
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 1596–1609

June 16-21, 2024 ©2024 Association for Computational Linguistics

Sub-Sentence Encoder:
Contrastive Learning of Propositional Semantic Representations

Sihao Chen♣∗ Hongming Zhang♢ Tong Chen♡ Ben Zhou♣ Wenhao Yu♢

Dian Yu♢ Baolin Peng♢ Hongwei Wang♢ Dan Roth♣ Dong Yu♢

♣University of Pennsylvania ♡University of Washington ♢Tencent AI Lab
sihaoc@cis.upenn.edu

Abstract

We introduce sub-sentence encoder, a con-
trastively learned contextual embedding model
for fine-grained semantic representation of text.
In contrast to the standard practice with sen-
tence embeddings, where the meaning of an
entire sequence of text is encoded into a fixed-
length vector, the sub-sentence encoder learns
to produce distinct contextual embeddings cor-
responding to different atomic propositions,
i.e. distinct units of meaning expressed within
a text sequence. The sub-sentence embed-
dings are contrastively learned to recognize (in-
ferred) semantic equivalence between proposi-
tions across different text sequences. Our exper-
iments show the effectiveness of sub-sentence
encoders in applications, such as retrieving sup-
porting facts for fine-grained text attribution or
recognizing the conditional semantic similarity
between texts. In practice, we demonstrate that
sub-sentence encoders keep the same level of
inference cost and space complexity compared
to sentence encoders.

§ https://github.com/schen149/
sub-sentence-encoder

1 Introduction

Sentence embeddings are a class of techniques
that represent text semantics as dense vector em-
bedding(s), which are widely used in zero-shot or
transfer learning settings on information retrieval
and text classification tasks (Conneau et al., 2017;
Cer et al., 2018; Reimers and Gurevych, 2019;
Karpukhin et al., 2020; Gao et al., 2021). Sentence
embeddings are typically learned to recognize the
semantic relation between two text inputs. The
common practice is to encode each text input as
one fixed-length vector, where the semantic rela-
tion with the other input is modeled by a similarity
function (Bromley et al., 1993).

∗ Work was done during internship at Tencent AI Lab,
Bellevue.

The Gothic novel Dracula is
written by Bram Stoker.

Similarity: Low

Dracula – a 19th-century
Gothic novel, featuring …

Dracula is a novel by Bram
Stoker, published in 1897.

Similarity: High

Figure 1: Given a proposition in a sentence (represented
by a highlighted subset of tokens), the sub-sentence en-
coder produces a contextual embedding for the meaning
of the proposition. The cosine similarity between the
sub-sentence embeddings captures the (inferred) seman-
tic similarity between the propositions.

While sentence embeddings provide a unified
and compact representation for text semantics, it
is difficult to query for the semantics on the sub-
sentence level. For example, consider the two
sentences with blue highlights in Figure 1 about
the novel Dracula. Because the two sentences as
a whole convey different meanings, they would
have a low similarity between their sentence em-
beddings. However, the two sentences in-part share
similar meanings on the level of propositions, i.e.,
distinct units of meaning in each sentence.

Being able to (efficiently) index textual infor-
mation and model semantic similarity on a more
granular level potentially have a profound impact
on applications like long-form text evaluation (Am-
playo et al., 2022), attribution (Rashkin et al., 2023)
or factuality estimation (Min et al., 2023). With
long-form generated text, multiple propositions in
the same text might have different truthfulness val-
ues. The prerequisites for verifying or attributing
such long-form text involve (1) representing text on
a more granular level of propositions and (2) being
able to retrieve evidence for different propositions
within text. (Kamoi et al., 2023).

Motivated by such, we introduce sub-sentence

1596

sihaoc@cis.upenn.edu
https://github.com/schen149/sub-sentence-encoder
https://github.com/schen149/sub-sentence-encoder

Proposition #2

Architecture

Transformer Encoder

Dracula is a novel by Bram Stoker
Sentence
Tokens

Proposition #1
1 0 0 0 1 1 1

1 1 1 1 0 0 0

Selective Mean Pooling

MLP

Atomic
Proposition #1

embedding

Atomic
Proposition #2

embedding

Sub-Sentence
Encoder

Dracula is a novel
by Bram Stoker.

Dracula is a novel
by Bram Stoker.

Dracula, a 19th century novel
featuring Count Dracula.

Dracula, a 19th century novel
featuring Count Dracula.

Dracula, a 19th century novel
featuring Count Dracula.

Atomic Propositions of Sentence #1:

Atomic Propositions of Sentence #2:

…

Positive Instance

Negative Instance
Learning Objective

…

Figure 2: Overview of the sub-sentence encoder architecture and learning objective: The model takes a sentence
and its propositions (represented as binary token masks) as input and outputs an embedding for each proposition.
Given a minibatch of sentences, the model learns to identify pairs of propositions that express the same meaning.
All others (including other propositions within the same sentence) are taken as negative examples (§3).

encoder, a contrastively-learned contextual embed-
ding model for representing sub-sentence-level se-
mantics. As shown in Figure 2, the sub-sentence en-
coder takes a proposition within a text sequence as
input. It outputs an embedding that represents the
meaning of the proposition. Each proposition takes
the format of a binary token mask sequence over
the text, which denotes the tokens included in each
proposition (Chen et al., 2023). We train the sub-
sentence encoder model to recognize the semantic
equivalence between pairs of propositions via in-
batch supervised contrastive learning (Khosla et al.,
2020). We sample and create training examples
from a large corpus of unlabeled sentence pair data
with proposition extraction and natural language
inference (NLI) models (§3.3).

We evaluate sub-sentence encoders on two types
of downstream tasks that involve semantic rep-
resentation on the sub-sentence level. First, we
demonstrate that sub-sentence encoders can be
used for fine-grained retrieval, e.g., for text attri-
bution, where a model is expected to retrieve sup-
porting evidence for different parts of a sentence.
Second, we show that sub-sentence encoders can
be used to infer the conditional semantic similarity
between a pair of text (Deshpande et al., 2023).

We discuss the design choices and challenges
in applying sub-sentence encoders in large-scale
indexing of a knowledge source, e.g. Wikipedia,
on the proposition level. As encoding an entire
corpus on the proposition level might result in a
prohibitively large index, we reduce the output di-
mension of the sub-sentence encoder model during
training (Wang et al., 2023). This simple yet effec-

tive trick yields 12 to 16× compression in index
size with minimal performance drop.

The main contributions of the paper are:

• We propose sub-sentence encoder, a contextual
embedding model for fine-grained text semantics.

