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Abstract

Transformer language models (LMs) have been
shown to represent concepts as directions in the
latent space of hidden activations. However,
for any human-interpretable concept, how can
we find its direction in the latent space? We
present a technique called linear relational con-
cepts (LRC) for finding concept directions cor-
responding to human-interpretable concepts by
first modeling the relation between subject and
object as a linear relational embedding (LRE)
(Hernandez et al., 2023b). We find that invert-
ing the LRE and using earlier object layers re-
sults in a powerful technique for finding con-
cept directions that outperforms standard black-
box probing classifiers. We evaluate LRCs on
their performance as concept classifiers as well
as their ability to causally change model output.

1 Introduction

How do large language models (LLMs) represent
concepts, and how can we identify those concepts
in hidden activations? If we can identify human-
interpretable concepts in model activations, we can
analyze how concepts are created and changed dur-
ing inference. Identifying concept representations
inside of models opens up the possibility of vi-
sualizing the computation process of a model as
sentences are processed, and can help to under-
stand incorrect or undesirable responses from the
model. Moreover, future work examining how con-
cept directions arise in model weights and how
models express relations between concepts may
benefit from a robust method to find those concept
directions as a first step.

An intuitive approach when trying to locate a
human-interpretable concept, like the concept of
a city being in France, is to collect examples of
sentences with cities that are in France and cities
that are not, and train a probing classifier (Ettinger
et al., 2016; Finlayson et al., 2021) on hidden lay-
ers of the model, typically a simple linear classi-
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Figure 1: We first model the relation between the subject
s and object o as a linear transformation called a linear
relation embedding (LRE), R(s). We then invert R(s)
using a low-rank pseudo-inverse, resulting in R−1(o).
Finally, we create an LRC v for each object o in the re-
lation by applying R−1(o) to the mean object activation
E[o]. Above, we train an LRE from the statement “San
Jose is in Costa Rica”, then invert that LRE and create
linear relational concepts (LRCs) representing “located
in England” and “located in China” from representations
of objects “York” and “Shanghai”, respectively.

fier. However, the learned classifier may be pick-
ing up features correlated with the concept being
probed while overlooking the feature direction that
causally influences model output (Hernandez et al.,
2023b).

Furthermore, the hidden layer in modern trans-
former models has high dimensionality: even older
models such as GPT2-xl have 1600 dimensions in
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the hidden layer (Radford et al., 2019), and modern
language models such as Llama2 have over 4000
dimensions for the smallest model (7B) (Touvron
et al., 2023). Naively training a probing classifier
may require a high number of training samples.

Our technique builds on work by Hernandez et al.
(2023b), which models the relation between a sub-
ject s and object o as an affine linear transformation,
called a linear relational embedding (LRE). While
the LRE work was mainly an investigation into how
models represent relational knowledge, we find that
inverting the LRE can generate concept directions
that achieve surprisingly strong performance as a
classifier while also causally impacting model out-
puts, outperforming standard probing classifiers
such as a linear support vector machine (SVM).
We refer to the concept direction that our method
creates as a linear relational concept (LRC). An
LRC represents a concept as a direction in a latent
space, while also functioning as a linear classifier.

Figure 1 shows our method for generating an
LRC. We first generate an LRE for a relation, map-
ping subject activations to their corresponding ob-
ject activations as a linear transformation. Then,
we perform a low-rank pseudo-inverse of the LRE,
mapping from object activations back to subject
activations. Applying this inverted LRE to an ob-
ject in the relation results in an LRC. LRCs beat
traditional probing classifiers in both classification
accuracy and causality, where causality is defined
as being able to control the output of the model.
For instance, we can force the model to output that
“London is located in France” by subtracting the
“Located in England” LRC from the activation of
“London” and adding the “Located in France” LRC.

In addition, since we use the LRE only as an
intermediate step to obtain LRCs, we can relax
the requirement that LREs must faithfully predict
object output logits directly. This allows us to train
the LRE using object activations before the final
model layer, and use all object token activations
rather than only using the first object token. This
improves classification accuracy for both single-
token and multi-token objects compared with the
original LRE work, where only the final object
layer can be used and only the first object token
can be modeled.

