
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 1582–1595

June 16-21, 2024 ©2024 Association for Computational Linguistics

REST: Retrieval-Based Speculative Decoding

Zhenyu He1∗, Zexuan Zhong2∗,Tianle Cai2∗, Jason D. Lee2, Di He1†

1National Key Lab of General AI, School of Artificial Intelligence, Peking University
2Princeton University

hezhenyu@stu.pku.edu.cn, zzhong@cs.princeton.edu,
{tianle.cai, jasonlee}@princeton.edu, dihe@pku.edu.cn

Abstract

We introduce Retrieval-Based Speculative De-
coding (REST), a novel algorithm designed to
speed up language model generation. The key
insight driving the development of REST is the
observation that the process of text generation
often includes certain common phases and pat-
terns. Unlike previous methods that rely on a
draft language model for speculative decoding,
REST harnesses the power of retrieval to gen-
erate draft tokens. This method draws from
the reservoir of existing knowledge, retrieving
and employing relevant tokens based on the
current context. Its plug-and-play nature al-
lows for seamless integration and acceleration
of any language model, all without necessitat-
ing additional training. When benchmarked on
7B and 13B language models in a single-batch
setting, REST achieves a significant speedup
of 1.62× to 2.36× on code or text generation.
The source code of REST is available at https:
//github.com/FasterDecoding/REST.

1 Introduction

Transformer-based Large Language Models
(LLMs) have emerged as a foundation model
in natural language processing (Vaswani et al.,
2017; Devlin et al., 2019; Brown et al., 2020;
Zhang et al., 2022; Scao et al., 2022; Chowdhery
et al., 2022; Zeng et al., 2022; Touvron et al.,
2023). While they achieve impressive perfor-
mance across various tasks, the inference cost
is huge in practical scenarios. During inference,
the model autoregressively uses the preceding
context to generate the next token. Each iteration
requires reloading the billion-parameter LLM
from the High-Bandwidth Memory (HBM) to
the on-chip cache of modern accelerators like
GPUs, making the whole generation inefficient
and time-consuming.
*These three authors contributed equally to this project.
†Correspondence to: Di He <dihe@pku.edu.cn>.

A recent direction in accelerating the LLM gener-
ation is to reduce the number of forward processes
with LLMs while guaranteeing the quality of the
output sequence simultaneously. Speculative de-
coding (Leviathan et al., 2023; Chen et al., 2023;
Miao et al., 2023; Spector and Re, 2023) is one of
the typical approaches in this direction. Intuitively,
speculative decoding methods leverage a small LM
to generate tokens with less computational cost.
During inference, the method first uses the small
LM to create a draft token sequence and then uses
the LLM for verification. If the predictions from
both models are consistent, we can accept the draft
and return it to the user. Here, the actual token gen-
eration is carried out using the small LM, and the
large LM is only used to validate the draft, which
can be performed in parallel and requires reload-
ing the memory only once. Consequently, the en-
tire framework of speculative decoding reduces the
overall inference cost.

However, obtaining a high-quality draft model
remains challenging: It must balance small size
and strong predictive power while matching the
vocabulary of the base model; also, it should in-
tegrate well into a distributed system for serving.
Therefore, people often need to train a draft model
specifically for their model and use cases (Chen
et al., 2023; Miao et al., 2023; Cai et al., 2023).
In this study, rather than relying on an additional
small LM, we investigate using a data corpus di-
rectly to construct the draft token sequence in spec-
ulative decoding. We develop a retrieve-based ap-
proach, called Retrieval-Based Speculative Decod-
ing (REST) (Figure 1). Compared to previous ap-
proaches, our retrieval-based system replaces the
parametric draft model with a non-parametric re-
trieval datastore, which can easily port to any LLM
and accelerate its inference.

To use REST, the first step is constructing the
datastore. In this paper, we leverage either the
pretraining data corpus or the instruction-tuning

1582

https://github.com/FasterDecoding/REST
https://github.com/FasterDecoding/REST


data corpus to build our datastore, which serves as
the source for the draft token sequence. During
each inference step, we first use previous tokens
(pre-generated tokens or prompt tokens) as queries
to identify exact matches in the datastore. The
subsequent tokens from these exact matches are
considered generation candidates. A Trie is con-
structed using these candidates. The nodes with
the highest frequencies are selected as the draft to-
kens. This sequence then undergoes verification by
the LLM through a single forward pass, aided by
a meticulously designed attention mask known as
tree attention (Cai et al., 2023; Miao et al., 2023;
Spector and Re, 2023). As many subsequences dur-
ing generation likely appear in the datastore, REST
can frequently generate multiple correct tokens per
step.

We conduct extensive experiments to test the
efficiency and effectiveness of REST in different
scenarios. For the code domain, we use a portion
of Python pretraining code (2.7M samples) from
The Stack (Kocetkov et al., 2022) as the datastore
and accelerate CodeLlama (Rozière et al., 2023)
7B and 13B respectively. The results show on Hu-
manEval (Chen et al., 2021) REST achieves 2.12×
to 2.36× speedup. For the general domain, we
construct a datastore using UltraChat (Ding et al.,
2023), containing around 774K conversations. The
results show on MT-Bench (Zheng et al., 2023)
REST accelerates 7B and 13B Vicuna (Chiang
et al., 2023) by 1.62× to 1.77× respectively.

2 Related Work

Improving the efficiency of LLM inference has
been an emergent research direction in recent years.
Broadly, previous attempts can be divided into two
categories: lossless acceleration and lossy acceler-
ation. Lossy acceleration approaches aim to learn
efficient models that can execute faster and act
similarly to a target LLM. These methods include
pruning (Wang et al., 2021; Hubara et al., 2021;
Ma et al., 2023; Frantar and Alistarh, 2023), quanti-
zation (Yao et al., 2022; Park et al., 2022; Dettmers
et al., 2022; Frantar et al., 2022; Xiao et al., 2023;
Liu et al., 2023) and knowledge distillation (Sanh
et al., 2019). Lossless acceleration strategies fo-
cus on directly accelerating the target LLM from
different perspectives, such as memory and IO opti-
mization (Dao et al., 2022; Dao, 2023; Kwon et al.,
2023; Sheng et al., 2023), and ways to reduce the
function calls of LLM during decoding, e.g., specu-

lative decoding (Stern et al., 2018; Leviathan et al.,
2023; Chen et al., 2023; Miao et al., 2023; Spec-
tor and Re, 2023; Cai et al., 2023). This work
falls within the second branch. Speculative de-
coding (Leviathan et al., 2023; Chen et al., 2023;
Miao et al., 2023; Spector and Re, 2023) lever-
ages a smaller model to generate a draft and use
LLM to verify the draft tokens with a single for-
ward pass. In this framework, blockwise parallel
decoding (Stern et al., 2018) and Medusa (Cai et al.,
2023) train multiple heads based on the LLM for
draft token generation.