• We introduce an automatic model-assisted pro-
cess for sampling semantically similar proposi-
tions for sub-sentence encoder training.

• We demonstrate the utility of sub-sentence en-
coders in the downstream applications of atomic
fact/attirbution retrieval and conditional semantic
textual similarity.

2 Preliminaries

2.1 Motivation: Text Attribution

Our design of the sub-sentence encoder is largely
motivated by the downstream application of text
attribution (Rashkin et al., 2023), i.e., identify
supporting information from known sources to at-
tribute a given text. With the widespread adop-
tion of text generation models, evaluating and at-
tributing generated text has become an emerging
research topic in need (Gao et al., 2023a,b; Liu
et al., 2023; Malaviya et al., 2023). A key chal-
lenge in such tasks lies in the granularity of at-
tributed information, i.e., one piece of generated
text usually makes more than one claim, each of
which might have different veracity. For instance,
as Figure 1 shows, there could exist multiple claims
even within one generated sentence in the form of
propositions. Each claim or proposition needs to be
contextualized (Choi et al., 2021) and individually

2
1597

verified against potentially different information
sources (Kamoi et al., 2023; Min et al., 2023). This
process inevitably requires an efficient model repre-
senting the semantics of different sentence parts in
context, which describes the key design principle
for the sub-sentence encoder.

2.2 Limitations of Sentence Embeddings

From the perspective of downstream applications
such as text attribution, our sub-sentence encoder
seeks to address the following two shortcomings of
current sentence encoder models.

Granularity. Although sentence embeddings
usually capture the meaning of the entire text se-
quence (Morris et al., 2023), it is difficult in prac-
tice to query sentence embeddings for semantic in-
formation on a more granular level (Wang and Yu,
2023). Motivated by such, previous studies have
attempted to develop embedding functions that
work for finer-grained semantic units. For instance,
Skip-Prop (Rudinger et al., 2017) is a counter-part
of Skip-Thought (Kiros et al., 2015), where an
LSTM encoder-decoder model learns to produce
one embedding per proposition, as opposed to per
sentence. Qin and Van Durme (2023) introduce
Nugget, a transformer encoder-decoder language
model, where the model learns to select k con-
textualized token embedding as the intermediate
segment embedding for an input sequence. In the
context of information retrieval, our work in-part
echoes the motivation with multi-vector retrieval
(Seo et al., 2019; Khattab and Zaharia, 2020; Luan
et al., 2021; Lee et al., 2021a; Zhang et al., 2022),
where each retrieval text unit is represented by mul-
tiple embeddings. Compared to these models, our
sub-sentence encoder instead opts for a simpler in-
put/output protocol, where the each proposition in
an input text is encoded independently of others.

Contextualization. A typical assumption for sen-
tence encoder models and training/evaluation task
setup is that the sentence is encoded independently
without context. This becomes a limiting factor
in scenarios where similarities and discrepancies
between text pairs depend on the context they ap-
pear in (Chen et al., 2019; Schuster et al., 2022;
Milbauer et al., 2023a,b; Deshpande et al., 2023).

3 Sub-Sentence Encoder

We introduce sub-sentence encoders. Contrary to
sentence encoders, sub-sentence encoders are de-

signed to produce contextual embeddings for each
atomic proposition in a sentence.

3.1 Architecture

The sub-sentence encoder architecture is instan-
tiated similarly to transformer-based sentence bi-
encoders (Reimers and Gurevych, 2019), as shown
in Figure 2. The key difference is the sub-sentence
encoder takes one or more binary token masks
as extra inputs, which indicate the target propo-
sition(s) of a sentence that it should produce em-
beddings for. The input sentence is first forwarded
through a transformer encoder, which can be ini-
tialized from any pre-trained encoder model. Then,
for each of the proposition token masks, the to-
ken embeddings with mask values of 1 are mean
pooled and forwarded through a projection MLP
layer. The model outputs k fixed length embedding
corresponding to the k input propositions.

Note that the k token masks are only applied dur-
ing pooling, and the encoder still gets full attention
to the entire sentence. This allows the proposition
embeddings to have the contextual information of
the entire input sentence/paragraph, potentially al-
leviating the need for decontextualizing the propo-
sitions (Choi et al., 2021). In addition, since there is
no cross-attention between the proposition embed-
dings, each proposition is encoded independently
of others, and its representation is inherently invari-
ant to the input ordering of the propositions.

Compared to sentence encoders, the sub-
sentence encoder adds a small amount of parame-
ters with the MLP layer on top. As the sentence can
be forwarded only once, the extra inference cost
of encoding multiple propositions in a sentence is
minimal in practice, as we discuss in §4.

3.2 Contrastive Learning

With two propositions from different sentences, the
goal is to make them have similar embedding rep-
resentations if they express similar meanings, and
have dissimilar representations otherwise. Within
a minibatch of N propositions from M sentences.
Let vi =∈ Rd be the encoded representation of
the ith proposition in the batch. Let I = {1..N}
denote the index of all propositions. We formulate
the learning objective as minimizing the in-batch
supervised contrastive loss L (Khosla et al., 2020):

L =
∑

i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(vi · vp/τ)∑

j∈I\{i} exp(vi · vj/τ)

3
1598

where P (i) is the set of indices of all positive
propositions to the ith proposition within the mini-
batch, and |P (i)| denotes its cardinality. τ con-
trols the softmax temperature. The learning objec-
tive encourages the model to produce embeddings
with higher cosine similarity with positive pairs
of propositions, while all other propositions in the
same batch are considered negatives. Note that if
all propositions from the same sentence are pack-
aged in the same minibatch, under the assumption
that they cannot be positive examples of each other,
the learning objective would inherently encourage
the model to assign different representations for
different parts of a sentence.

The supervised contrastive loss is a generalized
form of other commonly used loss functions for bi-
or dual-encoder training, e.g., N-pairs loss (Sohn,
2016) or in-batch softmax (Karpukhin et al., 2020).
We opt for this formulation mostly due to its ability
to generalize to an arbitrary number of positive
examples in the same batch. In our case, this is
important, as each proposition may have zero or
more positive instances in the same minibatch.

3.3 Sampling Proposition Pairs for Training

Here, we describe how we automatically sample
positive proposition pairs from a collection of un-
labeled sentence pairs as training data for the sub-
sentence encoder. We start from a collection of
2.5M sentence pairs from topically related news ar-
ticles (Zhou et al., 2022). The data is sampled from
RealNews (Zellers et al., 2019), which contains sen-
tence pairs that generally describe the same event
with slightly different angles and focuses. These
instances serve as great starting points for us, as
they typically share proposition pairs with both
similarities and differences.