In this paper, we investigate the problem of lo-
cating human-interpretable concepts within the hid-
den layer of auto-regressive LLMs such as GPT
(Radford et al., 2019) and Llama (Touvron et al.,

2023). We evaluate our technique using the LRE
relations dataset (Hernandez et al., 2023b) in both
multi-class classification accuracy, and causality
(the ability of concepts to modify model output).
Our technique achieves high scores for both clas-
sification accuracy and causality across the four
concept types in the dataset.

Our contributions include: (1) Extending LREs
to handle multi-token objects, (2) Using non-
terminal model layers for the object activation, and
(3) Using inverted LREs as an intermediate step to
find concept directions (LRCs) in subject activa-
tions. Our code is available on GitHub 1.

2 Background

Previous work on transformers has shown that fea-
tures are stored as directions within the latent space
of the model’s hidden activations, known as the lin-
ear representation hypothesis (Elhage et al., 2022).

Further work has shown that mid-level multi-
layer perceptron (MLP) layers in transformer
LLMs act as key-value stores of information (Geva
et al., 2021). These MLP layers enhance the final
token of the subject of the sentence (e.g. the token
“lin” in “Berlin is located in the country of”) with
this information in factual relations (Geva et al.,
2023; Meng et al., 2022).

2.1 Linear Relational Embeddings

Linear relational embeddings (LREs) were first
presented by Paccanaro and Hinton (2001) to en-
code relational concepts as a linear transformation.
Hernandez et al. (2023b) showed that transformer
LMs appear to encode relational knowledge using
LREs. They model the processing performed by
a transformer LLM mapping from a subject s to
an object o within a textual context c as a linear
transformation o = F (s, c) = Ws + b, where
W ∈ RH×H , b ∈ RH . F is estimated by a first-
order Taylor approximation around s, while W and
b are calculated as the mean Jacobian and bias of n
samples si, ci from relation r, respectively:

W = E(si,ci)

[
∂F

∂s

∣∣∣∣
(si,ci)

]

b = E(si,ci)

[
F (s, c)− ∂F

∂s
s

∣∣∣∣
(si,ci)

]

1https://github.com/chanind/linear-relational-concepts
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A hyperparameter β is used to increase the slope
of the LRE and can be configured to improve the
performance of the LRE in the case that the Jaco-
bian underestimates the steepness of W , resulting
in the following equation for a LRE R:

R(s) = βWs+ b (1)

LREs are evaluated on faithfulness and causal-
ity. Faithfulness checks if the LRE output matches
the model output for the first predicted token when
presented with a new subject. For instance, if an
LRE trained on the relation “city in country” pre-
dicts the token “France” as the most likely output
given the subject activation of “Paris”, the LRE is
faithful. However, this limits the LRE to modeling
only a single token of object o at the final layer of
the model. As a result, LREs cannot distinguish
between words that start with the same token. For
example, “Bill Gates” and “Bill of Rights” both
begin with the token “Bill”, and thus cannot be
distinguished by an LRE evaluated for faithfulness.

To evaluate causality, the LRE is inverted using a
low-rank pseudo-inverse of the weight matrix, indi-
cated W †. Hernandez et al. (2023b) find that using
a low-rank pseudo-inverse results in better perfor-
mance than using a full-rank inverse. This inver-
sion makes it possible to calculate ∆s that is added
to the subject s to change the model output from
the original object o to a new object o′. Causality is
evaluated based on whether the model’s probability
of outputting o′ is greater than the probability of
outputting o after the edit:

∆s = W †(o− o′) (2)

As we explain in the next section, we build our
method from this technique of inverting the LRE
weight matrix to target the subject activations rather
than object activations.

3 Method

Our method finds an LRC, represented as a concept
direction vector, v, for a given human-interpretable
concept in the hidden activations of a transformer
LLM model at a layer l. Since we are interested in
concepts as directions, we do not add a bias term
and focus on learning only a single unit-length
vector to represent the LRC.

Formally, we consider an auto-regressive model
G : X → Y with vocabulary V that maps a se-
quence of tokens x = [x1, . . . , xT ] ∈ X , xi ∈ V

to a probability distribution y ∈ Y ⊂ R|V | that
predicts the next token of x. Internally, G has a
hidden state size H , and has L layers. The hidden
activations of layer l of G at token i is represented
by h

(l)
i ∈ RH .

