the Step procedure (Alg. 1)

which considers any mathematical elements de-
fined in D so far, and uses them as input to the
operators to generate new (equation, annotation)
tuples. Tuples containing equations that pass va-
lidity checks such as maximum character length
(250), LHS/RHS redundancies (e.g., x = x), and
checks related to integration (etc.), are appended to
D. A final derivation is outputted when D exceeds
a target length. This process is described further in
Alg. 3, including a description of its output rate (7
seconds/step on mid-range CPU), hyperparameters,
and equation sampling, in Appendix E.

2.3 Perturbations
To perturb LaTeX sequences, the examples in the
static set are re-interpreted by the computer alge-
bra system using SymPy’s srepr tree represen-
tation. In this paper, we consider four different
perturbations for evaluation (Fig. 2). However, the
compatibility with the computer algebra system
allows a wide variety of perturbations that range
from small-scale interventions to single variables,
through to long-range interventions that target com-
plex semantic relationships between any number
of distant sequence elements. For instance, one
may choose to only perturb reasoning chains that
involve a premise renaming operation followed di-
rectly by integration, or square a variable and propa-
gate that change through the entire reasoning chain.
The perturbations adopted in our evaluation are as
follows:

Variable Renaming (VR). For each example in
the static set, we uniquely map each symbol to an
out-of-vocabulary symbol sampled from 10 Greek
letters (e.g., E(n, x) = n+ x becomes α(β, γ) =
β + γ).

Expression Exchange (EE). For each example
in the static set, we swap expressions either side of
the equality (e.g., E(n, x) = n + x becomes n +
x = E(n, x)). This reverses the overrepresentation
of LHS functions in the static set.

Annotation Replacement (AR). Each example
in the static set contains a correct and incorrect fi-
nal equation. For each example, the operator and
operands (and hence the annotation) responsible
for generating the negative equation are calculated,
replacing the corresponding annotation in the se-
quence and swapping the label (i.e. from positive
to negative and vice-versa).

Equation Conversion (EC). If a sequence con-
sists of a chain such as log(x) [SEP] x [SEP] 1

x ,
and the implicit operation is differentiation, a

1508



Figure 2: Example perturbations applied to a generated derivation using computer algebra.

random symbol is sampled from the vocabulary
(e.g., Q), and the sequence becomes Q(x) =

log(x) [SEP] x [SEP] dQ(x)
dx = 1

x . If integrating,
then the (negative) sequence becomes dQ(x)

dx =
log(x) [SEP] x [SEP] Q(x) = 1

x .

3 Sequence Classification Tasks

The data generation approach (Alg. 1-3) outputs
math reasoning which may then be adapted for
specific tasks. As such, we instantiate the general
framework described in Fig. 1 in the context of
two sequence classification tasks. Task examples,
dataset sizes, and model input (Fig. 4) are described
in Appendix B.

Derivation Step Classification. Given multiple
steps of a derivation, such as those in Fig. 2 and
4, the final equation has a 50% chance of being
replaced with a similar equation that is associated
with a different annotation, and the model must
classify whether the overall derivation is coherent
(i.e., whether the annotations match the equations
and overall reasoning). Incoherent equations asso-
ciated with a negative label are generated by ap-
plying a different operator, or the same operator
with different inputs, to a previous derivation equa-
tion through Step (Alg. 1). To solve this task
a model must learn the necessary inter-statement
dependencies required to form the final equation
in the derivation, guided by the final annotation.
These dependencies are a crucial aspect of deriva-
tions and equational reasoning.

Calculus Classification. Given a simplified se-
quence containing only a premise expression, a
variable, and a final expression (Fig. 4), where the

final expression is the premise differentiated or in-
tegrated with respect to the variable
(e.g., premise: log(x), var: x, final: 1/x),
the final expression has a 50% chance of being
swapped with a similar but incorrect expression.
The negative examples are generated by differen-
tiating/integrating the dataset premises by fixing
the variable and changing the premise, or vice
versa. To select the expression for the final expres-
sion swap to form the incoherent sequence (neg-
ative label), these expressions are ranked by their
Damerau-Levenshtein distance (Zhao and Sahni,
2019; Meadows and Freitas, 2021) from the ground
truth. For example, the expression −T + sin(U)
is differentiated with respect to T to give −1. The
expression corresponding to the negative label is 1.

4 Evaluation

In this section, we discuss how the scores obtained
by the BERT and GPT models reflect their reason-
ing capabilities within the scope of the classifica-
tion tasks described in the previous section.

Training and prompts. Details related to fine-
tuning BERT and prompting GPT are given in Ap-
pendix A. To summarise, for a single pre-trained
BERT model, five fine-tuned models are trained
for each of the task variations. For instance, in
Derivation Step Classification, a model is trained
per number of steps in the input derivations (i.e.,
2, 3, and 4 steps). For Calculus Classification a
model is trained per operation (i.e., differentiation
and integration). The GPT models are given 4-shot
prompts. While we acknowledge that chain-of-
thought (Wei et al., 2022) and tree-of-thought (Yao

1509



Static VR EE AR s - 1 s - 2

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

BERT-base-uncased (s=2) 87.7 88.9 87.0 88.1 87.0 88.0 87.5 88.7 - - - -
BERT-base-uncased (s=3) 78.9 78.7 71.9 71.0 69.1 66.0 53.7 50.6 68.4 69.0 - -
BERT-base-uncased (s=4) 58.8 63.6 55.0 60.3 56.4 60.3 42.4 48.1 65.7 62.2 52.8 29.8

BERT-base-cased (s=2) 87.2 88.5 81.9 83.2 85.3 86.1 85.5 87.2 - - - -
BERT-base-cased (s=3) 78.2 77.3 68.8 64.5 65.0 58.9 54.5 49.6 54.6 30.5 - -
BERT-base-cased (s=4) 66.8 71.7 58.5 61.5 62.6 67.2 43.3 53.1 71.9 73.9 54.3 21.8

MathBERT (s=2) 83.2 82.0 76.2 70.6 79.0 75.7 78.5 76.0 - - - -
MathBERT (s=3) 84.2 83.9 69.1 64.5 63.3 52.2 66.3 64.0 67.4 58.7 - -
MathBERT (s=4) 67.1 68.4 59.5 52.6 62.3 62.1 48.5 47.9 68.6 68.0 51.8 29.0

SciBERT-uncased (s=2) 92.5 92.6 72.9 70.4 86.8 86.1 90.0 90.2 - - - -
SciBERT-uncased (s=3) 88.9 89.4 82.1 81.9 70.3 66.4 70.9 72.2 80.6 81.8 - -
SciBERT-uncased (s=4) 76.3 76.5 69.5 66.8 68.6 65.9 60.7 59.6 76.9 77.9 59.3 57.4

SciBERT-cased (s=2) 92.6 93.1 85.3 87.1 89.8 90.2 91.0 91.7 - - - -
SciBERT-cased (s=3) 77.2 72.4 72.7 67.2 61.0 44.1 50.8 29.5 52.9 12.8 - -
SciBERT-cased (s=4) 71.0 70.9 65.1 64.6 66.6 65.4 47.0 42.9 77.9 74.9 52.7 11.0