Our method diverges from these approaches by
retrieving draft tokens from a datastore, presenting
a novel avenue for efficiency improvement in large
language model generation. While there is a simi-
lar study, LLMA (Yang et al., 2023), that employs
retrieval to accelerate generation, our work distin-
guishes itself in two primary ways: (1) The LLMA
approach is tailored towards scenarios where re-
ferred contexts (as in Retrieval-Augmented Gen-
eration and Cache-Assisted Generation) are pro-
vided during generation, and it only retrieves from
these referred contexts. In contrast, our method
retrieves draft tokens from a comprehensive datas-
tore, thereby not being confined to a small context.
(2) In the LLMA framework, the retrieved instance
is typically limited to one or a handful. Our method,
however, is designed to handle a much larger num-
ber of retrieved instances. This difference in ap-
proach allows us to leverage a wider information
base during the generation process.

3 Retrieval-Based Speculative Decoding

In this section, we first provide notations and a
background overview of speculative decoding and
then introduce our proposed REST framework.

3.1 Background: Speculative Decoding
We use x ∈ V to denote a token where V is the
vocabulary. At each time step t, given the preceding
context s = (x1, ..., xt−1, xt), the autoregressive
decoding method generates the token at position
t+ 1 according to:

xt+1 ∼ p(x|x1, . . . , xt; θlarge),

where p(·) is the conditional probability distribu-
tion calculated by the LLM with parameter θlarge.
In this process, a forward run of the LLM is re-
quired at each step of generation. This is signifi-
cantly time-consuming due to the memory band-

1583



f = lambda num: [i for i ⬅ 

📝Input

Retrieved Context

numbers = […] \n for i

dictionary = {…} \n for i

import math \n for i

numbers = […] \n for i

file = open(…) \n for i

def sorted_c(…)\n for i

Continuations

in range(

, item in

in range(

in sorted(

in range(

in sorted

Root

3

2

in

Trie of
Continuations

1

,

1

1

sorted

3range (

(

_

1
item

in

5

1

Step 1: Retrieve docs Step 2: Construct Trie

✔

✔ ✔

✔ ✔

✔ ✔ ✔

in

range

sorted

(

Tree Attention

Step 3: Verify candidates

Retrieval-Based
Speculative Decoding (REST)

📜Candidates
in
in range

✅
✅

✅
❌

in range(
in sorted

Figure 1: Overview of REST. During inference, the input context is utilized as the query to retrieve docs from the
datastore that match the longest suffix of the input. A Trie is constructed using the continuations from the retrieved
docs. We prune the low-frequency (weight) branches and the remaining subtree is further used as candidates.
Candidates will be fed into the LLM with a tree attention mask for verification. All correct tokens from the start
will be accepted, and the draft tokens after the first mistake will be rejected.

width and cannot fully exploit the computational
power of modern GPU hardware (Shazeer, 2019).

Speculative decoding aims to reduce the compu-
tational cost during inference by reducing the count
of executions with θlarge. In addition to the LLM
θlarge, speculative decoding leverages another lan-
guage model of a much smaller size with parameter
θsmall. At step t, the method operates by iteratively
executing the following steps.

Draft construction Given s = (x1, . . . , xt), the
small LM θsmall is used to generate the next m
tokens x̃t+1, . . . , x̃t+m in an autoregressive way:

x̃t+i ∼ p(x|s, x̃t+1, . . . , x̃t+i−1; θsmall),

where i = 1, . . . ,m.

Although the tokens are still generated one by one,
the computational cost of this process is reduced as
it uses θsmall instead of θlarge.

Draft verification After the draft tokens
x̃t+1, . . . , x̃t+m are generated, they are fed into
the LLM together with the context s. The LLM
θlarge then calculates the conditional probabilities
with a single forward pass:

p(x|s; θlarge),
p(x|s, x̃t+1; θlarge),

. . .

p(x|s, x̃t+1, . . . , x̃t+m−1; θlarge).

Draft acceptance Starting from the first gen-
erated tokens in the draft, the conditional proba-
bility derived from θsmall is compared with that
of θlarge. We can use modified rejection sam-
pling to match the generated distribution with
the LLM (Leviathan et al., 2023; Chen et al.,
2023). For position t + i, we first sample a
value r from a uniform distribution U(0, 1). If
r < min

(
1,

p(x|s,x̃t+1,...,x̃t+i−1;θlarge)
p(x|s,x̃t+1,...,x̃t+i−1;θsmall)

)
, we accept

the draft token x̃t+i and continue to validate the
next token x̃t+i+1. Otherwise, we stop the accep-
tance process, resample xt+i, reject all the draft
tokens after xt+i, and move to the new speculative
decoding process at the position t+ i+ 1.

3.2 Our Approach: REST

While in the classic speculative decoding, a smaller
LM is used as the draft model, finding a high-
quality draft model is usually challenging for sev-
eral reasons: (1) For efficiency, the draft model
needs to be lightweight enough to not introduce
much overhead. (2) For quality, it needs to pre-
dict the LLM output accurately. (3) For system
integration, it needs the same vocabulary set as
the LLM, and an architecture that distributes eas-
ily with a similar configuration to the LLM (Chen
et al., 2023). These challenges require carefully
selecting or even training custom draft models for
each new LLM.

In this paper, we solve the challenges differently.
We develop a training-free approach to specula-

1584



tive decoding that can easily integrate with any
new model to accelerate inference. Instead of re-
lying on a parametric draft model, our method
Retrieval-Based Speculative Decoding (REST) pro-
poses using retrieval for draft construction. An
overview of REST is shown in Figure 1. In the
following, we first describe constructing a datas-
tore and operations on it, then demonstrate using
it for draft construction and verification. Together,
REST provides an efficient, high-quality, and easy-
to-integrate solution for accelerating the inference
of LLMs.