We follow the example of Meng et al. (2022) and
Hernandez et al. (2023b), and consider statements
of the form (s, r, o) consisting of a subject s, rela-
tion r, and object o. The statement “Paris is located
in the country of France” would have the subject
“Paris”, object “France”, and relation “located in
country”. Our definition of a concept corresponds
to a relation and object pair (r, o), which operates
on the activations of the subject s. So in our case,
we would learn an LRC for the concept “located
in country: France”, and would expect the LRC to
have high similarity with the subject activations of
“Paris”, but not “Berlin” or “Tokyo”.

We make the following changes to the original
LRE method by Hernandez et al. (2023b): (1) We
use the mean of all object token activations rather
than only the first object token activation to bet-
ter handle multi-token objects. (2) We relax the
requirement that only the final layer can be used
for object activations, since we find that classifi-
cation performance improves using earlier object
layers. Both (1) and (2) are possible because we
do not directly evaluate the LRE using faithfulness
as in the original LRE work, instead performing
all evaluations on the LRC operating on the sub-
ject. (3) We restrict training samples for the LRE
to only contain examples where the model answers
the prompt correctly. If the model does not answer
a prompt correctly, we assume that the conceptual
knowledge we hope to capture in the LRC is not
present, and that the sample will likely be noise.
For instance, if the model responds to the prompt
“Paris is located in the country of” with “Japan”,
we would discard this prompt.

For a relation r, we have a set of possible objects
O, and each object o has a corresponding set of
subjects So. We first assemble prompts that elicit
each object o ∈ O for the relation r. For example,
for the relation “Located in country”, prompts fol-
low the template "{} is located in the
country of" where "{}" is replaced with the
subject and the model is expected to predict the
object. Some examples of prompts and their corre-
sponding objects are shown in Table 1.

When building an LRC for relation r and object
o, we assume a set of prompts each containing their
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Prompt (s, r) Object (o)

Paris is located in the country of France
Suzhou is located in the country of China
Manaus is located in the country of Brazil

Table 1: Sample prompts and corresponding object for
the relation “Located in country”.

own subject s ∈ So, and we expect the model to
predict the corresponding object o. We use hidden
states from the final token index i of subject s. For
example, if the subject "Berlin" tokenizes to
"Ber" and "lin", i corresponds to the token
index of "lin" as this is the final subject token.

We first select n prompts for the relation r, bal-
ancing the prompts to have as even a distribution
of prompts across O as possible. Following Her-
nandez et al. (2023b), we train a LRE R(s) con-
sisting of a weight matrix W and bias b using
these prompts, however, in contrast with Hernan-
dez et al. (2023b), we calculate the weight matrix
W using the Jacobian of the mean of all object to-
kens relative to the subject, not only the first object
token. This change means we model F (s, c) as
E[o] = F (s, c) = Ws+ b.

This is identical to the original LRE formulation
if the object consists of a single token.

We ignore the β scaling factor from the original
LRE definition. LRCs are normalized to have unit
length, removing any scaling applied to the LRE.
Our definition of an LRE, denoted R(s), is thus
simplified from Equation 1 as follows:

R(s) = Ws+ b (3)

We then invert Equation 3 to map object activa-
tions to subject activations. Following Hernandez
et al. (2023b), we use a low-rank pseudo-inverse,
denoted R† rather than the full matrix inverse R−1:

R†(o) = W †(o− b) (4)

To calculate the LRC vo for o, we take the mean
of all samples of R†(o) for each prompt (s, r, o) in
our training set:

ṽo = E[W †(o− b)] (5)

Finally, we normalize the LRC direction to have
unit length: vo = ṽo/∥ṽo∥2.

4 Results

We evaluate our method using the relations dataset
from Hernandez et al. (2023b). The dataset con-
tains 47 relation types, and over 10,000 instances
in total. The dataset divides relation types into four
categories: factual knowledge, linguistic knowl-
edge, commonsense knowledge, and implicit bias.
A subset of data from a sample relation is shown
in Table 2. Statistics about the number of relations
and samples per category are shown in Table 3.