Encoder Average (s=2) 88.6 89.0 80.7 79.9 85.6 85.3 86.5 86.8 - - - -
Encoder Average (s=3) 81.5 80.3 72.9 69.8 65.7 57.5 59.2 53.2 - - - -
Encoder Average (s=4) 68.0 70.2 61.5 61.2 63.3 64.2 48.4 50.3 - - - -

GPT-3.5 (s=2) 66.0 72.6 65.5 72.5 59.0 65.3 53.0 63.3 - - - -
GPT-3.5 (s=3) 57.0 64.2 61.5 67.0 60.5 65.5 46.0 54.2 56.5 64.5 - -
GPT-3.5 (s=4) 51.5 59.1 49.5 56.3 54.0 59.6 44.5 52.8 56.0 62.7 59.0 67.7

GPT-4 (s=2) 88.0 88.5 87.5 88.2 82.5 81.1 64.5 66.4 - - - -
GPT-4 (s=3) 77.5 77.4 77.5 76.7 78.5 77.2 50.0 55.0 73.5 77.4 - -
GPT-4 (s=4) 68.0 68.0 69.0 69.6 66.0 64.6 42.0 42.6 76.0 76.9 77.5 80.2

Encoder (steps avg) 79.4 79.8 71.7 70.3 71.5 69.0 64.7 63.4 - - - -

GPT-3.5 (steps avg) 58.2 65.3 58.8 65.3 57.8 63.5 47.8 56.8 - - - -

GPT-4 (steps avg) 77.8 78.0 78.0 78.2 75.7 74.3 52.2 54.7 - - - -

Table 1: Derivation Step Classification task results. Bold numbers denote highest F1 scores for 2-step derivations.
Bold italic numbers denote highest 3-step scores. Bold, italic, and underlined numbers denote highest 4-step scores.

et al., 2023) methods may lead to improved math-
ematical inference, we instead rely on a simple
few-shot prompt (Tab. 4) and focus on the evalua-
tion framework and data generation pipeline.

Further generalisation. In addition to the out-
of-distribution perturbations applied to input se-
quences for each task, a model that can sufficiently
generalise the underlying reasoning should be able
to solve (on average) mathematically less complex
versions of problems encountered during training.
In Derivation Step Classification, we evaluate mod-
els trained on derivations with a fixed step count on
a set of derivations composed of a lower number
of steps. This is represented in the s - 1 and s - 2
columns in Tab. 1 given initial step count, s. In
Calculus Classification, where models are exposed
to examples comprising at least two variables, (e.g.,
cos(ax)− z) we generate a set of easier problems
with 1.5k examples consisting of only one variable
(e.g., cos(x)), corresponding to the Easy column of
Tab. 2. These out-of-distribution datasets comple-
ment the perturbations in the following discussion.

GPT-4 rivals in-distribution performance of
fine-tuned BERT-based models while demon-

Static VR EC Easy

Acc F1 Acc F1 Acc F1 Acc F1

BERT-base-uncased (int) 90.0 90.7 68.8 70.4 75.1 78.0 62.7 72.9
BERT-base-uncased (diff) 75.9 80.3 64.9 73.3 62.2 69.8 55.1 69.1

BERT-base-cased (int) 93.0 93.4 71.6 77.7 85.2 86.7 63.8 71.8
BERT-base-cased (diff) 74.2 77.9 64.2 72.4 60.3 64.9 56.7 69.6

MathBERT (int) 92.2 92.3 74.4 75.8 74.4 71.8 58.6 68.6
MathBERT (diff) 84.7 85.9 59.7 48.1 58.4 47.3 56.1 50.0

SciBERT-uncased (int) 96.8 96.8 65.6 74.4 54.1 15.8 62.6 71.1
SciBERT-uncased (diff) 91.8 92.3 72.6 76.5 66.8 58.1 55.2 67.8

SciBERT-cased (int) 97.1 97.2 68.1 75.8 54.2 17.0 58.0 67.1
SciBERT-cased (diff) 92.3 92.7 70.9 76.5 65.4 54.6 61.5 72.3

Encoder Average (int) 93.8 93.2 69.7 74.8 68.6 53.7 61.1 70.3
Encoder Average (diff) 83.8 85.8 66.5 69.4 62.6 58.9 56.9 65.8

GPT-3.5 (int) 49.5 56.3 49.5 56.3 51.5 60.1 54.5 58.1
GPT-3.5 (diff) 49.0 55.3 48.5 54.2 53.0 65.7 54.5 59.2

GPT-4 (int) 64.0 60.0 67.0 64.1 66.5 68.5 57.5 56.4
GPT-4 (diff) 59.5 55.2 61.0 57.1 66.5 72.9 68.5 66.3

Encoders (int/diff avg) 88.8 89.5 68.1 72.1 65.6 56.3 59.0 68.1

Table 2: Calculus Classification task results. Bold num-
bers denote highest F1 scores for integration deriva-
tions. Bold italic denotes highest differentiation scores.

strating better generalisation. Assuming a suit-
ably descriptive few-shot prompt, where neces-
sary context is provided through either the task
description or in-context examples (Appendix A),
GPT-4 can rival the average static scores of the

1510



fine-tuned encoder models, and surpass them on
out-of-distribution test sets, even without chain-of-
thought prompting. This is shown by the Deriva-
tion Step Classification results (Tab. 1). For in-
stance, SciBERT-cased (s=4) scores 11% F1 when
classifying sequences with s=2 steps. GPT-4 ob-
tains 80% F1 in this case. Similar generalisation
is observed on the VR (Variable Renaming) pertur-
bation data, likely due to GPT-4’s exposure to vast
vocabularies of mathematical symbols (e.g., Greek
symbols), and the EE (Expression Exchange) set,
likely due to GPT-4’s exposure to equations with
RHS functions which lessens the impact of LHS
function bias.

GPT-4 can fail to predict mathematical co-
herence from in-context examples alone. The
Calculus Classification task includes minimalistic
sequences without operation annotations. Surpris-
ingly, while GPT-4 achieves the best performance
on Derivation Step Classification, competitive per-
formance is not observed in Calculus Classification
despite its lower complexity. We attribute this to
the fact that, unlike BERT, GPT is not fine-tuned on
a specific operation, and in-context examples alone
might not contain enough information to consis-
tently discriminate whether a particular sequence
involves either differentiation or integration. This
is evidenced by the fact that both GPT models score
higher on the EC (Equation Conversion) set. The
EC perturbation changes nothing about the opera-
tion being performed, but adds context by writing
(e.g.) differentiated expressions as equations with
a LHS that includes d

dx . F1 scores in GPT mod-
els increase by up to 12 points in this case, while
BERT-based scores decrease by up to 80 points
(Tab. 2). To reinforce this, in Derivation Step Clas-
sification, both GPT models obtain comparatively
lower scores on the AR (Annotation Replacement)
set. This is because sufficient context has been pro-
vided only for an operator that differs to the main
annotation operator. GPT only learns the format
of the sequences and the expected output for the
task in this case. However, static performance is
maximised by designing the prompt in this manner
(Tab. 4).