Datastore construction REST operates based on
a pre-built datastore D = {(ci, ti)}, where ci repre-
sents a context and ti represents the corresponding
continuation of the context ci. Given a text/code
corpus, we construct the datastore D using the pre-
fix context and the corresponding continuation at
each position.

Retrieving from the datastore At inference,
given a context s = (x1, . . . , xt), our objective
is to construct the draft tokens which are likely the
continuations of s. Different from vanilla specula-
tive decoding that uses a small LM to construct the
draft, we leverage the built datastore D and directly
retrieve draft tokens from the datastore. We first
use the context s to retrieve context-continuation
pairs from the datastore D and construct a set of
continuation candidates S:

S = {ti | (ci, ti) ∈ Retrieve(D, s)},

where Retrieve(D, s) implements a retrieval pro-
cess in the datastore D that returns a set of context-
continuation pairs {(ci, ti)} by using s as the query.
It is straightforward to use recent dense retrieval
models (Khandelwal et al., 2020; Karpukhin et al.,
2020) to find contexts ci that are similar to s. How-
ever, using dense retrievers adds additional over-
head during inference. We instead use a fast exact-
match method to retrieve continuation candidates.

Our retrieval process is shown in Algorithm 1.
We aim to find contexts in D that match the longest
suffix of s. We employ a greedy strategy and start
from a pre-defined match length upper limit nmax .
For each suffix length n, we obtain the context
s’s suffix with n tokens q (line 5), and obtain all
the contexts ci that match q as a suffix (line 6). If
at least one context in D matches the current q

We set nmax as 16 in our experiments, as only few cases lead
to a maximum match with more than 16 tokens.

(i.e., S ̸= ∅), we return the corresponding context-
continuation pairs as the retrieval result; otherwise
we decrease the matching length n by one and try
to match a shorter suffix (line 7). We use a suf-
fix array (Manber and Myers, 1993) to implement
efficient exact match in datastore D for a given
q. The retrieval process leads to negligible over-
head (< 6%) in our experiments (see details in
Section 5).

Algorithm 1 Exact-match based retrieval algorithm
Retrieve(D, s). We return context-continuation
pairs in D that match the longest suffix of s.

1: Input: Context s, datastore D, maximum suf-
fix length nmax

2: Initialize n← nmax

3: Initialize S ← ∅
4: while S = ∅ do
5: q ← suffix(s, n)
6: S ← {(ci, ti) | q = suffix(ci, n)} ⊆ D
7: n← n− 1
8: end while
9: return S

Draft construction from retrieved results The
retrieved result S includes possible continuations
of the context s. For each ti ∈ S, any prefix of
ti can serve as draft tokens of s in the speculative
decoding and be further verified by the LLM. Note
that the retrieved set of continuation candidates S
can be large. It is not feasible to use all candidates
as draft tokens and feed them into the LLM for
verification. Here we present how we select high-
quality draft tokens from the retrieved set S. A
naive strategy is to sample a subset of sequences in
S as the draft tokens. However, this is suboptimal
as the sampling contains randomness when S is
large.

We select draft tokens from the retrieved result
S using a Trie. In the Trie, the unique path from
a node to the root node corresponds to a prefix of
ti ∈ S. For each node, we assign a weight reflect-
ing the number (frequency) of the corresponding
prefix that appears in the retrieved candidates. As
shown in Algorithm 2, we first construct a Trie
using all sequences in S, and the node weight is
updated when a candidate ti is inserted into the
Trie (lines 2-7). The Trie data structure allows
us to prioritize tokens using the weights and se-
lect high-frequency prefixes (lines 8-15). In the
practical implementation, we choose a subtree that

1585



contains the top c nodes with the highest weights,
which equals to selecting the top c high-frequency
prefixes as the draft sequences.

Algorithm 2 Draft sequences selection using Trie.

1: Input:Continuation Candidates S, hyperpa-
rameter c

2: Initialize Trie T
3: for each ti ∈ S do
4: for each prefix of ti do
5: Insert prefix into T and update node

weights
6: end for
7: end for
8: Initialize empty priority queue Q (Max Heap

based on node weights)
9: for each node in T do

10: Add (node.prefix, node.weight) to Q
11: end for
12: while Q.size > c do
13: Pop the prefix with the smallest weight

from Q
14: end while
15: return Q

Draft verification of REST In REST, multiple
draft sequences may be retrieved from the datastore.
While one might initially approach the drafts inde-
pendently and feed them into the LLM as distinct
sequences in a batch, practical observations reveal
that many drafts share common prefixes. This leads
to redundant computation of Transformer layers on
these shared prefixes across different sequences,
resulting in a waste of computational power. To
optimize the efficiency, we construct a pseudo se-
quence from the subtree using breadth-first search.
By definition, it can be immediately obtained that
each draft constitutes a sub-sequence of this pseudo
sequence, and any shared prefix appears only once.
To correctly execute LLM on this pseudo sequence,
we implement a carefully designed attention mask
in each attention layer, ensuring that the computa-
tion of each token precisely reflects its dependen-
cies in the original draft sequence. This attention
strategy is also known as tree attention (Cai et al.,
2023; Miao et al., 2023; Spector and Re, 2023).

Draft acceptance of REST We adopt a more
straightforward acceptance strategy compared to
the original speculative decoding. By feeding the
drafts into LLM, we obtain the conditional distri-
bution at each position given by θlarge, where we

sample new tokens. We then assess whether sam-
pled new tokens coincide with the draft tokens at
each position. All correct draft tokens from the
start will be accepted, and the draft tokens after
the first mistake will be rejected. In this way, the
sequences produced using REST are identical to
those generated by standard autoregressive genera-
tion.