We evaluate against both Llama2-7b (Touvron
et al., 2023) and GPT-J (Wang and Komatsuzaki,
2021). We focus on Llama2-7b for our analysis
as it is a more advanced model than GPT-J, but
we include full results for GPT-J in Appendix A.
GPT-J is included as this model was used in the
original LRE paper.

We evaluate our performance using classification
accuracy and causality. For classification accuracy,
we treat each relation as a multi-class classification
problem, where the LRC with the largest dot prod-
uct with the test subject activation a is considered
to be the predicted object ŷ:

ŷ = argmax
o∈O

vo · a (6)

To evaluate causality, we randomly pick a coun-
terfactual object oc for each subject in a relation
and edit the subject token activations to predict the
new counterfactual object o′ instead of the original
object o. We subtract the original LRC from the
final subject token activation at all layers, and add
the new LRC. For instance, we may attempt to edit
the prompt “Paris is located in the country of” to
predict “Germany” instead of “France” by subtract-
ing the “located in country: France” concept and
adding the “located in country: Germany” concept.

LRCs are all normalized to unit length, so we
scale by a hyperparameter β ∈ [0, 1] multiplied by
the L2 norm of the subject activation before adding
or subtracting them. The causal edit at a layer l is
thus calculated as below:

∆s(l) = β∥h(l)i ∥2(vo′ − vo) (7)

The causality intervention is successful if the
probability of predicting the counterfactual object
o′ after the edit is higher than the probability of
predicting the original object o. For multi-token
predictions, we use the minimum probability across
all predicted tokens to avoid penalizing objects that
require more tokens to represent. Experimentally,
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relation: city in country

FS
{} is part of
{} is in the country of

ZS
{} is part of the country of
{} is located in the country of

subject object
Kuala Lumpur Malaysia
Johannesburg South Africa
Saint Petersburg Russia

Table 2: Sample relation data for the “city in country” re-
lation from the dataset, showing zero-shot (ZS) prompt
templates, few-shot (FS) prompt templates, and several
subject / object pairs. In templates, {} is replaced with a
subject. The different FS and ZS templates are provided
by the relations dataset.

Category Relations Samples

Commonsense 7 337
Bias 7 212

Factual 21 9462
Linguistic 4 660

Table 3: Statistics for the number of relations and sam-
ples of each category in the dataset after filtering out
one-to-one relations.

we find β = 0.05 for GPT-J and β = 0.075 for
Llama2-7b work well. These values were found
by sweeping β between 0 and 1 in increments of
0.005.

We perform a multi-layer edit since single-layer
causality penalizes learning concepts in later layers
of the model. In single-layer causality, the model
still attends to the unedited subject activations for
layers before the edit, undermining the effect of
edits at later layers. Instead, we perform the same
edit at all layers of the subject, so the model does
not attend to any unedited subject activations.

For each relation, we split the dataset into a
50%/50% train/test split by relation and object, en-
suring at least one training example per object in
the relation. We prepend four other examples from
the same relation to each training prompt as few-
shot examples. We train using few-shot prompts
from the relations dataset, but evaluate using zero-
shot prompts, following the procedure in the orig-
inal LRE paper. An example few-shot prompt is
shown in Figure 2. We repeat five times with dif-
ferent random seeds for train/test splits, reporting
mean and standard deviation. The shaded area in

Tokens Llama2-7b GPT-J

1 2393 2108
2 451 39
3 371 2
4 107 6

5+ 4 0

Table 4: Statistics for the average number of tokens
in objects for the test set for Llama2-7b and GPT-J
after filtering out one-to-one relations and samples the
model answers incorrectly. The majority of samples
are single-token, but Llama2-7b also answers correctly
a large number of multi-token object samples. GPT-J
performs worse than Llama2-7b, especially on multi-
token objects.

The superlative form of bad is worst
The superlative form of bright is brightest
The superlative form of angry is

Figure 2: Sample few-shot (FS) prompt for the rela-
tion “adjective superlative”, subject “angry”, and object
“angriest” from the dataset.

the plots corresponds to this standard deviation.
Some relations contain a one-to-one mapping

between subject and object, so it is impossible to
create a test split with unseen subject/object pairs.
For example in the relation “capital city of coun-
try”, a country has one capital city, and a city is
the capital of only one country. Since our concepts
require a unique r and o pair, we cannot evaluate
these relations and exclude them from evaluation.
We also exclude any samples the model answers
incorrectly, and we exclude any relations with less
than five test samples as few test samples make
it hard to evaluate performance robustly. Table 4
shows the average test set size by number of object
tokens for Llama2-7b and GPT-J after this filtering.