GPT-3.5 cannot effectively classify mathemat-
ical reasoning. GPT-3.5 scores 15 less F1 points
than the average encoder score of 80% on the in-
distribution set, and is notably outperformed by
BERT-based models on most test sets (particularly
SciBERT). A notable exception are those that con-
tain less steps (Tab. 1), where performance gener-

ally increases comparative to static in-distribution
scores. This contrasts with the significant cor-
responding performance drops observed in the
BERT-based evaluation, indicating that GPT learns
enough from in-context examples to generalise to
derivations with less steps, and therefore has a
deeper relative understanding of the underlying
mathematics.

Encoder models fail to generalise. For Deriva-
tion Step Classification, models average 80% F1
over all static derivation lengths, and decreases due
to perturbations average 10% (VR), 11% (EE), and
16% (AR). This is at most 4% above F1 majority
baseline. BERT-uncased and SciBERT-cased fine-
tuned on 2-step derivations are exceptions, but the
13 other encoder models are sensitive to at least one
perturbation. All models tested do not generalise to
less derivation steps, reaching as low as 11% F1. In
Calculus Classification static scores average 90%
and perturbations decrease this by 17% (VR) and
33% (EC). All fine-tuned models fail to generalise
to perturbations and simpler examples, with 97%
F1 scores repeatedly dropping below 17%. De-
spite the in-distribution performance, this indicates
their reliance on superficial patterns rather than the
underlying rules of the operators.

4.1 Relating Operators to Model
Generalisability via Pairwise Analysis

In addition to the above evaluation, because
the framework offers in-distribution and out-of-
distribution pairs that correspond to a single rea-
soning chain and its perturbation (Fig. 2), we can
measure generalisability using alternative methods.
These are discussed in Tab. 3, and further discussed
in Appendix C, but we summarise our findings
here.

Which operators are most difficult to learn?
Substitution is dependency-wise the most compli-
cated operation and is not associated with a fixed
token (such as addition’s "+"). It requires a deeper
understanding of derivation structure due to a neces-
sary reliance on dependency relations across equa-
tions. All models interpret substitution relatively
poorly (None column, Tab. 3). Operator usage that
is easier for models to recognise (and generalise)
involves integration or differentiation (All column,
Tab. 3), and these are associated with specific text
spans such as "\int" or "\partial". Together, this
indicates that all models struggle most when opera-
tors are not associated with fixed text spans or when
they rely on explicitly structured dependency rela-

1511



Static (S) Generalisability (G) None All

BERT
76.0 3.3 16.5 60.8∫

E
R

∫
∂ ×

∫
E

R + ∂E − SL SR + XO ×
∫

∂ × − XO

MathBERT
79.7 9.0 13.2 57.2∫

E
R

∫
∂ ∂E R

∫
E

XO ∂E ÷ + SL ÷ SR cos ∂
∫

XO + ÷

SciBERT
87.8 5.0 7.0 62.7

R
∫
E

∫
− ÷ R ÷ ∂E + XO SL SR + cos×

∫
∂ − + ∂E

GPT-3.5
58.2 2.3 29.7 45.5

cos XO ∂
∫

R SL

∫
E

SR + XO −
∫
E

× +÷ cos XO
∫

∂ ∂E

GPT-4
77.8 1.7 12.0 64.7

cos ∂
∫

XO
∫
E

cos × ∂E ÷ R SL SR − R × cos ∂ XO
∫
×

Table 3: Static (S) represents model accuracy with respect to unperturbed examples. Generalisability (G)
represents the percentage of examples where static predictions are correct and all perturbed predictions failed (lower
is better). None represents examples where models failed predictions in all cases, and All represents the opposite.
Symbols correspond to the top-5 most frequent (final) operators in each unperturbed sequence, where frequency is
normalized with respect to operator count in the static set. R is a premise renaming operator.

∫
and ∂ are integration

and differentiation operators.
∫
E

and ∂E are respective evaluation operators. XO is exponentiation, SL and SR are
LHS and RHS substitutions, and arithmetic symbols have their usual meaning.

Figure 3: ÑP is the percentage of operators present in examples where models fail to generalise to perturbations.
The leftmost displays how this proportion varies as a function of operator rank. The rightmost graph factors in static
performance (S) and generalisability (G) scores for a clearer comparison of models.

tions. To give further examples, the fixed text span
associated with the addition operator is “+”, and
structured dependency relations are given by the
substitution operator’s reference to prior equation
indexes.

Which operations contribute to poor gener-
alisability? We consider the proportion of ex-
amples where static predictions succeed while all
perturbation predictions fail (column G, Tab. 3).
For BERT models, premise renaming and inte-
gration/differentiation evaluation operations rank
highly, yet this is not mirrored by GPT. Fig. 3 ex-
plains this difference, displaying the proportion of
operators (ÑP ) that contribute to examples where
models generalise poorly at a given rank. For ex-
ample, the highest ranking operator for MathBERT
has ÑP > 25. From Tab. 3 this operator performs

premise renaming, denoted by R, and over 1/4 of
examples involving R contribute to poor model
generalisability. In fact for all BERT-based models,
the R (and less so the int/diff evaluation) opera-
tors have a higher ÑP than others. This effect is
less prominent for the GPT models. This indicates
that high ranking operators have a major impact on
generalisation in BERT models, but it is likely that
other factors (such as the complexity of equations)
are more impactful for GPT.

5 Conclusion

This research presents an approach for generating
synthetic data, and a framework for evaluating the
mathematical capabilities of models, which may be
utilised for purposes beyond sequence classifica-

1512



tion (Valentino et al., 2023; Meadows et al., 2023).
We discover that inference failures occur for BERT
and GPT models when tasks require complex indi-
rect textual references and inter-statement depen-
dencies. This demonstrates how transformer-based
models fail to appropriately infer structured infor-
mation from linear text. Our findings reveal the
complete generalisation failure of BERT models
to simple perturbations despite their continued use
in the mathematical domain, yet, the experiments
reveal that BERT-related models may outperform
or match few-shot GPT performance in math clas-
sification tasks despite the disparity in pre-training
efforts and parameter count. We also observe that
perturbations (e.g., EC) which increase the depth
of mathematical operator trees while introducing
useful task context improves few-shot performance,
yet transformers clearly struggle if the underlying
dependency graphs of mathematical sequences are
too complex. Overall, this paper underscores the
potential of using symbolic engines to generate
extensive, high-quality mathematical datasets that
may be used to explore model weaknesses, and im-
prove mathematical reasoning and generalisation
in quantitative domains.

6 Limitations

Overall ethical impact. This work explores a
systematic way to elicit the mathematical/symbolic
inference properties of Transformer-based models
in mathematical language processing tasks. As
such, it contributes in the direction of a critique of
the reasoning capabilities and the biases of these
models.