Comparison with existing approaches Al-
though REST follows a schema similar to that of
speculative decoding, it offers significant advan-
tages over existing approaches. Current specula-
tive decoding methods rely on a high-quality small
model to generate draft tokens (Leviathan et al.,
2023; Chen et al., 2023). Such methods must strike
a balance between a small size and strong predic-
tive power, while also matching the vocabulary of
the base model. Moreover, they require additional
GPU memory and introduce complexity during in-
ference. In contrast, REST directly retrieves draft
tokens from a datastore, which can be easily inte-
grated with language models of any size, vocab-
ulary, or architecture. Different from Stern et al.
(2018) and Cai et al. (2023) which train specialized
modules to create a draft model, REST eliminates
the need for any additional training steps and can
serve as a plug-and-play solution of efficient de-
coding across different models. Furthermore, the
effectiveness of REST is affected by the quality of
retrieval results. This opens up the opportunities
to further enhance REST by using a better/larger
datastore or an advanced retrieval model. We also
note that in addition to using REST directly, it is
possible to combine REST with the vanilla specu-
lative decoding. This combination can enhance the
generation speed of the small LM. We leave this
for future work.

4 Experiments

4.1 Experimental Setup
Sampling strategies We implement two sam-
pling mechanisms: greedy sampling and nucleus
sampling (Holtzman et al., 2019) for the LLM.
Greedy sampling selects the token with the highest
probability at each step. Nucleus sampling, also
known as top-p sampling, generates tokens by sam-
pling from the most probable tokens in the model’s
predicted distribution until their cumulative prob-
ability reaches the threshold p. It is worth noting
that under our approach, we only accept draft to-
kens if they match the tokens sampled from the

1586



Benchmark Model Method Mean Token Time(↓) Speedup(↑)

HumanEval (1 shot)

CodeLlama 7B Autoregressive (Greedy) 27.89 ms/token 1×
CodeLlama 7B Speculative (Greedy) 15.90 ms/token 1.75×
CodeLlama 7B REST (Greedy) 11.82 ms/token 2.36×
CodeLlama 13B Autoregressive (Greedy) 44.32 ms/token 1×
CodeLlama 13B Speculative (Greedy) 19.39 ms/token 2.29×
CodeLlama 13B REST (Greedy) 19.53 ms/token 2.27×

HumanEval (10 shot)

CodeLlama 7B Autoregressive (Nucleus) 27.99 ms/token 1×
CodeLlama 7B Speculative (Nucleus) 18.83 ms/token 1.49×
CodeLlama 7B REST (Nucleus) 13.18 ms/token 2.12×
CodeLlama 13B Autoregressive (Nucleus) 44.46 ms/token 1×
CodeLlama 13B Speculative (Nucleus) 22.68 ms/token 1.96×
CodeLlama 13B REST (Nucleus) 20.47 ms/token 2.17×

MT-Bench

Vicuna 7B Autoregressive (Greedy) 25.48 ms/token 1×
Vicuna 7B Speculative (Greedy) 19.44 ms/token 1.31×
Vicuna 7B REST (Greedy) 15.12 ms/token 1.69×

Vicuna 13B Autoregressive (Greedy) 44.30 ms/token 1×
Vicuna 13B Speculative (Greedy) 29.80 ms/token 1.49×
Vicuna 13B REST (Greedy) 25.08 ms/token 1.77×

MT-Bench

Vicuna 7B Autoregressive (Nucleus) 25.93 ms/token 1×
Vicuna 7B Speculative(Nucleus) 20.65 ms/token 1.26×
Vicuna 7B REST(Nucleus) 16.02 ms/token 1.62×

Vicuna 13B Autoregressive (Nucleus) 44.32 ms/token 1×
Vicuna 13B Speculative (Nucleus) 31.78 ms/token 1.39×
Vicuna 13B REST (Nucleus) 25.92 ms/token 1.71×

Table 1: Speed on HumanEval and MT-Bench with standard autoregressive decoding, speculative decoding and
REST. The temperature is set to 0.8 and the top-p to 0.95 for nucleus sampling in HumanEval. For MT-Bench,
the settings are 0.7 for temperature and 0.8 for top-p. For speculative decoding, we conduct experiments using
different numbers of draft tokens and different small LMs and record the best results (detailed results can be found
in Appendix A). All the experiments are conducted on a single NVIDIA A6000 GPU and 96 CPU cores with a
batch size of 1.

LLM. As a result, the sequences produced using
REST are identical to those generated by standard
autoregressive generation.

Datasets and models We conduct experiments
on two datasets: HumanEval (Chen et al., 2021)
and MT-Bench (Zheng et al., 2023). HumanEval is
a dataset that includes 164 human-written Python
programming problems. The goal for the mod-
els is to generate code solutions using provided
docstrings as prompts. On the other hand, MT-
Bench contains 80 multi-turn questions designed
to emulate real-world multi-turn dialogues. We
compare the generation speed of standard autore-
gressive generation with REST, focusing on both
the HumanEval and MT-Bench datasets. For Hu-
manEval, we perform 1-shot evaluation for greedy
sampling and 10-shot evaluation for nucleus sam-
pling and employ the CodeLlama (Rozière et al.,

2023). While for MT-Bench, we perform 1-shot
evaluation for both greedy sampling and nucleus
sampling and utilize Vicuna (Chiang et al., 2023).
We test both the 7B and 13B configurations of
CodeLlama and Vicuna, with a maximum genera-
tion limit of 512 tokens and 1024 tokens, respec-
tively. All experiments are conducted on a single
NVIDIA A6000 GPU and 96 CPU cores. All re-
sults are averaged across three different runs.

Hyperparameters When performing exact
match in the datastore, the starting context suffix
length, nmax, is set to 16, and is progressively
reduced by one until we find matching contexts
in the datastore. The length of each retrieved
continuation candidate denoted as m, is truncated
to 10. Empirical results from Medusa (Cai et al.,
2023) suggest 64 draft tokens to be an optimal
computation configuration. Hence, we limit the

1587



maximum number of selected draft tokens in the
constructed Trie to 64, designated as c.

Metrics The first metric we use is Mean Token
Time, which is the average generation time of one
token for the LLM. Another metric, Mean Gener-
ated Length, is calculated as the ratio of the length
of the generated tokens to the number of forward
steps taken by the original LLM. Formally, if L
denotes the length of the generated tokens and F
represents the number of forward steps, the Mean
Generated Length, M , is given by:

M =
L

F
.

Note that the Mean Generated Length (M ) acts
as the upper limit of the speedup that REST can
achieve, ignoring the overhead for retrieving and
constructing draft tokens.