When training LRCs using our method, we use
20 training samples per LRE for the main bench-
mark, and 5 training samples for sweep plots. We
use rank 192 for pseudo-inverse. Calculations are
performed using a single Nvidia A100 GPU with
16-bit quantization. We use subject layer 17 and
object layer 21 for Llama2-7b, and subject layer 14
and object layer 20 for GPT-J.

4.1 Comparisons

We compare our method against training a 0-bias
linear support vector machine (SVM) classifier on
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Llama2-7b
Method Accuracy Causality

LRC 0.81 ± 0.01 0.78 ± 0.02

LRC (ft, lfinal) 0.74 ± 0.02 0.78 ± 0.02

SVM 0.73 ± 0.02 0.69 ± 0.01

Input averaging 0.70 ± 0.01 0.55 ± 0.03

GPT-J
Method Accuracy Causality

LRC 0.81 ± 0.02 0.84 ± 0.01

LRC (ft, lfinal) 0.78 ± 0.02 0.86 ± 0.01

SVM 0.75 ± 0.02 0.76 ± 0.01

Input averaging 0.73 ± 0.03 0.56 ± 0.02

Table 5: Classification accuracy and causality results on
the relations dataset for Llama2-7b and GPT-J. LRC is
our method. “ft” refers to using only the first token of
the object to calculate an LRE. LRC (ft, lfinal) is included
as ablation to best estimate the results of inverting the
original LRE technique at the final layer. Results include
mean and standard deviation after five random seeds.

the hidden activation data, as well as estimating
a concept direction by simply averaging together
the hidden activations for a given object. For both
SVM and averaging, we normalize the learned vec-
tors to unit length.

We also compare our method to an LRC trained
using the final layer for the object token, as in the
original LRE paper where the final layer is always
used for objects.

4.2 Classification accuracy and causality

For classification accuracy and causality, we cal-
culate a score per relation, and then average the
scores across relations. Some relations have more
test samples than others, which would otherwise
bias the results towards relations with more test
samples and not reflect performance across the full
range of relation types in the dataset. Results are
shown in Table 5.

Our method performs the best on both classifica-
tion accuracy and causality. Classification accuracy
improves by a large margin by using layer 21 in-
stead of the final layer (layer 31 for Llama2-7b),
showing the importance of allowing the LRE to
use a non-terminal layer. We also include a full
comparison of classification accuracy between our
method and SVM for Llama2 in Figure 3.

Figure 3: Classification accuracy by relation for LRC
(ours) compared to SVM on Llama2-7b. Our method
outperforms SVM on most, but not all, relations.

4.3 Multi-token vs single-token objects

One of the main limitations of the original LRE
work is not being able to handle multi-token ob-
jects, so we expect the improvement of our method
over traditional LREs to be most prominent for
multi-token objects.

To investigate the impact of the choice of object
layer on single-token and multi-token performance,
we evaluate our method on each layer from layer
18 to the final layer 31 for Llama2-7b keeping layer
17 as the subject layer. We only use Llama2-7b
since GPT-J has very few multi-token prompts that
it can answer correctly. Multi-token results by ob-
ject layer are shown in Figure 4, and single-token
results are shown in Figure 5.

Both single-token and multi-token performance
improves by using earlier object layers, but the
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Figure 4: Classification accuracy and causality by object
layer for multi-token objects on Llama2-7b.

Figure 5: Classification accuracy and causality by object
layer for single-token objects on Llama2-7b.

difference is especially pronounced for multi-token
objects.

4.4 Impact of the rank of the LRE inverse

One surprising result from Hernandez et al. (2023b)
is that using a low-rank inverse of the LRE results
in better performance than a full-rank inverse. We
investigate the relationship between the rank of
the LRE inverse and performance on the relations
dataset for our method, with results in Figure 6.

Figure 6: Classification accuracy and causality on the
relations dataset by LRE inversion rank on Llama2-7b.