Step 1: Segment Sentences ⇒ Propositions.
Given an unlabeled sentence pair, we first parse
each sentence into propositions in natural language
forms. First, we prompt GPT-3.5-turbo to gen-
erate propositions for 1% of all sentence pairs
as the seed set of training data. We find that
GPT-3.5-turbo with few shot in-context demon-
strations gives reasonable performance on the task,
which echos with the observations from Min et al.
(2023) and Kamoi et al. (2023).

Next, we finetune T5-large (Raffel et al., 2020)
on the seed training set and use the model to gen-
erate propositions for the rest of the dataset. We
include more details about the prompt and training

process in Appendix A.

Step 2: Identify Positive Pairs with NLI mod-
els. Given the two sets of propositions (in natu-
ral language form) in each sentence pair, we infer
and label the positive proposition pairs with an off-
the-shelf NLI model (Nie et al., 2020) 1. We for-
ward each pair of propositions across two sentences
through the NLI model two times, with flipped or-
ders between hypothesis and premise. We label a
proposition pair positive if the NLI model classifies
their relation as entailment in both directions. We
only keep sentence pairs with at least one pair of
positive propositions. This leaves us with 240k
sentence pairs, with 3.32 propositions per sentence
and 1.21 positive propositions on average.

Step 3: Convert Propositions ⇒ Token Masks.
We convert the propositions in natural language
form to the token mask format used for sub-
sentence encoder input by aligning the tokens in
each proposition to the sentence. We use NLTK
(Bird et al., 2009) to lemmatize each token in a
proposition and its sentence and construct an affin-
ity matrix between the two, where tokens with iden-
tical lemmas are assigned a similarity score of 1.
To break ties between multiple token matches, we
apply a 2D-convolution filter on the affinity ma-
trix, which adds a small score offset for other to-
ken matches in a context window of three tokens.
We find the optimal matches between the proposi-
tion and sentence with max bipartite matching on
the affinity matrix with the Hungarian algorithm
(Kuhn, 1955). We include a more detailed process
description in Appendix A.

4 Experimental Setup

4.1 Model Configurations

We initialize the transformer encoder layers with
pre-trained weights from three types of sentence
encoders: SimCSE (Gao et al., 2021), Sentence-
T5 (Ni et al., 2022a), and GTR (Ni et al., 2022b).
With Sentence-T5 and GTR, we experiment with
the base, large, and xl-sized variants of the models.
For the MLP layer, we keep the output dimension
the same as the transformer encoder. We discuss
the impact of varying output dimensions in §5.4.

We finetune the sub-sentence encoder with differ-
ent variants of backbone sentence encoders on the

1https://huggingface.co/ynie/
roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli

4
1599

https://huggingface.co/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
https://huggingface.co/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli

System Param. Size PRECISION@1 RECALL@5 RECALL@10 RECALL@20

MiniLM-L6-v2 23M 18.36 37.28 44.87 51.62
DistilRoberta 82M 16.59 33.65 40.82 46.79

SimCSE (unsupervised) 110M 8.90 45.13 69.47 84.29
SimCSE (supervised) 110M 16.53 57.83 77.28 87.89

GTRbase 110M 21.90 52.50 65.54 75.69
ST5base 110M 26.16 57.65 69.00 78.58

SUBENCODER (SimCSE) 110M (+0.5M) 41.64 71.48 78.22 83.34
SUBENCODER (ST5base) 110M (+0.5M) 40.97 72.15 79.30 84.33
SUBENCODER (GTRbase) 110M (+0.5M) 40.77 72.90 80.45 85.81

Table 1: Zero-shot evaluation results on the Atomic Fact Retrieval task in PROPSEGMENT (Chen et al., 2023).

Grand Theft Auto V,
usually abbreviated
to GTA V, is a video
game developed by
Rockstar North.

Grand Theft Auto V
(GTA V) is a video game
in the action genre
released by Rockstar
Games in 2013.

Grand Theft Auto V is an action-adventure
video game developed by Rockstar North.

…

Corpus of Atomic Facts
From Documents

Example: A sentence with two atomic facts

Attribution for Fact #1 Attribution for Fact #2

Retrieval
System

Figure 3: In the Atomic Fact Retrieval task (Chen et al.,
2023), given an atomic proposition in the query, a sys-
tem is expected to retrieve the set of supporting atomic
propositions from the corpus. The dataset features 8.8k
query propositions and 45k candidate evidence proposi-
tions from 1.5k documents.

240k sentence pairs with at least one pair of posi-
tive propositions. We denote the resulting model as
SUBENCODER. Details for our distributed training
setup and hyperparameters are in Appendix B.

4.2 Evaluation

To assess the utility of the sub-sentence encoders,
we evaluate our models on two types of down-
stream tasks in zero-shot settings.

4.2.1 Atomic Fact Retrieval for Fine-Grained
Text Attribution

We first evaluate the sub-sentence encoders in re-
trieving fine-grained attributions (Rashkin et al.,
2023) for text. We conduct the evaluations with the
PROPSEGMENT dataset (Chen et al., 2023). An
overview of the task setup is shown in Figure 3.
Given a proposition in the sentence, a system is ex-
pected to identify and retrieve supporting evidence
from a corpus of 4̃5k human-labeled atomic propo-
sitions from 1.5k News or Wikipedia documents

in total. The task setup emulates the setting where
each part of a sentence might have different verac-
ity, and so each proposition in a sentence might be
attributed to different supporting evidence from dif-
ferent source documents. On average, each query
has 1.13 ground truth supporting propositions.

Metrics. Given a system’s output rankings of
the 45k candidate evidence propositions to a
query proposition, we measure the precision@1
plus recall@{5, 10, 20} of the ranking against the
ground truth set of evidence propositions.

Baselines. We compare pre-trained sentence en-
coders as baselines. We first evaluate variants of un-
supervised and supervised SimCSE, Sentence-T5,
and GTR on similar model parameter sizes. In addi-
tion, we compare two popular compact models, i.e.,
all-MiniLM-L6-v2 and all-distilroberta-v1
from sentence-transformers (Reimers and
Gurevych, 2019). We discuss the setup for sen-
tence encoders for the tasks in Appendix C.

Results. Table 1 shows our evaluation results
with sentence and sub-sentence encoders compared
on the similar scale of model parameter sizes. With
proposition-level contrastive learning, We observe
that the SUBENCODER with different backbone
encoders generally improve over their sentence en-
coder counterparts. We see the most visible im-
provements of SUBENCODER in terms of Preci-
sion@1 and Recall@5, while the performance gap
becomes smaller in terms of Recall@10 and 20.
As the task involves retrieving different results for
different query propositions in a sentence, the eval-
uation results suggest that sub-sentence contrastive
learning gives the model better capabilities at rec-
ognizing the nuanced semantic differences between
propositions appearing in the same context.