Datastores For CodeLlama, we construct a data-
store using a portion of the Python pretraining
code from The Stack (Kocetkov et al., 2022).
This dataset comprises approximately 2.7M Python
code samples and results in a datastore with a size
of 27GB. On the other hand, for Vicuna, we con-
struct a datastore using data derived from Ultra-
Chat (Ding et al., 2023). This dataset consists of
around 774K conversations from ChatGPT, yield-
ing a datastore with a size of 12GB.

Baseline We implement speculative decod-
ing (Leviathan et al., 2023; Chen et al., 2023) as
the baseline for comparison. For the small draft
LMs, we test a variety of model sizes, including
Llama 68M and Llama 160M trained by Miao et al.
(2023), TinyLlama 1.1B and TinyLlama-Chat 1.1B
trained by Zhang et al. (2023). We also test differ-
ent numbers of draft tokens ranging from 1 to 15
(performance degrades when larger than 15).

4.2 Main Results

Table 1 compares the generation speed of REST
with the speed of the standard autoregressive de-
coding and speculative decoding.

Regarding generation speed, REST demon-
strates a significant speed enhancement compared
to standard autoregressive decoding and specula-
tive decoding, achieving 2.16× to 2.36× increase
for CodeLlama in the HumanEval benchmark. The
MT-Bench benchmark also reveals a speedup for

https://chat.openai.com/

0 5 10 15 20 25
Datastore Size (GB)

12.0

12.5

13.0

13.5

14.0

14.5

15.0

M
ea

n 
To

ke
n 

Ti
m

e 
(m

s)

2.0

2.1

2.2

2.3

2.4

2.5

2.6

M
ea

n 
Ge

ne
ra

te
d 

Le
ng

th

Figure 2: Generation speed of REST with different sizes
of the datastore (CodeLlama 7B on HumanEval).

Vicuna when using our method, with a factor rang-
ing from 1.62× to 1.77×. These empirical results
lend weight to the effectiveness of our method for
speeding up the generation process of LLMs. Note
that the speedup of nucleus sampling is not as good
as that of greedy sampling. We speculate that this
drop in performance is caused by the randomness
introduced by nucleus sampling. Since speculative
decoding may achieve better results with a more
powerful draft LM that aligns with the LLM, we
do not claim that REST can outperform specula-
tive decoding under all circumstances. Yet, REST
undoubtedly provides a potent and straightforward
approach for faster inference of LLMs.

Another intriguing observation that emerges
from these results is the domain-dependent nature
of the speed improvements. This characteristic has
also been noted in other methods like speculative
decoding (Chen et al., 2023) and Medusa (Cai et al.,
2023). Specifically, the speedup achieved with
REST is significantly greater in the HumanEval
benchmark than in the MT-Bench benchmark, sug-
gesting that the effectiveness of REST may vary
depending on the specific domain.

Additionally, it is important to note that the av-
erage time (divided by the total number of tokens)
required for retrieval (which includes the time taken
to construct the Trie) is less than 1 ms. This time
is very small and can, for all practical purposes,
be considered negligible. This negligible retrieval
time further underscores the efficiency of REST.

5 Ablation Study

To gain a deeper understanding of our method, we
conduct a series of ablation studies and analyses
focused on each individual component. More abla-
tion studies can be found in Appendix B.

1588



Method Datastore Size Retrieval Time M Mean Token Time(↓) Speedup(↑)

Baseline(Greedy) - - 1 27.89 ms/token 1×
REST(Greedy) 0.9 GB 0.2 ms 1.96 15.28 ms/token 1.83×
REST(Greedy) 4.4 GB 0.5 ms 2.18 13.98 ms/token 1.99×
REST(Greedy) 8.7 GB 0.6 ms 2.35 13.24 ms/token 2.11×
REST(Greedy) 14 GB 0.6 ms 2.45 12.99 ms/token 2.15×
REST(Greedy) 27 GB 0.7 ms 2.65 11.82 ms/token 2.36×

Table 2: Generation speed with different datastore sizes (CodeLlama 7B with greedy sampling on HumanEval). The
datastores are all constructed from the Python pretraining code from the Stack (Kocetkov et al., 2022).

Selecting Methods M(↑) Mean Token Time (↓)
Random(Greedy) 2.51 12.80
Trie(Greedy) 2.65 11.82
Random(Nucleus) 2.44 14.19
Trie(Nucleus) 2.57 13.18

Table 3: Generation speed with different selecting meth-
ods of draft tokens (CodeLlama 7B with greedy sam-
pling on HumanEval).

Effect of the datastore size Increasing the size
of the datastore is an effective strategy for enhanc-
ing the accuracy of retrieved draft tokens in the
Trie, which in turn can significantly boost genera-
tion speed. In Table 2, we show that as the datastore
size increases, both the Mean Generated Length
and Mean Token Time correspondingly improve.
However, it’s important to note that the speedup
growth is not as pronounced as that of the Mean
Generated Length. This discrepancy could be at-
tributed to the overhead of getting draft tokens. We
assume that in industry applications, there will be
ample disk storage to build a large datastore and
ample CPU cores for fast retrieval. We also visual-
ize the trend of scaling the retrieval datastore size
in Figure 2. From this, we can infer that there is
still potential to achieve even faster speeds with a
larger datastore.

Effect of draft token selecting strategies We
compare selecting draft tokens in the Trie with ran-
domly sampling retrieved continuation candidates
as draft tokens. For an equitable comparison, we
employ a random sampling technique to sample at
most eight sequences from all the retrieved candi-
dates. Furthermore, each sequence is truncated to a
maximum length of 8. This results in a maximum
number of 64 draft tokens, corresponding to the
maximum number of selected draft tokens from the
Trie. The data presented in Table 3 indicates that
selecting draft tokens from the Trie, as opposed to

2 4 6 8 10 12 14 16
nmax

15

20

25

30

35

M
ea

n 
To

ke
n 

Ti
m

e 
(m

s)

1.8

2.0

2.2

2.4

2.6

M
ea

n 
Ge

ne
ra

te
d 

Le
ng

th

Figure 3: Generation speed of REST with different max-
imum suffix length nmax (CodeLlama 7B with greedy
sampling on HumanEval).

employing a random sampling approach, enhances
the performance.