Chain-of-Thought. Chain-of-thought and re-
lated prompt engineering may lead to improved
LLM-based mathematical reasoning. This paper
focuses on the exploration and application of the
evaluation framework, rather than maximising the
mathematical proficiency of language models.

Derivation generation. There are irrelevant
steps in some derivations, such as applying an op-
eration to an equation but not using the result. This
should not affect results as the final equation al-
ways depends on a previous equation (except when
it is the result of a premise selection operation).
This limitation stems from incorrect subderivation
extraction from longer chains and will be improved.

Integration. SymPy does not generate integra-
tion constants. Although we account for this within

derivation generation, we currently exclude the
evaluation of double (or above) integrals, and do
not introduce an integration constant when gener-
ating expressions for the Calculus Classification
task.

Acknowledgements

This work was partially funded by the Swiss
National Science Foundation (SNSF) project
NeuMath (200021_204617), the EPSRC grant
EP/T026995/1 entitled “EnnCore: End-to-End
Conceptual Guarding of Neural Architectures” un-
der Security for all in an AI enabled society, the
CRUK National Biomarker Centre, and supported
by the Manchester Experimental Cancer Medicine
Centre and the NIHR Manchester Biomedical Re-
search Centre.

References
Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,

Marco Dos Santos, Stephen McAleer, Albert Q Jiang,
Jia Deng, Stella Biderman, and Sean Welleck. 2023.
Llemma: An open language model for mathematics.
arXiv preprint arXiv:2310.10631.

Yonatan Belinkov. 2022. Probing classifiers: Promises,
shortcomings, and advances. Computational Linguis-
tics, 48(1):207–219.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert:
A pretrained language model for scientific text. arXiv
preprint arXiv:1903.10676.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Rune Christiansen, Niklas Pfister, Martin Emil Jakob-
sen, Nicola Gnecco, and Jonas Peters. 2021. A causal
framework for distribution generalization. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 44(10):6614–6630.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020.
Transformers as soft reasoners over language. arXiv
preprint arXiv:2002.05867.

Ernest Davis. 2019. The use of deep learning for sym-
bolic integration: A review of (lample and charton,
2019). arXiv preprint arXiv:1912.05752.

1513

https://data.snf.ch/grants/grant/204617


Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Iddo Drori, Sarah Zhang, Reece Shuttleworth, Leonard
Tang, Albert Lu, Elizabeth Ke, Kevin Liu, Linda
Chen, Sunny Tran, Newman Cheng, Roman Wang,
Nikhil Singh, Taylor L. Patti, Jayson Lynch, Avi Sh-
porer, Nakul Verma, Eugene Wu, and Gilbert Strang.
2022. A neural network solves, explains, and gener-
ates university math problems by program synthesis
and few-shot learning at human level. Proceedings
of the National Academy of Sciences, 119(32).

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav
Goldberg. 2021. Amnesic probing: Behavioral expla-
nation with amnesic counterfactuals. Transactions of
the Association for Computational Linguistics, 9:160–
175.

Deborah Ferreira, Mokanarangan Thayaparan, Marco
Valentino, Julia Rozanova, and Andre Freitas. 2022.
To be or not to be an integer? encoding variables for
mathematical text. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 938–
948, Dublin, Ireland. Association for Computational
Linguistics.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Grif-
fiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Christian Petersen, Alexis Chevalier, and
Julius Berner. 2023. Mathematical capabilities of
chatgpt. arXiv preprint arXiv:2301.13867.

Yangyang Hu and Yang Yu. 2022. Enhancing neu-
ral mathematical reasoning by abductive combi-
nation with symbolic library. arXiv preprint
arXiv:2203.14487.

Divyansh Kaushik, Eduard Hovy, and Zachary C Lipton.
2019. Learning the difference that makes a differ-
ence with counterfactually-augmented data. arXiv
preprint arXiv:1909.12434.

Ram Shankar Siva Kumar, Magnus Nyström, John Lam-
bert, Andrew Marshall, Mario Goertzel, Andi Comis-
soneru, Matt Swann, and Sharon Xia. 2020. Ad-
versarial machine learning-industry perspectives. In
2020 IEEE security and privacy workshops (SPW),
pages 69–75. IEEE.

Viet Lai, Amir Pouran Ben Veyseh, Franck Dernoncourt,
and Thien Nguyen. 2022. Semeval 2022 task 12:
Symlink-linking mathematical symbols to their de-
scriptions. In Proceedings of the 16th International
Workshop on Semantic Evaluation (SemEval-2022),
pages 1671–1678.

Guillaume Lample and François Charton. 2019. Deep
learning for symbolic mathematics. arXiv preprint
arXiv:1912.01412.

Rebecca J Lee, Oskar Wysocki, Cong Zhou, Rohan
Shotton, Ann Tivey, Louise Lever, Joshua Woodcock,
Laurence Albiges, Angelos Angelakas, Dirk Arnold,

et al. 2022. Establishment of coronet, covid-19 risk
in oncology evaluation tool, to identify patients with
cancer at low versus high risk of severe complications
of covid-19 disease on presentation to hospital. JCO
clinical cancer informatics, 6:e2100177.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative
reasoning problems with language models. arXiv
preprint arXiv:2206.14858.

Weixian Waylon Li, Yftah Ziser, Maximin Coavoux,
and Shay B Cohen. 2023. Bert is not the count:
Learning to match mathematical statements with
proofs. arXiv preprint arXiv:2302.09350.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C Paulson.
2020. Isarstep: a benchmark for high-level mathe-
matical reasoning. arXiv preprint arXiv:2006.09265.

Zhenwen Liang, Jipeng Zhang, Lei Wang, Wei Qin,
Yunshi Lan, Jie Shao, and Xiangliang Zhang. 2022.
Mwp-bert: Numeracy-augmented pre-training for
math word problem solving. In Findings of the Asso-
ciation for Computational Linguistics: NAACL 2022,
pages 997–1009.

Pratik Mandlecha, Snehith Kumar Chatakonda, Neeraj
Kollepara, and Pawan Kumar. 2022. Hybrid tok-
enization and datasets for solving mathematics and
science problems using transformers. In Proceedings
of the 2022 SIAM International Conference on Data
Mining (SDM), pages 289–297. SIAM.

Behrooz Mansouri, Shaurya Rohatgi, Douglas W Oard,
Jian Wu, C Lee Giles, and Richard Zanibbi. 2019.
Tangent-cft: An embedding model for mathematical
formulas. In Proceedings of the 2019 ACM SIGIR
International Conference on Theory of Information
Retrieval, pages 11–18.

Hunter McNichols, Mengxue Zhang, and Andrew Lan.
2023. Algebra error classification with large lan-
guage models. arXiv preprint arXiv:2305.06163.

Jordan Meadows and André Freitas. 2021. Similarity-
based equational inference in physics. Physical Re-
view Research, 3(4):L042010.

Jordan Meadows and André Freitas. 2023. Introduc-
tion to mathematical language processing: Informal
proofs, word problems, and supporting tasks. Trans-
actions of the Association for Computational Linguis-
tics, 11:1162–1184.