Using a low-rank LRE inverse improves per-
formance dramatically, with performance peaking
around rank 200 for Llama2-7b. Llama2-7b has

LRE train sample Accuracy Causality

Same object 0.31 ± 0.04 0.31 ± 0.02

Different object 0.69 ± 0.01 0.70 ± 0.02

Table 6: Results for training a LRC derived from a LRE
trained with a single training sample for the relations
dataset, where that sample either represents the same
object as the LRC (Same object) or a different object in
the same relation (Different object) for Llama2-7b.

a 4096 dimension hidden space, so a rank 200 in-
verse is discarding over 95% of the weight matrix.
The generalization power of using an inverted LRE
to find concept directions likely comes from this
low-rank inverse, where the important components
of the relation are captured in the largest singular
values of the LRE weight matrix.

4.5 Choosing samples to train the LRE

We use the LRE only as an intermediate step in
deriving a LRC, so it is possible to train a LRE
for each LRC, optimized for the specific relation
and object (r, o) of that LRC. An instinct is to
only choose training samples that contain the LRC
object. For instance, to train an LRC for “Located
in country: France”, we could pick LRE training
samples consisting only of cities in France.

We investigate this idea using only a single train-
ing sample to train the LRE, since many objects
in the dataset have only a single training sample
and we want to ensure results are not simply a re-
flection of the number of samples available to train
the LRE. We compare training the LRE and LRC
using a sample which represents the same object
vs training the LRE with a sample from a different
object in the same relation. Results are shown in
Table 6.

Unintuitively, training the LRE using a sample
with the same object as the LRC results in dramati-
cally worse performance. We do not yet understand
why this is, but suspect that choosing samples from
different objects may have a regularizing effect
on the resulting LRC. More investigation will be
necessary to understand this phenomenon in-depth,
but for our purposes, we find that it is essential that
the training samples for the LRE contain different
objects from the same relation.

4.6 Causality vs accuracy trade-off

While we use multi-layer causality to avoid penal-
izing training at later model layers, we still find a
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trade-off between causality and classification accu-
racy depending on the subject layer of LRC. Earlier
layers allow the LRC to find maximally causal inter-
ventions, but classification accuracy suffers since
model MLP layers have not yet had a chance to
enhance the subject token with relevant informa-
tion. Figure 7 shows classification accuracy and
causality results on the relations dataset for train-
ing the LRC using subject layers 10 through 21 on
Llama2-7b.

Figure 7: Classification accuracy and causality on the
relations dataset by subject layer on Llama2-7b with
object layer 22.

Causality is highest with earlier layers, while
classification accuracy follows the opposite trend,
increasing up to layer 19. We suspect this trade-
off is a limitation of using a single pair of subject
and object layers. It may be possible to combine
LRCs learned at different layers to improve both
classification accuracy and causality.

5 Related work

Previous work on understanding neural networks
focuses on individual neurons (Bills et al., 2023;
Yosinski et al., 2015). However, individual neurons
have been found to activate in response to multiple
concepts, making a clean understanding difficult
(Goh et al., 2021). Indeed, transformers can repre-
sent more concepts than they have neurons in their
hidden layers (Elhage et al., 2022).

A source of inspiration of our work is knowledge
editing in LMs, specifically ROME (Meng et al.,
2022) and REMEDI (Hernandez et al., 2023a). In
ROME, factual knowledge is shown to reside in the
mid-layer MLPs of language models, and can be
edited by updating a mid-layer MLP to insert any
fact desired.

In REMEDI, model outputs are edited by adding
a vector to the subject of a sentence during forward
inference. This is similar to our work in that this

vector can be said to contain the concept that is de-
sired to be elicited. However, the goal of REMEDI
is to edit model outputs rather than identify concept
directions and build a classifier as in our work.

We also take inspiration from probing classi-
fiers (Belinkov, 2022; Ettinger et al., 2016). Prob-
ing classifiers are linear classifiers which operate
on hidden activations inside of neural networks.
TCAV (Kim et al., 2018) can be said to be a prob-
ing classifier for vision models, where a classifier
is learned at multiple layers in the model. Most
similar to our work, Li et al. (2021) build a prob-
ing classifier for textual games from LM hidden
activations, and show that these hidden activations
encode a basic world model. However, this work
focuses on encoder-decoder models, and does not
attempt to classify arbitrary human-interpretable
concepts beyond the text game.