Across different variants of SUBENCODER with
different backbone sentence encoders, we ob-
serve similar performance levels overall, with the

5
1600

GTRbase variant having a slight edge. In Table 1,
we mostly compare models with the same back-
bone encoder size and configurations. Our SUBEN-
CODER only introduces 0.5% extra parameters with
the MLP layer on top. We discuss the model size,
efficiency, and performance trade-off in §5.

4.2.2 Conditional Semantic Text Similarity
To assess SUBENCODER’s ability to produce
contextual representations for fine-grained sub-
sentence level semantics of text, we conduct exper-
iments on the Condition Semantic Text Similarity
(C-STS) task (Deshpande et al., 2023). Compared
to STS (Agirre et al., 2012), C-STS introduces a
condition notion of similarity between text pairs,
where an additional natural language condition is
provided along with the text pair as input. A system
is expected to output a similarity score between the
pair from the perspective of the given condition.
Table 2 shows some examples of the task.

Method. Given the condition, we first prompt an
LLM to identify a set of words in each sentence that
best corresponds to the condition. Here, the LLM
only sees one sentence at a time, so the condition
words in each sentence are identified independently.
We use the sub-sentence encoder to encode the
set of words in the context of each sentence as
the conditional representation. We take the cosine
similarity between two encoded sets of words from
the text pair as their conditional similarity.

Metrics. We compare the Spearman correlation
coefficient between predicted similarity from a sys-
tem against human ratings.

Baselines. We compare to a list of zero- and few-
shot baselines provided by Deshpande et al. (2023).
This includes two bi-encoder models, Robertabase
and SimCSEbase that do not make use of the condi-
tion as input, as well as zero- and few-shot prompt-
ing results with FlanT5large, GPT-3.5-turbo and
GPT-4, where each LLM provided detailed instruc-
tions of the task, and is prompted to generate a
similarity score from 1 to 5 given the text pair and
condition with/without in-context demonstrations.

Results. Table 3 shows the evaluation results. By
having SUBENCODER comparing the contextual
similarity between the set of words selected by
gpt-3.5-turbo, we see an improvement in zero-
shot setting from Spearman’s r = 14.1 → 33.0,
compared to directly prompt LLM to output the
similarity. However, the performance gap when

68

70

72

74

Re
ca

ll@
5

69.62 69.39 69.37

70.78
71.43

72.15

Batch Size vs. Performance
 (Param. Size = 110M)

68

70

72

74

70.78

72.93
73.74

Model Size vs. Performance
 (Batch Size = 64)

8 16 32 64 128 256
Batch size

38

40

42

44

Pr
ec

isi
on

@
1

37.54
37.91 38.24

40.62
41.44

40.97

110M 330M 3B
Parameter Size

38

40

42

44

40.62

42.61
43.17

Figure 4: The effect of varying batch size and model
parameter size on the atomic fact retrieval performance,
tested with the Sentence-T5 variant of SUBENCODER.

using gpt-4 becomes much smaller (r = 36.9 →
37.2). This is reasonable considering the fact that
direct gpt-4 prompting demonstrates on-par per-
formance with supervised systems on C-STS, as
reported in Deshpande et al. (2023). We show ex-
amples of typical mistakes made by our model in
Table 2. We observe that our method typically
fails when (1) the LLM fails to identify a good set
of condition words, or when no such correspond-
ing words explicitly exist in the sentence, or (2)
SUBENCODER fails to correctly infer the similar-
ity between the two sets of condition words. For
instance, with the third example in Table 2, the
inference is particularly challenging for the model,
considering the relation is modeled only via a co-
sine similarity with no learned parameters.

5 Analysis and Discussions

5.1 Scaling SUBENCODER

In Figure 4, we show an analysis of the effect of
scaling model sizes and batch sizes during training.
For our analysis, we use the Sentence-T5 variant
of SUBENCODER, and evaluate the performance
on the atomic fact retrieval task.

Scaling Batch Size. As our contrastive learn-
ing objective leverages in-batch negative sampling,
scaling up the batch sizes during training could
bring performance gains. To illustrate this, we
initialize SUBENCODER with Sentence-T5 base en-
coder parameters and finetune with a varying batch
size of {8, 16, 32, 64, 128, 256}. We observe that
increasing the batch size generally increases perfor-

6
1601

Type Sentence 1 Sentence 2 Condition Label Pred.

Correct. A group of people go sledding on a snowy
hill, and a dog chases one as he slides.

A person, dressed in black, skipping
down a snow covered road and playing
with a black dog.

The physical activ-
ity.

4 3.44

Mistake: fails to find a
good set of words.

A man being thrown into the air while
being trampled by a bull.

The cowboy holds on to the bull who is
desperately trying to throw him off.

The person’s eleva-
tion.

4 1

Mistake: correct set of
words; failed inference.

A man wearing a white tank top and a
white hard hat is holding two pieces of
pipe at a construction site.

A construction worker in a lime-green
safety vest and orange hard hat is looking
closely at something held in his hands.

The occupation of
the man.

5 2.47

Table 2: Example outputs and typical mistakes of SUBENCODER on C-STS. The set of words identified by gpt-3.5
is highlighted yellow. For display purposes here, the model predicted cosine similarity is normalized to match the
human labels’ scale of 1 - 5, where 1 = Least similar, and 5 = Most similar

Model Setting Spearman r ↑
Robertabase 0-shot (No. Cond.) -0.43∗

SimCSEbase 0-shot (No. Cond.) 1.66∗

FlanT5large
0-shot -3.0∗

2-shot 11.7∗

GPT-3.5
0-shot 14.1
2-shot 15.4

GPT-4
0-shot 36.9
2-shot 40.7

GPT-3.5
+ SUBENCODER

(0-shot)

(SimCSEbase) 27.5
(GTRbase) 31.9
(ST5base) 33.0

GPT-4
+ SUBENCODER

(0-shot)

(SimCSEbase) 34.5
(GTRbase) 36.9
(ST5base) 37.2

Table 3: Spearman correlation coefficient (×100) of
model predictions evaluated in zero- or few-shot settings
on the Conditional Semantic Textual Similarity (C-STS)
task. * denotes results from Deshpande et al. (2023).

mance, which suggests that batch size scaling could
yield better model generalizability. We observe a
significant performance gain when increasing batch
size from 32 → 64 while seeing diminishing gains
with further increase. This echoes the empirical
findings with in-batch contrastive learning in gen-
eral (Khosla et al., 2020). The phenomena can
be attributed to the model-predicted labels in our
training dataset, which can be noisy.