Jordan Meadows, Marco Valentino, and Andre Fre-
itas. 2023. Generating mathematical derivations
with large language models. arXiv preprint
arXiv:2307.09998.

Jordan Meadows, Zili Zhou, and Andre Freitas. 2022.
Physnlu: A language resource for evaluating natural
language understanding and explanation coherence
in physics. arXiv preprint arXiv:2201.04275.

1514

https://doi.org/10.1073/pnas.2123433119
https://doi.org/10.1073/pnas.2123433119
https://doi.org/10.1073/pnas.2123433119
https://doi.org/10.18653/v1/2022.findings-acl.76
https://doi.org/10.18653/v1/2022.findings-acl.76


Aaron Meurer, Christopher P Smith, Mateusz Paprocki,
Ondřej Čertík, Sergey B Kirpichev, Matthew Rocklin,
AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj
Singh, et al. 2017. Sympy: symbolic computing in
python. PeerJ Computer Science, 3:e103.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2020. On the stability of fine-tuning
bert: Misconceptions, explanations, and strong base-
lines. arXiv preprint arXiv:2006.04884.

Leonardo de Moura, Soonho Kong, Jeremy Avigad,
Floris van Doorn, and Jakob von Raumer. 2015. The
lean theorem prover (system description). In Inter-
national Conference on Automated Deduction, pages
378–388. Springer.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
nli: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4885–4901.

Vít Novotnỳ and Michal Štefánik. 2022. Combining
sparse and dense information retrieval. Proceedings
of the Working Notes of CLEF.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Judea Pearl. 2009. Causal inference in statistics: An
overview. Statistics surveys, 3:96–146.

Judea Pearl. 2022. Direct and indirect effects. In Prob-
abilistic and causal inference: The works of Judea
Pearl, pages 373–392.

Shuai Peng, Ke Yuan, Liangcai Gao, and Zhi Tang.
2021. Mathbert: A pre-trained model for math-
ematical formula understanding. arXiv preprint
arXiv:2105.00377.

Stanislas Polu and Ilya Sutskever. 2020. Generative
language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393.

Markus N Rabe, Dennis Lee, Kshitij Bansal, and Chris-
tian Szegedy. 2020. Mathematical reasoning via
self-supervised skip-tree training. arXiv preprint
arXiv:2006.04757.

Abhilasha Ravichander, Yonatan Belinkov, and Eduard
Hovy. 2021. Probing the probing paradigm: Does
probing accuracy entail task relevance? In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 3363–3377.

Anja Reusch, Maik Thiele, and Wolfgang Lehner. 2022.
Transformer-encoder and decoder models for ques-
tions on math. Proceedings of the Working Notes of
CLEF 2022, pages 5–8.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Julia Rozanova, Marco Valentino, Lucas Cordeiro, and
André Freitas. 2023a. Interventional probing in high
dimensions: An nli case study. In Findings of the
Association for Computational Linguistics: EACL
2023, pages 2444–2455.

Julia Rozanova, Marco Valentino, and Andre Freitas.
2023b. Estimating the causal effects of natural logic
features in neural nli models.

David Saxton, Edward Grefenstette, Felix Hill, and
Pushmeet Kohli. 2019. Analysing mathematical rea-
soning abilities of neural models. arXiv preprint
arXiv:1904.01557.

Viktor Schlegel, Goran Nenadic, and Riza Batista-
Navarro. 2023. A survey of methods for revealing
and overcoming weaknesses of data-driven natural
language understanding. Natural Language Engi-
neering, 29(1):1–31.

Jia Tracy Shen, Michiharu Yamashita, Ethan Prihar, Neil
Heffernan, Xintao Wu, Ben Graff, and Dongwon Lee.
2021. Mathbert: A pre-trained language model for
general nlp tasks in mathematics education. arXiv
preprint arXiv:2106.07340.

Goyal Shreya, Sumanth Doddapaneni, Mitesh M
Khapra, and Balaraman Ravindran. 2022. A survey
of adversarial defences and robustness in nlp. ACM
Computing Surveys.

Alessandro Stolfo, Zhijing Jin, Kumar Shridhar, Bern-
hard Schölkopf, and Mrinmaya Sachan. 2022. A
causal framework to quantify the robustness of math-
ematical reasoning with language models. arXiv
preprint arXiv:2210.12023.

Damien Teney, Ehsan Abbasnejad, Kushal Kafle,
Robik Shrestha, Christopher Kanan, and Anton
Van Den Hengel. 2020. On the value of out-of-
distribution testing: An example of goodhart’s law.
Advances in Neural Information Processing Systems,
33:407–417.

Thi Hong Hanh Tran, Matej Martinc, Antoine Doucet,
and Senja Pollak. 2022. Ijs at textgraphs-16 natu-
ral language premise selection task: Will contextual
information improve natural language premise se-
lection? In Proceedings of TextGraphs-16: Graph-
based Methods for Natural Language Processing,
pages 114–118.

Marco Valentino, Deborah Ferreira, Mokanarangan
Thayaparan, André Freitas, and Dmitry Ustalov.
2022a. TextGraphs 2022 shared task on natural
language premise selection. In Proceedings of
TextGraphs-16: Graph-based Methods for Natural

1515

https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
http://arxiv.org/abs/2305.08572
http://arxiv.org/abs/2305.08572
https://aclanthology.org/2022.textgraphs-1.11
https://aclanthology.org/2022.textgraphs-1.11


Language Processing, pages 105–113, Gyeongju, Re-
public of Korea. Association for Computational Lin-
guistics.

Marco Valentino, Jordan Meadows, Lan Zhang, and
André Freitas. 2023. Multi-operational mathemat-
ical derivations in latent space. arXiv preprint
arXiv:2311.01230.

Marco Valentino, Mokanarangan Thayaparan, Deborah
Ferreira, and André Freitas. 2022b. Hybrid autore-
gressive inference for scalable multi-hop explanation
regeneration. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 11403–
11411.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Victor Veitch, Dhanya Sridhar, and David Blei. 2020.
Adapting text embeddings for causal inference. In
Conference on Uncertainty in Artificial Intelligence,
pages 919–928. PMLR.

Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay
Besiroglu, Marius Hobbhahn, and Anson Ho. 2022.
Will we run out of data? an analysis of the limits of
scaling datasets in machine learning. arXiv preprint
arXiv:2211.04325.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Sean Welleck, Jiacheng Liu, Jesse Michael Han, and
Yejin Choi. 2021. Towards grounded natural lan-
guage proof generation. In MathAI4Ed Workshop at
NeurIPS.

Sean Welleck, Peter West, Jize Cao, and Yejin Choi.
2022. Symbolic brittleness in sequence models: on
systematic generalization in symbolic mathematics.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 8629–8637.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Stephen Wolfram. 1999. The MATHEMATICA® book,
version 4. Cambridge university press.

Yuhuai Wu, Albert Qiaochu Jiang, Jimmy Ba, and Roger
Grosse. 2020. Int: An inequality benchmark for
evaluating generalization in theorem proving. arXiv
preprint arXiv:2007.02924.