Closest to this paper is work on LREs in LLMs
(Hernandez et al., 2023b), which is the source of
our evaluation dataset and is the first step in our
method. This work also attempts to estimate rela-
tions, and learns a linear mapping from the subject
token activation to the first output token of the ob-
ject. However, as LREs only map to the first object
token, they struggle with multi-token objects. For
instance, an LRE evaluated for faithfulness cannot
distinguish between “Bill Gates” and “Bill Clin-
ton” as they both begin with the same token. In
addition, the original LRE work is presented as an
exploration of how LLMs encode relations rather
than attempting to build a classifier or find concept
directions.

6 Conclusion

Identifying and classifying a broad set of human-
interpretable concepts in language model activa-
tions is a vital step towards understanding how
language models operate. In this work, we have
shown a technique for identifying and classifying
concepts in model hidden activations called linear
relational concepts (LRCs). We show that LRCs
outperform standard linear classifiers like SVMs
on both classification accuracy and causality.

While our technique performs well, there is a
variance in performance depending on the train-
ing samples chosen. We expect further improve-
ments to be achieved by optimizing the LRE train-
ing samples chosen for each LRC. In addition, it
may be possible to combine LRCs learned at mul-
tiple layers to achieve even better results to get
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around the causality / accuracy trade-off depending
on the layer chosen to train the LRC.

In the future, concept identification techniques
such as LRC may make it possible to investigate the
relations between concepts within model weights,
and extract knowledge and even world models di-
rectly from pretrained language models.

Limitations

Our method requires learning a new LRC for ev-
ery (r, o) pair, so cannot generalize to new objects
without a training sample of that (r, o). Our eval-
uation also assumes that each subject maps only
to a single object in the same relation, and would
need modifications to handle subjects with multiple
objects in the same relation, such as a movie that
can have multiple genres, but we do not investigate
that in this work.

Our method assumes that each human-
interpretable concept corresponds to a direction
in the hidden space of the model, and we assume
that if the model outputs the correct answer to a
prompt then the model has a representation of
this concept in its activations. However, it is also
possible for the model to guess the correct answer
without having any underlying representation,
which will cause our method to not perform well.
For instance, for the prompt “Sam Eastwood’s
father is named”, the model will output the correct
answer “Clint Eastwood”. However, did the model
have an underlying representation of this fact in
its hidden activations, or is it simply guessing
the most famous person with the last name
“Eastwood”, which is Clint Eastwood? Indeed,
GPT-J will output “Clint Eastwood” as the father
of almost any made-up person with the last name
“Eastwood”. Our method would likely perform
much better if these cases where the model can
guess the correct answer were filtered out, but
differentiating between the model guessing and
knowing the correct answer is challenging.

Recent work suggests that sometimes the knowl-
edge that maps subjects to objects is not present
in MLP layers applied to the subject token, but in-
stead is contained directly in attention values and
only is added to the residual stream of the output
tokens instead of the subject (Geva et al., 2023).
For knowledge of this sort, our method will fail
since we assume all knowledge can be found in the
subject token residual stream rather than needing
to look at the output token.

Finally, our method works only for relational
concepts of the form (s, r, o). Other types of con-
cepts which do not easily fit into this format would
require an adaptation or a different technique.

Ethics statement

By exploring internal model activations before the
model generates outputs, LRCs may help locate
biases and inaccurate information inside model
weights. However, LRCs do not provide a way
to robustly correct these biases and errors. This
may be a direction for future research.
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A Appendix

A.1 Extended results

Full results broken down by each relation tested is
shown in Figure 8 for GPT-J. This plot compares
the results for our method (LRC) against the results
for support vector machines (SVM).

Figure 8: Classification accuracy broken down by rela-
tion for LRC (ours) compared to SVM on GPT-J. Our
method outperforms SVM on most, but not all, relations.

Results for the effect of the rank of the LRE
weight matrix inverse on performance of the LRC
method for GPT-J is shown in Figure 9.