Scaling Model Size. We initialize the encoder
with different sizes of Sentence-T5 from 110M to
3B parameters and finetune with a fixed batch size
of 64. We observe that starting from a larger pre-
trained encoder brings better performance. We see
a bigger gain when increasing the model size from
110M to 330M, while the gain becomes smaller
when we increase from 330M to 3B.

5.2 Using SUBENCODER for Sentence or
Document Retrieval

In §4, we compare SUBENCODER’s performance
on the atomic fact retrieval task against the base-
line sentence encoders. In reality, a more likely
application scenario is when the system is expected
to retrieve supporting evidence on the sentence
or document level. To evaluate this, we cast the
atomic fact retrieval task as a sentence or document
retrieval task, where given a query proposition, a
system is expected to retrieve the set of sentences
or documents that contain the target proposition(s).

From the intuition that finer-grained retrieval,
e.g., with propositions, entails the more coarse
sentence- or document-level retrieval, we follow
Lee et al. (2021b) and use a simple strategy with
SUBENCODER for sentence- and document-level
retrieval. Given each query, we retrieve a slightly
larger number of propositions. From the set of
sentences and documents where the propositions
belong, we use the highest score among the set of
propositions as the score for each sentence or doc-
ument. The top k unique sentences or documents
are then returned as results.

Table 4 shows the the evaluation result. Com-
pared to GTRbase and Sentence-T5base, which are
trained for document-level and sentence-level re-
trieval, respectively, we observe a similar level of
performance with retrieving by propositions with
SUBENCODER. Overall, we see lower top-1 accu-
racy compared to the baselines. This is possibly
due to the more complex nature of the proposition
retrieval task. However, we generally see an im-
provement in terms of recall @ 5. The findings
indicate the potential of using SUBENCODER for
multi-vector retrieval across different granularities.

7
1602

Model Sentence-Level Document-Level
P@1 R@5 P@1 R@5

GTRbase 49.35 77.01 51.93 81.97
Sentence-T5base 50.59 79.37 45.27 77.10

SUBENCODER (GTR) 42.94 82.27 45.04 90.13
SUBENCODER (ST5) 43.49 81.44 45.93 89.19

Table 4: Sentence and document retrieval performance
of the atomic fact retrieval task. We evaluate GTRbase

and Sentence-T5base variants of SUBENCODER.

Model Dim. Precision@1 Recall@5

SUBENCODER
(ST5-Large)

1024 42.61 72.93
64 42.10 (-0.51) 70.17 (-2.76)

SUBENCODER
(ST5-Base)

768 40.97 72.15
64 40.45 (-0.52) 71.62 (-0.53)

Table 5: The performance difference on the atomic
fact retrieval task with vs. without reducing the output
dimensionality of SUBENCODER.

5.3 Robustness to Input Formats/Boundaries

Although SUBENCODER is fine-tuned with data
formatted as propositions specifically, we observe
from the C-STS evaluations that the model gener-
alizes to not necessarily proposition-shaped inputs,
as shown in Table 2. In downstream applications,
we would expect the model to generalize to in-
put token masks with imperfect boundaries, e.g.,
propositions generated by a model instead of la-
beled by humans. Alongside the C-STS evaluation
results, which indirectly support our hypothesis, we
conduct a simple evaluation with the atomic fact
retrieval task. Instead of human-annotated queries,
we use queries generated by gpt-3.5-turbo. The
evaluation results of the proposition segmentation
performance of gpt-3.5-turbo and the distilled
T5-Large model can be found in Appendix A.
When we test the atomic fact retrieval performance
on the set of model-generated propositions that
can be fuzzy-matched under Jaccard similarity of
> 0.8 with the human-annotated ones, we only see
a small drop in performance, e.g., with the GTR-
base variant of SUBENCODER, precision@1 drops
from 40.77 → 39.56, recall@5 drops from 73.14
→ 72.23. This indicates that our model is robust to
imperfect proposition boundaries.

5.4 Offline Indexing and Compression

With the promising performance gain from SUBEN-
CODER in the atomic fact retrieval task, we dis-
cuss and assess the possibility of applying SUBEN-

Index Num. Entries Dim. Index Size

Propositions 270M 64 62GB
dpr-100w 21M 768 61GB

Table 6: The resulting index size with proposition-level
indexing with compressed dimension, compared to a
DPR index of 100-word blocks (Karpukhin et al., 2020).

CODER for fine-grained retrieval on larger-scale
corpora, which involves offline indexing and
caching the encoded corpora. In our case, the in-
dexing happens on the level of propositions, where
we need to store one embedding for every proposi-
tion in the corpora. Compared to document-level
indexing, indexing on the proposition level would
result in a prohibitively large index size. In pre-
vious works (Lee et al., 2021b), this is commonly
addressed with techniques such as product quanti-
zation (Jegou et al., 2010) to compress index size
or approximate nearest neighbor search (Malkov
and Yashunin, 2018) for faster inference.

Orthogonal to the two techniques above, we
study a simpler yet effective compression strat-
egy by reducing the output dimension of SUBEN-
CODER. In the context of sentence encoders, Wang
et al. (2023) discover that reducing the output di-
mensionality during training generally incurs mini-
mal downstream performance loss. Following this
idea, we finetune the Sentence T5 base and large
variants of SUBENCODER with a bottlenecked out-
put dimension of 64 instead of the original output
dimensions of 1024 and 768, respectively. Table 5
shows the performance comparison when evaluated
on the atomic fact retrieval task. Overall, we ob-
serve a very small performance drop while gaining
12× to 16× reduction in output embedding size.

To demonstrate the implication of this in prac-
tice, we use the Sentence T5 large variant of
SUBENCODER to encode an English Wikipedia
dump from 2021/10/13, as used by Bohnet et al.
(2022). We segment all sentences in Wikipedia into
propositions with the T5-large model (§3.3). This
results in 2̃70M propositions from 5.3M Wikipedia
pages. Table 6 shows the resulting index. The
resulting size of 62GB is close to a prebuilt (un-
compressed) dense passage retrieval (DPR) index
on the level of 100-word blocks (Karpukhin et al.,
2020). We see that decreasing the output dimension
of the embeddings helps in reducing the cached id-
nex size. It is worth noting that compared to the
document-level index, we still expect the query
speed of the index to increase slightly due to the

8
1603

increase in the number of entries. However, in
practice, we observe a reasonable overall time and
space complexity involved in offline indexing and
online similarity querying on the proposition-level.