Liuyi Yao, Zhixuan Chu, Sheng Li, Yaliang Li, Jing
Gao, and Aidong Zhang. 2021. A survey on causal
inference. ACM Transactions on Knowledge Discov-
ery from Data (TKDD), 15(5):1–46.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Chunchun Zhao and Sartaj Sahni. 2019. String correc-
tion using the damerau-levenshtein distance. BMC
bioinformatics, 20(11):1–28.

Wei Zhong, Jheng-Hong Yang, and Jimmy Lin. 2022.
Evaluating token-level and passage-level dense re-
trieval models for math information retrieval. arXiv
preprint arXiv:2203.11163.

A Fine-tuning BERT and prompting GPT

Fine-tuning BERT. Transformer encoders with a
binary sequence classification layer are fine-tuned
for 12 epochs on a 16GB Tesla V100, with a batch
size of 8, and a learning rate of 5e-7, via the Trans-
formers library (Wolf et al., 2019). We use adapted
versions of the public2 training scripts. Tokeniz-
ers pad up to a max length of 256, and the best
model by F1 is selected after training. Training
took around a day of compute on an NVIDIA A100.
We train 25 models stemming from 5 encoders:
BERT-base-uncased (Devlin et al., 2018), BERT-
base-cased, SciBERT cased and uncased (Beltagy
et al., 2019), and MathBERT (Shen et al., 2021).
SciBERT is a version of BERT pretrained on scien-
tific text. MathBERT is initialised on BERT-base-
uncased, and pretrained on three masked language
modelling tasks related to the structure of equa-
tion operator trees (Mansouri et al., 2019), and the
relationship between equations and their natural
language context. It delivers state-of-the-art results
in formula search (Zhong et al., 2022).

Prompting GPT. For each task, we en-
gineer few-shot prompts with the aim to
optimise static performance with respect to the
gpt-3.5-turbo model using the OpenAI API.
The results of prompt exploration are given in
Tab. 4, where the selected design is highlighted in
bold. We describe this prompt below:

“The following examples consist of a prompt (de-
noted by Prompt:) and a label (denoted by Label:).

2https://huggingface.co/docs/
Transformers/tasks/sequence_
classification

1516

https://huggingface.co/docs/Transformers/tasks/sequence_classification
https://huggingface.co/docs/Transformers/tasks/sequence_classification
https://huggingface.co/docs/Transformers/tasks/sequence_classification


Prompt: Sequence 1
Label: Label 1
Prompt: Sequence 2
Label: Label 2
Prompt: Sequence 3
Label: Label 3
Prompt: Sequence 4
Label: Label 4

Now given the following prompt, predict the label.
Prompt: Test Prompt”

The sequences all contain the same final annotation
as the Test Prompt and are sampled from the train-
ing set. Additionally, an equal number of negative
(Label: 0) and positive examples (Label: 1) are in-
cluded as in-context examples, and these examples
are shuffled. New lines are denoted by “\n”. Pertur-
bations are only applied to the Test Prompt and in-
context examples are fixed to minimise examples’
effect on generalisation. 200 random examples
from the static test set per subtask (e.g. steps=2,
integration) are used in the evaluation, which maps
to 200 equivalent examples per perturbation. This
totals around 4000 total examples per GPT model.

B Task-specific data format and sizes

The data generation algorithms output a deriva-
tion (Alg. 3) or expression (Alg. 2) in LaTeX and
SymPy. Outputs are then adapted to fit specific
tasks. For the described classification tasks, a sin-
gle example consists of the reasoning sequence up
to the final expression or equation (Fig. 4).

Constructing sequences. For the Derivation
Step Classification task, a step consists of an equa-
tion and an annotation, as described in Fig. 1 and
Fig. 4. An annotation is a list comprising an op-
erator name and its operands. Each step [an, eq]
is linearised and comma separated, up to the final
step. The final step annotation is separated from the
derivation, and the final equation is replaced with a
negative example equation, or left unchanged.
For Calculus Classification, an input sequence con-
sists of a premise expression, a variable, and the
result of either differentiating or integrating. The
premise expression containing at least two vari-
ables is initially generated, a variable is randomly
selected from the premise, and the resulting expres-
sion after differentiating or integrating with respect
to that variable is the ground truth. This positive
example is either replaced with a negative example,
or not. The three main components for each task

are [SEP] separated. In the datasets for either task,
this sequence is grouped with both the actual final
equation and a number of negative equations. As a
model encounters an example it is processed into
two sequences; one including the positive equation
and another including the negative. Each sequence
is then paired with the corresponding classification
labels. Perturbations are applied to each test set and
generate an equal number of perturbed examples.
The Derivation Step Classification datasets include
41K evaluation examples per derivation step count.
The Calculus Classification datasets include 52K
evaluation examples per operation. This equates to
227K total examples. Tab. 5 describes the relevant
sizes for the models.

C Supplementary Material for
Qualitative Analysis

We can alternatively measure generalisability by
examining the proportion of examples where pre-
dictions involving static sequences are correct,
while predictions for mathematically equivalent
perturbed sequences are incorrect. Defining an ex-
ample to consist of a static sequence grouped with
its perturbed equivalents, if a static prediction is
correct while all perturbation predictions fail, this
gives a strict measure of generalisability (denoted
by G in Tab. 3) and complements previous analy-
sis. These grouped examples allow examination of
how well models understand each operator, and can
highlight their weaknesses. We identify such weak-
nesses shared between GPT and BERT models and
discuss clear dissimilarities in a more focused dis-
cussion in this section.

Why is R associated with generalisation
failure for BERT but not for GPT? Prior
analysis points to the premise renaming operator
R as a useful point of comparison between
fine-tuned BERT and few-shot GPT. Prompting
GPT-3.5 by appending “Describe what function
renaming_premise performs.” to a static
prompt (associated with GPT-3.5’s generalisation
failure) returns the following definition of R: “the
renaming_premise function is used to create
a new expression or equation by assigning an
existing expression or function to a new variable or
function symbol.” This appropriate understanding
persists even for perturbed prompts, and naturally
extends to GPT-4. In contrast, further analysis
(Appendix C) reinforces that BERT models do
not share this out-of-distribution understanding.

1517



Prompt Design GPT-3.5 (F1) GPT-4 (F1)
Derivation Step Classification (steps=2)

No task description + random examples (2 pos, 2 neg) 61 83
Concise task description + random examples (2 pos, 2 neg) 50 83

No task description + same final operation examples (2 pos, 2 neg) 68 90
No task description + same final operation examples (3 pos, 3 neg) 68 87

Calculus Classification (differentiation)
No task description (2 pos, 2 neg) 55 55
No task description (3 pos, 3 neg) 48 64

Table 4: Prompt designs trialled for the experiments.

Figure 4: Sampled data from each binary sequence classification task. In short, a sequence containing reasoning
context, an instruction annotation, and resulting math is input to a model. The model then predicts whether the
math follows from the context and annotation, and if the sequence is mathematically coherent (1) or not (0).