Results illustrating the effect of object layer
choice our method for GPT-J is shown in Figure 10,
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Figure 9: Classification accuracy and causality on the re-
lations dataset by LRE inversion rank on GPT-J. Shaded
area indicates standard deviation after five seeds.

with subject layer 15. We do not break down the
effect of this object layer choice by single-token vs
multi-token objects since GPT-J answers very few
multi-token object prompts correctly.

Figure 10: Classification accuracy and causality on the
relations dataset by LRE object layer on GPT-J with sub-
ject layer 15. Shaded area indicates standard deviation
after five seeds.

Results illustrating the effect of the subject layer
choice on LRC performance are shown in Figure
11 with object layer 20. As with Llama2-7b, we
find a trade-off between causality and classifica-
tion accuracy, where earlier layers result in better
causality performance at the expense of classifica-
tion accuracy.

A.2 Statistical significance
We calculate statistical significance between our
method (LRC) and SVM for classification accuracy
and causality. We find that LRCs performance
improvement over SVM is statistically significant.

We use a two-proportion Z-test to calculate sig-
nificance. Since we run five random seeds with
different train / test splits, we calculate significance
for each random split separately to avoid double-
counting samples which may occur in different
splits. This should make our significance estimate

Figure 11: Classification accuracy and causality on the
relations dataset by LRE subject layer on GPT-J. Shaded
area indicates standard deviation after five seeds.

more conservative than if we sum the results across
all splits.

In order to simplify the significance calculation,
the scores are not reweighted by relation as is done
in the results in the paper, so if a relation has many
more samples than another relation, we do not
reweight to account for that in this calculation. As
a result, the LRC and SVM scores per iteration are
slightly different than appears earlier in the paper.
P-value calculations for Llama2-7b are shown in
Figure 7, and for GPT-J in Figure 8.

For Llama2-7b, our method is statistically sig-
nificantly better than SVM for both classification
accuracy and causality. However, for GPT-J, the
classification accuracy difference is not statistically
significant between our method and SVM, but our
method does outperform SVM on causality with
statistical significance.
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Classification accuracy (Llama2-7b)

Seed Test samples LRC SVM P-val

42 3324 0.842 0.811 9e-4
43 3326 0.845 0.804 1e-5
44 3319 0.839 0.808 9e-4
45 3354 0.838 0.816 0.016
46 3335 0.843 0.803 2e-5

Causality (Llama2-7b)

Seed Test samples LRC SVM P-val

42 1527 0.762 0.652 3e-11
43 1533 0.733 0.606 7e-14
44 1517 0.740 0.633 2e-10
45 1497 0.764 0.607 3e-20
46 1497 0.723 0.627 2e-8

Table 7: Statistical significance calculation for classi-
fication accuracy comparison for our method (LRC)
compared with SVM using Llama2-7b. All compar-
isons are at subject layer 17. We use object layer 21 for
LRC. All P-values from each seed for both classification
accuracy and causality are well below the 0.05 thresh-
old for statistical significance. In order to simplify the
significance calculation, these scores are not reweighted
by relation as is done in the results in the paper, so if a
relation has many more samples than another relation,
we do not reweight to account for that in this calcula-
tion.

Classification accuracy (GPT-J)

Seed Test samples LRC SVM P-val

42 2181 0.825 0.793 0.007
43 2129 0.803 0.800 0.818
44 2176 0.784 0.816 0.008
45 2173 0.789 0.791 0.882
46 2236 0.812 0.789 0.0517

Causality (GPT-J)

Seed Test samples LRC SVM P-val

42 1049 0.699 0.546 6e-13
43 1054 0.733 0.602 1e-10
44 1088 0.716 0.581 4e-11
45 1014 0.735 0.570 7e-15
46 1097 0.718 0.560 1e-14

Table 8: Statistical significance calculation for classi-
fication accuracy comparison for our method (LRC)
compared with SVM using GPT-J. All comparisons are
at subject layer 14. We use object layer 20 for LRC. The
classification accuracy results for LRC are not statisti-
cally significant compared with SVM, but the causality
results are significantly significant. In order to sim-
plify the significance calculation, these scores are not
reweighted by relation as is done in the results in the pa-
per, so if a relation has many more samples than another
relation, we do not reweight to account for that in this
calculation.
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