Effect of the choice of the maximum suffix
length We vary the value of nmax to test the gen-
eration speed of REST. The outcomes of this study
are depicted in Figure 3. An interesting observation
is that when the value of nmax is set to less than 6,
there is a substantial increase in the generation time.
Conversely, when nmax exceeds 6, the generation
speed remains consistently high and appears to be
largely unaffected by further changes to the nmax

value. Hence, in practice, there is no substantial
need to expend excessive efforts in selecting the
precise optimal value of nmax.

6 Conclusion

In this work, we propose REST: retrieval-based
speculative decoding. Instead of requiring a small
LM, REST employs a datastore for retrieving and
employing draft tokens. We construct a Trie to
select the most probable draft tokens. REST is
not only straightforward to implement but also eas-
ily integrates into the generation processes of any
existing language models without necessitating ad-

1589



ditional training. We would like to explore large-
scale retrieval in the next step. For situations where
disk storage is limited, we will also explore meth-
ods of minimizing the size of the datastore without
compromising performance.

Limitations

The limitations of our work are as follows:

• Despite the plug-and-play nature of REST,
it is important to acknowledge that the per-
formance of REST is directly influenced by
the accuracy and completeness of the datas-
tore. For improved alignment with the LLM, it
might be advantageous to consider construct-
ing datastores from content generated by the
LLM itself.

• Lack of in-context abilities. For instance, the
challenge of retrieving personalized variable
names in code generation—a task that inher-
ently requires understanding context—raises
an interesting question: How can we em-
power retrieval methodologies to effectively
deal with such complexities?

Acknowledgement

JDL acknowledges support of the ARO under
MURI Award W911NF-11-1-0304, the Sloan Re-
search Fellowship, NSF CCF 2002272, NSF IIS
2107304, NSF CIF 2212262, ONR Young Investi-
gator Award, and NSF CAREER Award 2144994.
We thank all the anonymous reviewers for the very
careful and detailed reviews as well as the valuable
suggestions. Their help has further enhanced our
work.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Advances in Neural Information Process-
ing Systems (NeurIPS).

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
and Tri Dao. 2023. Medusa: Simple framework for
accelerating llm generation with multiple decoding
heads. https://github.com/FasterDecoding/
Medusa.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model

decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing GPT-4 with 90%* Chat-
GPT quality.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
In Advances in Neural Information Processing Sys-
tems (NeurIPS).

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gpt3. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. In Advances in
Neural Information Processing Systems (NeurIPS).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In North American Chapter of the Association
for Computational Linguistics (NAACL).

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. 2023. Enhancing chat language
models by scaling high-quality instructional conver-
sations. arXiv preprint arXiv:2305.14233.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Optq: Accurate quantization for
generative pre-trained transformers. In The Eleventh
International Conference on Learning Representa-
tions.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text de-
generation. In International Conference on Learning
Representations (ICLR).

1590

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://arxiv.org/pdf/2301.00774.pdf
https://arxiv.org/pdf/2301.00774.pdf
https://arxiv.org/pdf/2301.00774.pdf
https://openreview.net/forum?id=tcbBPnfwxS&fbclid=IwAR0QoRRF_7gr6NEt2sKchK5wgGNLfJUNavvbSeCRlWhpVmtUbo0W3ExJXZE
https://openreview.net/forum?id=tcbBPnfwxS&fbclid=IwAR0QoRRF_7gr6NEt2sKchK5wgGNLfJUNavvbSeCRlWhpVmtUbo0W3ExJXZE
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1904.09751


Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner,
Joseph Naor, and Daniel Soudry. 2021. Acceler-
ated sparse neural training: A provable and efficient
method to find n: m transposable masks. In Advances
in Neural Information Processing Systems (NeurIPS).

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Empirical Methods
in Natural Language Processing (EMNLP).

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through memorization: Nearest neighbor language
models. In International Conference on Learning
Representations (ICLR).

Denis Kocetkov, Raymond Li, LI Jia, Chenghao Mou,
Yacine Jernite, Margaret Mitchell, Carlos Muñoz Fer-
randis, Sean Hughes, Thomas Wolf, Dzmitry Bah-
danau, et al. 2022. The stack: 3 tb of permissively li-
censed source code. Transactions on Machine Learn-
ing Research.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Symposium on Operating
Systems Principles (SOSP).

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning (ICML).

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie
Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chan-
dra. 2023. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint
arXiv:2305.17888.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. In Advances in Neural Information
Processing Systems (NeurIPS).

Udi Manber and Gene Myers. 1993. Suffix arrays: a
new method for on-line string searches. siam Journal
on Computing, 22(5):935–948.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuom-
ing Chen, Daiyaan Arfeen, Reyna Abhyankar, and
Zhihao Jia. 2023. Specinfer: Accelerating generative
llm serving with speculative inference and token tree
verification. arXiv preprint arXiv:2305.09781.

Gunho Park, Baeseong Park, Se Jung Kwon, Byeong-
wook Kim, Youngjoo Lee, and Dongsoo Lee. 2022.
nuqmm: Quantized matmul for efficient inference
of large-scale generative language models. arXiv
preprint arXiv:2206.09557.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Noam Shazeer. 2019. Fast transformer decoding:
One write-head is all you need. arXiv preprint
arXiv:1911.02150.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-
pher Re, Ion Stoica, and Ce Zhang. 2023. Flexgen:
High-throughput generative inference of large lan-
guage models with a single gpu.

Benjamin Spector and Chris Re. 2023. Accelerating llm
inference with staged speculative decoding. arXiv
preprint arXiv:2308.04623.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. In Advances in Neural Information
Processing Systems (NeurIPS).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems (NeurIPS).

Hanrui Wang, Zhekai Zhang, and Song Han. 2021. Spat-
ten: Efficient sparse attention architecture with cas-
cade token and head pruning. In 2021 IEEE Interna-
tional Symposium on High-Performance Computer
Architecture (HPCA).

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning (ICML).