Task Training Validation Static Test Perturbed Test
Derivation Step Classification

2-steps 20K 5K 4K 4K
3-steps 20K 5K 4K 4K
4-steps 20K 5K 4K 4K

Calculus Classification
integration 32K 8K 4K 4K

differentiation 32K 8K 4K 4K

Table 5: The number of examples considered by models during training, validation, and evaluation.

The main difference between R and all other
operators is that it appears in sequences without
any reference to prior equations. The substitution
operations are the opposite of this (referencing
the most equations of any operators), and both
GPT-4 and BERT frequently fail to make correct
predictions given this operator. On one hand, the

operator with the least referencing is significantly
associated with generalisation failure for BERT,
but not GPT-4. On the other, the operator with the
most referencing is not significantly associated
with generalisation failure in either case, as all
models are not effectively learning substitution
in-distribution. BERT is dependent on more

1518



localised learning where the necessary semantics
is expressed within a short text span during
training, rather than a span that explicitly relates
to other textual elements (e.g., through regular
reference). In other words, a lack of explicit
discourse relations that predictably vary with
the ground truth obstructs models from learning
latent relations that allow them to generalise.
However, the explicit relations can not be too
complex (as with substitution). R lends itself to
generalisation failure because it lacks structured
discourse relations of the appropriate complexity
for BERT (that others operators do not). R is
simpler for GPT because of its varied exposure to
structured text featuring such relations (e.g., code)
and obviously its relative size.

Focusing solely on BERT-related models in more
depth, we consider (uncased) models trained on
3-step derivations. This number of steps closely
reflects the average results over all step counts in
Table 1. The All (perfect generalisation) and Not
P (complete generalisation failure) columns of Ta-
ble 6 (Appendix C) reinforce the relative general-
isability gap between SciBERT and MathBERT,
despite both being trained on scientific corpora,
and display the top three operators by normalised
frequency per generalisation category.

Generalisation failure depends on the unpre-
dictability of an operator. For examples where
models perfectly generalise, the operator responsi-
ble for setting up an integral (without evaluating it)
is most common. This is likely because it involves
prepending a unique text span "\int" to expressions
either side of equations, which is easy to identify.
Models generalise well to cos, sin, exp, and log
operators, likely due to their similarly predictable
effect on equations associated with regular text
spans. To highlight that it is likely the relative un-
predictability of an operator’s effect on text that
leads to generalisation failure, we analyse the set
of examples where both SciBERT and MathBERT
correctly classify unperturbed sequences, but mis-
classify all perturbed sequences. Three examples
are displayed in Fig. 5. The renaming premise
operation is overwhelmingly frequent. It takes a
random previously defined expression as the RHS,
and defines a new function as the LHS. It does not
necessarily depend on a single previous step and is
non-deterministic due to random sampling of the
RHS, yet it can never generate more complex equa-
tions than those previously derived (unlike other

operators).
Entailment pre-training improves generalis-

ability. BERT (Devlin et al., 2018) was trained on
masked language modelling (MLM) and next sen-
tence prediction (NSP) objectives. SciBERT (Belt-
agy et al., 2019) was further trained with scien-
tific papers on MLM and NSP. MathBERT (Shen
et al., 2021) was further trained from BERT on
educational mathematical text, ranging from pre-
k to graduate level difficulty. However, unlike
BERT and SciBERT, MathBERT was trained to
optimise performance on MLM over a large corpus.
Fine-tuning generally overwrites representations
learned from previous tasks (Mosbach et al., 2020),
and MathBERT has likely forgotten those asso-
ciated with NSP. The current classification tasks
involve determining if math context entails an ex-
pression/equation, rather than predicting individual
tokens as in language modelling. Next-equation
prediction shares greater similarity with NSP than
MLM, and we therefore attribute generalisability
failures of MathBERT in this context to insufficient
entailment pre-training. It has struggled with entail-
ment before relative to other BERT models (Mead-
ows et al., 2022).

Advantages of pre-training on structured sci-
entific text. SciBERT differs from the other en-
coders due to a distinct focus on scientific papers
written in LaTeX. This offers two benefits: (1)
Mathematical elements seen by models are writ-
ten in LaTeX, so exposure to LaTeX (during both
MLM and NSP) provides natural advantage; (2)
Scientific papers tend to be concise and logically
structured. Text spans are carefully chained to
reach conclusions, so exposure to papers during
training may better teach models the concept of
entailment and aid performance in related tasks.

D Algorithm for Premise Generation

The "Generate Premise Equation" algorithm
(Alg.2) aims to create a mathematical equation
from a defined vocabulary of letters and operators.
Specifically, the algorithm’s process can be sum-
marized as follows:

1. Initialisation: Symbols and mathematical op-
erations are defined:

• S represents all symbols from the vocab-
ulary V .

• R1 comprises unary operations like Co-
sine, Sine, Exponential, and Logarithm.

1519



Static ± All Not P

BERT
62.3 7.4 5.3

R
∫
E

∂E ∂E

∫
− SL

∫
E

R

SciBERT
79.6 21.3 1.6

R
∫
E

∂E

∫
∂E cos R XO ×

MathBERT
70.3 7.8 9.3

R
∫
E

∫ ∫
cos sin R ∂E

∫
E

Table 6: Static± is the rate at which positive and associ-
ated negative unperturbed sequences are both correctly
classified. All (perfect generalisation) is the percentage
of examples where the static and perturbed (positive and
negative) sequences are correctly classified. Not P (com-
plete failure to generalise) is percentage of examples
where only the static positive sequences are classified
correctly, while all perturbed positive sequences are
incorrect. Symbols correspond to the top three most
frequent (final) operators in each unperturbed sequence,
where frequency is normalized with respect to operator
frequency in the static set. R is a premise renaming
operator.

∫
and ∂ are integration and differentation op-

erators.
∫
E

and ∂E are respective evaluation operators.
XO is exponentiation, × is multiplication, − is subtrac-
tion, and SL is LHS substitution.

• R2 contains binary operations such as
Addition, Subtraction, Multiplication,
etc.

2. Base RHS Construction: Depending on a
randomly chosen arity (either 1 for unary or 2
for binary):

• If arity = 1, the RHS is built by applying
a random unary operation on a random
symbol.

• If arity = 2, the RHS is constructed us-
ing a binary operation on two distinct
random symbols.

3. Complexifying the RHS: A random complex-
ity value is selected from 0 to C − 1. For
each iteration up to the chosen complexity, the
RHS’s complexity is increased by applying ei-
ther a unary operation on the current RHS or
a binary operation between the current RHS
and another random symbol.

4. LHS Construction: The LHS is then formu-
lated as a function of the free symbols present
in the RHS.

5. Equation Formation: Lastly, an equation,
termed premise, is crafted using the finalized
LHS and RHS.

Figure 5: Three examples of the total 15 where both
SciBERT and MathBERT correctly classify unperturbed
examples (as shown), but incorrectly classify all per-
turbed examples.

In essence, this algorithm dynamically produces
a mathematical equation whose intricacy varies
depending on the randomly chosen operations and
the selected complexity.