6 Conclusion

We introduce sub-sentence encoders, a contrastive
learning framework for learning contextual embed-
dings for semantic units on the sub-sentence level.
Beyond the use cases covered in the paper, the
sub-sentence encoder architecture could potentially
serve as the backbone for any cross-document infor-
mation linking tasks in context, and the learning ob-
jectives could potentially apply to a broader range
of tasks with various granularity of information,
e.g., linking sentences or spans within different
documents (Ma et al., 2023). We hope that the find-
ings in this paper will facilitate further exploration
along these directions.

Limitations

The goal of this work is to validate the idea behind
sub-sentence encoder architecture and learning ob-
jectives. We acknowledge the limited scale of our
experiments, specifically (1) Number of tasks or ap-
plications evaluated: This is mostly due to the lim-
ited number of human-labeled benchmark datasets
suitable for our case. (2) Language covered: In our
experiments, we explore the idea of sub-sentence
encoder with English text only. However, the tech-
niques described in the paper for sampling training
data and training the sub-sentence encoder can be
applied to other languages as well. We leave the
exploration on multilingual sub-sentence encoder
for future work.

Acknowledgements

The authors would like to thank Alex Fabrikant,
Jianmo Ni, and Tal Schuster for the discussions
leading to the development of this idea. The au-
thors thank Ruixin Hong, Xinran Zhao, Kaixin Ma,
Vivek Gupta, and Xiaodong Yu for valuable feed-
back on the project and the paper presentation.

References
Eneko Agirre, Daniel Cer, Mona Diab, and Aitor

Gonzalez-Agirre. 2012. SemEval-2012 task 6: A
pilot on semantic textual similarity. In *SEM 2012:
The First Joint Conference on Lexical and Compu-
tational Semantics – Volume 1: Proceedings of the
main conference and the shared task, and Volume

2: Proceedings of the Sixth International Workshop
on Semantic Evaluation (SemEval 2012), pages 385–
393, Montréal, Canada. Association for Computa-
tional Linguistics.

Reinald Kim Amplayo, Peter J Liu, Yao Zhao, and
Shashi Narayan. 2022. Smart: Sentences as basic
units for text evaluation. In The Eleventh Interna-
tional Conference on Learning Representations.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Bernd Bohnet, Vinh Q Tran, Pat Verga, Roee Aharoni,
Daniel Andor, Livio Baldini Soares, Jacob Eisenstein,
Kuzman Ganchev, Jonathan Herzig, Kai Hui, et al.
2022. Attributed question answering: Evaluation and
modeling for attributed large language models. arXiv
preprint arXiv:2212.08037.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Säckinger, and Roopak Shah. 1993. Signature verifi-
cation using a" siamese" time delay neural network.
Advances in neural information processing systems,
6.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174, Brussels, Belgium. Association for
Computational Linguistics.

Sihao Chen, Senaka Buthpitiya, Alex Fabrikant, Dan
Roth, and Tal Schuster. 2023. PropSegmEnt: A large-
scale corpus for proposition-level segmentation and
entailment recognition. In Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pages
8874–8893, Toronto, Canada. Association for Com-
putational Linguistics.

Sihao Chen, Daniel Khashabi, Wenpeng Yin, Chris
Callison-Burch, and Dan Roth. 2019. Seeing things
from a different angle:discovering diverse perspec-
tives about claims. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 542–557, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Eunsol Choi, Jennimaria Palomaki, Matthew Lamm,
Tom Kwiatkowski, Dipanjan Das, and Michael
Collins. 2021. Decontextualization: Making sen-
tences stand-alone. Transactions of the Association
for Computational Linguistics, 9:447–461.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from

9
1604

https://aclanthology.org/S12-1051
https://aclanthology.org/S12-1051
https://arxiv.org/pdf/2208.01030.pdf
https://arxiv.org/pdf/2208.01030.pdf
https://arxiv.org/pdf/2212.08037.pdf
https://arxiv.org/pdf/2212.08037.pdf
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/2023.findings-acl.565
https://doi.org/10.18653/v1/2023.findings-acl.565
https://doi.org/10.18653/v1/2023.findings-acl.565
https://doi.org/10.18653/v1/N19-1053
https://doi.org/10.18653/v1/N19-1053
https://doi.org/10.18653/v1/N19-1053
https://doi.org/10.1162/tacl_a_00377
https://doi.org/10.1162/tacl_a_00377
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070

natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Ameet Deshpande, Carlos E Jimenez, Howard Chen,
Vishvak Murahari, Victoria Graf, Tanmay Rajpuro-
hit, Ashwin Kalyan, Danqi Chen, and Karthik
Narasimhan. 2023. CSTS: Conditional Semantic
Textual Similarity. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing.

William Falcon and The PyTorch Lightning team. 2019.
PyTorch Lightning.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony
Chen, Arun Tejasvi Chaganty, Yicheng Fan, Vincent
Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, and
Kelvin Guu. 2023a. RARR: Researching and revis-
ing what language models say, using language mod-
els. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 16477–16508, Toronto, Canada.
Association for Computational Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen.
2023b. Enabling large language models to generate
text with citations. arXiv preprint arXiv:2305.14627.

Herve Jegou, Matthijs Douze, and Cordelia Schmid.
2010. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and
machine intelligence, 33(1):117–128.

Ryo Kamoi, Tanya Goyal, Juan Diego Rodriguez, and
Greg Durrett. 2023. Wice: Real-world entailment for
claims in wikipedia. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research
and development in Information Retrieval, pages 39–
48.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised Contrastive Learning. Advances in neural
information processing systems, 33:18661–18673.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard
Zemel, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Skip-thought vectors. Advances in
neural information processing systems, 28.

Harold W Kuhn. 1955. The Hungarian method for
the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97.

Jaewoong Lee, Heejoon Lee, Hwanhee Lee, and Ky-
omin Jung. 2021a. Learning to select question-
relevant relations for visual question answering. In
Proceedings of the Third Workshop on Multimodal
Artificial Intelligence, pages 87–96, Mexico City,
Mexico. Association for Computational Linguistics.

Jinhyuk Lee, Alexander Wettig, and Danqi Chen. 2021b.
Phrase retrieval learns passage retrieval, too. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3661–
3672, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Nelson F Liu, Tianyi Zhang, and Percy Liang. 2023.
Evaluating verifiability in generative search engines.
arXiv preprint arXiv:2304.09848.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2021. Sparse, dense, and attentional
representations for text retrieval. Transactions of the
Association for Computational Linguistics, 9:329–
345.