1591

https://arxiv.org/abs/2102.08124
https://arxiv.org/abs/2102.08124
https://arxiv.org/abs/2102.08124
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2004.04906
https://openreview.net/pdf?id=HklBjCEKvH
https://openreview.net/pdf?id=HklBjCEKvH
https://openreview.net/pdf?id=HklBjCEKvH
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://arxiv.org/abs/2305.17888
https://arxiv.org/abs/2305.17888
https://arxiv.org/pdf/2305.11627.pdf
https://arxiv.org/pdf/2305.11627.pdf
https://epubs.siam.org/doi/abs/10.1137/0222058?casa_token=gU5_SracaGgAAAAA:uYeQ6jiFr3PZz6rn0PedZX3TLSEHXc2XRxXtEd1nAXX03RTDSeiGD7E-RsEwDRAjE2vmlXYr_TP7
https://epubs.siam.org/doi/abs/10.1137/0222058?casa_token=gU5_SracaGgAAAAA:uYeQ6jiFr3PZz6rn0PedZX3TLSEHXc2XRxXtEd1nAXX03RTDSeiGD7E-RsEwDRAjE2vmlXYr_TP7
https://arxiv.org/abs/2305.09781
https://arxiv.org/abs/2305.09781
https://arxiv.org/abs/2305.09781
https://arxiv.org/abs/2206.09557
https://arxiv.org/abs/2206.09557
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2303.06865
https://arxiv.org/abs/2303.06865
https://arxiv.org/abs/2303.06865
https://arxiv.org/abs/2308.04623
https://arxiv.org/abs/2308.04623
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2012.09852
https://arxiv.org/abs/2012.09852
https://arxiv.org/abs/2012.09852
https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf
https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf
https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf


Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin
Jiang, Linjun Yang, Rangan Majumder, and Furu
Wei. 2023. Inference with reference: Lossless ac-
celeration of large language models. arXiv preprint
arXiv:2304.04487.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. In Ad-
vances in Neural Information Processing Systems
(NeurIPS).

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b: An
open bilingual pre-trained model. In International
Conference on Learning Representations (ICLR).

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2023. Tinyllama.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

A Detailed Results of Speculative
Decoding

For the small draft LMs, we test a variety of model
sizes, including Llama 68M and Llama 160M
trained by Miao et al. (2023), TinyLlama 1.1B
and TinyLlama-Chat 1.1B trained by Zhang et al.
(2023). We also test different numbers of draft to-
kens from 1 to 15. Since Leviathan et al. (2023) and
Chen et al. (2023) didn’t release their code, we use
an open-source reproduction code and additionally
use torch.compile to accelerate the generation
speed of the small draft LMs.

A.1 Results on CodeLlama 7B

Greedy Sampling The generation speed of spec-
ulative decoding on CodeLlama 7B with greedy
sampling is shown in Figure 4. From the figure, we
can see that the best setting is to use Llama 68M
with 4 draft tokens, resulting in 15.90 ms/token.
So, we report 15.90 ms/token in Table 1

Nucleus Sampling The generation speed of spec-
ulative decoding on CodeLlama 7B with nucleus
sampling is shown in Figure 5. From the figure,
we can see that the best setting is to use TinyL-
lama 1.1B with 4 draft tokens, resulting in 18.83
ms/token. So, we report 18.83 ms/token in Table 1.

A.2 Results on CodeLlama 13B

Greedy Sampling The generation speed of spec-
ulative decoding on CodeLlama 13B with greedy
sampling is shown in Figure 6. From the figure,
we can see that the best setting is to use TinyL-
lama 1.1B with 10 draft tokens, resulting in 19.39
ms/token. So, we report 19.39 ms/token in Table 1

Nucleus Sampling The generation speed of spec-
ulative decoding on CodeLlama 13B with nucleus
sampling is shown in Figure 7. From the figure,
we can see that the best setting is to use TinyL-
lama 1.1B with 6 draft tokens, resulting in 22.68
ms/token. So, we report 22.68 ms/token in Table 1

A.3 Results on Vicuna 7B

Greedy Sampling The generation speed of spec-
ulative decoding on Vicuna 7B with greedy sam-
pling is shown in Figure 8. From the figure, we can
see that the best setting is to use Llama 68M with

The TinyLlama-1.1B-intermediate-step-955k-2T version.
The TinyLlama-1.1B-Chat-V0.4 version.
https://github.com/feifeibear/
LLMSpeculativeSampling

1592

https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2304.04487
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2210.02414
https://github.com/jzhang38/TinyLlama
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://github.com/feifeibear/LLMSpeculativeSampling
https://github.com/feifeibear/LLMSpeculativeSampling


2 4 6 8 10 12 14
Number of Draft Tokens

20

30

40

50

60

70
M

ea
n 

To
ke

n 
Ti

m
e 

(m
s)

1.1B
1.1B-Chat
68M
160M

Figure 4: Generation speed of speculative decoding with
different draft LMs and numbers of draft tokens (CodeL-
lama 7B with greedy sampling on HumanEval).

2 4 6 8 10 12 14
Number of Draft Tokens

20

30

40

50

60

70

M
ea

n 
To

ke
n 

Ti
m

e 
(m

s)

1.1B
1.1B-Chat
68M
160M

Figure 5: Generation speed of speculative decoding with
different draft LMs and numbers of draft tokens (CodeL-
lama 7B with nucleus sampling on HumanEval).

2 4 6 8 10 12 14
Number of Draft Tokens

20

30

40

50

60

70

M
ea

n 
To

ke
n 

Ti
m

e 
(m

s)

1.1B
1.1B-Chat
68M
160M

Figure 6: Generation speed of speculative decoding with
different draft LMs and numbers of draft tokens (CodeL-
lama 13B with greedy sampling on HumanEval).

2 4 6 8 10 12 14
Number of Draft Tokens

20

30

40

50

60

70

M
ea

n 
To

ke
n 

Ti
m

e 
(m

s)

1.1B
1.1B-Chat
68M
160M

Figure 7: Generation speed of speculative decoding with
different draft LMs and numbers of draft tokens (CodeL-
lama 13B with nucleus sampling on HumanEval).

3 draft tokens, resulting in 19.44 ms/token. So, we
report 19.44 ms/token in Table 1

Nucleus Sampling The generation speed of spec-
ulative decoding on Vicuna 7B with nucleus sam-
pling is shown in Figure 9. From the figure, we can
see that the best setting is to use Llama 68M with
3 draft tokens, resulting in 20.65 ms/token. So, we
report 20.65 ms/token in Table 1.