E Algorithm for Derivation Generation

Algorithm 3 relies on Algorithm 2 in order to de-
rive subsequent equations. It relies on two other
procedures other than Step. The EquationDistri-
bution function relies on the hyperparameter ph,
which controls the frequency that recent equations
are sampled as a cubic function of ph. The Extract-
Derivation function is responsible for collecting all
related steps from the initial longer derivation, such
that a final self-contained derivation is obtained.
This derivation must match the desired length, Lf .

Runtime. To calculate the time taken to generate
a derivation, we sample a number of derivation
lengths (i.e., number of equations) from a Gaussian
N(6.5, 3) truncated between 4 and 9 inclusive. It
took 71 minutes to generate 100 derivations, with
an average length of 6 (i.e., 0.7 min/derivation, 7
seconds per step), on a mid-range laptop CPU. In
addition to the time taken for SymPy to perform
complex calculus operations, it takes some time to
generate valid derivations that do not repeat steps
and fit within our given parameters, hence hundreds
of steps may fail for a given derivation.

Hyperparameters. We rely on other hyperpa-
rameters to control 1. the selection bias towards
operations being applied to more recent equations,
2. the bias towards operators of a particular arity,
and 3. bias towards other operator subcategories.
Considering 1., in the 2-arity two annotation format
[‘operator’, operand 1, operand 2], operand 1 is al-

1520



Algorithm 2 Generate Premise Equation
Assumes a global vocabulary of letters, V and operators e.g., cos, sin, etc. Accepts a complexity
hyperparameter C that determines the maximum tree depth of the premise RHS.

1: procedure PREMISE(C)
2: S ← [Symbol(v) for v in V]
3: R1 ← [Cos, Sin, Exp, Log]
4: R2 ← [Add, Minus, Times, Power, Divide, Differentiate, Integrate]
5: arity← random.choice([1,2])
6: if arity = 1 then
7: R← random.choice(R1)
8: S ← random.choice(S)
9: RHS← R(S)

10: LHS← random.choice([s for s in S if s ̸= S])
11: else if arity = 2 then
12: R← random.choice([r for r inR2 if r not in [Differentiate, Integrate]])
13: S1 ← random.choice(S)
14: S2 ← random.choice([s for s in S if s ̸= S1])
15: RHS← R(S1, S2)
16: LHS← random.choice([s for s in S if s not in [S1, S2]])
17: end if
18: complexity← random.choice(range(C))
19: for i ∈ range(complexity) do
20: arity← random.choice([1,2])
21: if arity = 1 then
22: R← random.choice(R1)
23: RHS← R(RHS)
24: else if arity = 2 then
25: R← random.choice(R2)
26: S ← random.choice(S)
27: RHS← R(RHS, S)
28: end if
29: end for
30: LHS← Function(LHS)(*tuple(RHS.free_symbols))
31: premise← Eq(LHS, RHS)
32: return premise
33: end procedure

1521



ways an equation index. This is also true for 1-arity,
and 0-arity does not require an operand. An equa-
tion is randomly sampled from a non-repeating set
of derived equations. The history hyperparameter,
ph, clones an equation in the list through a cubic
function of its step-wise chronological position as
described above. With our default settings, the
last equation in a list of three is twice as likely to
be selected as input than the first. This emulates
mathematicians working with recent equations, but
having to occasionally sample from distant results.
Other hyperparameters work similarly, by repeat-
ing elements of lists. Considering 2., we bias to-
wards 2-arity, as those contain calculus, and con-
sidering 3. we bias towards substitution operations,
differentiation, and integration. The exact form of
the algorithm used to generate data for this paper is
available in the linked repository on the first page.

In more formal detail, the mechanics of Algo-
rithm 3 are as follows:

1. Procedure Step: This subroutine generates a
single step in the derivation.

• Sets of equations, operations, and other
relevant elements are initialised from the
dataset D.

• Based on probability parameters, the ar-
ity of the operation (either 0, 1, or 2) for
this step is determined.

• Depending on the chosen arity:
– Arity 0: The equation and annotation

for this step are directly chosen from
the setR0.

– Arity 1: An operation from R1 and
an equation from the dataset are cho-
sen to form the new equation.

– Arity 2: An operation from R2, an
equation from the dataset, and an-
other element are selected to shape
the equation.

• If the formed equation is deemed valid
through certain checks it is returned; oth-
erwise, None is returned.

2. Main Derivation Loop: This section assem-
bles the derivation.

• The initial step of the derivation is gener-
ated using Algorithm 2.

• A pre-defined target length Li describes
approximately the number of times the

Step procedure is invoked to add new
steps.

• The full derivation is extracted from the
accumulated steps.

• The loop breaks when the derivation
reaches a desired length Lf , where Lf ≥
Li.

To summarize, the algorithm iteratively con-
structs a derivation of mathematical equations,
where each step is shaped by a series of operations
determined by specific probabilities and conditions.
It is given on the following page.

1522



Algorithm 3 Generate Equational Reasoning
1: procedure STEP(D, p0, p1, p2, ph, pr, pe, pc, ps)
2: D ← [i[0] for i in D]
3: A← [i[1] for i in D]
4: R0 ← [Premise] + [RenamingPremise]×pr
5: R1 ← [Cos, Sin, Exp, Log, Expand] + [EvaluateDerivatives, EvaluateIntegrals]×pe
6: R2 ← [Add, Minus, Times, Divide, Power] + [Differentiate, Integrate]×pc

+ [SubsLHSForRHS, SubsRHSForLHS]×ps
7: elements← numbers, variables, and subexpressions from D
8: arity← random.choice([0]×p0 + [1]×p1 + [2]×p2)
9: if arity = 0 then

10: R← random.choice(R0)
11: equation← R
12: annotation← R.__name__
13: else if arity = 1 then
14: R← random.choice(R1)
15: e1 ← random.choice(EquationDistribution(D, ph))
16: equation← R(e1)
17: n← D.index(e1)
18: annotation← [R.__name__, n+ 1]
19: else if arity = 2 then
20: R← random.choice(R2) ▷ R depends on the length of D
21: e1 ← random.choice(EquationDistribution(D, ph))
22: e2 ← random.choice(elements) ▷ e2 will vary depending on R
23: equation← R(e1, e2)
24: n← D.index(e1)
25: annotation← [R.__name__, n+ 1, e2]
26: end if
27: if equation is valid then ▷ validity depends on various checks
28: return equation, annotation
29: else
30: return None
31: end if
32: end procedure
33: while True do
34: D ← [(Premise(C), "premise")] ▷ generate first step using Algorithm 2
35: while len(D) < Li do ▷ Li is an initial length of the derivation
36: step← Step(D, p0, p1, p2, ph, pr, pe, pc, ps)
37: if step is not None then
38: D.append(step)
39: end if
40: end while
41: derivation← ExtractDerivation(D)
42: if len(derivation) = Lf then ▷ Lf ≥ Li is the desired length of the derivation
43: break
44: end if
45: end while
46: D ← derivation

1523