Kaixin Ma, Hao Cheng, Yu Zhang, Xiaodong Liu, Eric
Nyberg, and Jianfeng Gao. 2023. Chain-of-skills:
A configurable model for open-domain question an-
swering. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1599–1618, Toronto,
Canada. Association for Computational Linguistics.

Chaitanya Malaviya, Subin Lee, Sihao Chen, Elizabeth
Sieber, Mark Yatskar, and Dan Roth. 2023. Ex-
pertqa: Expert-curated questions and attributed an-
swers. arXiv preprint arXiv:2309.07852.

Yu A Malkov and Dmitry A Yashunin. 2018. Efficient
and robust approximate nearest neighbor search us-
ing hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelli-
gence, 42(4):824–836.

Jeremiah Milbauer, Ziqi Ding, Zhijin Wu, and Tong-
shuang Wu. 2023a. From nuisance to news sense:
Augmenting the news with cross-document evidence
and context. arXiv preprint arXiv:2310.04592.

Jeremiah Milbauer, Annie Louis, Mohammad Javad
Hosseini, Alex Fabrikant, Donald Metzler, and Tal

10
1605

https://doi.org/10.18653/v1/D17-1070
https://arxiv.org/pdf/2305.15093.pdf
https://arxiv.org/pdf/2305.15093.pdf
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.18653/v1/2023.acl-long.910
https://doi.org/10.18653/v1/2023.acl-long.910
https://doi.org/10.18653/v1/2023.acl-long.910
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://arxiv.org/pdf/2303.01432
https://arxiv.org/pdf/2303.01432
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://arxiv.org/pdf/2004.12832.pdf
https://arxiv.org/pdf/2004.12832.pdf
https://arxiv.org/pdf/2004.12832.pdf
https://arxiv.org/abs/1506.06726
https://doi.org/10.18653/v1/2021.maiworkshop-1.13
https://doi.org/10.18653/v1/2021.maiworkshop-1.13
https://doi.org/10.18653/v1/2021.emnlp-main.297
https://doi.org/10.1162/tacl_a_00369
https://doi.org/10.1162/tacl_a_00369
https://doi.org/10.18653/v1/2023.acl-long.89
https://doi.org/10.18653/v1/2023.acl-long.89
https://doi.org/10.18653/v1/2023.acl-long.89
https://arxiv.org/pdf/2310.04592
https://arxiv.org/pdf/2310.04592
https://arxiv.org/pdf/2310.04592

Schuster. 2023b. LAIT: Efficient multi-segment en-
coding in transformers with layer-adjustable interac-
tion. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 10251–10269, Toronto,
Canada. Association for Computational Linguistics.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike
Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023.
FActScore: Fine-grained atomic evaluation of factual
precision in long form text generation. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing.

John X Morris, Volodymyr Kuleshov, Vitaly Shmatikov,
and Alexander M Rush. 2023. Text embeddings
reveal (almost) as much as text. arXiv preprint
arXiv:2310.06816.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Con-
stant, Ji Ma, Keith Hall, Daniel Cer, and Yinfei Yang.
2022a. Sentence-t5: Scalable sentence encoders
from pre-trained text-to-text models. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 1864–1874, Dublin, Ireland. Association
for Computational Linguistics.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Her-
nandez Abrego, Ji Ma, Vincent Zhao, Yi Luan, Keith
Hall, Ming-Wei Chang, and Yinfei Yang. 2022b.
Large dual encoders are generalizable retrievers. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
9844–9855, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4885–4901, Online. Association for Computa-
tional Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Guanghui Qin and Benjamin Van Durme. 2023. Nugget:
Neural agglomerative embeddings of text. In Pro-
ceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Hannah Rashkin, Vitaly Nikolaev, Matthew Lamm,
Lora Aroyo, Michael Collins, Dipanjan Das, Slav
Petrov, Gaurav Singh Tomar, Iulia Turc, and David
Reitter. 2023. Measuring attribution in natural lan-
guage generation models. Computational Linguistics,
pages 1–64.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Rachel Rudinger, Kevin Duh, and Benjamin Van Durme.
2017. Skip-prop: Representing sentences with one
vector per proposition. In IWCS 2017 — 12th Inter-
national Conference on Computational Semantics —
Short papers.

Tal Schuster, Sihao Chen, Senaka Buthpitiya, Alex
Fabrikant, and Donald Metzler. 2022. Stretching
sentence-pair nli models to reason over long docu-
ments and clusters. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
394–412.

Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur
Parikh, Ali Farhadi, and Hannaneh Hajishirzi. 2019.
Real-time open-domain question answering with
dense-sparse phrase index. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4430–4441, Florence, Italy.
Association for Computational Linguistics.

Kihyuk Sohn. 2016. Improved deep metric learning
with multi-class n-pair loss objective. Advances in
neural information processing systems, 29.

Hongwei Wang and Dong Yu. 2023. Going beyond
sentence embeddings: A token-level matching algo-
rithm for calculating semantic textual similarity. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 563–570.

Hongwei Wang, Hongming Zhang, and Dong Yu.
2023. On the dimensionality of sentence embeddings.
arXiv preprint arXiv:2310.15285.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. NeurIPS.

Shunyu Zhang, Yaobo Liang, Ming Gong, Daxin Jiang,
and Nan Duan. 2022. Multi-view document repre-
sentation learning for open-domain dense retrieval.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5990–6000, Dublin, Ireland.
Association for Computational Linguistics.

11
1606

https://doi.org/10.18653/v1/2023.acl-long.571
https://doi.org/10.18653/v1/2023.acl-long.571
https://doi.org/10.18653/v1/2023.acl-long.571
https://arxiv.org/abs/2305.14251
https://arxiv.org/abs/2305.14251
https://arxiv.org/pdf/2310.06816.pdf
https://arxiv.org/pdf/2310.06816.pdf
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.emnlp-main.669
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2112.12870
https://arxiv.org/abs/2112.12870
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/W17-6936
https://aclanthology.org/W17-6936
https://arxiv.org/pdf/2204.07447.pdf
https://arxiv.org/pdf/2204.07447.pdf
https://arxiv.org/pdf/2204.07447.pdf
https://doi.org/10.18653/v1/P19-1436
https://doi.org/10.18653/v1/P19-1436
https://doi.org/10.18653/v1/2022.acl-long.414
https://doi.org/10.18653/v1/2022.acl-long.414

Ben Zhou, Kyle Richardson, Xiaodong Yu, and Dan
Roth. 2022. Learning to decompose: Hypothetical
question decomposition based on comparable texts.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2223–2235, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

A Proposition Segmentation

In this section, we provide details on the few-shot
prompt and distilled T5-large model we use for seg-
menting sentences into propositions. We provide
evaluations the two methods against PROPSEG-
MENT (Chen et al., 2023).