A.4 Results on Vicuna 13B

Greedy Sampling The generation speed of spec-
ulative decoding on Vicuna 13B with greedy sam-
pling is shown in Figure 10. From the figure, we
can see that the best setting is to use Llama 68m
with 3 draft tokens, resulting in 29.80 ms/token.
So, we report 29.80 ms/token in Table 1

Nucleus Sampling The generation speed of spec-
ulative decoding on Vicuna 13B with nucleus sam-
pling is shown in Figure 11. From the figure, we
can see that the best setting is to use Llama 68M
with 3 draft tokens, resulting in 31.78 ms/token.
So, we report 31.78 ms/token in Table 1

B Additional Ablation Studies

Effect of the datastore size For the MT-Bench
benchmark, We construct a small datastore with
465 MB derived from ShareGPT and a large data-
store with 12 GB derived from UltraChat (Ding
et al., 2023). In table 4 and table 5, we can see that
using a larger datastore brings better speedup rates.
Moreover, although using a quite small datastore
(465MB), REST still achieves a notable speedup.

Effect of the maximum number of draft tokens
Increasing the volume of draft tokens can poten-
tially lead to a higher Mean Generated Length by
the LLM. However, this also escalates the compu-
tational burden on GPUs during verification. As
shown in Figure 12, an initial speed increase is
observed as the maximum number of draft tokens
increases. However, beyond the threshold of 48
draft tokens, the speed stabilizes to an average of
approximately 11.75 ms per token. When the token

https://huggingface.co/datasets/Aeala/ShareGPT_
Vicuna_unfiltered/blob/main/ShareGPT_2023.05.
04v0_Wasteland_Edition.json

1593

https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_2023.05.04v0_Wasteland_Edition.json
https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_2023.05.04v0_Wasteland_Edition.json
https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_2023.05.04v0_Wasteland_Edition.json


2 4 6 8 10 12 14
Number of Draft Tokens

20

30

40

50

60

70

80
M

ea
n 

To
ke

n 
Ti

m
e 

(m
s)

1.1B
1.1B-Chat
68M
160M

Figure 8: Generation speed of speculative decoding with
different draft LMs and numbers of draft tokens (Vicuna
7B with greedy sampling on MT-Bench).

2 4 6 8 10 12 14
Number of Draft Tokens

20

30

40

50

60

70

80

M
ea

n 
To

ke
n 

Ti
m

e 
(m

s)

1.1B
1.1B-Chat
68M
160M

Figure 9: Generation speed of speculative decoding with
different draft LMs and numbers of draft tokens (Vicuna
7B with nucleus sampling on MT-Bench).

2 4 6 8 10 12 14
Number of Draft Tokens

20

30

40

50

60

70

80

M
ea

n 
To

ke
n 

Ti
m

e 
(m

s)

1.1B
1.1B-Chat
68M
160M

Figure 10: Generation speed of speculative decoding
with different draft LMs and numbers of draft tokens
(Vicuna 13B with greedy sampling on MT-Bench).

2 4 6 8 10 12 14
Number of Draft Tokens

20

30

40

50

60

70

80

M
ea

n 
To

ke
n 

Ti
m

e 
(m

s)

1.1B
1.1B-Chat
68M
160M

Figure 11: Generation speed of speculative decoding
with different draft LMs and numbers of draft tokens
(Vicuna 13B with nucleus sampling on MT-Bench).

50 100 150 200 250
Maximum Number of Draft Tokens

11.75

12.00

12.25

12.50

12.75

13.00

13.25

M
ea

n 
To

ke
n 

Ti
m

e 
(m

s)

2.3

2.4

2.5

2.6

2.7

2.8

M
ea

n 
Ge

ne
ra

te
d 

Le
ng

th

Figure 12: Generation speed of REST with differ-
ent maximum numbers of selected draft tokens in the
Trie (CodeLlama 7B with greedy sampling on the Hu-
manEval).

count exceeds 200, it leads to a slowdown. There-
fore, while it is possible to achieve similar speeds
with a large maximum number of draft tokens, it’s
more efficient to limit the number to a smaller one
to avoid unnecessary strain on GPUs.

None1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Matched Suffix Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ra
tio

Figure 13: Distribution of matched suffix length (CodeL-
lama 7B with greedy decoding on HumanEval).

Visualization of matched suffix length The dis-
tribution of matched suffix length of the context s is
illustrated in Figure 13. From this graphic, it is ap-
parent that almost all cases contain a matched suffix
length. Notably, shorter suffix lengths ranging from
2 to 9 comprise the majority of the matched cases,
accounting for a substantial 85% of the total. In
contrast, longer suffix lengths, which range from

1594



Model Method Datastore Size Retrieval Time Mean Token Time(↓) Speedup(↑)

Vicuna 7B Baseline(Greedy) - - 25.48 ms/token 1×
Vicuna 7B REST(Greedy) 465 MB 0.1 ms 16.23 ms/token 1.57×
Vicuna 7B REST(Greedy) 12 GB 0.6 ms 15.12 ms/token 1.69×

Vicuna 13B Baseline(Greedy) - - 44.30 ms/token 1×
Vicuna 13B REST(Greedy) 465 MB 0.1 ms 27.25 ms/token 1.63×
Vicuna 13B REST(Greedy) 12 GB 0.6 ms 25.08 ms/token 1.77×

Table 4: Generation speed with different datastore sizes with greedy sampling on MT-Bench.
.

Model Method Datastore Size Retrieval Time Mean Token Time(↓) Speedup(↑)

Vicuna 7B Baseline(Nucleus) - - 25.93 ms/token 1×
Vicuna 7B REST(Nucleus) 465 MB 0.1 ms 16.98 ms/token 1.53×
Vicuna 7B REST(Nucleus) 12 GB 0.6 ms 16.02 ms/token 1.62×

Vicuna 13B Baseline(Nucleus) - - 44.43 ms/token 1×
Vicuna 13B REST(Nucleus) 465 MB 0.1 ms 28.00 ms/token 1.59×
Vicuna 13B REST(Nucleus) 12 GB 0.6 ms 25.92 ms/token 1.71×

Table 5: Generation speed with different datastore sizes with nucleus sampling on MT-Bench.
.

10 to 16, constitute a minority, making up only 15%
of the cases.

1595