A.1 Prompt for Proposition Segmentation

We use the following prompt with gpt-3.5-turbo
to generate the initial set of seed training data
for segmenting sentences into propositions. We
provide one example from PROPSEGMENT for
in-context learning demonstration. We process
2̃3, 000 sentence pairs with the prompt, which gen-

erates a total of 44,970 sentences with propositions,
after filtering out malformed and empty genera-
tions.

Prompt for sentence ⇒ propositions

Given the following sentence, tell me what claims
they are making. Please split the sentence as much as
possible, but do not include information not in the
sentence.

Sentence: The Andy Warhol Museum in his
hometown, Pittsburgh, Pennsylvania, contains an
extensive permanent collection of art.

Claims:

1. The Andy Warhol Museum is in Pittsburgh.

2. Andy Warhol’s hometown is in Pittsburgh.

3. Pittsburgh is in Pennsylvania.

4. The Andy Warhol Museum contains an exten-
sive permanent collection of art.

Sentence: (input sentence)
Claims:

A.2 Training detail of T5 for proposition
segmentation

We finetune a T5-large (Raffel et al., 2020) model
on a seed set of training data generated via
GPT-3.5-turbo. We use an AdamW optimizer
with a constant learning rate of 1e−4, with a batch
size of 128. We train the model for 3 epochs on 8x
Nvidia A6000s, which takes 2 hours to finish.

A.3 Converting propositions from natural
language to token masks

Given a proposition of a sentence in the natural
language form, we convert and align it to a sub-
set of tokens from the original sentence with the

12
1607

https://doi.org/10.18653/v1/2022.emnlp-main.142
https://doi.org/10.18653/v1/2022.emnlp-main.142

Model Jaccard θ = 0.8 Jaccard θ = 0.5
Precision Recall F1 Precision Recall F1

Systems used in this paper

GPT-3.5-turbo 35.79 31.65 33.60 71.52 63.87 67.48
T5-Large (w/ GPT3.5 training data) 35.91 31.70 33.68 70.27 63.39 66.65

Systems fine-tuned on PROPSEGMENT (Chen et al., 2023)

BERT-Large 34.97 33.42 34.17 67.42 64.17 65.75
T5-Large 55.95 55.05 55.50 78.03 76.74 77.38

Table 7: Sentence segmentation performance of systems used in this paper when evaluated in zero-shot settings on
PROPSEGMENT. We include the performance of models trained on PROPSEGMENT reported by Chen et al. (2023)
as a reference.

following steps. We first tokenize and lemmatize
each of the tokens in the proposition using NLTK
(Bird et al., 2009). Next, we construct an affin-
ity matrix between the set of lemmatized tokens
from the proposition and the sentence. With the
matrix, we assign tokens with identical lemmas
are assigned a similarity score of 1. To break ties
between multiple token matches, we apply a 2D-
convolution filter on the affinity matrix, which adds
a small score offset for other token matches in a
context window of three tokens. With the affinity
matrix, we find the optimal alignment between the
proposition and sentence tokens with max bipartite
matching on the affinity matrix with the Hungarian
algorithm (Kuhn, 1955).

A.4 Proposition Segmentation Evaluation on
PROPSEGMENT

To evaluate the quality of propositions extracted via
our pipeline, we evaluate the proposition segmenta-
tion performance on PROPSEGMENT. The results
are shown in Table 7. For details of the Jaccard
similarity based evaluation metrics for proposition
segmentation, please refer to Chen et al. (2023).

B Training and Hyperparameters

We implement the sub-sentence encoder archi-
tecture with pytorch (Paszke et al., 2019) and
pytorch-lightning (Falcon and The PyTorch
Lightning team, 2019). All of our sub-encoder
model variants are trained on 8× Nvidia A6000
GPUs with 48GB VRAM.

Distributed Training Since we adopt in-batch
contrastive loss, we scale up the number of nega-
tive examples by increasing the batch size with dis-
tributed training across GPUs. We distribute train-
ing processes across GPU nodes via Distributed
Data Parallel (DDP) in PyTorch. Specifically, given

a minibatch of Ngpu×M sentences, each GPU gets
M sentences, which get forwarded through model
parameters on the GPU. Next, we gather and copy
all the encoded propositions along with gradients
to each of the GPUs, so that each GPU has the full
minibatch for loss computation. Each GPU process
backpropagates the loss independently on its copy
of the model parameters.

Hyperparameters For all experiments, we use
the temperature parameter τ = 0.01 for the super-
vised contrastive loss, with AdamW optimizer. For
Sentence-T5 and GTR variants of the model, we
use a learning rate of 1e−4. For SimCSE, we use a
learning rate of 5e−5. We train the models for 10
epochs, and a linear decay is applied at the end of
each epoch, which decreases the learning to 0 after
10 epochs. We select the best checkpoint based on
validation loss after each epoch.

C Evaluation Setup

C.1 Representing Atomic Propostion with
Sentence Encoder

With the atomic fact retrieval evaluation on
PROPSEGMENT, since the ground truth query and
target propositions are both represented in the for-
mat of token masks, we experiment with a few
different strategies of formatting the input for sen-
tence encoders. Specifically, with respect to the
input sentence and the token masks denoting the
proposition, here are the different strategies in con-
sideration.

1. Mask pooling only. Encoder has full atten-
tion, apply proposition mask during pooling.
Note that this is the same method we use for
the sub-sentence encoder.

2. Full mask. Apply proposition mask as atten-
tion mask during both encoding and pooling.

13
1608

3. Token subset only. Take the subset of tokens
and discard the rest. Feed only the subset
of tokens as a sequence to the encoder and
pooling layer.

When tested on a small validation set for the atomic
fact retrieval task, we generally observe that mask
pooling only yields the best result across most
models, except for the two compact models, i.e.
MiniLM-L6-v2 and DistilRoberta. On the two com-
pact models, we see full mask outperforming the
mask pooling only strategy by a small margin. We
observe that with the third strategy token subset
only, the validation performance trails behind the
other two across all models.

C.2 Robustness to Input Boundaries

Base Model P@1 R@5

GTRbase 40.77 → 38.39 72.90 → 71.47
ST5base 40.97 → 38.14 72.15 → 70.94
ST5base 41.64 → 37.28 71.48 → 69.32

Table 8: The retrieval performance of SUBENCODER
with model predicted propositions instead of ground
truth in input. We only consider propositions with Jac-
card similarity > 0.8 in the evaluation.

14
1609

